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Short Abstract:

There is a powerful analogy that relates acous-
tic wave propagation in moving fluids to classi-
cal scalar field theory in an “effective” curved
Spacetime.

This analogy lets you develop a number of use-
ful connections between supersonic fluid flow
and black holes in general relativity.
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Long Abstract:

It is a deceptively simple question to ask how acoustic disturbances
propagate in a non-homogeneous flowing fluid. Subject to suitable
restrictions, this question can be answered by invoking the lan-
guage of Lorentzian differential geometry: If the fluid is barotropic
and inviscid, and the flow is irrotational (though possibly time de-
pendent), then the equation of motion for the velocity potential
describing a sound wave is identical to that for a minimally coupled
massless scalar field propagating in a (34 1)-dimensional Lorentzian
geometry. The acoustic metric governing the propagation of sound
depends algebraically on the density, flow velocity, and local speed
of sound. Even though the underlying fluid dynamics is Newto-
nian, non-relativistic, and takes place in flat space plus time, the
fluctuations (sound waves) are governed by an “effective” (341)-
dimensional Lorentzian space-time geometry. This simple physical
system is the basis underlying a deep and fruitful analogy between
the black holes of Einstein gravity and supersonic fluid flows. Many
results and definitions can be carried over directly from one system
to another. For example, I will show how to define the ergo-sphere,
trapped regions, acoustic apparent horizon, and acoustic event hori-
zon for a supersonic fluid flow, and will exhibit the close relationship
between the acoustic metric for the fluid flow surrounding a point
sink and a particular form of the Schwarzschild metric for a black
hole. This analysis can be used either to provide a concrete non-
relativistic analogy for black hole physics, or to provide a framework
for attacking acoustics problems with the full power of Lorentzian
differential geometry.



Basic Idea:

Consider sound waves in a flowing fluid.

If the fluid is moving faster than sound, then
the sound waves are swept along with the flow,
and cannot escape from that region.

This sounds awfully similar to a black hole in
general relativity — is there any connection?

— YES! —



Key points:

Acoustic propagation in fluids can be described
in terms of Lorentzian geometry.

The acoustic metric depends algebraically on
the fluid flow.

Acoustic geometry shares kinematic aspects of
general relativity, but not the dynamics.

Einstein equations versus Euler equation.
In particular:
Acoustic black holes divorce kinematic aspects

of black hole physics from the dynamics due
to the Einstein equations.



Geometrical acoustics:

In a - if sound moves a distance dz
in time dt then

||dZ — ¥ dt]| = cs dt.
Write this as
(dZ — 7 dt) - (dT — T dt) = c2dt?.
Now rearrange a little:
—(c2 —v?) dt? —2 ¢ -dZ dt + dZ-dZ = 0.
Notation — coordinates:
o = (29 %) = (¢; D).
Then you can write this as
guv dzt dz¥ = 0.

With an effective acoustic metric
(2 —v?) =T ]
g,ul/(taf) O | eeevenennan. e




Eikonals:

The of geometrical acoustics are
the of this effective metric.

Geometrical acoustics, by itself, does not give
you enough information to fix an overall mul-
tiplicative factor ( ).

Note: This also works for geometrical optics
in a flowing fluid, with ¢s — ¢/n; replace the
speed of sound by the speed of light in the
medium (speed of light divided by refractive
index).

This is already enough to give you some very
powerful results:

Fermat’'s principle is now a special case of
geodesic propagation.

Sound focussing can be described by the
Riemann tensor of this effective metric.

But there is a lot more hiding in the woodwork.
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The Acoustic metric:

Suppose you have a non-relativistic flowing fluid,
governed by the Euler equation plus the con-
tinuity equation.

Suppose the fluid flow is barotropic,
irrotational, and inviscid.

Suppose we look at linearized fluctuations.

Then the linearized fluctuations (aka sound
waves, aka phonons) are described by a mass-
less minimally coupled scalar field propagating
in a (341)-dimensional acoustic metric

NP
g’ul/(t,x) = E ............ e e

Proof: Unruh81, Visser93, Unruh94, Visser97.
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Other representations:

ds? =2 [—c2at? + ||dz — 7 dt]|?] .
C

If you move . null cones spread
out at the speed of sound.

The conformal factor is required to get a nice
minimally coupled d’'Alembertian equation of
motion for the velocity potential.



Key points:

— The signature is (—, 4+, +,+).

— T here are two distinct metrics:
the physical spacetime metric, and
the acoustic metric .

— A completely general (3 4+ 1)—dimensional
Lorentzian geometry has 6 degrees of freedom
per point in spacetime. (4x4 symmetric matrix
= 10 independent components; then subtract
4 coordinate conditions).

—The acoustic metric is specified completely
by the three scalars (¢, Z) [¢ = —V], p(t, Z),
and c(t,%). It has at most 3 degrees of freedom
per point in spacetime. Continuity reduces this
to 2 degrees of freedom which can be taken to
be ¢¥(t,Z) and c(t,T).



Apparent horizons:

Trapped surface: Take a closed two-surface. If
the fluid velocity is everywhere inward, and the
normal component of the fluid velocity is ev-
erywhere greater than the local speed of sound,
then no matter what direction a sound wave
propagates, it will be by the fluid
flow and be trapped inside the surface. The
surface is then said to be outer-trapped.

Trapped region: The region containing outer
trapped surfaces.

Apparent horizon: The boundary of the trapped
region.
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Event horizons:

Event horizon: (absolute horizon) the bound-
ary of the region from which
(phonons; sound rays) cannot escape.

This is the

A can be defined in terms
of the boundary of the region that cannot be
reached by incoming phonons

(Strictly speaking this requires us to define no-
tions of past and future null infinities, but I will
simply take all relevant incantations as under-
stood.)

In particular the event horizon is a null surface,
the generators of which are

(Meaning, there's a special class of sound rays
that just skims along the surface of the hori-
zon, neither escaping nor being sucked in.)
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Example: draining bathtub

A (24 1) dimensional flow with a sink.

Continuity implies

1
pv o —.
T
Vorticity-free implies
~ 1
’Ut xX —.
T
Conservation of angular momentum implies
1
P vt ox =
T

Combine: the density p must be constant through-
out the flow (which automatically implies that
the pressure p and speed of sound c are also
constant throughout the fluid flow).

The velocity of the fluid flow is
(A7+ B 9)

r

U =
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Example: draining bathtub

The acoustic metric is

A \? B \?2
ds? = —c?dt? + (dr _ —dt) + (r do — —dt) .
T T

The acoustic event horizon forms once the ra-
dial component of the fluid velocity exceeds
the speed of sound, that is at

4]

C

Thorizon —

Supersonic flow sets in outside the event hori-
zon, when the magnitude of the velocity equals
the speed of sound.

In general relativity this is called an ergo-region
and is important for spinning black holes.
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Example: oscillating bubble

Given a spherically symmetric flow of constant
density fluid, what is the acoustic metric?

Continuity implies v oc 1/72.

If p is position independent then (because of
the barotropic assumption) so is the pressure,
and hence the speed of sound as well.

Define a normalization constant rg(¢) and set

ro(t)?
7"2 .

vV = =*cC

The acoustic metric is

2
¢ 2
ds? = —c2dt? + (d'r + ¢ TO(Q) dt)
T

+r2(dO? + sin? 6 do?).

This acoustic metric is very to set up ex-
perimentally.
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Example: oscillating bubble

For a spherically-symmetric oscillating bubble
of radius R(t):

R(t)
rot) = R(1) ||
We should only use this metric for the fluid
region outside the bubble, and only in the ap-
proximation that the ambient fluid is constant
density (e.g. water).

For the compressible medium inside the bubble
(e.g. air) we should use a separate acoustic
metric.

It is experimentally easy to generate acoustic
apparent horizons in this manner: In cavitat-
ing bubbles (typically air bubbles in water) it
IS easy to get the bubble wall moving at su-
personic speeds (up to Mach 10 in extreme
cases).
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Example: oscillating bubble

As soon as the bubble wall is moving super-
sonically an acoustic apparent horizon forms.

The apparent horizon first forms at the bubble
wall itself but then will typically detach itself
from the bubble wall (since the apparent hori-
zon will continue to be the surface at which
the fluid achieves Mach 1) as the bubble wall
goes

Since the bubble must eventually stop its col-
lapse and re-expand, there is no acoustic event
horizon (no absolute horizon) in this experi-
mental situation, merely a temporary apparent
horizon.

(The apparent horizon must by construction
last less than one sound-crossing-time for the
collapsing bubble.)
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Example: Schwarzschild

The Schwarzschild geometry in ingoing (+4)
and outgoing (-) coordi-
nates is:

r

2
2GM
ds? = —dt? + (d'r + dt)
472 (d92 + sin? 9 d¢2> .

Equivalently

2GM 2GM
d32=—(1— )dtQ:I: dr dt

r r

+dr? + 2 (d92 +sin29 d¢2) .

This representation of the Schwarzschild ge-

ometry is not particularly well-known and has

been rediscovered several times this century.
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Surface gravity: Static acoustic geometries

If we restrict attention to a static geometry, we
can apply all of the standard tricks for calculat-

ing the developed in general
relativity.

The is a useful characterization
of general properties of the and

IS given in terms of a normal derivative by

19(c? — v2) _. d(c — v)

IH = 2 on o on

This is not quite 's result since he implic-
itly took the speed of sound to be a position-
independent constant.

The fact that p drops out of the final result for
the can be justified by appeal to
the known conformal invariance of the surface
gravity.
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Surface gravity: Static acoustic geometries

Though derived in a totally different manner,
this result is also compatible with the expres-

sion for obtained in the solid-
state black holes of Reznik, where a position
dependent (and singular) plays

a role analogous to the acoustic metric.

Because we are now considering a static ge-
ometry, the relationship between the Hawking
temperature and surface gravity may be ver-
ified in the usual fast-track manner — using
the trick to go to “imaginary
time” and analytically continue to

If you don't like
(which are in any case only applicable to equi-
librium situations) you should go back to the
original Hawking derivation.

19



Hawking radiation:

As discussed by Unruh81, (and subsequent pa-
pPpers — Jacobson91, Jacobson93, Unruh94, Brout, Jacobson95,
Jacobson96, Corley-Jacobson96, Corley-Jacobson97, Corley97a, Cor-
ley97b, Hochberg97, Reznik96, Rezniko7) an acoustic event
horizon will emit Hawking radiation in the form
of a at a temperature

h
kTH: QH.

27 Cs
(Yes, this really is the speed of sound, and gg
is really normalized to have the dimensions of

a physical acceleration.)

Ty = (1.2x107 %K mm) [
km s— C on

c 1] [E(’?(c —v])

Experimental verification of this acoustic
Hawking effect will be rather difficult.
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Laws of black hole mechanics:

The dynamical origin of the

is evident from the fact that the
various proofs explicitly use either the Einstein
equations plus the energy conditions, or at an
absolute minimum, the existence of a diffeo-
morphisim invariant Lagrangian (built up out
of the metric and its derivatives) governing the
evolution of the Lorentzian geometry.

In the acoustic model, with no Einstein equa-
tions, no energy conditions, and not even the
guarantee of a diffeomorphisim invariant La-
grangian, the usual laws of black hole mechan-
ICS are moot.
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Laws of black hole mechanics:

Going from fluid dynamics to the acoustic met-
ric is relatively easy; working backwards to try
to re-derive all of hydrodynamics from the acous-
tic metric, is not so easy and looks downright
iImpossible.

The notion of may not even
be meaningful, never mind the generalized sec-
ond law and such-like.

There is an important lesson here for string
theory:
(1) Finding Hawking radiation in your theory
does not imply that you have discovered quan-
tum gravity.
(2) If you find Hawking radiation, and you have
a theory that approximates classical

, then you must get black hole entropy
approximately proportional to area.
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Conclusions:

Acoustic geometries are very good toy models
that guide us in logically separating the
of gravity from the

— it occurs
for any test field on any Lorentzian geometry
with event horizon independent of whether or
not the Lorentzian geometry is dynamical.

— to even de-
fine black hole entropy requires a diffeomor-
phisim invariant dynamics for the Lorentzian
geometry.

The acoustic analog model for black holes can
teach us a lot.
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