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Two natural classes of polymatroids can be associated with hypergraphs: the so-called
Boolean and hypergraphic polymatroids. Boolean polymatroids carry virtually all the
structure of hypergraphs; hypergraphic polymatroids generalize graphic matroids, This
paper considers algorithmic problems associated with recognizing members of these classes.
Let k be a fixed positive integer and assume that the k-polymatroid p is presented via a rank
oracle. We present an algorithm that determines in polynomial time whether p is Booclean,
and if it is, finds the hypergraph. We also give an algorithm that decides in polynomial time
whether p is the hypergraphic polymatroid associated with a given hypergraph. Other
structure-theoretic results are also given.

1. Introduction

Consider the problem of deciding whether a matroid belongs to a given class. Using an
independence or a rank oracle this is, in general, a hard problem. However, Seymour [6]
has shown that graphic matroids can be recognized in polynomial time. This paper
considers analogous problems for polymatroids.

Associated with a hypergraph are two natural polymatroids: its Boolean polymatroid,
and its hypergraphic polymatroid (for definitions see Section 2). Boolean polymatroids
carry virtually all the structure of hypergraphs — this class becomes trivial in the matroid
case. Hypergraphic polymatroids are natural generalizations of graphic matroids. Both
Boolean and hypergraphic polymatroids are important classes of polymatroids. The
research that led to this paper was motivated by the question of whether membership of
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these classes could be recognized, and members of these classes realized as hypergraphs, in
polynomial time.

In Section 3 we present some algornthmic results for Boolean polymatroids. It is shown
that given a k-polymatroid it can be decided if it is Boolean (and if it is, the corresponding
hypergraph given).using at most 1+ nk*+n2* calls to a rank oracle. If k is fixed, this is a
polynomial time algorithm. If & is allowed to vary, it is not. This shows that the problem
of recognizing a Boolean polymatroid is fixed parameter tractable in the sense of [l].
Example 4.2 shows that if k is not fixed, no polynomial time algorithm for recognizing a
Boolean polymatroid exists. Section 4 also includes a number of other results on Boolean
polymatroids. ‘

Section 5 considers hypergraphic polymatroids. Theorem 5.2 is, essentially, a
generalization of the main result of Seymour [6]. Unfortunately, this does not lead to a
polynomial time algorithm for recognizing when a k-polymatroid is hypergraphic, because
we lack the necessary supporting results. We regard it as an interesting open problem to
establish these results if possible.

2. Preliminaries

Let E be a finite set and let p be a function from the power set of E into the integers. Then
p is normalised if p(&) = 0; p is increasing if p(A4) < p(B) whenever 4 € B< E; and p is
submodular if p(4)+p(B) = p(A U B)+p(4 n B) for all subsets A and B of E. If p is
normalised, increasing and submodular, then p is a polymatroid on E. We say that E is the
ground set of p and p(E) is the rank of p. Let k be a positive integer. Then the polymatroid
p is a k-polymatroid if p(e) < k for all ee E. A 1-polymatroid is a matroid.

A hypergraph is a triple H = (V, E, I}, where ¥V and E are finite sets whose members are
called wvertices and edges respectively, and J< V'x E is its incidence relation. Two
hypergraphs with the same edge sets are equal if there exists an isomorphism between them
that is the identity on the edge set. In other words, by equality we mean equality up to
vertex labelling. For a subset F of E, define F to be the set of vertices incident with at least
one member of F, and for a subset W of V, define ¥ to be the set of edges incident with
at least one member of W. If, for all ec E, |g| < k, then H is a k-hypergraph. It is assumed
that hypergraphs have no isolated vertices: that is, it is assumed that if ve V, then |5] > 1.
This condition has the effect of simplifying a number of statements in this paper.

Let A be a subset of E. Then the restriction of H to A, denoted H| A, is defined by
H|A=(4,4,I),where I' = I n (4 x A). A component of H is a minimal non-empty subset
¥ of V with the property that if e is an edge of H, then either 2n V' =Jorec V"
Evidently the components of H partition V. The number of components of H is denoted
by «(H). If x(H) = 1, then H is connected.

We now consider polymatroids defined on the edge sets of hypergraphs. Define the set
function B :2%—+Z by 8,(4) = |4]| for all 4 < E. It is well known, and easily seen, that £,
is a polymatroid. A polymatroid p is Boolean if p = §,, for some hypergraph H. It is shown
in Lemma 3.4(ii) that Boolean polymatroids carry all the structure of hypergraphs. In other
words, if pis Boolean, there is a unique hypergraph H such that p = f,,. The correspondence
with hypergraphs means that Boolean polymatroids form a significant class.
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Now define the set function y; on the edges of the hypergraph H by
Xul(A) = |Al—«(H| 4).

It is well known that x, is a polymatroid (see, for example, [§]). A polymatroid p is
hypergraphic if p = x,, for some hypergraph H. Evidently, if H is a graph, then ¥, is the
cycle matroid of the graph. Much of the information carried by graphic matroids is also
carried in more generality by hypergraphic polymatroids. This applies, in particular, to
vertex colouring [2, 9.

We assume throughout that polymatroids are given by rank oracles. For good
discussions on oracles see [4, Box 11A], [1, Section 1.2] or [5]. Note that in the literature,
matroids are often given by independence oracles. It is straightforward to show that rank
oracles and independence oracles for matroids are polynomially equivalent [5].

3. Recognizing and realising Boolean polymatroids

In this section we give polynomial time (for fixed k) algorithms for the following problems:
Problem 3.1. Given a Boolean k-polymatroid p, find a k-hypergraph H such that p = §,,.

Problem 3.2. Given a k-hypergraph H and a k-polymatroid p defined on the edge set of H,
determine whether p = f,.

Problem 3. 3 Given a k-polymatroid p, dec1de whether or not p is Boolean. In the case that
p is Boolean, find a hypergraph H such that p = 8,,.

We first consider Problem 3.1. For a hypergraph H = (V, E, I),and A S E, let my(4) =
Hve V.5 = 4}|: that is, m,(4) is the number of vertices v with 7 = 4. (Note that my, (&)
= 0, as there are no isolated vertices.) Clearly m,,:2£ -+ Z uniquely determines H, since by
the convention set in Section 2, vertices of a hypergraph can be labelled arbitrarily. For
NeVIetHd| ¥V, =(E W, I'), where I’ = I n (V, x E), that is, H || ¥, is obtained from H by
removing the vertices in ¥'— V. Recall that 8, denotes the Boolean polymatroid associated
with H.

Lemma 3.4.

(1) Let A be a subset of E. Then E— A is a maximal non-spanning set of §,, if and only if A
is a minimal set for which m(4) = 0. If these hold, m(A) = B,(E)— B, (E— A).
(if) The hypergraph H=(V,E,I) is umquely determined by §,,:25 - Z,
(ifty For A, B < E define
pum={] 77 =
1 otherwise.
Then

Bu(B) =} (B

veV
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(iv) If V, and V, partition V, then for all A < E,
Bu(A) = ﬂHiiV](A)+ﬂH"V1(A)-
Proof. Let [,{d) = {ve V:7 S A}. Then

() = ) mu(B).

Now a vertex v is incident with no edge in E—~ 4 if and only if 7 < 4, so it follows from the
definition of 8, that

[y(A) = ﬂH(E) “ﬁH(E"'A)-

Therefore £E— 4 is a maximal non-spanning set of 8, if and only if 4 is a minimal set for
which I,(4) % 0, if and only if 4 is a minimal set for which m,(4) =+ 0. If these hold, then
m(A4) = [,,(4) and (i) follows.

By Mébius inversion

my(d) = ¥ (=1« IH(B)

BsA

.= Z (_l)ld“al(ﬁH(E)“ﬁH(E—B))!

Bg A

and (ii) follows.

For 4 € E, f, is simply the Boolean polymatroid of the hypergraph ({v}.E,{v} x 4) —~a
hypergraph with edge set £ and single vertex v such that 7 = 4. The expression in (iii) for
A.{B) then easily follows from the definition of g,,. Finally (iv) follows immediately from

(iii). . 0

Let p be a Boolean k-polymatroid on E, with [E] = n and p(£) = m. Note that m < kn,
so | +mn < 1+kn®

Theorem 3.5. The following algorithm solves Problem 3.1. It runs in time polynomial in n and
k and uses at most | +mn calls to the oracle.

Algorithm 3.6. First find m = p(E) and assign an arbitrary order to the members of E, say
E ={e,,...,e,}. With respect to this order one can find the lexicographically first maximal
non-spanning set of any increasing function ¢ on £ as follows. Set 4, = . Forl i<
n, set A, = A,_, Uie} if o(A; U{ed) <o(E), and 4, = 4,, otherwise. The algorithm
proceeds as follows:

Variables: ¥, a set. [, € ¥, x E, H, = (W,E,L,).
Set V,:= (4, I,: = &. (Thus initially H, = (&,E,J) and §, =0.)
While p(E) > g, (E) do the following loop:

begin of loop

Let o =p—p,.
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Find the lexicographically first maximal non-spanning set of o, call it 4.
Add a set V' of o(E)—a(A4) new vertices to H, where each vertex ve ¥’
satisfies 7= E—A; thatis, V: =¥V, U V' and I,;: = I, U (V' x (E~ 4)).
end of loop.

Output H,.

Proof. It is easily seen that the procedure for finding a maximal non-spanning set for an
increasing function works. Since p is Boolean, there exists a hypergraph H = (¥,E,1) such
that p = 8. By Lemma 3.4(ii), H is unique (up to vertex labelling). Assume for induction
that at the beginning of some iteration of the loop, H, = H|| ¥, for some ¥; < V. This is
certainly true initially, when ¥, = &. By Lemma 3.4(iv), ¢ = p~ By = fu—PBuw, = Buiv,
where ¥, = V'—¥,. Since o is an increasing function, the algorithm finds a maximal non-
spanning set of ¢, and hence by Lemma 3.4(i) it finds vertices of H || ¥,; and these are
vertices of H not already found in H|| V;. We may assume that the labels chosen by the
algorithm for these new vertices (the elements of V) coincide with their labels in A. These
new vertices are added to ¥, and A, and it remains true for the new H, (at the end of the
loop) that &, = H || V; (at the end of the loop). By induction, A, = H|| ¥; for some ] after
the last iteration of the loop. But at this time [V] = p(E) < f4(E) = |V, so V=V, and
hence H, = H as required. : '
To compute a(4) = p(4d)~fy(4) find p(4) from one call to the oracle for p, and
compute g, (4) in time polynomial in n and k. One iteration of the loop requires n calls to
the oracle for p, and there are at most m iterations of the loop. One call to the oracle is
required to find m = p(E), so altogether at most 1 +mn calls to the oracle are required. It
is clear that the running time is polynomial in » and k. (]

We now consider Problem 3.2. While we state the following lemma in terms of'
polymatroids, it clearly holds for all set functions.

Lemma 3.7. Let p, and p, be polymatroids on E such that p,(E) = p(E). If p; % p,, there
exists B < E and ee E— B such that

PUB U €)= p(B) < py(B U €)—py(B).

Proof. Assume that p, & p,. Order the elements of E, say E ={e,,...,e,}, letting E, =
{e},..., e}, so that for some [, p,(E) * p,(E). For 1 < i< n,lets, = p(E)—p,(E._,),and let
1= pa(E)—po(Ei-)). Let s, = p\({e,}) and 1, = p,({e,}). Then

Spt s, = p(E) = py(E) = ty+ 0+t

But the two sequences differ, since s+ +s, = p,(E) and #,+--++1 = p.(E). By
elementary arithmetic there exists a j such that s, < ¢, (and, of course, a k such that s, >
1,). The result then follows by setting B=E,  and e=e¢, 0

Let p be a k-polymatroid on E with |E| = n, and let H = (V,E,I) be a k-hypergraph.

Theorem 3.8. The following algorithm solves Problem 3.2. It runs in time polynomial in n and
2%, The number of oracle calls is at most n2%+*,
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Algorithm 3.9. The input is a polymatroid p on Eand a k-hypergraph H = (V,E,I). For an
edge e of E and subset of vertices W< &, set A(e,W)={feE—~e|fnN W=} The
algorithm proceeds by checking for each edge ¢ of E and each W < ¢, that p(A(e, W) =
B (A(e,W)) and p(A(e, W) U &) = f,(A(e,W) U e). If equality holds in all cases, the output
is YES; otherwise the output is NO.

Proof. The bounds on running time and oracle calls are clear. Suppose the algorithm is
incorrect. Then there exists a polymatroid p on E and a k-hypergraph H = (V,E,I) such
that p + £, but p(X) = B:{(X) whenever X is a set examined by the algorithm. Now, for
any edge e we have E = A(e,@) U e, s0 p(E) = §,(E). Hence, by Lemma 3.7, there exists
a subset B of E and an edge ee £— B such that

p(B U &)—p(B) < (B U &)—f,(B).
Let W=2&—25and A = A(e,W), so that B< 4. Then
Bu(B U €)—Bu(B) = |W|= (A U &)—fu(4),
and by submodularity,
p(A U e)—p(A4) < p(B U e}—p(B).
This contradicts the fact that
p(A U e)—p(A) = (4 U &)—fu(4). O

It follows from the above proof that it suffices to check ranks in cases where &—A(e, )
= W, and small improvements to the »2**! bound could be made.

Now consider Problem 3.3. For non-Boolean input, Algorithm 3.6 always terminates
within the bounds on time and oracle calls stated in Theorem 3.5. (We do not prove this
fact, since it is not necessary that the algorithm terminates. Even if it did not, one could
make it stop when the bounds on running time are reached.) With an input of a
polymatroid p, this algorithm will construct a hypergraph H. If p is Boolean, then p = 8.
If p is not Boolean, then certainly p # £, and we can test for this using Algorithm 3.9.

The proof of Theorem 3.10 below is now immediate. Let p be a k-polymatroid on £ with

|E] = n and p(E) = m.

Theorem 3.10. The following algorithm solves Problem 3.3. It runs in time polynomial in n and
2% There are at most 1 +mm-+n2¥* calls to the oracle.

Algorithm 3.11. First apply Algorithm 3.6 to p. The algorithm constructs 2 k-hypergraph
H. Apply Algorithm 3.9 with input p and H. If the output is YES, then output YES, H.
Otherwise output NO.

Associated with a polymatroid p on £ is a matroid r on £, the so-called induced matroid.
The independent sets of r are the subsets I with the property that p(J Y = |I’] for all subsets
I’ of I If p is Boolean, this is the standard way of obtaining transversal matroids. (If pis
Boolean, then p = §,, for some hypergraph H. Interpret H as a bipartite graph with vertices
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V U E. The transversal matroid on E obtained in the usual way is r.) Given that Boolean
polymatroids are easily recognized, one might conjecture that transversal matroids are
easily recognized within the class of matroids. However, this is not the case as the following

example shows.

Example 3.12. Let n > 3 be a positive integer, and let E be a set with 2n elements. Let M,
be the rank n uniform matroid on E. Now let & be a collection of subsets of E with the
following properties: | || =n+1; if Aesf, then |4] =n; and if 4 and B are distinct
members of 7, then |4 A B| > 4 (where 4 A B denotes the symmetric difference of 4 and
B). It is easily seen that the collection of n-element subsets of £ with &7 deleted is the
collection of bases of a matroid M, on E. Moreover M, is not transversal, since it has n+-1
connected hyperplanes (the members of &), and a transversal matroid has at most »
connected hyperplanes (see for example Ingleton [3]).

Now assume that we are trying to distinguish between M, and M, via a rank oracle.
How many calls to the oracle will be needed before we can guarantee that we have M,
rather than Af,? Clearly we need only check the rank of the n-element subsets. For each
such subset X there are n*+ 1 subsets Y with |X¥ A Y] < 4. Also, it is easily seen that so long
as at least (n+ 1)(n*+1) subsets remain unchecked, it is possible that the oracle has M,
rather than M, in mind. It follows that at least

(?j)—(n-i- 1) (2 -+ 1)

calls to the oracle are needed to be sure that we have M rather than M,. This is clearly not
bounded by any polynomial in |E| = 2n. )
Note also that U, ,, and U, ,, minus a base are two transversal matroids needing (nn)

calls to the oracle to distinguish, so transversal matroids can be neither recognized nor
distinguished in time polynomial in the size of the ground set.

4, Some structure theorems for Boolean polymatroids

The theorems in this section were found while researching the problem of Section 3. We

believe them to be of interest in their own right.
Algorithm 3.9 operates on the principle that once the ranks of certain subsets in a

polymatroid p are known to agree with their ranks in a given Boolean polymatroid, p must
be that Boolean polymatroid. In terms of the subsets examined, Algorithm 3.9 looks from

the “top down’. The following theorem shows that one can also look from the ‘bottom up’.

Theorem 4.1. Let p be a k-polymatroid on E and H = (V,E,I) be a hypergraph. If p(A4) =
Bi(A) for all A = E with |A| < k+1, and p(E) = B,(E), then p = B,,.

Proof. (This proof essentially dualises the argument of the proof of Theorem 3.8.) Let p be
a polymatroid on E, and & = (V,E,1} be a hypergraph such that p(E) = p4(E), and p(4)
= f,(A) for all 4 € E with |4| € k+1. Assume that p & g,,. B}r Lemma 3.7, there exists
B < F and ee E-— B, such that

p(B U €)—p(B) > B (B YU &)—B,(B). (1)
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Let W = #— B and choose a subset 4 of B that is minimal, with the property that #— 4 =
W. Clearly |4| <k, so

plA U E)—pld) = f,(4 U &)~ fy(4).
But
BulA U e}—By(4) = Wi = (BU e)—F,(B),
and by submodularity,
plA U &)—p(A) = p(B U &)—p(B).
Hence,
p(B U e)—p(B) < f,(B U e)—f4(B);

contradicting (1). 0

Theorem 4.1 gives an alternative algorithm for Problem 3.2. For fixed k it requires

k+1

1+3 (P:) calls to the oracle: that is, it requires O(n***) calls. This algorithm is not as efficient
= : ) :
as Algorithm 3.9. .

Also note that examination of the proof of Theorem 4.1 shows that not all subsets of size
Jess than or equal to k+1 need to be checked. A closer examination (the details of which
are omitted here) shows that it is sufficient to check a certain 0(n*) of them. However, the
following example shows that no further improvement is possible. It also shows that if k
is not fixed, no polynomial time algorithm exists for solving Problems 3.2 or 3.3.

Example 4.2. Let k > 1 and n > k+1 be integers, and let E = {e,, ..., e,}. We now define a
k+1
2
-k+1, there is one vertex incident with exactly e, and e,. (This part of H is the complete
graph on &+ 1 vertices with the roles of edge and vertex interchanged.) Each of the other

k vertices is incident with exactly the edges e,,,,...,¢,.
Now let p be defined by letting p(4) = §,(4) for all A < E except for the set X' = {e,,...,
k+1
2

hypergraph H = (V, E,I) with |V :( )+k. For each distinct pair {i,j} with i,j<

€,.,}, where we let p(X) = ( )+ 1. It is routine to check that p is a polymatroid. But

LX) = (k; I) = p(X)—1, 50 p + f,. We have constructed a k-polymatroid p on E and

a hypergraph H = (¥, E, I) such that p(4) = §,(A) whenever ]4| < k and when 4 = E but
p = Bu-

Now let n = k+ 1. As before we define a polymatroid agreeing with £, on all but a single
subset. Let X be any non-empty subset of E. It is routine to check that if 1 < |X] < k, the
rank of X can be increased by one, the resulting set function being a polymatroid, while if
2 < |X| < k+1, the rank of X can be decreased by one. That is, for any subset X of E, there
exists a polymatroid on E agreeing with #,, on all subsets of £ except X. Assuming that one
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has a reasonable definition of ““size” for a hypergraph, this example shows that if k is not
bounded, there exists no polynomial time algorithm for solving Problem 3.2 or 3.3.

~ Apart from f,, the polymatroids constructed in the above example are not Boolean.
Theorem 4.3 below shows that the bound of Theorem 4.1 can be sharpened if one is testing
for equality of Boolean polymatroids.

Theorem 4.3. Let p, and p, be Boolean k-polymatroids on E. If p,(4) = p,(A) for al A< E
with |A| < 2+1log, k, then p, = p,. :

Proof. For ie{l, 2}, let the hypergraph H, = (V,E,I) satisfy ﬂH{ = p,, and for A < E, define
m(d) ={veV;:0=4d}| and I(4)=I|{veV:T= 4| Suppose p, and p, provide a
counterexample to the theorem on a minimum sized ground set. Then, without loss of
generality, we can assume that p,(4) = p,(4) for all proper subsets 4 of E, and that
P1(E) — po(E) = w, for some w 2 1. Now [(A4) = p(E)—p,(E~ A). Therefore,

woif A+

ll(A)—la(A)-—~{0 . 4L

Now

L) —L(d) = }, (my(B)—my(B)).

BgA

Hence, by M&bius inversion,

my(A)—my(A) = ) (=15 (B)~1,(B))
_{-1(-1)% it A+
B 0 if A=g.

Thus, m,(4)—my(A4) =w for all subsets of E with odd cardinality (and —w for all
nonempty subsets of £ with even cardinality). Therefore H, has (at least) w vertices v with
7 = A for each subset 4 of E with odd cardinality. Let |E| = n. It now follows that the
number of vertices incident with each edge of H, is at least

w Y (”"I)=w2"*2.

tsn-1 i—1

fedd
Therefore, k = w2"7?; that is, & = 2*7% Hence, n € 2 +log, k; that is |E| < 2+log, k. This
means p,(E) = p,(E), contradicting the assumption that p,(E) = p,(E). O

The following example shows that Theorem 4.3 is, in a sense, best possible. It shows that
for each pair of integers n and k, with n > 2 and k& > 22, there exist k-hypergraphs A, and
H, with edge set E, where |E| = n with the property that By (A) = By (A) for all proper
subsets 4 of E, but g, (E) = 84,(E).
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Example 4.4. Let |[E| = n > 2 and k = 2" Define hypergraphs H, and H, with edge sets
E as follows. In H,, for each subset 4 of E with odd cardinality, there is one vertex v with
7 = A and there are no other vertices. In H,, for each nonempty subset 4 of E with even
cardinality, there is one vertex v with 7 = 4 and there are no other vertices. Now H, and
H, are k-hypergraphs, and if 4 is a proper subset of E, then

ﬁH,(A) = ﬂH:(A) = =1 _gn-lai-1

But g, (E) = 277, whereas f, (E).= 2" —1.

In the above example, when n = 3, k = 2, so H, and H, are graphs. Here H, is the 3-edge
star and H, is the triangle. Note that Theorem 4.3 does not help in the graph reconstruction
problem (see for example {8, Chapter 5]), since edges here are labelled.

5. Hypergraphic polymatroids

In this section we give a polynomial time algorithm for the following problem.

Problem 5.1. Given a (k—1)-polymatroid p on E and a k-hypergraph H = (V,E.[),
determine whether p = x4. . :

Theorem 5.2. Algorithm 5.3 below solves Problem 5.1 in time polynomzal in 2° and n. The
number of oracle calls is at most n2*+*,

Algorithm 5.3. As in Algorithm 3.9, for an edge e of E and subset of vertices W < g,
we set A(e, W)={fe E—e]| f n W= ¢f}. The algorithm then proceeds by checking for
each edge ¢ of E, and each W < g, that p(Ad(e, W)) = y,(4(e, W)) and p(d(e, W) U ) =
xu(Ale, W) U e). If equality holds in all cases, the output is YES, otherwise NO.

Proof. The bounds on running time and oracle calls are clear. Now assume that the
algorithm outputs YES when the connected hypergraph H = (V,E,I) and the k-polymatroid
p on E are given as input. We first prove three lemmas.

Lemma 5.4. [f C is a subset of E, then p(C) = x,(C).

Proof, Order the elements ey,...,& of C, letting C, = {e,,..., ¢} such that «(H| CJ,) is non-
decreasing for increasing j. (It is routinely seen that such an order exists.) Let W, =&, -C,
and A = A(e,.,, ). By the assumption about «(H|C,), it follows that ¢;,, meets the same
number ¢ of components, where ¢ =0 or ¢ =1, of both H{C, and H|[A. Then by the
definition of y,, it follows that

XH(CJ U ej+1)""XH(Cj) = |I’K|"' l1+c¢
= XH(_A U e)—xalA)
Now, by submodularity,

P(Cj U ej+1)""P(Cj) Zp(A U ej+1)“P(A)’
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and, since 4 U ¢,,, and A are checked by the algorithm,

p(A Y e1)—p(d) = xu(A U €),1) — xul(A)-
Therefore,
p(Cy U ej+1)"‘P(Cj) Z xu(C VU &01) — Xu(C))-

A straightforward induction using the above fa_ct then establishes the lemma. O
Lemma 5.5. If C is a subset of E such that H|C is connected, then p(C) = y,(C).

Proof. Say |C| = . Order the elements e, ..., e, of E, letting E, = {e,, ..., &}, such that C =
E,, and H|E, is connected for all j = 1. Since H is connected, it is easily seen that such an
order exists. By Lemma 5.4, p(C) 2 x,(C), and the argument of Lemrna 5.4 shows that, for
l<j<n,

PUE; U €0} —p(E) Z x4(E; U 4,) — xu(E)).
Suppose p(C) > x4(C). Then, by induction using the above inequality, it follows that p(E)
> y,(E). But E is checked by the algorithm, so p(E) = y,(E). Hence p(C) = x,(C). O

Lemma 5.6. p(C) = y,(C) for all C< E.

Proof. Let C,, ..., C, be the connected components of H|C. Now by Lemma 5.4, p(C) >
' 1 ! !
xx(C); by the definition of x4, xx(C) = ) ¥4(C); by Lemma 5.5, ) x4(C) = ¥ p(C);
. i=1

{=1 iml

z .
and by the submodularity of p, Y p(C) = p(C). Hence p(C) = v,(C) = p(C), so p(C) =

i=1

xu{(C), and the lemma follows. 0

It follows from Lemma 5.6 that the theorem holds when H is connected. The extension
to the case when H is not connected is evident. ]

It follows from the proof of Theorem 5.2 that not all the subsets checked by Algorithm
5.3. need to be. At the expense of a somewhat more complicated statement, this algorithm
could be refined somewhat, but the bounds on running time and oracle calls would not be
changed to an interesting extent. -

The key result of Seymour [6] is a corollary that gives sufficient conditions for a matroid
to be equal to the cycle matroid of a graph. This result is similar to the case k =2 of
Theorem 5.2, except that, for an edge ¢ and subset W of €, Seymour does not compare ranks
if W= or W=e. Itis not hard to see that, in general, these cases can be omitted,
provided that p(E) = y4(E) is checked; which Seymour does.

Unfortunately, we cannot give a polynomial time algorithm for determining whether a
k-polymatroid is hypergraphic. Such an algorithm would required polymatroid-theoretic
generalizations of results in, for example, [7]. Alternatively, a characterization of when two
hypergraphs have the same hypergraphic polymatroid would be useful. This would be an
extension of Whitney’s 2-isomorphism theorem [10].
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