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It follows from a fundamental (1958) result of Tutte that a binary matroid is
representable over the rationals if and only if it can be represented by a totally
unimodular matrix, that is, by a matrix over the rationals with the property that
all subdeterminants belong to {0, 1, —1}. For an arbitrary field F, it is of interest
to ask for a matrix characterisation of those matroids representable over F and the
rationals. In this paper this question is answered when K is GF(3). It is shown that
a ternary matroid is representable over the rationals iff and only if it can be
represented over the rationals by a matrix 4 with the property that all subdeter-
minants of 4 belong to the set 10, +£2': 7/ an integer}. While ternary matroids are
uniquely representable over GF(3), this is not generally the case for representations
of ternary matroids over other fields. A characterisation is given of the class of
ternary matroids that are uniquely representable over the rationals.  © 1995 Academic

Press, Inc.

1. INTRODUCTION

It follows from a celebrated (1958) theorem of Tutte [22] that a binary
matroid is representable over the rationals if and only if it can be represented
over the rationals by a totally unimodular matrix. A matrix U over the
rationals is totally unimodular if all subdeterminants of U belong to the set
{10, 1, —1}. It is natural to ask if an analogous result holds for other fields.
In particular, for a field F, one can ask for a matrix characterisation of the
matroids representable over F and the rationals. In this paper we solve this
problem when F is GF(3), that is, we give a matrix characterisation for the
class of matroids that are representable over GF(3) and the rationals.
A matrix 4 over the rationals is dyadic if all non-zero subdeterminants of
A belong to the set { £2:ie Z}. It is easily seen that the matroid repre-
sented by the columns of a dyadic matrix is ternary. The main theorem of
this paper proves the converse. We show that if M is representable over
GF(3) and the rationals, then M = M[ A] for some dyadic matrix A.
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A major problem that presents itself in matroid representation theory is
the existence of inequivalent representations. Strong results are only known
to exist in cases where matroids are uniquely representable. All known
proofs of the excluded-minor characterisations of the classes of binary and
ternary matroids use the uniqueness of representations of these matroids
in an essential way [2, 6, 7, 19, 22]. Also regular matroids are uniquely
representable over any field. In contrast to this, a ternary matroid may
have inequivalent representations over the rationals. For example, it is
easily seen that the whirl # * has inequivalent representations over the
rationals. Indeed. of the infinite number of equivalence classes of represen-
tations of %, only three contain dyadic matrices. This is strikingly dif-
ferent from the case of regular matroids. Any representation of a regular
matroid can be transformed to a totally unimodular representation by
standard matrix operations.

Loosely speaking, the reason why inequivalent representations cause dif-
ficulties is that one no longer has leverage for induction. In trying to show
that a matroid M has a representation of a certain type, it is natural to try
to show that this property is inherited from a representation of a minor of
that type. If we do not have unique representability, then not all represen-
tations of minors need extend to representations of M. This means that we
cannot guarantee that a representation of the desired type extends to a
representation of M.

Most of this paper is devoted to overcoming difficulties caused by the exis-
tence of inequivalent representations. Essentially the technique used is to show
that when a 3-connected ternary matroid has inequivalent representations over
the rationals, the inequivalent representations correspond to a single equiv-
alence class of representations over an appropriate transcendental extension
field of the rationals. I believe that it is of great interest to know whether the
techniques of this paper can be generalised to assist in solving any other of the
many outstanding problems in matroid representation theory.

The paper is structured as follows. Section 2 outlines known results that
are used throughout the paper. Section 3 presents a result for 3-connected
matroids. This result is essentially a technical lemma. The proof is an
unfortunately long case analysis using standard techniques. It is recom-
mended that the reader skip the proof on a first reading. It would be nice
to see an elegant proof of this theorem. Weak maps are standard matroid
constructions that are used frequently in this paper. Section 4 outlines some
basic facts on weak maps. A homomorphism of an integral domain induces
a map on representations of matroids over that integral domain. The image
of a representation of a matroid under such a map is a representation of
a weak-map image of the original matroid. The two main sections of the
paper are Sections 5 and 6. Section 5 introduces a certain class of matroids
that turn out to be representable over all fields except possibly GF(2).
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These matroids have natural representations over a transcendental exten-
sion field of the rationals. These are the so-called “near-regular” matroids.
It is shown that members of this class, while not in general uniquely
representable over the rationals, have well-behaved canonical representa-
tions over this transcendental extension field. It turns out to be easy to
show that a near-regular matroid can be represented over the rationals by
a dyadic matrix, but while near-regular matroids are representable over
GF(3) and the rationals the converse is not generally true. The main task
of Section 6 is to deal with the transition to ternary matroids representable
over the rationals that are not near-regular. Section 7 presents the main
results—the proofs essentially summarise information from previous sec-
tions. As well as showing that all matroids that are representable over
GF(3) and the rationals can be represented by dyadic matrices, it is also
shown that a 3-connected ternary matroid has inequivalent representations
over the rationals if and only if it is non-binary and near-regular.

Finally we note that in [26] the techniques of this paper are used to give
matrix characterisations of those matroids that are representable over
GF(3) and F for any given field F. This is acheived by finding appropriate
generalisations of Theorems 6.6 and 7.1.

2. PRELIMINARIES

Familiarity is assumed with the elements of matroid theory. Terminology
follows Oxley [17] with a single exception noted in the following para-
graph. One aspect of matroid theory that we assume particular familiarity
with is the theory of matroid representations. Essentially, it is assumed that
the reader is familiar with the substance of [ 17, Chapter 6].

Connectivity

For a good discussion of the theory of matroid connectivity we again
refer the reader to [17]. Recall that the simplification of a matroid M is
obtained by deleting all the loops of M and all but one element of each
parallel class of M. Dually, the cosimplification of M is obtained by con-
tracting all the coloops of M and all but one element of each series class
of M. We denote the simplification and cosimplification of M by si{ M) and
co( M) respectively. This notation differs from [17]. Note that, as defined
here, si{M) and co(M) are minors of M, which turns out to be convenient
in our arguments.

Recall that a matroid is not 3-connected if and only if it has a 2-separa-
tion. A 2-separation of M is a partition { X, ¥} of E(M) with the property
that | X1],1Y| 22, and n(X)+r(Y)<r(M)+ 1. We are frequently interested
in cases where M may not be 3-connected but where either si(M) or co(M)
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is 3-connected. The following elementary facts on 2-separations are used in
Section 3.

(2.1) If {X., Y} is a 2-separation of a connected matroid M, then either
{cl{X), Y—cl(X)} is a 2-separation of M or Y is contained in a non-trivial
parallel class of M.

(2.2) ([20, (5.1)]) If M is connected and si( M) (respectively co{M)) is
3-connected, then any 2-separation {X, Y} of M has the property that
either X or Y is contained in a parallel (respectively series) class.

(2.3) If M is a simple matroid with (M) > 3, and co(M) is not 3-con-
nected, then there exists a 2 separation {X, Y} of M with |X|,|Y|>2.

3-connected, non-binarv matroids

Recall that, for r > 2, the whirl % is the matroid defined as follows. Let
P={p,.ps, ...p,} be the vertices of an r-simplex. Then # " is obtained
by placing a point freely on each of the lines {p,,p.}, {ps.ps}.
{p,_1.p) and {p,. p,}. I r=2, then #72= U, ,. The following results are
straightforward consequences of Seymour’s Splitter Theorem [20]. For a
discussion of this theorem and its consequences see [ 17, Chapter 11].

{24) Let M and N be 3-connected matroids with the property that NV
is a non-binary minor of M, |E(N)| >4, and if N is a whirl, then M has
no larger whirl as a minor. Then there is a sequence M,, M,, ... M, of
3-connected matroids such that M =N, M,=M, and, for all i in
{0.1,..,n—1}, M, is a single-element deletion or a single-element contrac-
tion of M, .

In particular we have

(2.5) Let M be a non-binary, 3-connected matroid. If M is not a whirl,
then there exists x € £ such that either M\x or M/x is non-binary and
3-connected.

The following result is proved in [25]. It is a straightforward conse-
quence of (2.5).

(2.6) Let M be a 3-connected, non-binary matroid. If #(M) = 3, then
there is an element x € E(M) with the property that si{ M/x) is 3-connected
and non-binary.

A result that is crucial in many arguments on non-binary, 3-connected
matroids is the following theorem of Seymour [21]. A matroid N uses a set
Xif X< E(N).
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{2.7) 1If x, and x, are elements of a 3-connected, non-binary matroid
M, then M has a U, ,-minor using {x,, x,}.

While, in general, a 3-connected, ternary, non-binary matroid may have
inequivalent representations over a field F, there are sharp constraints on
these representations. The following result is a routine strengthening of
[25, Lemma 2.6].

(2.8) Let M be a connected, ternary matroid representable over a field
F with an element x such that M \x is connected and si{ M \x) is 3-connected
and non-binary. Let 4 be a matrix representation of M\x over F that
extends to a representation of M. If x and y are vectors such that [ 4| x]
and [ 4 | y] both represent M over F, then x is a scalar multiple of y.

3. A 3-CONNECTIVITY THEOREM

Let M be a 3-connected, non-binary matroid such that the rank of
its dual M * 1s at least four. The triple («, b, ¢) of distinct elements of M
1s a distinguished triple if 1t is coindependent and it has the property
that co(M\«), co(M\b), co(M\c), colM\a, b) and co(M\a, ¢) are all
3-connected and nonbinary.

The purpose of this section is to prove

(3.1) THEOREM. A 3-connected, non-binary matroid with (M *) = 4 has a
distinguished triple.

In fact it is not Theorem 3.1 that is used in this paper but its dual, stated
as Corollary 3.8. This corollary is used in the proofs of Theorems 5.9
and 6.6.

Proof of Theorem 3.1. Throughout M denotes a 3-connected, non-
binary matroid with r{M *}) >4 and ground set £. We proceed by induction
on the rank of M. If r(M) =2, the result clearly holds, so assume that
r(M) = 3. We first show that the theorem holds when r(M)=3. In fact in
this case it turns out to be easter to establish a somewhat stronger conclu-
sion which is certainly not generally true for higher ranks.

(3.2) If (M)=3, then M has a distinguished triple («, b, ¢) with the
property that M\a, M\b and M \¢ are all 3-connected.

Proof. The proof of 3.2 is by induction on |E|. Certainly |F|>7. We
first prove

(3.2.1) 1f |E| =7 then 3.2 holds.
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Proof. We have r(M)=3 and |E|=7. Assume that M has a four-point
line. It is easily checked that, up to isomorphism, there are just four such
matroids; these are illustrated in Fig. 3.1.

Routine checking shows that, in each matroid, (a4, b, ¢) is a distinguished
triple where a, b, and ¢ are the points labelied in the diagrams. It is also
easily checked that M\a, M\b, and M\c are all 3-connected.

Now say M has no 4-point lines. Assume that M is ternary. In this case
M is an extension of #°* and it follows from [ 14, Lemma 2.2] that M is
either the non-Fano matroid F; or the matroid P, illustrated in Fig. 3.2.
Again it 1s routine to check that in each matroid (a, b, ¢) 1s a distinguished
triple where g, b, and ¢ are the points labelled in the diagrams. It is also
easily checked that M\a, M\b, and M\c are all 3-connected.

Assume that M is not ternary. Then M has either a U, 5- or a U, -
minor. It follows by [15, Theorem 1.6] that M has a U, s-minor. It
routinely follows that there exists a € E such that M\a is U;  or one of the
matroids Pg or Qg illustrated in Fig. 33. If M\a is U, ¢, then it is clear
that M has a distinguished triple (a, b, ¢) with the property that M\a,
M\b, and M\c are all 3-connected, so we may assume that M\a is either
P or Q.

It is easily seen that if M\a is Pq. then (a, b, ¢) is a distinguished triple
of M where b and c are as labelled in Figure 3.3. It is also clear that M \a,
M\b and M \c¢ are all 3-connected. Say M\« is Q,. and consider the label-
ling indicated in Figure 3.3. Evidently, in M, either {4, ¢,, x} or {a, ¢,, x}
is not collinear. Assume without loss of generality that {a, ¢,, x} is not a
circuit. Then one readily checks that (a, b, c¢,) is a distinguished triple of M
with M\a, M\b and M\¢, all 3-connected. |

We now complete the proof of (3.2). By (3.2.1), (3.2) holds if [E|=7.
Assume for induction that |E|>7 and that the conclusion of (3.2) holds

a b c a b ¢
.
. ° :
.
e
a b c

a b ¢

FiG. 3.1. Distinguished triples in matroids with a four point line.

382b765:2-5
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a

Fr Py
FiG. 3.2. Distinguished triples in £, and P,.

for all matroids satisfying the conditions of (3.2) whose ground sets have
cardinality less than |E|.

Certainly there is a point p e E such that M\p is non-binary. If M\p is
not 3-connected, then £—{p} is the union of two lines /, and /,. If
I,n1,# ¥, then it is easily seen that M\(/, n/,) is non-binary and 3-con-
nected, so assume that /;, n/, = . If either /|, or I, has more than four
points, then deleting a point from the line with more than four points
clearly leaves a non-binary, 3-connected matroid. Assume then, that neither
{, nor {, has more than four points. Without loss of generality we may
assume that |/,| =4 and |/,|€ {3,4}. Let ¢ be a point of /,. Clearly M\gq
is non-binary and 3-connected. We conclude that there exists a point
ae E such that M\g is 3-connected and non-binary. By the inductive
hypothesis there exist points 4 and ¢ in £ —a such that M\a, b and M\a. ¢
are non-binary and 3-connected. Clearly M\b and M\c¢ are also non-
binary and 3-connected. This establishes 3.2. |1

Now assume that (M) = 4. and, for induction, that any matroid satisty-
ing the hypotheses of Theorem 3.1 whose rank is less than r(AM) has a

Cy

(5] I o

o9

o 8
P )

FiG. 3.3, The matroids P, and Q.
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distinguished triple. By (2.6) there exists an element x € £ with the property
that si(M/x) is non-binary and 3-connected. We first show that the
theorem holds when M/x has no non-trivial parallel classes.

(3.3) If M/x is non-binary and 3-connected, then M has a distinguished
triple.

Proof. Tt follows from the inductive hypothesis that there exists a coin-
dependent triple (a, b, ¢) of distinct elements of M/x for which co{M/x\a),
co( M/x\b), co(M/x\c), co(M/x\a, b), and co(M/x\a, ¢) are all 3-connected
and non-binary. We first prove

(3.3.1) If N is a loopless matroid and ye E(N) has the property that
co( N/v) 1s 3-connected, then co(N) is 3-connected.

Proof. We prove the dual which seems more obvious intuitively. Now
N* is coloop free, siitN*\y) is 3-connected and N* is an extension of
N*\y. If p is in a parallel class or is a loop, then it is clear that
si{N*\ 1) =si(N*), and hence si( N*) is 3-connected. Otherwise, si{ N*) can
be regarded as an extension of si(N*\y) in which y is neither a loop,
coloop, or parallel to an element of si( N*\y). Again it follows that si( N*)
1s 3-connected. |

By (3.3.1), co(M\a), co(M\b), co{M\c), co(M\a, b), and co(M\q, c)
are all 3-connected. Moreover these matroids are all non-binary since they
contain non-binary minors. Since a, b, ¢ is coindependent in M/x, this set
is certainly coindependent in M. It follows that (q, b, ¢) is a distinguished
triple of M, and (3.3) is established. |}

We may now assume that M/x has at least one non-trivial parallel class,
that is, that M has at least one non-trivial line containing x. We first con-
sider the case where there is such a line with at least four points.

{3.4) If M has a line / containing x with |/| 24, then M has a dis-
tinguished triple.

Proof Say I={x,p,,ps, ... Pn}, Where n=3. First note that if {J,j} <
{1,2....n}, then M\p,, p; clearly contains a minor isomorphic to si(M/x)
so that M\p,, p; is non-binary. Also, if 7, j and k are distinct elements of
{1.2,..,n}, then {p,, p;, p,} is coindependent in M, otherwise { p,. p,. p;}
would be a triangle and a triad of M, a situation that cannot occur in a
3-connected matroid with at least five elements. It follows that to show
that (p,, p,, pi) is a distinguished triple, it only has to be shown that the
cosimplifications of the appropriate deletions are 3-connected. It is well
known, and easily seen, that if the element = of the 3-connected matroad N
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is on a line with at least four points, then M\z is 3-connected. It follows
that M\p,, M\p,, and M\p, are all 3-connected.

Assume that |/| =5, that is, n > 4. Then M\p,, p, and M\ p,, p, are also
3-connected, and (p,, p,, p;) 1s a distinguished triple.

We may therefore assume that n=3, so that /={x, p,, p,. pz}. The two
following preliminary results will be used frequently throughout the rest of
the proof.

(34.1) Let N be a connected matroid with an element - having the
property that N/c is connected. Say {Z, Y} is a 2-separation of N with
ze Z, and |Z| > 2. Then,

(1) {Z-—=z Y} is a 2-separation of N/z. and
() (Nz)[Y=N]|Y

Proof. ryAZ—z)y=ryZ)—1, and ry (Y)<ry(Y). It follows routinely
from this that {Z —z, Y} is a 1-separation of N/z or a 2-separation of N/-.
Since N/z is connected, the former case does not occur, so {Z —=z, Y}, is an
exact 2-separation of N/z. But this case only occurs if ry . (¥)=r\(Y). We
conclude that this is the case. Thus {(Yuz)=r(Y)+ 1, so - is a coloop of
Nli(Yuz)and (N2)|Y=N|Y. |

(3.4.2) Let N be a 3-connected matroid with rank at least three, and
having an element = with the property that si(N/z) is 3-connected. If
{z,p. ¢} is a circuit of N, then either co(N\p) or co(N\g) is 3-connected.

Proof. Assume that neither co{N\p) nor co(N\¢) is 3-connected. Then
neither N\p nor N\g is 3-connected. Thus by Tutte’s Triangle Lemma
([24]. see also [ 17, Lemma 8.4.9]) N has a triad 7, containing exactly one
of z and ¢. If T, contains ¢, then the 3-connected matroid N/z\p has a
2-element cocircuit; a contradiction. Thus T, contains p and z but not ¢.
Similarly, N has a triad containing ¢ and = but not p. Now N/p has {g, =}
as a circuit that is in a cocircuit. Thus si{/N/p) has a 2-element cocircuit and
so 1s not 3-connected. Thus, by a result of Bixby ([3], see also [17,
Proposition 8.4.87), co(N\p) is 3-connected. |

Now return to the proof of (3.4). We have a line /={x, p,, p,. ps} of M.
Moreover, for ie{1,2,3}, M\p, is 3-connected. Consider M\p,. By
(3.4.2), either co(M\p,, p,) or co(M\p,,p,) is 3-connected. If both are
3-connected, then (p,, p,, p5) is a distinguished triple of M. Say not; assume
without loss of generality that co{M\p,, p,) is not 3-connected. Consider
M\p,. By (3.4.2), either co(M\ p,, p,) or co(M\p,, p;) is 3-connected. We
conclude that the latter matroid is 3-connected, and that (ps, p,.p,) is a

distinguished triple M. |
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For the remainder of the proof we assume that all non-trivial lines of M
that contain x have at most three points.

(3.5) If there is exactly one non-trivial line of M containing x, then M
has a distinguished triple.

Proof. Let I=1{x.p,q} be the non-trivial line of M containing x. Note
that si(M/x) = M\p/x = M\g/x. We use this fact frequently. We obtain a
distinguished triple of M that contains {p, ¢}.

(3.5.1) co(M\p) and co{M\q) are 3-connected and non-binary.

Proof. It clearly suffices to show that co(M\p) is 3-connected and non-
binary. Now si(M/x)=M\p/x, so M\p is certainly non-binary. It also
follows that M\ p/x is 3-connected. Therefore M\p is 3-connected unless it
has x in a 2-clement cocircuit. In either case co(M\p) is 3-connected. |

Identify si(M/x) with M\ p/x. We now show

(3.5.2) There exists a 3-element, coindependent subset {a, b, ¢} of M\ p/x
with the property that co(M\p/x\a), co(M\p/x\b}, and co( M\ p/x\¢) are
all non-binary and 3-connected.

Proof. 1f M has corank greater than four, then M\p/x has corank
greater that three. In this case it follows from the inductive hypothesis that
M\p/x has a distinguished triple (a, b, ¢) and {«, b, ¢} is the required set.

Assume that M has corank four. Then M\p/x has corank three. Now
(M\p/x)* is a 3-connected, non-binary, rank-3 matroid. It now follows by
[16, Theorem 3.1], that (M\p/x)* has a restriction isomorphic to one of
Us 6. Po, Qo. or #7°. (Recall that the matroids P, and Q, are illustrated
in Figure 3.3.) One readily checks that each of these matroids has an
independent 3-element set {a, b, ¢} such that the simplification of the con-
traction of any one of these is 3-connected and non-binary. It follows that
(M\p/x)* has such a set, and by duality, that M\p/x has a 3-element set
with the required properties. |}

Let {a, b,c} be a 3-element, coindependent set of M\p/x satisfying
(3.5.2). We would like to guarantee that for some ee{a. b, ¢} —{q},
co(M\e) is 3-connected. We first establish some preliminary facts.

(3.5.3) Let 5 be an clement of the set E—{x, p, ¢} with the property
that co(M/x\p, s) is 3-connected but co(M\s) is not 3-connected. Then
{1, E—(lu{s})} is a 2-separation of M\s, and /U {s} contains a cocircuit
C* with se C*.
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Proof. Since co(M \s) is not 3-connected, there is a 2-separation { X, Y}
of M\s with the property that neither X nor Y is contained in a series class
of M\s. Recall that /= {x, p, ¢}. One of X or Y contains at least two points
of /; say X does. One readily checks that { XU/, Y —/} is also a 2-separa-
tion of M\s with the property that neither X u/ nor Y —/ is a series class
of M\s. Hence we may assume without loss of generality that {X, Y} is a
2-separation of M\s with /c X.

By (3.4.1), { X —{x}. Y} is a 2-separation of M\s/x. It may be that this
2-separation is not exact, that is, the 2-separation may also be a 1-separa-
tion. Set 4 =X —/ Say A= 4. Then {/ Y} is a 2-separation of M\s. We
now show that {/, E—(/u {s})} is also a 2-separation of M\s in the case
that 4 # (.

Assume then, that 4 # J. Now {s, p, ¢} is not a triad of M, otherwise
the 3-connected matroid M\ p/x has a 2-element cocircuit. Hence

r:\l,“.\\,\'.p( YU A ) = r(M\S) - l

In the following equations, (2) follows from the submodularity of the rank
function, (3) follows from (3.4.1), and (4) follows from the above equation.

FarolD) + 1 (YU A) (1)
<247, (V) +]4] 2)
=2+ 00, Y) F14] (3)
=24 r(M\s)—1 (4)
=r(M\s)+ L (s)

But Yu 4 =E—(lu{s}), so it follows that {/, E— (/U {s} )} is a 2-separa-
tion of M\s. Since ry\ (/) =2, E—(lu{s}) spans a hyperplane H of M.
Moreover, s¢ H, otherwise {/, E—1} is a 2-separation of M. Hence /U {s}
contains a cocircuit C* that contains 5. ||

(3.54) Let S be the set of all elements of E—{x,p, ¢} with the
property that for se S, co(M/x\p, s) is 3-connected, but co(M\s) is not
3-connected. Then the corank of .S in M/x\p is less than or equal to 2.

Proof. Order the elements of S, say S={s,, 51,..,5,}. As before, set
I={x,p.q}. Say ie{l,2,..,n} and consider s,. By (3.53), /uls,}
contains a cocircuit C* that contains ;. Set H,=F— C*. We now show
that

rM<(”\ H,>=r(M)—n.
i=1
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Since / cannot contain a cocircuit, r(M\/) = r(M). Moreover, each of s,
3. ., §, 18 a coloop of M\/ The assertion follows unless, for all i and some
fixed a and b, C* is {s,, a, b}. In the exceptional case, n <2 or {s,, 5,, a}
is a cocircuit of M meeting / in a single element. We conclude that it 1s
indeed the case that

ra (ﬁ H,>=)‘(M) —n.

Now consider M/x\p. By (3.4.1)

rAl‘s’,\‘\p< m H:‘>=”M< m Hi>~
i=1 i=1

Hence

Fatinng ( ﬂ H.') =r(M/x\p)—n+1.

=1

But

EM/x\p)— () H,=Su{q},

i=1

so, using the formula for the rank function of the dual matroid, we have

rmlw,\-\p;*‘SU {9} )=[Su {‘1}} ~r(M/x\p) + 7 (ﬂ Hi>

i=1
=n4+1—r(M/x\p)+r{M/x\p)—n+1

=2.

We conclude that 75, ,«(S) <2 |}

Return to the proof of (3.5). We first show that there exists an element
ec E—{x,p, q} such that co(M\e) is 3-connected and non-binary. Recall
that {a, b, ¢} is a coindependent, 3-element set of elements of M\ p/x with
the property that co(M\p/x\a), co(M\p/x\b), and co(M\p/x\c) are all
non-binary and 3-connected. We consider two cases. For the first assume
that g ¢ {a, b, ¢}. Since {a, b, ¢} is coindependent, by (3.5.4), there exists an
element ee{a, b, ¢} such that co(M\a) is 3-connected. Consider the
second case. Here we may assume that ¢ = ¢. Assume that neither co(M \a)
nor co(M\b) is 3-connected. Then, by (3.5.3), {x,p, ¢, a} and {x,p,q, b}
contain cocircuits that contain a and b respectively. We deduce that
{p.q.a, b} contains a cocircuit of M/x. It follows easily that {q¢, a, b}
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is a triad of M/x\p. This contradicts the assumption that {a, b, g} is
coindependent in M/x\p. It follows that, for some ee {a, b}, co(M\e) is
3-connected. In both of the above cases it is clear that M \e is non-binary.

Arguing as in (3.5.1) we see that co(co(M\e)\p) is 3-connected. It is
easily seen that co(co{M\e)\p) =co(M\e, p), so co(M\e, p) is 3-connected.
But M/x\e, g= M/x\e, p, so again arguing as in (3.5.1), we see that
co(M\e, g) is 3-connected. Evidently both M\e,p and M\e, ¢ are non-
binary. To establish that (e, p, ¢) is a distinguished triple, all that remains
is to show that {e, p, g} is coindependent. Now, in M/x, {e,p. ¢} is a
parallel extension of {e, p}, and this set is certainly coindependent. But
a parallel extension of a coindependent set is coindependent. Therefore
{e,p, g} is coindependent in M/x and consequently in M. |

We may now assume that M has at least two non-trivial three point lines
containing Xx.

(3.6) If M has exactly two non-trivial lines containing x, then M has a
distinguished triple.

Proof. Say {x,p,,p,} and {x, q,, ¢-} are the non-trivial lines containing
x. Assume that co(M\p,) and co{ M\ p,) are 3-connected. By (3.4.2), either
co(M\q,) or co(M\gq,) is 3-connected. Assume that co(M \q,) is 3-connected.
Say ie{l,2}, and consider M\q,,p, Evidently M\q, p,/x =si(M/x),
a 3-connected matroid. It may be that x is a coloop of M\g,. p,. In this
case co(M\q,, p.) =si(M/x), a 3-connected matroid. If x is not a coloop,
then, since M\g,, p;/x is 3-connected, M\g,, p, is certainly connected.
Say {X., Y} is a 2-separation of M\g,p,, where xe X. Assume without
loss of generality that X is a flat of M\q,, p,. Evidently, either { X —x, Y|
is a 2-separation of M\q,, p,/x, or |X|=2. We conclude that [X|=2. But
X is also a flat. Clearly a trivial line which is part of a 2-separation is a
series pair. We conclude that co(M\g,. p,) is 3-connected. It is clear that
M\g,, p; is non-binary. Moreover an argument identical to that at the
end of (3.5) shows that {q,,p,,p,} is coindependent in M. Therefore
(q,, pi, P> 1s a distinguished triple of M.

It now follows that we may assume without loss of generality that
neither co(M\p;) nor co(M\gq,) is 3-connected. Since co(M\p,) is not
3-connected, there exists a 2-separation {X, Y} of M\p, with xe X, and
|X]>2. By (34.1), {X—x, Y} is a 2-separation of M\p,/x. But, apart
from the parallel pair {¢,, ¢,}, this matroid is isomorphic to si(M/x). We
conclude that X = {gq,, ¢,, x}, and that {x, ¢,, ¢-, p,} contains a cocircuit
of M. Similarly, {x, p,, p,,q,} contains a cocircuit. Assume that these
cocircuits are distinct. Then r(E—{x,p,, p1, ¢;. g-})=r(M)-2. But
r{x,p\, P2, 4;, g-})=23, and it follows that M is not 3-connected. It



REPRESENTATION OVER GF(3) AND THE RATIONALS 235

follows that the cocircuits are not distinct. We conclude that {x, p,, ¢,} is
a triad of M.

We seek a distinguished triple of M. By (3.4.2), both co(M\p,) and
co(M\q,) are 3-connected. Also they are certainly non-binary. Let H =
E—{x, pi.q,} ltisevident that M|H =si(M/x). We first consider the case
when M has corank four.

(3.6.1) If r*(M)=4, then M has a distinguished triple.

Proof. Since M | H=si(M/x), M| H is 3-connected and non-binary.
Since r*(M)=4, r*(M | H)=2. 1t follows that M | H is uniform; indeed.
M|H=U,_,,,;. But (M)>3, so r(M|H)>2, and therefore M | H has
no 3-circuits.

We now show that co(M \x) is 3-connected and non-binary. Since M | H
has no 3-circuits, there is no other point on the line of M spanned by
{P>. ¢.}. This means that cly({p,, g,})~H= . But M| H only differs
from M\x in the series pair {p,.q,}. Hence co(M\x) is an extension of
M | H in which the point of extension is neither a loop, coloop, nor parallel
to any element of M | H. It follows that co(M\x) is indeed 3-connected
and non-binary.

We now show that there exists a pair {b. ¢} of elements of H—{p,. q.}
with the property that (x, b, ¢) is a distinguished triple of M. We begin by
showing that there exists a unique circuit of M containing {p,.¢,} and
otherwise only elements of H — {p,, ¢.}. An easy argument shows that
there is at least one circuit with this property, say C is such a circuit. Now
{P1s ¢, P2 qa} is a circuit of M. Hence (C U {p. ¢,.p5. ¢2})—{ p)} con-
tains a circuit C". But ¢, is a coloop of M | ((Cu{p,. ¢y, pa. g2}V —{Pi})s
so C'" is contained in H. Since M | H=U,_, , .. this circuit contains all
but one element of H. It follows that there is at most one element of
H—{p,.¢>} thatis not in C. If C contains all of H—{p,, g,}, it is clear
that C is unique. Say C contains all but one element of H—{p,, ¢,}.
In this case C spans a hyperplane of M. Now assume that C” is another
circuit containing {p,,¢,} and otherwise only elements of H—{p,, ¢.}.
Then |C"|=|C|, and |C" n C| = |C| — 1. So both C and C” are spanned by
Cn C" It follows that Cu C” 1s contained in a hyperplane of M. But it is
easily seen that Cu C” contains a basis of M. This contradiction estab-
lishes that C is unique.

Let ¢ be an element of C ~ H, and consider co{M\r). It is routinely seen
that H—{ p,. g-. t} is a series class of M\r, and that co(M \r) is obtained
by contracting all but one element (say s) of this series class. In co(M\z), s
is on the line spanned by { p,. ¢,}. Neither {s, p,}, nor {s, ¢-} is a parallel
pair, otherwise M | H would have an (r — 1)-element circuit, contradicting
the fact that M| H=U,_,,., It is now straightforward to see that
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co(M\¢) 1s either isomorphic to M(K,) or #°, the latter case occuring if
{p1.q., s} Is independent in co(M\r). But (H—{p,,q., t})vip.q}
does not contain C, and since C is unique it follows that (H—{ p,,¢,,1}) U
{p1.q,} isindependent in M. Hence { p,, q,, s} is independent in co( M \7).
We conclude that co(M\f)= % * and that co(M\t) is 3-connected and
non-binary. Furthermore, it is casily seen that x is a spoke element of
co(M\t), so that co(co(M\t)\x) = U, 4. But co(co(M\1)\x) =co(M\¢, x),
s0 co(M\1, x) is 3-connected and non-binary.

Clearly |C~ H|=2. It now follows that if 4 and ¢ are any distinct
elements of C~ H, then (x, b, ¢) is a distinguished triple of M. |

For the remainder of the proof of (3.6) we assume that r*(M)>=5. The
proof of (3.6.2) below is just the same as that for (3.5.2).

(3.6.2) There exists a 3-element, coindependent set {a, b, ¢} of M| H
with the property that co({M | H\a), co((M | H)\b), and co({M | H)\¢)
are all 3-connected and non-binary. ||

Let {a, b, ¢} be a triple satisfying (3.6.2). We now show, that for some
cela b ¢}, (z,. pas g,) is a distinguished triple of M. We first prove

(3.6.3) Thereisanelement z € ({a, b, ¢} —{p,, ¢>} ) such that {z, p,, ¢.}
1s coindependent in M | H.

Proof. Evidently a 3-element subset of M | H is coindependent if and
only if it is not a triad. Assume without loss of generality that a ¢ { p,, ¢,}.
If {a.p,,q-} is not a triad we are done, so assume that this set is a
triad. Since {a, b, ¢} is not a triad, it follows that {p,,¢,} # {b, c}. Say
bé{p, g} If {b.p,,g,} is not a triad we are done, so assume that this
set is also a triad. Now, in (M | H)*, both {a, p,, ¢,} and {b, p,,q,} are
triangles. An easy argument shows that either {a, b, p,, ¢.} is a 4-point
line, or p, and ¢, are parallel. The latter cannot happen in a 3-connected
matroid, so {a, b, p,, ¢-} is a 4-point line. Hence every 3-clement subset of
this set is a triangle. It follows that {a, b, p,} and {«, b, q,} are both triads
of M|H. Hence ¢ ¢ {p,, ¢.}. Again we are either done, or we may assume
that {¢, p,. ¢,} is a triad. In this case, arguing as before, we conclude that
{a, b.c, psr.q>} is a 5-point line of (M | H)*. But then, {«, b, ¢} is a triad
of M | H. This contradiction establishes the result. |

Consider (z, p,, ¢,), where ze {a, b, ¢} and {z, p,, ¢,} is not a triad of
M | H. Evidently this set is not a triad of M. Certainly M\z, M\p,, and
M\g, are non-binary. It is easily seen that M\, p,/x has a minor
isomorphic to (M | H)\z, a non-binary matroid. Hence M\z, p, is non-
binary. Similarly M\z, ¢, is non-binary. We now show that co(M\z) is
3-connected.
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Assume that co(M\z) is not 3-connected. Then there is a 2-separation
{X, ¥} of M\z such that x € X and neither X nor Y is contained in a series
class of M\:. We may also assume that X is a flat of M\z. It follows
that |X|, |Y|>2 Now assume that {x,p,,q,} €X. By submodularity
nXnHy<r(X) and HY H)y<r(Y). Also both XnH and Y H are
non-empty. But this implies that {X~H, Y~ H} is a l-separation of
(M| H)\z, a connected matroid. Therefore, {x, p,,q,} =X, and, since X
is a flat, {p,, ¢.} = X. It now follows routinely that {X~H, Y} is a
2-separation of (M | H)\z. But co((M | H)\z) is 3-connected. Hence either
X~ H or Yis contained in a series class of (M | H)\z. But {z, p,. ¢} is not
a triad of M | H so {p,.q,} is not a series pair of (M | H)\z. Therefore
X~ H is not in a series class. We conclude that Y is contained in a series
class of (M | H)\z. But the members of Y are also in series in M/x\z, since
this matroid is obtained from (M | H)\z by adding p, and ¢, in parallel to
p> and ¢, respectively. But then the members of ¥ must be in series in M \-.
From this contradiction we conclude that co(M\z) is 3-connected.

We now show that co(M\z, p,) is 3-connected. Consider co(M \z). This
matroid can be obtained from M \z by contracting all but one member of
each series class. It is clear that no pair of the set {x, p,, p», ¢\, ¢»}
belongs to a series class, so it follows that we can assume without loss of
generality that this set belongs to the ground set of co(M\z). In this
matroid, {x,p,,p,} and {x,¢q,,¢,} are lines, and furthermore {x, p,, q,}
is a triad. But then, co(co(M\z)\p,) is not 3-connected, so by (3.4.2),
co(co(M\z)\p,) is 3-connected. It is routine to show that this matroid is
equal to co(M\z, p,). An identical argument shows that co(M\z, g,) is
also 3-connected. We conclude that (z, p,, q,) 1s a distinguished triple
of M. 1

Finally we prove

(3.7) If M has at least three non-trivial lines containing x, then M has
a distinguished triple.

Proof. Say {x,p,,p,} is a line of M. Assume that M\p, is not
3-connected Then there is a 2-separation {X, Y} of M\p, with xe X. If
[X| =2, then X is a 2-cocircuit of M, and X u{p,} is a triad of M. But a
cocircuit of M containing = must contain at least one other point of each
non-trivial line containing x. Since there are at least three such lines, there
are no triads of M containing x. Therefore | X| > 2. It follows by (3.4.1) that
{X—x, Y} is a 2-separation of M \p,/x where Y contains no parallel pairs
of M/x. Since si{M\p,/x) is 3-connected, X —x must be contained in a
single parallel class of M\p,/x. But this matroid has at least two distinct
parallel classes. We conclude that M\ p, is 3-connected.
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Now say that {x,q,,¢,} and {x,r,,r,} are also lines of M. By the
above argument, if z€{q;, ¢, r,, r.}, then M\z is 3-connected. Now
consider M\p,. By (3.4.2), either co(M\p,,q,) or co(M\p,,q,) is
3.connected. Assume the former is 3-connected. Similarly, we may also
assume that co(M\p,.r,) is 3-connected. It is easily seen that these
matroids are nonbinary.

To show that (p,, ¢,,r,) is a distinguished triple of M all that remains
is to show that {p,,¢,.r} is not a triad of M. But this is clear since any
hyperplane of M that does not meet {p,, ¢,.r,} cannot contain all of
{x, pay gaarat, 80 {py, gy, 1 is a proper subset of a cocircuit. |

Since (3.3)-(3.7) cover all cases, (3.1) follows. |

By invoking duality, we immediately obtain

(3.8.) COROLLARY. Let M be a 3-connected, non-binary matroid with
M) = 4. Then there exists an independent triple (a, b, c) with the property
that si(M/a), siiM/B), siiM/c), siitM/a, b) and s\(M/a, ¢) are all 3-connected
and non-binary. |

4. Weak Mars AND HOMOMORPHISMS

Let M and N be matroids on a common ground set £. The identity map
on E is a weak map from M to N if every independent set in N 1s also inde-
pendent in M. In this case, N is a weak-map image of M. If M # N, then
the weak map is proper. If, moreover, M and N have the same rank, N is
a rank-preserving weak-map image of M. A good survey of the theory of
weak maps i1s given in Kung and Nguyen [9].

Weak maps are very general constructions, and it is not surprising that
there are few strong results describing their behaviour. A striking exception
is Lucas’s [13] characterisation of weak maps of binary matroids. For
ternary matroids, weak maps are not as well behaved, but something can
still be said. In [ 18], Oxley and Whittle prove

(4.1) ([ 18, Theorem 1.1} Let M and N be ternary matroids such that
N is a rank-preserving weak-map image of M. If M is 3-connected, and N
is connected and non-binary, then M = N.

We use 4.1 frequently in later sections.

It is possible to determine whether one matroid is a weak-map image of
another by comparing representations of the two matroids. Let 4 and B be
matrices of the same size, so that their rows and columns are indexed by
the same sets. Submatrices A’ and B’ of 4 and B respectively are corre-
sponding submatrices if their rows and columns are indexed by the same
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subsets of the index sets of the rows and columns of 4 and B respectively.
Lucas [13] proves

(42) Let M, and M, be matroids on a common ground set E repre-
sented over fields F, and F, by the r xn matrices [7/| 4,] and [/] 4,].
respectively, where corresponding columns of [/ | 4,] and [/ ]| A,] repre-
sent the same elements of E. Then M, is a weak-map image of M, if and
only if the following property holds. If D is a square submatrix of [ /| 4]
with |D| =0, and D' is the corresponding submatrix of [/| 4,], then
|D'|=0.

In particular we have

(43) M,=M, if and only if the following property holds. For each
square submatrix D of [I]| A;] and corresponding submatrix D' of
[1]| A,]. we have |D| =0 1if and only if |D'| =0.

It is usual to discuss matroid representation in terms of fields, although,
in fact matroids are often represented over integral domains. This causes no
difficulty; every integral domain is a subring of its field of quotients,
so a representation of a matroid over an integral domain is effectively a
representation over a field. In the following discussion we are interested in
homomorphisms. In this case we do need to consider integral domains,
since a non-trivial homomorphism defined on an integral domain need not
extend to its field of quotients.

It has often been noted that while the well-understood class of strong
maps between matroids is geometric in nature-—strong maps generalise
linear transformations—weak maps seem more algebraic. The following
result is in accord with this perspective. Let I, and I, be integral domains
and consider a function ¢: I, —>1,. If 4 is a matrix over I,, then ¢(A4)
denotes the matrix over I, whose (i, j)-th entry is ¢(a,). In this case, if D 1s a
submatrix of 4, then ¢(D) denotes the corresponding submatrix of ¢(A4).

(4.4)([9, Exercise 9.2]) Let M, be represented over the integral
domain I, by the matrix [/| 4], let ¢: I, — I, be a homomorphism from
I, into I,, and let M, denote the matroid represented over I, by
@([I] A,]). Then M, is a weak-map image of M.

Proof.  Let D be a square submatrix of [I] A]. It follows immediately
from the definitions of determinants and homomorphisms that |p(D)| =
@(|D|). Therefore, if |D| =0, then also |¢(D)| =0. The result now follows
by (4.2). §

Certain homomorphisms will be of particular interest. We first recall some
terminology. Let F be a field, and a be a transcendental over F. Then F[a]
denotes the integral domain of polynomials in « over F, and F(x) denotes
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the extension field obtained by extending F by the transcendental «. Recall
also that F(z) is the field of quotients of F{a], that is, the elements of F(«)
are rational functions in a with coeflicients in F. If « € F, then the function
¢: F[a] — F defined by evaluating the elements of F{«] at « is known to
be a homomorphism. Because we apply this homomorphism frequently in
the following sections we standardise some terminology. If 4 is a matrix
over F[a], then A(«) denotes the matrix obtained by evaluating each entry
of A at a. If D is a submatrix of A4, then D(a) denotes the corresponding
submatrix of A(«), and of course, if the polynomial p is an entry of A4, then
pla) denotes the corresponding entry of A(a).

5. NEAR-REGULAR MATROIDS

Let Q denote the field of rational numbers, and let « be a transcendental
over Q. We consider matrices over the transcendental extension field Q(w).
Let .o/ denote the set { +a'(x—1)/:i,jeZ}. A matrix 4 over Q(a) is
near-unimodular in o if all non-zero subdeterminants of A4 are in .«/. If the
particular transcendental is clear from the context we just say that A4 is
near-unimodular. A matroid M is near-regular if M = M[ A] for some near-
unimodular matrix A. In this case we say that 4 is a near-unimodular
representation of M.

It could be argued that near-unimodular matrices should be called
“totally near-unimodular“ keeping a parallel with totally unimodular
matrices. The reason for not doing this is that the terminology is somewhat
clumsy. Also, our interest is always in the case where the condition that
subdeterminants belong to { +a'(x—1)/:4,jeZ} applies to all subdeter-
minants of a matrix 4. Indeed I know of no situation where it is of interest
that just | 4] satisfies the condition.

Let 4 be a near-unimodular matrix. If B is obtained from A4 by multiply-
ing each entry of a given row or column by a fixed element of </, then B
1s obtained from A4 by a proper scaling of A.

(5.1) PROPOSITION. Let A be a near-unimodular matrix, and B be a
matrix over Q[a].

(1y If B is obtuined from A by a sequence of proper scalings, then B
is near-unimodular.
(n) If B is obtained from A by a sequence of pivots, then B is near-

unimodular.

Proof. 1t is evident that (i) holds. To show that (ii} holds we may
assume that B is obtained from A by a single pivot. Say B is obtained from
A by pivoting on the non-zero entry x, of the latter. Let 4’ and B’ be
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corresponding submatrices of 4 and B respectively, each having their rows
indexed by the sets J and J -, respectively. We want to show that |B'| e .«/.
If seJg, then it follows from elementary facts of determinants that
|B'|=x_;'|4’'|. But |4'| € .o/ and x, €./ so it follows that |B'| € .«/. Hence
we may assume that s¢J,. In this case, if 1eJ., then B’ has a zero
column, so |B’| =0. Thus we may also assume that t ¢ J.. Now let 4” and
B” be the submatrices of A and B whose rows and columns are indexed by
Jru{s} and J~U {t}. As the only non-zero entry in the column of Y”
indexed by ¢ is a 1, |B"|= +|B’|. But as above, |B"|=x |A"| for some
xe.o/. Again it follows that |B'| € .o/ and the proposition is proved. |

With very minor modifications, the above proof is an unashamed lift of
the proof of the analogous result for totally unimodular matrices given
by Oxley [17, Theorem 2.2.20]. A proof has been give here because
Proposition 5.1 is vital in what follows. The next proposition is a routine
consequence of Proposition 5.1.

(5.2) PROPOSITION. The cluss of near-regular matroids is minor closed
and is closed under duality.

A property of near-regular matroids that is straightforward to prove is

(5.3) PROPOSITION.  Direct sumy and 2-sums of near-regular matroids are
near-regular.

It is a consequence of Proposition 5.3 that, in dealing with the class of
near-regular matroids, one can focus on 3-connected members of this class.
Since whirls are basic building blocks for non-binary, 3-connected matroids
it is of interest to examine near-unimodular matrices that represent whirls.
Two near-unimodular matrices are equivalent if they are equivalent
representations of the same matroid.

(5.4) ProPoOSITION.  Up to equivalence, all near-unimodular representa-
tions of W', r=2, are of the form [I| A]. where

10 0 1A

11 0 0

0 1 0 0
A=

00 0 0

00 1 0

| 0 0 1 (=1)x

and xe{a, —(ax—1), a/(a—1), = {a—1), /o, (o — 1)/a}.
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Proof. Say the near-unimodular matrix B represents M. Then B can be
transformed by a sequence of pivots and proper scalings into a matrix
[/| C]. where the columns of I correspond to the spokes of #™". Moreover,
by reordering the columns of C if necessary, we can assume that an entry
¢, of C is non-zero if and only it the corresponding entry «;, of A is
non-zero. Furthermore, we can also assume that the leading entry of each
row and column of C is non-zero. Hence. for {ij} ={1,2,...r}, and
(i, j)#(r.r), a;=c; In other words, any near-unimodular matrix that
represents # 7 is equivalent to one of the form [ /| 4] for some choice of x.

We now examine possible values for v. The only subdeterminant of 4
that is not in {0. +1, £x} is |A4|. and [A|= +(x—1). Now [/| 4] is a
representation of # " if and only if x¢{0,1}. Thus [/| A] is a near-
unimodular representation of # “ if and only if both x and x—1 are in
«/ — {0, 1}. Routine checking shows that this only happens when v belongs
to the set specified in the statement of the proposition. |I

(5.5) PROPOSITION.  Let the matrix A be near-unimodular in o, and say
fefa, —(x—1), aflx—1), —1/a—1), Vo, (x—1)/a}. Then A is near-
unimodular in f.

Proof. Note that, regarded as functions, each member of {a, —(x— 1),
af(a—1), —1/(x—1), o, (a — 1)/a} is equal to its inverse. It follows that
il f# belongs to this set, then o is in {f#, —(f—1), B/(B—1), =1 (f-1),
L. (f—1)/8}. If any one of these values is substituted into an element of
Q[ «] of the form a’(x — 1V is clear that one obtains an element of Q[ #]
of the form “(f—1)/. This proves the proposition. |

We now consider the representability of near-regular matroids. Let F be
a field, b be an element of F — {0, 1}, and 4 be a near-unimodular matrix.
We extend the notation defined in Section 4 and define A(b) to be the
matrix over F obtained by letting « = b. Although A4 is a matrix over Q(a)
it 1s easily seen that A(b) is well-defined for any field F. This definition
holdsif A is | x 1. In particular, if 4’ is a submatrix of 4, then | 4’| isa 1 x | near-
unimodular matrix. Hence |A|(#) is obtained by evaluating | 4’| at &.

(5.6) LEmMmA. Let A be a near-unimodular matrix, ¥ be a field, and
beF —{0,1}. If 4" is a square submatrix of A, then |A'(b)| = [A'|(b).

Proof. Consider the subdomain I=d{a{a—1):ijeZ)> of Q(x).
Members of I have the form 3} _, a,a(o — 1), where, for 1 <Ak <n, a;, i,
and j, are integers. Define the function ¢: I - F by

(p( > apt(x— l)"‘)z Y apht(b—1)%

k=1 k=1
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Here, of course, as an element of F, 4, is interpreted to mean

+(1+1+ - +1)
\V_/

{ax | terms

depending on whether q, is positive or negative. It is routinely checked that
@ is a homomorphism. Since A is near-unimodular, A is a matrix over L
Moreover, A(b)=¢@(A). It now follows from the fact that ¢ is a
homomorphism that, for any submatrix A’ of A, [p(A')|=¢ |A’|. Hence
|4 (b) = [4'1(b). B

{5.7) COROLLARY. Let [I| A] be a near-unimodular matrix, F be a
field, and b be an element of F — {0, 1}. Then M[I| A1=M[[I]| A1(b)].

Proof. Since b'(b—1)"=0 if and only if be{O, l}, it follows from
Lemma 5.6 that a subdeterminant of A is non-zero if and only if the corre-
sponding subdeterminant of A(b) i1s non-zero. But then, by (4.3), we have
MIT|A)J=M[[I]A]H)]. |

(5.8) COROLLARY. If M is a near-regular matroid then M is representable
over every field except possibly GF(2).

Proof. Let A be a near-unimodular matrix that represents M, and F be
a field other than GF(2). Then F — {0, 1} # (7, so by Corollary 5.7, there
exists a matrix B over F with the property that M[ B] =M[ A4]. in other
words, M[B}=M. |

Of course, it follows immediately from Corollary 5.8 that near-regular
matroids are representable over both GF(3) and Q. However the converse
1s not true, for example it will soon be seen that the non-Fano matroid is
not near-regular. It will transpire that the 3-connected, non-binary near-
regular matroids are exactly the 3-connected ternary matroids that are not
uniquely representable over Q. Note also that it is shown in [26] that
near-regular matroids are exactly the class of matroids representable over
all fields except possibly GF(2). The importance of the remaining results in
this section is that they show that near-unimodular representations are well
behaved in the sense that one can always extend a near-unimodular
representation of a 3-connected matroid M to a near-unimodular represen-
tation of any near-regular, single-element extension of M.

(5.9) THEOREM. Let M be a ternary, non-binary, 3-connected matroid
with an element xe E(M) with the property that M\x is non-binary,
3-connected and near-regular. If a near-unimodular representation of M\x
extends to a representation of M over Q[a], then, up to a scaling of the

S82h 65 2-6



244 GEOFF WHITTLE

vector that represents x, that representation is near-unimodular, and M is
near-regular.

Proof. Consider a representation of M over Q[a] that is obtained by
extending a near-unimodular representation of M\x. Using pivoting,
proper scaling and Proposition 5.2, we may assume, without loss of
generality, that M is represented by B=[17|A4]| x], where [ /] A] is a near-
unimodular representation of M\x.

The proof of the theorem is in two parts. In the first part we show that
all non-zero subdeterminants of B are of the form ka'(x—1Y for some
ke Q. In the second we show that if x is appropriately scaled, then
ke{l—1}.

{59.1) Each entry of B is of the form ka'(o — 1) for some k€ Q.

Proof. Let C denote the field of complex numbers. Certainly B is well
defined as a matrix over C(«), that is, as a matrix whose entries are rational
functions in « over the complex numbers. Since the complex numbers are
algebraically closed, any numerator or denominator of a non-zero entry of
B that has degree greater than 0 splits into linear factors over C. (Of
course, for entries in [ /] 4] the only possible factors are « — 1 and «, but
for entries in x it is conceivable that other factors occur.) Multiply each
column of B by the lowest common denominator of the entries in that
column. For the columns of [/ | A], this is a proper scaling. Finally divide
the last column of the resulting matrix by the greatest common divisor of
the entries in that column.

The upshot of the above discussion is that we may assume without loss
of generality that M is represented over C(x) by B=[/| A | x], where
[/]A] is near-unmimodular as a matrix over Q(a), all the entries of B
are polynomials, and the greatest common divisor of the entries of x has
degree 0.

Assume that some subdeterminant of B is not of the form ka'(a — 1)~
Since the complex numbers are algebraicaly closed, this subdeterminant
has a root ce C, where c¢ {0, 1}. Recall from Section 4 that B(c) is the
matrix obtained by evaluating each entry of B at ¢. Consider B(c¢). By (44),
M[B(c)] is a weak-map image of M. Moreover, by (4.3), M[B]#
MI[ B(c)] so this weak map is proper. Now M[B(¢)][\x=M[[I]| A)c)].
But [/]| 4] is near-unimodular, and c¢{0,1}, so by Corollary 5.7,
M[[I]| A)(¢)]=M\x, and this is a 3-connected, non-binary matroid
whose rank is equal to r(M). Moreover, the greatest common divisor of the
entries in x has degree 0, so a —c is not a factor of all entries of x. It
follows that x(¢) has at least one non-zero entry. This shows that x is not
a loop of M[ B(c¢)], so this matroid is connected. In other words, M[ B(¢)]
is a connected. non-binary matroid that is a rank-preserving, weak-map
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image of M. An easy argument shows that if M has no U, - or U, -
minor, then no rank-preserving, weak-map image of M has a U, - or
U, s-minor. Hence M[B(c)] has no U, s- or U, s-minor. Also, since
M[ B(c)] 1s representable over C, it has no F,- or F}-minor. It now
follows from the excluded-minor characterisation of ternary matroids [19]
that M[ B(c)] is ternary. But then, by (4.1), M{[ B(c}] = M. a contradiction.
Therefore the only roots over C of any subdeterminant of B are in {0, 1},
and it follows that each subdeterminant is of the form ka'(x—1Y. |

Now assume that x is scaled so that the leading coefficients of the
polynomials that are non-zero entries of x are integers, and the greatest
common divisor of these coefficients is one. It follows that the leading coef-
ficients of all the polynomials corresponding to non-zero subdeterminants
of B are integers. We complete the proof of the theorem by showing that
these integers are all in {1, —1}. The proof is by induction on the rank of
M. The result certainly holds if M has rank 2. Assume that M has rank 3.
We first note

(59.2) No near-unimodular representation of #* extends to a repre-
sentation of F; over Q(x). Moreover, F, 1s not near-regular.

Proof. Consider the following near-unimodular representation of ¥ .

1 0010 I
01011 0
001 01 -«

It follows from Propositions 5.4 and 5.5 that if this representation of %
does not extend to a representation of F;, then no near-unimodular
representation of ¥ extends to a representation of £ . The unique exten-
sion of the above representation of #* that is isomorphic to F, occurs
when the extension element y is on each of the lines spanned by {(1, 0, 0)’,
(0, 1, 1y}, {¢0,0, 1), (1, 1,0)7} and {(0,1,0)", (1,0, —a)}. If y is on the
first two of these lines, then, up to scaling, y=(I, I, 1) But

0 1 1
I 0 1lj=a+l,
0 —a |

and x+ 1 is certainly not zero as an element of Q(a). It follows that y is
not on the line spanned by {(0, [,0)", (1,0, —«)’}. We conclude that no
near-unimodular representation of F; \x extends to a representation of
F; . It also follows that F; has no near-unimodular representation, so F;
is not near-regular. |
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With (5.9.2) in hand it can be checked that every 3-connected, near-
regular, rank-3 matroid is a restriction of the matroid M, illustrated in
Figure 5.1. We omit the details of this check. It is quite straightforward if
one uses facts on rank-3, 3-connected, ternary matroids established in, for
example, [8, 10, 14] and the fact that the matroid AG(2, 3)\p. obtained by
deleting a point from the ternary affine plane, is not near regular. This
latter fact follows from [4, Exercise 24.147] or [ 17, Exercise 6.4.9].

It is easily checked that the matrix

a b ¢ d e f g h
1 001 0 1 1 1

1 011 © 0 11—«
00101 —x -1 -«

is a near-unimodular representation of M;, so that M, is near-regular.
Any counterexample to the theorem must then come from a 3-connected,
non-binary minor N, of M, with the property that a near-unimodular
representation of N, extends to a Q(a)— representation of a matroid N}
that is not a minor of M. We show that no such matroid exists. First note
that # * extends to the non-Fano matroid F; .

Another routine check shows that every 3-connected, ternary, non-
binary, rank-3 matroid that is also representable over Q(x«) is either a
minor of M; or has an F; -minor. An easy argument then shows that the
theorem holds if M has rank 3.

Therefore we may assume that r( M) >4, and, for induction, assume that
the result holds for all matroids satisfying the hypotheses of the theorem
whose rank is less that r(M). By Corollary 3.8, there exists an independent
triple {a, b, c} of distinct elements of E(M\x) with the property that

o
o ¢

@ i

F1G. 5.1. The maximum rank-3 near-regular matroid.
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si(M\x/a), siitM\x/b), si{M\x/c), siiM\x/a, b), and si(M\x/a, c) are all
3-connected and non-binary. It is clear that if {«, ¢, x} is collinear, then
{a, b, x} is not. Hence we may assume without loss of generality that
{a, b, x} is not collinear. By pivoting if necessary, we may also assume that
in the representation [/| A | x], a and b are represented by the last two
columns of /. By dividing each entry of x by its leading non-zero entry if
necessary, we may also assume that the leading non-zero entry of x is 1.
Since {a, b, x} is not collinear, this leading non-zero entry is not in the
second-to-last or last row of [/} 4| x]. Say x=(x,. X5.,... x,), and set
X, = (X, X2, ..., X,_;). Then x, is a vector that extends a representation of
M\x/a 10 a representation of M/a. But si( M \x/a) is 3-connected and non-
binary. Therefore, by (2.8), the coordinates of x, are uniquely determined
given that the leading non-zero entry of x, is a 1. It now follows by induc-
tion that the leading coefficients of all of the non-zero entries of x, are in
{1, —1}. The same argument applied to M/b shows that the leading coef-
ficients of all non-zero entries of x are all in {1, —1}.

Now assume that some square submatrix of [/| 4 | x] has a non-zero
determinant that does not have a leading coeflicient in {1, —1}. Let D be
such a submatrix having minimum size. It follows from the above that D
must be at least 2 x2. In fact, since the representations of M/a and M/b
obtained by deleting the last and second-to-last rows of [I]| 4| x] are
certainly near-unimodular, D must meet both of these rows. Say D is nxn
where n>2. An elementary matrix-theoretic argument shows that the
representation of M obtained after pivoting on a non-zero element d of D
has an (n—1)x(n—1) submatrix D’ with the property that |D’| =|Dj/d.
Evidently, the leading coefficient of |[D’| ¢ {1, —1} if and only if the leading
coeflicient of [D] ¢ {1, —1}. Moreover, if d is not in the last or second-to-
last row of [/ | A | x]. then all entries of D' correspond to entries of a matrix
obtained by a pivot on a near-unimodular matrix. It follows that all entries
of D' are of the form +o'(a—1)/. We deduce that, by performing a
sequence of such pivots on entries not in the second or second-to-last row,
we obtain a 2 x 2 matrix D" with the property that the leading coefficient of
[D"[¢ {1, —1}, and the property that all of its entries are of the form
+a'(a— 1)7 It is clear that no entry of D" is zero. It is also clear that, after
performing proper scalings if necessary, we can assume without loss of
generality that

o | ! 1 }
IR EUCE

for some integers r and 5. But we know that |D”| = k«’(x — 1)/ for some integer
k¢ {0, 1, —1}. A routine computation shows that the only solution to

+a(a—1)—1=ka'(a—1)/
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occurs when (r, 5s) = (0, 0), that is when

D- 1 1
R
The upshot of the above discussion is that a sequence of pivots and
proper scalings can be performed on [/]A4] x] to obtain a matrix [/]| C]

representing M over Q(«) with the property that each entry of [[]| C] is
in ta(x—1)* and the property that C contains a 2 x 2 submatrix equal

to
1 1
1 -1}’
By performing an appropriate permutation of the rows and columns of C,

we may assume that
iy Cal| [ 1 1}
€2 €2 L =1

Say that Cis r x n. For 3 <i< n multiply column 7 of C by the lowest com-
mon denominator of the entries in that column, and for 3 </ < r multiply
row 7 of the resulting matrix by the greatest common divisor of the entries
in that row. After these scalings we obtain a matrix that has the abovemen-
tioned properties of C, but has the additional property that each entry is
a polynomial. In other words, we may assume without loss of generality
that each entry of C is a polynomial. This means that C{0) and C(1), the
matrices obtained by evaluating each entry of C at 0 and 1 respectively
are both well-defined. Certainly both M[C(0)] and M[C(1)] are rank-
preserving, weak-map images of M, but it may be that be that at least one
of M[ C(0)] and M[ C(1)}] is not connected, so that we cannot apply (4.1).
We remedy this situation now. For a matrix Z, there is a natural bipartite
graph associated with Z. The vertices are the index sets of the rows and
columns of Z, and {r,, ¢} is an edge if and only if z,;# 0. It is known [5,
Proposition 2.4] that the matroid M{ /| Z] is connected if and only if the
bipartite graph associated with Z is connected. We now scale C to obtain
a matrix C' with the property that the bipartite graphs associated with
C’'(0) and C’(1) are both connected.

Let C, denote the following set of columns of C. The i-th column of C
is in C, if and only if 7>2, and at least one of ¢,; and c¢,; is non-zero.
Similarly, C, denotes the following set of rows of C. The i-th row of C is
in C, if and only if i>2, and at least one ¢, and ¢, is non-zero. At least
one of C, and C, is non-empty, otherwise M is not connected. Assume
without loss of generality that the set of columns is non-empty. Take a
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column in the set. Consider the non-zero entries in the first two coordinates
of this column. Divide each entry of the column by the greatest common
divisor of these entries. It is easily seen that in the first two entries of the
resulting column there is an element of the form +«', for some non-
negative integer i, and an element of the form +(x— 1)/, for some non-
negative integer j. (Note that +1 has both forms.) Repeat the process
for each column in the set. Not all entries of the resulting matrix are
guaranteed to be polynomials. Fix this situation by an appropriate scaling
of all but the first two rows. Interchange columns so that the columns that
have a non-zero entry in one of the first two coordinates form the first s
columns. Let P denote the matrix we now have. Consider the submatrix

P’=[p]‘ pl\:l
P2 v Pas

It 1s evident that the bipartite graphs associated with both P’(0) and P'(1)
are connected.

Now consider the following set P, of rows of P. The first two rows of P
are not in P,. Otherwise a row is in the set if and only if it has a non-zero
entry in one of its first s coordinates. Thus P, cannot be empty, for
otherwise M would not be connected. It is clear that we can repeat the
above process on this set of rows to obtain a rescaling of P. It now follows
by an obvious inductive process that C can be scaled to produce the
desired matrix C’ with the properties that the bipartite graphs associated
with C'(0) and C’(1) are both connected. Moreover, at no stage have
either the first two rows or columns of any matrix been scaled. Therefore

¢, 1 1
{C’ZI C'zj _{1 _1]‘

One of the columns of C’ represents x. The matrix obtained by deleting
this column is, when the identity is adjoined, a near-unimodular represen-
tation of M\x, a non-binary matroid. If all entries of this matrix were in
{0, 1, —1}, then the matrix would be unimodular, and would never repre-
sent a non-binary matroid. It follows that at least one entry of this matrix
has either « or a—1 as a factor. Hence we may assume that one of
M[C'(0)] and M[C'(1)] i1s a proper weak-map image of M. Assume
without loss of generality that M[ C’(0)] is. But M{ C’(0)] is connected, so
by (4.1) this matroid is binary. Moreover, C’(0) is a matrix over Q, so
M[ C'(0)] is regular. Now all entries of M[ C’'(0)], are in {0, [, —1}, and
this matrix represents a regular matroid. It follows by the fact that binary
matroids are uniquely representable over Q, that C’(0) is unimodular. But
C'(0) has a subdeterminant equal to —2. This contradiction shows that
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the leading coefficients of all non-zero determinants of submatrices of
[/]| 4] x] are indeed in {1, —1}, and the theorem is proved. ||

(5.10) CoroLLARY. Let M be a 3-connected, ternary, non-binary
matroid with largest whirl minor #". If a near-unimodular representation of
W extends to a representation of M over Q(a), then M is near-regular.

Proof. By (2.4) there exists a sequence ¥ "'=M,, M,,.., M,=M of
3-connected matroids with the property that for 1 <i<n, M, is a single-
element extension or coextension of M, ;. The corollary now follows from
this fact, Theorem 5.9, and an easy duality argument. |

Say M is ternary, and M \x is non-binary, 3-connected and near-regular.
Theorem 5.9 tells us that if a near-unimodular representation of M\.x does
extend to a representation of M, then M is near-regular. We now show that
if M is near-regular, then a near-unimodular representation of M\x will
always extend to a representation of M.

(5.11) THEOREM. Let M be a 3-connected, non-binary, near-regular
matroid, and x be an element of E(M) with the property that M\x is 3-connected
and non-binary. Let [ 1| A] be a near-unimodular representation of M\x. Then
there exists a vector x with the property that [ 1| A | x] represents M.

Proof. Let [I| B|x'] be a near-unimodular representation of M. Call
an operation on a near-unimodular matrix good if the matrix that results
from the operation is both near-unimodular and represents the same
matroid. We prove by induction that there exists a sequence of good opera-
tions that transforms [/ | B | x'] into a matrix that is, apart from the last
column, equal to [ /| A]. This last column is the desired x. It is certainly
the case that row and column permutations, pivots and scalings are good
operations. Moreover, these operations are invertible so we may assume
without loss of generality that a column of [I| A] represents the same
element of the ground set of M\x as the corresponding column of [ /]| B].
Assume that M\x is a whirl. It follows by Proposition 5.4 that—again after
appropriate scalings, permutations and pivots—we can assume that

-1 0 0 1 T
11 0 0
0 1 0 0
il ) : ’
0 0 0 0
0 0 10
L 0 0 I (=1 u
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where ue {a, —(x— 1), a/{ax—1), =1/(x—1}, I/, (¢ — 1)/a}, and that

~1 0 0 1 7
1 1 0 0
0 1 0 0

I e R
0 0 0 0
0 0 1 0

L0 0 I (—1)e |

where re{a, —(x—1),a/(a—1), =1/ (a—1}, I/x, (x— 1)/z}. Now make

the substitution f=u in each entry of [ 7| B| x']. By Proposition 5.5, the
resulting matrix is near-unimodular as a matrix over Q(f). This matrix
certainly represents M. Next, make the substitution v = for all the entries
of this near-unimodular matrix over Q(f). Again by Proposition 5.5, we
obtain a near-unimodular matrix, and one that represents M. But this
matrix is, apart from the last column, equal to [7] 4].

Assume that M\x is not a whirl, and assume, for induction, that the
theorem hoids for all matroids satisfying the hypotheses whose ground
sets have cardinality less than |E(M)|. By (2.5), there exists an element
y e E(M\x) with the property that either M\x, y or M\x/y is 3-connected
and non-binary. Assume the former. By pivoting if necessary, we may
assume that [7| A4]=[7] 4" |y]. By the induction assumption, one can
perform a sequence of good operations on [/ | B | x] to obtain the matrix
[I1 A |y |x"]. But M[I]| A'] is 3-connected and non-binary, and M\x is
ternary. So, by (2.8) there is, up to scaling, a unique vector that can be
added to [I] A’] to obtain a representation of M\x. In other words y' is
a scalar multiple of y and we conclude that [/| 4 | x"] represents M.
Moreover, this matrix is obtained from [/| B|x’] by a sequence of
good operations. A similar argument holds in the case when M\x/1 is
3-connected. ||

6. Dyabpic MATROIDS

Recall that a matrix A over Q is dyadic if every non-zero subdeterminant
of 4 is a signed integral power of 2. A matroid M is dyudic if M= M[A]
for some dyadic matrix A. If the matrix B is obtained from the dyadic
matrix A by multiplying each entry of a given row or column of 4 by a
fixed integral power of 2, then B is obtained from A by a proper scaling
of A.
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The term “dyadic matrix” was introduced by Zaslavsky (see [11, 127).
I have not completely followed Zaslavsky’s terminology: the class of
matrices that we call “dyadic”, Zaslavsky calls “totally dyadic”, and the
class of matroids that we call “dyadic”, Zaslavsky calls “subregular”. The
reason for changing the latter terminology is because of the danger of
confusing “subregular” with “near-regular”.

Dyadic matrices are special cases of matrices studied by Lee [ 11, 12],
although Lee’s interest is more in problems arising from linear program-
ming than matroid representation theory. The following three propositions
are routine. They also follow from more general results in [ 11, 12].

(6.1) PROPOSITION. Let A be « dyvadic matrix, and B be a matrix over Q.

(1) If B is obtained from A by a sequence of proper scalings, then B
is a dyadic matrix.

(1) If B is obtained from A by a sequence of pivots, then B is also a
dyadic matrix.

(6.2) PROPOSITION. The class of dyadic matroids is minor closed and is
closed under duality.

(6.3) PROPOSITION.  Direct sums and 2-sums of dyadic matroids are also
dyadic matroids.

We aim to show that a matroid is representable over GF(3) and Q if and
only if it is dyadic. In one direction this is very easy. The following proposi-
tion follows from [ 12, Proposition 3.1]. Nonetheless a proof is given here.

(6.4) PROPOSITION. If M is a dyadic matroid and F is a field whose
characteristic is not 2, then M is representable over F.

Proof. Say M =M[A] where A is a dyadic matrix. By scaling if
necessary we may assume without loss of generality that the entries in 4
are integers. Let ¢: Z — F be the natural homomorphism, that is, ¢(a) =
+(l+1+ - +1) depending on whether « is positive or negative. It

let| terms
follows by (4.2) that M[@(A)] 1s a weak-map image of M. Say B is a
square submatrix of A4, and |B|#0. Then |[Ble{+2:ieZ}. But
|@(B)| = @(|B]), and hence |@(B)| #0. Therefore M is a weak-map image
of M[¢(A4)]. We conclude that M = M[@(A)], and hence that M is
representable over F. ]

In particular, it follows from Proposition 6.4 that a dyadic matroid is
representable over both GF(3) and Q. We now work towards the converse
of this fact. We first note
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(6.5) PROPOSITION.  Near-regular matroids are dyadic matroids.

Proof. U M is near-regular, then M has a near-unimodular represen-
tation [/] A)]. Consider [/| A](2), the matrix obtained by making the
substitution a =2 in [ /| 4]. This matrix is clearly a dyadic matrix. It now
follows from Corollary 5.7 that M[[I| AJ(2)]=M. |}

(6.6) THEOREM. Let M be a 3-connected matroid that is representable
over both GF(3) and Q. Assume thatr M is not near-regular, but all
3-connected minors of M are near-regular. Then M is a dyadic matroid, and
M is uniquely representable over Q.

The method of proof is as follows. We begin by showing that the
theorem holds if r(M)=3. If (M)>=4 we proceed by first constructing a
matrix [ 4 | x] over Q(x) that purports to represent M. We then show that
there exists a unique evaluation of the entries of this matrix having the
property that the resulting matrix over Q is in fact a representation of M.
It is then shown that this matnx is dyadic.

Proof of Theorem 6.6. Clearly M is non-binary and r(M)>2. Assume
that M has rank 3. It is a straightforward exercise to check that the only
minor-minimal rank-3 matroid that is both GF(3)- and Q-representable
and is not near-unimodular is the non-Fano matroid £, . It follows from
the proof of (5.9.2) that the matrix

1 001011
A=|0 1 ¢ I 1 0 1

0010111
uniquely represents F, over Q. One routinely checks that 4 is a dyadic
matrix. This fact is also essentially well known.

Assume that M has rank r, where r > 3. If (M *} = 3, then by the above,
M* is a dyadic matroid. It then follows from Proposition 6.2 that M is also
dyadic. Therefore we may assume that both M and M* have rank at least
4. Since whirls are near-regular, M is not a whirl. By (2.5) there exists an
element x in the ground set E of M with the property that either M\x or
M/x 1s 3-connected and non-binary. It is routinely seen that under the
current assumptions no generality is lost in assuming that M\x is 3-con-
nected and non-binary. By Corollary 3.8, there exists an independent triple
{a, b, ¢} of distinct elements of E— {x} with the property that sif M \x/a),
si{MA\x/b), sitM\x/c), sitM\x/a, b), and si(M\x/a, ¢) are all non-binary
and 3-connected. If {x,a, ¢} is collinear, then clearly {x,a b} is not
collinear. Assume without loss of generality that {x, a, b} is not collinear.
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We now focus on a particular representation of M\x. Since M\x
is a 3-connected minor of M, it is near-regular and therefore has a
near-unimodular representation. Since one can scale and pivot on a near-
unimodular matrix it follows that M\x can be represented by a near-
unimodular matrix [ /] 4] where the last two columns of / represent ¢ and
b respectively. Following standard practice we say that M\ is represented
by A, the identity matrix being implicit. Let 4,, A,, and A4, denote the
matrices obtained by deleting the second-last, the last, and the last two
rows of A4 respectively. Under the current convention, 4,, 4, and 4,
represent M\x/a, M\x/b, and M\x/a, b respectively. Say se {u, b, {a, b} }.
Certainly x is not a loop of M/s. We now show that a near-unimodular
representation of M \x/s extends uniquely to a near-unimodular representa-
tion of M/s where the vector representing x is chosen to have leading non-
zero coefficient 1. If x is in a non-trivial parallel class of M/s this 1s clear,
so assume that v is not in such a parallel class. Then si(M/s) is a 3-con-
nected extension of si{M\x/s). By Theorem 5.11, any near-unimodular
representation of si{ M \x/s) does extend to a representation of si( M/s), and
by (2.8) this extension is unique. The fact that a near-unimodular represen-
tation of M\x/s, extends uniquely to a near-unimodular representation of
M/s now follows routinely. It follows that a unique column can be added
to each of 4,, 4,, and 4, to obtain representations of M/a, M/b and
Ma. b respectively. Clearly the first r — 2 entries of these column vectors
agree.

Let x = (x,, x5, .., x,) be defined as follows: (x|, X, ..., X, _,) 1s the vector
that can be added to A4, to represent M/u, b, while x, | and x, are the last
entries of the vectors that can be added to 4, and 4, to represent M/b and
M a respectively. Let M’ be the matroid on E(AM) that is represented by
the matrix [ A4 | x], where, of course, x represents x. It now follows that
M’ 1s a Q(ax)-representable matroid on E(M) with the property that
M\x=M\x, M'Ju=M/u and M'/b=M/b. (Note that this conclusion
would not hold if x was a loop of M/u, b, that is, if {x, «, b} was collinear
in M.) Certainly M M’, for otherwise, by Theorem 59, M would
be near-regular. We now show that, for some ¢ge Q, the matrix obtained
by evaluating each entry of [ A4 | x] at ¢ represents M. We first prove a
lemma.

(6.7) LEMMA. Let N be a 3-connected, near-regular matroid that is
represented by the near-unimodular matrix [I'| B]. If the matrix [ 1| C] over
Q also represents N, then there exists q€Q with the property that [I| C]
is equivalent to a matrix obtained by evaluating the entries of [1| B] at q.

Proof. 1f N is binary, then the result certainly holds, so assume that ¥
is not binary. Assume that N is a whirl. Once more we note that after
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appropriate scaling, pivoting and column permutations we can assume
that

-1 0 0 1 7
1 1 0 0
0 1 0 0
B=| : . . :
0 0 0 0
00 1 0
| 0 0 I o(—1)yu

where ue {a, —(a—1),2/(x—1), —=1/( — 1), 1/, (& — 1)/}, and that

- 10 0 1 7
11 0 0
0 1 0 0
c=| o
0 0 0 0
00 1 0

0 0 1 (—1yp ]

for some pe Q— {0, 1}. But, regarded as functions, each of the possible
values of v is a permutation of Q — {0, 1}. It follows that in each case there
exist ¢ € Q with the property that u(g) =p.

We may therefore assume that N is not a whirl. Say N has a largest whirl
minor ¥ . Then by (2.4), there exists a, sequence # "= N,, N,, ..., N, =N
of 3-connected matroids with the property that for 1 <i<k, N, is a single-
element extension or coextension of its predecessor. We can assume that
appropriate pivots have been performed so that both B and C have corre-
sponding submatrices B’ and C' that represent #*. We have shown that
there exists ¢ e Q with the property that C’' 1s equivalent to the matrix
obtained from B’ by evaluating its entries at ¢. The extensions and coexten-
sions used to build N from # 7 correspond to building B and C from B’
and ' by adding columns and rows respectively. But by (2.8) these
columns and rows are unique up to scalar multiples. It follows routinely
that C is equivalent to the matrix obtained from B by evaluating each of
its entries at ¢. |}

It follows from Lemma 6.7 that every Q-representation of M\x is
obtained from A by evaluating its entries at an appropriate rational number.
But some Q-representation of M \x extends to a Q-representation of M.
Therefore there exists a rational number ¢ with the property that the
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representation 4(g) of M\x obtained by evaluating the entries of 4 at ¢
extends to a representation of M. Say [A(g)|q] represents M where
q=(¢,, ¢z- .- ¢,) and the leading non-zero coeflicient of q is 1. Evidently

(g1 Gas o g, 1) = (X0(q) Xalg), o X, (g)),
and
(G152 Gr— 20 ¢,) = (X1(q), X2Aq)s ., X, _2(q), x,(q)).

It follows that q = x(g). In other words, the matrix [ 4 | x](¢) obtained by
evaluating each entry of [ 4 | x] at g represents M.

If ¢ is not a zero of any non-zero subdeterminant of [ 4 | x], then it is
easily seen that M[[A4 | x](¢q)] =M[A4 | x]. It follows that there exists a
submatrix D of [ 4 | x] with the property that |D| is non-zero over Q(a),
and |D} has ¢ as a factor. Certainly D meets the rows indexed by « and b,
so D is at least 2 x 2. Say D is n x n where n> 2. Consider the entries of D
that are in neither of the rows indexed by a or b, nor in the column x. If
these entries are all zero, then it follows from elementary facts on matrices
that D is 3 x 3, and, up to a factor of +a'(x—1)/, |D| is equal to |[D'] for
some 2 x 2 submatrix D' of D. Assume that at least one entry is non-zero.
It 1s easily seen that the matrix obtained by pivoting on this entry has all
the desired features of [ A | x]. Moreover it follows, again by elementary
matrix theory, that this matrix has an (n— 1) x (# — 1) submatrix D’ with
the property that |D'| = +a’(x — 1)/ | D| for some integers i and j. A conse-
quence of this discussion is that we may assume without loss of generality
that D is 2 x 2.

Consider the entries of D. If an entry of D is in the row indexed by a,
then that entry is an entry of the near-unimodular matrix that represents
M/b. If 1t is not in that row, then it is an entry of the near-unimodular
matrix that represents M/a. It follows that each entry is of the form
+a'(—1)’. This imposes constraints on the possibilities for |D|, and
hence g. We now show

(6.6.1) ¢ is the only factor of |[D| in Q-—{0,1}; moreover
ge{—1,1/2.2}.

Proof. It is clear that we can properly scale D to ensure that all entries
of D are polynomials. Then the only factor of |D| that is not a power of
o or a — | is one that has either the form

(a—1) o’
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or the form
(a— 1) ol +1

for some non-negative integers / and j. We examine the possible rational
roots of these polynomials. Assume that ¢ =m/n is a root where m and n
are relatively prime.

Certainly (i, j) #(0, 0). Assume that j=0. Then we have either ¢'+ 1 =0
or ¢¢—1=0. A routine check shows that in cases where either of these
polynomials has a root in Q — {0, 1}, then that root is unique. It is also
readily checked that for some cases ¢ =2 and for the remainder ¢ = — 1.
The case i=0 is identical. Therefore we may assume that /,j>1. We
examine the two polynomials in turn. If ¢ is a root of the first we have

—_ i J
(q—l)"iqf=<"' ") i('ﬁ) =0.
n n

If i=j, then ¢=1/2 is the unique root in Q— {0, 1}. Assume that i +#}.
Then (x— 1)+ a/ is, up to sign, monic. It is well known (see for example
[ 1. Proposition V.3.8]) that any rational root of such a polynomial must
be an integer, that is, we may assume that n = 1. We then have

m—1+m’'=0.

An obvious parity argument shows that this case does not occur.
A similar argument shows that for i, j > 1, the polynomial (x — 1) /£ 1
has no rational roots and the lemma is proved. ||

By (6.6.1), if p is any rational number in Q— {0, 1, ¢} then the matrix
obtained by evaluating the entries of [ 4 | x] at p does not represent M, for
the submatrix corresponding to D has a non-zero determinant. But, by
Lemma 6.7, every representation of M over Q can be obtained, up to
equivalence, by such an evaluation. We conclude that M is uniquely repre-
sentable over Q. [t remains to show that [ 4 | x](g) is a dyadic matrix.

If ge{—1,1/2,2}, then any rational number of the form ¢'(g— 1)’ is
certainly a signed integral power of 2. It follows that every entry of
[A4|x](g) is a signed integral power of q. To check that [4 [ x](g) is a
dyadic matrix we need only show that every subdeterminant is a signed
power of 2. Assume not. By scaling if necessary we may assume that every
non-zero entry of [ 4 | x]}{¢) 1s a signed non-negative power of 2. Since we
are assuming that [ 4 | x](q) is not a dyadic matrix, there exists a subdeter-
minant that has an odd prime p as a factor. Consider the matrix A(GF(p))
obtained by interpreting the entries of 4 as elements of GF(p). By
arguments that must by now be very familiar we deduce that M[ A(GF(p)]
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is a4 connected, ternary, non-binary matroid that is a proper, rank-
preserving, weak-map image of the 3-connected, ternary matroid M. By
(4.1) this cannot occur. It follows that [ 4 | x](¢) 1s indeed a dyadic matrix,
so that M is a dyadic matroid and the theorem is proved. ||

(6.8) COROLLARY. Let M be a 3-connected, ternary matroid that is not
near-regular. If M is representable over Q, then M is uniquely representable

over Q.

Proof. The proof is by induction on the number of 3-connected minors
that are not near-regular. If all 3-connected minors of M are near-regular,
then the corollary follows by Theorem 6.7. Hence we may assume that M
has at least one 3-connected minor that is not near-regular. By the obvious
induction assumption we may also assume that all 3-connected minors of
M that are not near-regular are uniquely representable over Q. By (2.4),
there exists an element x in E(M) with the property that M\x or M/x is
3-connected and is not near-regular. Assume without loss of generality that
M\x is 3-connected and is not near-regular. Then, M\x has a unique
Q-representation. Evidently this Q-representation of M\x extends to a
representation of M. But by (2.8) a representation of M\x that extends to
a representation of M does so uniquely. We conclude that M is uniquely
representable over Q. ]

7. MAIN RESULTS
At last we are able to prove

(7.1) THEOREM. A matroid M is representable over both GF(3) and Q if
and only if it is a dyvadic matroid.

Proof. If M is a dyadic matroid, then it follows from Proposition 6.4
that M is representable over GF(3) and Q. Consider the converse.

Assume that M is 3-connected. If M is binary or a whirl, the result
certainly holds, so assume that M is neither binary nor a whirl. Assume, for
induction, that all proper 3-connected minors of M are dyadic matroids.
Consider M. If every 3-connected minor of M is near-regular then M is
dyadic by Theorem 6.6. Otherwise M has a 3-connected minor that is not
near-regular. Arguing as in Corollary 6.8, we can now assume without loss
of generality that there exists an element x € E(M) with the property that
M\x is 3-connected and not near-regular. By Corollary 6.8, M is uniquely
representable over Q. Say the matrix [/ | A | x] represents M, where x
represents x. It follows from the induction assumption that we may assume
(after pivoting and scaling [/| 4| x] if necessary) that 4 is a dyadic
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matrix. We may further assume (after a sequence of proper scalings if
necessary) that all entries of A4 are integers. We may finally assume (in this case
by appropriately scaling X if necessary) that the entries of x are integers and that
the greatest common divisor of the non-zero entries of x is 1.

We now invoke the standard weak-map argument. Assume that [/| 4 | x]
is not a dyadic matrix. Then it has a subdeterminant that is divisible by an
odd prime p. Let P=[1]A|x],, that is, the matrix over GF(p) whose
entries are the entries of [ /| A | x] treated as integers modulo p. Certainly
M[ P] is a weak-map image of M. But, arguing as in Proposition 6.4, one
deduces that M[P]\x= M\x. Therefore M[P] is a non-binary, rank-
preserving, weak-map image of M. But at least one entry of x is not
divisible by p. Hence x is not a loop of M[ P] and it follows that M[ P]
is connected. It 1s also clear that M[ P] is ternary. It now follows by (4.1)
that M[P]=M. Since [I| A | x] has a subdeterminant divisible by p,
there exists a submatrix of [/| 4 | x] with a non-zero determinant and the
property that the determinant of the corresponding submatrix of P is zero.
It follows by (4.3) that M s M[P]. This contradiction establishes that
[A]x] is indeed a dyadic matrix and we conclude that M is a dyadic
matroid.

Assume that M is not 3-connected. Then M can be obtained by taking
2-sums and direct sums of 3-connected matroids that are representable over
GF(3) and Q, that is by taking 2-sums and direct sums of dyadic matroids.
It follows by Proposition 6.3 that M is a dyadic matroid. [

We are now also in a position to characterise when a 3-connected
matroid uniquely representable over Q.

(7.2) THEOREM. Let M be a 3-connected matroid that is ternary,
representable over Q, and has rank greater than 2. Then M is not uniquely
representable over Q if and only if it is a non-binary near-reqular matroid.

Proof. If M is not near-regular, then M is uniquely representable over
Q by Corollary 6.8. If M is binary, then M is certainly uniquely represen-
table over Q. Assume that A is non-binary and near-regular. Let 4 be a
near-unimodular matrix that represents M. Assume that A is scaled so that
its entries are polynomials and the greatest common divisor of any row or
column has degree zero. It is easily seen that in this case, 4 represents a
non-binary matroid if and only if at least one entry of 4 has degree greater
that 0. By Lemma 56, if {q,,¢q,} cQ—1{0,1}, then M[A(q,)]=
M[ A(¢.)] = M. A routine argument now shows that if ¢, #¢,, then A(q,)
and A(q,) are inequivalent representations of M. ||

The reason for insisting that M have rank at least three in Theorem 7.2
is to exclude U, 4. This matroid is non-binary and near-regular and is often

382b°652-7
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regarded as being uniquely representable over Q since, regarded as a
matroid, the automorphism group of PG(1, Q) is the symmetric group. It
is not clear to me that this is the correct notion of equivalence. Indeed
there certainly exist representations of U, , in PG(2, Q) with the property
that no automorphism of this projective space takes one to the other.
In what follows we adopt the convention that U, , is not uniquely
Q-representable.

One routinely checks that a 2-sum or a direct sum of Q-representable
matroids is uniquely Q-representable if and only if both the summands are.
The following corollary follows straightforwardly from this fact and
Theorem 7.2.

(7.3) COROLLARY. Let M be a connected ternary matroid representable
over Q. Then M is uniquely representable over Q if and only if whenever M
is decomposed as a 2-sum of 3-connected matroids, none of the summands is
« non-binary, near-regular matroid.
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