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INTERTWINING CONNECTIVITY IN MATROIDS*

RONG CHENT AND GEOFF WHITTLE?

Abstract. Let M be a matroid and let @, R, S, and T be subsets of the ground set such that the
smallest separation that separates @ from R has order k and the smallest separation that separates
S from T has order £. We prove that if E(M) — (QURUSUT) is sufficiently large, then there is an
element e of M such that, in one of M\e or M/e, both connectivities are preserved.
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1. Introduction. Let M be a matroid with ground set E(M). For any X C
E(M), define Ay (X) :=ryp(X) +rp(E(M) — X) — r(M). For disjoint subsets @, R
of E(M), the connectivity between QQ and R is

kar(Q, R) := min{ A\ (X) : Q € X C E(M) — R}.

In the paper, we prove the following theorem.

THEOREM 1.1. There is a function ¢ : N> — N with the following property. Let
M be a matroid and Q, R, S, T, F C E(M) sets of elements such that Q N R =
SNT=0and F=EM)—- (QURUSUT). Let k := kp(Q,R) and £ := k(S,T).
If |F| > (20 + 1)2%%+1 ] then there is an element e € F such that one of the following
holds:

(i) kane(@, R) =k and kap\o(S,T) = ¢;

(11) H]\/[/e(Qa R) =k and KV]M/@(Sa T) =L

This theorem resolves a conjecture of Geelen [1]. It strengthens a theorem of
Huynh and van Zwam [3], who prove the result for a class that includes all repre-
sentable matroids but does not include all matroids.

The value that we get is unlikely to be tight. The (k 4+ 1) x (¢ + 1) grid gives
an example where the theorem fails with |F| = 2k¢ — ¢ — k. Perhaps this example is
extremal?

CONJECTURE 1.2. Theorem 1.1 holds with |F| =2kl — ¢ — k + 1.

2. Proof of Theorem 1.1. For all disjoint subsets @), R of the ground set of
a matroid M, Tutte [4] proved that there is a minor N of M with E(N) = QUR
and such that ky(Q, R) = An(Q), which is a generalization of Menger’s theorem to
matroids. Equivalently, we have the following lemma.

LEMMA 2.1. Let M be a matroid and @, R be disjoint subsets of E(M). For every
EAS E(M) - (Q U R) either HM\e(CQa R) = H]\/[(Qa R) or K’]\/[/G(Q? R) = HM(Q? R)
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Let M be a matroid and @), R be disjoint subsets of E(A). Define My (Q, R) =
v (Q)+rym(R)—rym(QUR). A partition (A4, B) of E(M) is Q — R-separating of order
E+1ifQC A RC B, and A\y(A) <k. Let e € E(M) — (QUR). If kpp(Q,R) =
ki (Q, R), then e is deletable with respect to (Q, R); if rpre(Q, R) = rkar(Q, R), then
e is contractible with respect to (@, R); and if e is both deletable and contractible with
respect to (@, R), then e is flexible with respect to (@, R). Lemma 2.1 implies that for
any e € E(M)—(QUR) either e is deletable with respect to (@, R) or e is contractible
with (Q, R).

THEOREM 2.2 (see [3, Theorem 3.4]). Let M be a matroid and Q, R be disjoint
subsets of E(M), let k := k(Q, R), and let F C E(M)—(QUR) be a set of nonflexible
elements. Then there are an ordering (f1,..., fn) of F and a sequence (A1,...,An)
of subsets of E(M) such that

(i) A; is Q@ — R-separating of order k + 1 for each i € {1,...,n};

(i) A; € Ajyq for each i€ {1,...,n};

(i) A;NF={f1,...,fi} foreachic {l,...,n};

(IV) f, S Cl(Al — {fz}) n CI(E(M) — Al) or fz S Cl*(Al — {fz}) N Cl*(E(M) — Al)

THEOREM 2.3 (see [3, Lemma 3.6]). Let M be a matroid and Q, R be disjoint
subsets of E(M), let k = k(Q,R), and let (U, E(M) —U) be a Q — R-separating set
of order k +1. If e € E(M) — (U U R) is noncontradictable with respect to (Q,R),
then e is also noncontradictable with respect to (U, R).

First we prove that Theorem 1.1 holds for the case |S| = |T| = ¢.

LEMMA 2.4. There is a function ¢ : N> — N with the following property. Let M be
a matroid and Q, R, S, T, F C E(M) sets of elements such that QN R=SNT =0
and ' = E(M) — (QURUSUT). Letk := km(Q,R) and ¢ := rp(S,T). If
|S| = |T| = ¢ and |F| > (2¢ 4 1)22k*1 then there is an element e € F such that one
of the following holds:

(1) H]\/I\@(Qa R) =k and K’M\B(S7 T) = f,’

(ii) Kanr/e(Q, R) =k and kprpe(S,T) = L.

Proof. If F' contains some flexible element with respect to (@, R) or (S,T), then
we are done. So we may assume that each element in F' is nonflexible with respect
to (@, R) and nonflexible with respect to (S,7). By Lemma 2.1 an element e in F is
deletable (or contractible) with respect to (@, R) if and only if e is contractible (or
deletable) with respect to (S,T'), for otherwise the lemma holds.

Let (A1,..., A@gr41)220+1) be the nested sequence of @ — R separating sets
from Theorem 2.2, let (Bi,...,B(gs41)22¢+1) be their complements, and let
(f1s- -5 f2e41)22041) be the corresponding ordering of F. Since |S| = [T = /,
there is a positive integer i such that i + 221 < (2¢ 4 1)22**! and such that
QURUSUT C A; U B(25+1)22k+1. Set

Q = Ai, R := B om1, F :=E(M)—(Q UR),
A= Aiyj, B; = Biyj, f; = fiyj, forany 1 < j < 241

That is, F' = {f{, .. .,f;2k+1}. By duality and Lemma 2.3, each element in F'is

nonflexible with respect to (Q/7 R/).

Let (C1,...,Cyx+1) be the nested sequence of S — T separating sets from The-
orem 2.2 determined by the nonflexible-element set F' with respect to (5,7, let
(D1, ..., Dy2rt1) be their complements, and let (g1, ..., gs2r+1) be the corresponding
ordering of F'. By duality we may assume that g, is a deletable element with re-
spect to (S,T). Then (i) g1 € cl(Cy — {g1}) and (ii) g1 is a contractible element
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with respect to (@, R). By (i) and the fact that C; — {g1} C Q" U R’ we see that
g1 € cl(Q'UR'). From (i) we deduce that g1 ¢ cl(Q') and g1 ¢ cl(R'). Therefore
I‘IM(Q/ U {gl},R/) = ITM(Q/,R/) + 1. Assume that g; = fJ/». If j < 22%, then set
Q" = A;», R’ := R'; else if j > 2%% then set Q" := Q', R’ := B;‘—1- No mat-
ter which case happens, set F' = E(M) — (Q" UR"). Evidently, |F"| > 22* as
|F'| = 22k+1 Replacing Q', R, F' with Q”, R, F", respectively, and repeating the
above analysis 2k times, there are numbers ji, jo with 2k 4+ 1 < j; < jo < 2241 such
that I‘IM(A;1 , B;z) >k+1or My« (A;1 , B;Z) >k + 1, a contradiction to the fact that
A(A}) = k. So the lemma holds. O

To prove Theorem 1.1 we still need the following lemma.

LEMMA 2.5 (see [2, Lemma 4.7]). Let M be a matroid and S, T be disjoint
subsets of E(M). There exists sets S1 C .S, Th C T such that |S1| = |T1| = (S, T).

For convenience we restate Theorem 1.1 here.

THEOREM 2.6. There is a function ¢ : N> — N with the following property. Let
M be a matroid and Q, R, S, T, F C E(M) sets of elements such that Q N R =
SNT=0and F=EM)—-(QURUSUT). Let k := kp(Q,R) and £ := k(S,T).
If |F| > (20 +1)225%1 ) then there is an element e € I such that one of the following
holds:

(i) mane(@, R) =k and rpp (S, T) = £;

(ii) kn/e(Q,R) =k and kpppe(S,T) = L.

Proof. By Lemma 2.5 there are sets S C S, T3 C T such that |S1| = |T1] =
kap(S,T). Then Lemma 2.4 implies that there is an element e; € E(M) — (Q U
R U S; UTy) such that for some M; € {M\e1, M/e1} we have ki, (Q,R) = k and
K, (S1,T1) = €. Since kpy, (S1,T1) = ¢ implies kpy, (S,T) = £, when e; € F the
lemma holds. So we may assume that e; ¢ F. That is, e; € (SUT) — (S; UTh).
Since ' C E(M;) — (Q U RUS; UTy), using Lemma 2.4 again there is an element
es € E(My) — (QU RUS; UTy) such that for some My € {M\e2, M1/e2} we have
Kk, (@, R) = k and kg, (S1,T1) = £. Without loss of generality we may assume that
My = Mi\ea. Then rkape,(Q, R) = k and ke, (S1,T1) = £ as sy (Q, R) = k and
kap(S1,T1) = €. Thus, when es € F, the lemma holds. So we may assume that
es ¢ F. Since (SUT) — (S UTy) is finite, repeating the above analysis several times
we can always find a minor with an element e such that (i) or (ii) holds. The theorem
follows from this observation and the fact that the connectivity function is monotone
under minors. O
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