usuwed _ /a0 juejrosb//:diy
uoijde 9AI3I9JjJ°9 S3AdS

AOS"|UB|"AI3S-Q}Q UBULIED (8-1) INVT d"IN D
Npa°|3ISNMISSSIA - QN ‘SINOT "1S ' uolBuIysepn 19SSIA 11BN
S9°eS9°jjoe|plopediaw qvD 443V  49pedJs|N-zaid uenf
so°es9'jyoe|pSIaqydoy gvd ‘443v1 81aquyo0oH pireq

6661 1oquaidag jo Yy ‘sowejy so7

Suineay suonenby Aieuoininjon3z o1iseyd01g ay3l je pajuadsaid yjel

(140 ur y 1ueisuod sdueld jo 3ojeue) serpwesed Suinunod-dooj ays se Juioe
uolduny julod-om] asiou ayi Jo apniyjdwe syl yum ‘sainiuenb asayl ajenojed o1 uoisuedxa uolreqaniad e
dn 185 app AjoAnoadsas ‘wialsAs syl Jo s91e1S | DISeq, 9yl pue solweukp syl 9quIOSIp eyl |eraualod sAI109)49
Ue pue ‘uoi1de dAIIIYS ue 01 S(dS WO} 03 01 wsljew.o) |ea8a1ul |euoI1dUN) B JO SN dyew dAA juepodwi
SI 9SI0uU 2J4oym Sw1sAs Buippow 4o} |001 dIseq ayl aJe (s3QdS) suoinenbs |eiquaiayp |eided di1seyd01g




Present the tools and ingredients that are needed to develop the functional
integral formalism, starting from the stochastic partial differential equation.

Define the characteristic functional, the effective action, and the effective
potential.

Carry out the , and take a closer look at the one-loop
effective action and effective potential.

Discuss the of the effective action and
effective potential.

Example I: study the KPZ equation.

Example |l: study the reaction-diffusion-decay system.




1. SPDEs model systems where noise is relevant. They are used for models of
many microscopic systems:

2. The noise represents our ignorance about precise details in the dynamics
of the system:

(a) Represents the fluctuations intrinsic to the dynamics (Quantum
Mechanics).

(b) Represents the dynamics of short-scale degrees of freedom which have
not completely decoupled from the macroscopic dynamics (e.g., thermal
or turbulent noise).

(c¢) Implements our

(d) Summarizes the necessary
when we try to describe it via a finite set of
variables (e.g., a truncated BBGKY hierarchy).

3. The non-stochastic partial differential equation need not arise from a
Lagrangian formalism (variational principle).

4. We start from an SPDE and by making use of functional integration
techniques, we are able to define an effective action that has all the
information regarding dynamics of the system. The effective action is a
generalization of the Onsager-Machlup action. (The presence of noise
leads to a generalized action principle for the SPDE).

5. We consider Gaussian additive noise, and show that the

(analog of i in QFT).

6. For homogeneous and static field configurations one can define an




Given a field ¢(t, &), we consider the class of SPDEs of the form

D is a linear differential operator, which does not involves the field ¢(t, &).
Some examples are

D= 0 — vV -V diffusion operator ,
D = (8,5)2 — V.V wave operator ,
D= 0 Langevin operator .

The function F'[¢] is the forcing term, generally non-linear in the field ¢(t, &).
Some examples are

Fl¢p] = %(ﬁqb) (V) Kardar—Parisi-Zhang (KPZ) ,
Fl[¢] = P[¢] or Qo] reaction-diffusion ,
F[$] = _5%‘75] “urely dissipative” SPDE .

n(t, &) is the stochastic variable which describes the noise present in the
system. We assume the (additive) noise to be Gaussian, and write its two-point
function G (z, y) as

with A a constant amplitude and gs(xz,y) a shape function. The noise
probability distribution is normalized according to




1. We assume that for a given realization of the noise the differential equation
has a unique solution, given by ¢, tion (t: 7).

2. For any function Q(¢) its ensemble average is defined as

with P[n] the probability density functional of the noise.
3. We make use of the delta functional identity

qbsolution(tv f\’?) — /(qu) QS 5[¢ - gbsolution(f? t\’?)]

- /<D¢)¢5[p¢_F[¢]_n] Tt

based on the change of variables

4. We can rewrite the stochastic ensemble average of Q(¢) as

5. We can read off the probability distribution for the field ¢

(Q(e)) &

—

/ (D$) Q($) P[§] = Plg] = P[D$— Flg]] VTT
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. We start by writing the noise two-point function as

with A a constant amplitude, and go(x, y) a shape function.

. The generating functional of connected correlated n-point functions
(Helmholtz free energy) can be defined as
def W [J] def

W[J] = A(log Z[J] — log Z[0]) , such that 57 - b .

. The effective action Iy [¢] (Gibbs free energy) is defined as the Legendre
transform of W [J], with J and ¢ conjugated variables. It is given by

P[] 2 —wiJ] +/J</3, such that — Jand (¢) ;=

The effective action yields a variational principle. ¢ is a reference
(fiducial) field such that ¢g = (¢) j—0-

. Given a characteristic functional Z[J]

with a the parameter that characterizes the fluctuations, the one-loop
effective action (first order in a) is given by

with So(z, y) def 628[$]/5¢(x)5¢(y) the Jacobi operator of the

classical action S[¢].




. In quantum field theory the expansion (loop-counting) parameter is
Planck’s constant (%). For field theories based on SPDEs the expansion
parameter is the noise amplitude (\A).

. The “classical action” (tree-level) is the sum of the Onsager-Machlup
action and the Jacobian determinants J and J 7

. The one-loop effective action for an SPDE with Gaussian noise can be
written as

Lool#l = Setassicalld] + 5 {log det(S2(8]) — lox(7 (817 113]) }

— (¢ — $0) + O(A?).

. The Jacobi operator is given by

¢ OFT _1( _5_F)_ R
Sz[cb]—(D M)gz D =53 (D¢ — Flo])g, 5503

. J is the Jacobian of the transformation

. The one-loop effective action has two contributions: the generalized
and the
It seems natural to expect that this one-loop term
may change the nature of the dynamical equation for the field ¢(t, ¥).
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In QFT the effective action and the effective potential yield information about
the dynamics of the field and the ground state of the system and its fluctuations,
respectively.

1. The stationary points of F¢O[q_5] correspond to stochastic expectation
values of the field in the absence of an external current. This is a
non-perturbative result.

(srj;_%[qb]:o = ¢=(4[J=0]).

2. What is the probability that an initial field configuration ¢;(t;, &) evolves
into a final one ¢ ¢(t s, ¥)? By means of the saddle point approximation
one can show that

F¢o [qgint}
A

Prob[¢ ¢(t ¢, Z)|pi(t;, T)] = exp [—

with ¢;,(t,Z) a field that minimizes S[¢] and interpolates from
¢i(t;, T) to pp(ty, T).

3. The effective potential governs the probability distribution of the space-

time average of the fluctuating field: minima of the effective potential

correspond to maxima of the probability density of the space-time averaged
field.

10




The Kardar-Parisi-Zhang (KPZ) equation is given by

It is a non-linear extension of the Edwards-Wilkinson equation. This equation
models surface growth and is equivalent to vorticity-free Burgers equation if
the fluid velocity is taken to be ¥ = —V ¢. This equation has the following
symmetries

1. Galilean invariance | (displacement of the coordinate system with speed

%) for arbitrary noise:

o(t,Z) — o, 7) + L(t),

dL(t)
Fo — Fop+ .
dt
2. Galilean invariance Il (coordinate system that is tilted an angle to the
vertical with tan# = || € ||) for translation-invariant temporal white
noise:
F = F=F—A&t, ad t—ot =¢t,

p(t, %) — ', F)=¢t, T)—¢ F.
We calculate the effective potential for fields such that
We consider white Gaussian noise, and calculate the finite
effective potential (renormalized).

The zero-loop
(classical) effective potential is given by

Aside: the Jacobian determinant is field independent.

11




The effective potential for d = 1 is given by

The qualitative form of the potential is given by

Viphi]

phi

For large |v| the classical potential dominates and for small |v| the one-loop
contribution drives the minimum of the potential away from the “classical”
minimum at v = 0. The system undergoes dynamical symmetry breaking. One
can estimate the location of the minimum of the one-loop effective potential

oM = 4 +0(A?) .

A —
2/ 212

Note that
The presence of unknown O (.A?) terms makes it difficult

to give a good estimate for the value of ne Detecting the occurrence of
DSB is easier than finding the precise location of the minimum.

12




The effective potential for d = 2 is given by

This potential is zero at v = 0, then becomes negative, and for large
enough fields (|v| > p) the potential becomes positive. This potential
exhibits dynamical symmetry breaking. The minimum of the one-loop effective
potential occurs for v(1) #£ 0, but the presence of unknown O(A?%) terms
makes it difficult to give a good estimate for the value of v(D. The location

of the minimum is given by
27213 1
W — 5 +0(A)

v/ = +pu exp | —

The one-loop beta function is derived from the fact that
the bare effective potential does not depend on the renormalization scale

which yields
3
def 1 d A A 2
= — A=—5—4+0(A)".
/8)\ dN/ A2 13 ( )

We cannot extract the beta function for the wave-function renormalization of
v from this analysis. This requires the calculation of the effective action for an
inhomogeneous field. But to one-loop there is no wave-function renormalization
for the KPZ field in this background.

13




1. are ubiquitous: from galaxies to living systems,
examples abound where a particular spatial distribution of some material
is preferred versus others out of a seemingly unlimited variety.

2. In many cases, these patterns are successfully described by systems of
coupled parabolic non-linear partial differential equations (SPDEs).

3. In chemical kinetics such equations summarize the space-time evolution
of chemical species diffusing and reacting in some confined geometrical
region, which makes its presence felt in the boundary conditions for the
problem.

4. In these phenomena the values of play a role which
reminds one of the role played by coupling constants in determining
the vacuum (or ground) state in a quantum field theory undergoing
spontaneous symmetry breaking, or in the description of phase transitions
in condensed matter systems.

How do fluctuations affect the stability of an established pattern?

7. The basic equation for the reaction-diffusion-decay system is
i9 g2
d; 5 vV ¢; = Pipj)+mni,

with P(¢) a polynomial that describes nucleation, decay, two-particle
reaction, etc.

Aside: the Jacobian determinant is field dependent.

14




Consider the system with reaction polynomial

Consider the zero-noise system, and homogeneous and static
concentrations. The solutions are given by P(¢g) = 0 such that

—b 4+ /b2 — 4ac
2a .

by =

Carry out the zero-noise linear stability analysis by defining fl/}i(.f’, t) =
¢ — qb(:)t. Fourier transform and keep up to linear order in the perturbation
@Z)g:(t), to obtain

+
OV def

5r = )xkz/)gi = (—z/k2 + /b2 — 4ac) w;‘j’: i

If sz — 4ac, for

: Consider the
case qSSL and b > by.

. The one-loop equation that determines the new (one-loop) homogeneous
and static solutions is P () + Ah(pg) + O(A?) = 0. This means
that one obtains new conditions on the parameters that govern the onset
of Hopf and Turing instabilities. In general ¢g # ¢g.

By expanding to linear order in the perturbation W (&, t) = ¢ — ¢, one
obtains the corresponding one-loop eigenvalues

A = —vk® 4+ P'(0) + AR/ (pg) + O(A?) .

The effect of the noise is to shift the symmetric states of the system, as
well as to change the nature of the linear instabilities that may be induced
by perturbations around these new states.

15




10.

SPDEs model relevant systems:
In general these equations do not arise from a Lagrangian formalism
(variational principle), due to the presence of
The experience from QFT tells us that concepts such as the effective
action and the effective potential have all the information regarding the
dynamics and “ground states” of the system, respectively.
Start from an arbitrary SPDE and build up a functional integral formalism:
characteristic functional, effective action, and effective potential.
This “direct” approach is
[MSR, Physical

Review A 8, 423 (1973)].
The effective action gives rise naturally to the concept of an

and allows one to
investigate the symmetry properties of the system and patterns of symmetry
breaking.
Example |: KPZ equation. In one and two space dimensions linear field

configurations (¢ = —U - &) experience dynamical symmetry breaking
due to noise effects.
Example IlI: reaction-diffusion systems. The presence of noise alters

the value of the parameters for which there exist Hopf and/or Turing
bifurcations.

Limitations:
[See G. Eyink in Physical Review E, 54,
3419-3435 (1996) for strong noise amplitude analysis.|; is the system such

that its

Carry out a detailed study of the to be able to analyze

Carry out numerical computations to see how relevant those “ground field
configurations” are.
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