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Abstract:

The idea of modelling (aspects of) Einstein’s
theory of gravity is attracting a lot of atten-
tion.

Idea: Use radically different physical systems
that nevertheless share much of the mathe-
matical structure.

Method: In particular, for any hyperbolic sys-
tem of PDEs you can use the characteristic
curves to define a precursor to the ” light-cones”
of general relativity, and under suitable alge-
braic restrictions can then deduce the existence
of a pseudo-Riemannian metric.

I will introduce these ideas, present simple ex-
amples, and discuss the extent to which these
analog models capture the essence of general
relativity.



Qverview:

Einstein gravity (general relativity) is based on
two things:

e pseudo-Riemannian geometry (Lorentzian
geometry).

e field equations for the Ricci tensor.

Q: Are there other physical systems that natu-
rally lead to the notion of pseudo-Riemannian
geometry?

A: Yes, lots of them...

Q: Is there something deeper going on?

A: Yes, hyperbolicity plus field-theory normal
modes...
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Example 1:

Lagrangian:

£(8uqb, ¢)

Convention:

Opp = (019 ; 0;0) = (0rp; Vo).

Action:

Slel = [ a*+a L0, 0).

Euler—Lagrange equations:

oL oL
O (8(8@)) "9 O

Linearize the field around a solution:

2
o(t, %) = ¢po(t, %) +ep1(t, )+ 59752(15, Z)+0(e).
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Example 1:

Linearized action

Sle] = 52[¢o] .
€ [ g+, 0°L
+ 5/ [{3(8u¢) 8((‘3u¢)} g1 w1
82L 82L
T <8¢ o~ O {awm) a¢}> ” m]
+ O(d).

Linear pieces [O(e)] vanish by equations of
motion.

Quadratic in ¢1 = field-theory normal modes.

Linearized equations of motion:

02 L
5 9y
: <{8(8u¢) 3(8u¢)} ¢1>

2L 0% L
— —0 = 0.
<8¢ o M {8<<‘w> aqs}) “

Formally self-adjoint.




Example 1:

Geometrical interpretation:

[A(g(¢0)) — V(d0)] 1 = 0.

Metric:
2L
HY — fpUV —
Voeat =] {awm) a<ay¢>}
Potential:

1 02L 52L
V(Cbo) — — 8u .
vV—9 \0¢ 0¢ O(Oue) 0¢
And
linearization = metric;
hyperbolic = pseudo-Riemannian;
parabolic = degenerate;

elliptic = Riemannian.



Example 2:

Barotropic irrotational inviscid fluid dynamics

Lagrangian (two fields):

1 P
L=—p 00— Sp(V0)? - /O dp’ h(p)).

(o) = o) = [

Vary p = Bernoulli equation (Euler equation).
1 2
00 + E(VH) + h(p) = 0.
Vary 60 = continuity equation.

Op + V(p VO) = 0.

Use the Bernoulli equation to algebraically
eliminate p:

p=h1(z)=h! (—ate _ %(ve)Q) |
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Example 2:

Reduced Lagrangian:

(z)
£(z) =z p(2) — /Op do' h(p).

But:
p(p) = p h(p) — /Op dp’ h(p).

Proof: Differentiate

d[RHS] dh dh  dp

=p—-+nh — h = — :

dp pdp—l- (p) — h(p) p(z)dp dp
Finally:

£=pp() =p (k7 (~010 - S(v6)?))

This reduces the Lagrangian to the form of
Example 1.

There is a metric hiding here waiting to be
found...



Example 2:

Apply the result of Example 1:

2
A et

O(Oue) 0(0vd)
Use:
92 _ _(1:VO) = _(1:Vi6).
O(Oud)
And:
822 T
0(0ug) 9(0ve)

Therefore:

FHV = d?p (1: Vo) (1: vy — 9P sii.
dz2 dz



Example 2:

But
dp _ .
dz pr
while
d’p _dp _ dpdp 2
A C .
dz2 dz dp dz — P
Collecting terms:
[ -1 —~V'o

M= —pc;? T E
| V10 i 269 — VO VIg

This is equivalent to the standard (d+1)
dimensional ‘“acoustic metric”’. Use

Zg |detf|—1/(d—1) FHY

And note an overall minus sign is irrelevant.
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Example 2:

When the dust settles

-1 : _Vze
gt oo | L
VIO 289 — VO VI
Inverting
—(c2—[VO)?) : —V;0]
g/_“/ (O, G
] —V,0 570 |
Equivalently

ds? « —c? dt? + (dz — V6 dt)?.

Natural way of assigning a pseudo-Riemannian
(Lorentzian) metric to this physical system.

This metric governs the propagation of lin-
earized fluctuations — in this context, sound

wavVves.
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Example 3:

Multiple fields

The reason the previous examples are interest-
ing is because they are part of a much more
general pattern.

Suppose we have many interacting fields ¢4 (¢, ).

LLagrangian:

L(Bud?, o).

Action:

Slo"] = [ d 1o £(9u”, 6™).

Linearize the fields:
2
o4 (1, %) = 65 (1, &) +edf (1, 1)+ 65 (1, ) +0().
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Example 3:

Linearize the action:

5[9?5 = S[#h]

/dd+1 _ 0°L 9,64 8,68
8(0upt) 8(8,9B) [ HT VT

Y 7 D &P
8(BupA) opB [ ML T

02L A B
+{8¢A8¢B} ¢1 ¢1
+0(e3).
NB: The fields now carry indices (AB). The
linear term still vanishes by Euler—Lagrange.

Still quadratic = field-theory normal modes.

The equation of motion for the linearized fluc-
tuations is now more complicated.
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Example 3:

Equation of motion:

8L B
o <{a<au¢f*> 5(3,67) } e >
8L B
+8'u (8(8N¢A) 8¢B Qb]_)
B d2L
O 5(8,0P) 067

2L B
- <8¢A a¢B> 71 =0

To simplify it we need several definitions.

First, generalize fHY:

P 1 ( 0°L n 0°L )
AB =2\ 0(8,904) 9(0,0B) ' 9(8udA) 0(8,9B) )

Symmetric in (uv) and (AB).
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Example 3:

Second, define:

B 0°L 9L
B = 50,67 867 T 9(0,67) 094
n 1, ( 2L B 2L )
2 " \8(0upA) 8(8upB)  8(8upA) 8(8,9B) )

This “connexion” is anti-symmetric in [AB].

Third:

02, 1 02,
Kap ( )

 9¢A 9¢B + 50 8(dupA) o¢B

1 02 L
50 <a<au¢B> aqu) '

This “potential” or “mass matrix’ is, by con-
struction, symmetric in (AB).
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Example 3:

Linearized equations of motion:

Oy (1" ap dwoT)

1
+§ [I‘fle OudT + 0u(T 5 ¢?)]
+Kap ¢ = 0.

Now transparent that this is a formally self-
adjoint second-order linear system of PDEs.

Analyze causal structure using theory of
characteristics.

Leading symbol of the PDE system.

Courant and Hilbert,
with suitable generalizations.

Causal structure is a surrogate for the pseudo-

Riemannian metric.
16



Example 3:

Normal cone:

N(q) = {pu | det (f" aB pu pu) = O}.
(locus of normals to the characteristic surfaces)

With N fields this “normal cone” will generi-
cally consist of N nested sheets each with the
topology (not necessarily the geometry) of a
cone.

Often several of these cones will coincide.

Common for some of these cones to be degen-
erate, which is more problematic.

It may be remarked that the present
state of the theory of algebraic sur-
faces does not permit entirely satisfac-
tory applications to the questions of
reality of geometric structures which
confront us here.
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Example 3:

Define Q(q,p) on the co-tangent bundle

Q(q,p) = det (f* 4p(q) pu pu) -

Monge cone: (aka ‘ray cone”, aka ‘charac-
teristic cone”, aka “null cone™)

M(q) = {t“ = 8Q8(§’p> Pu € N(Q)}-
7

Envelope of the set of characteristic surfaces
through the point q.

The "“Monge cone” is dual to the “normal
cone’.

Even if [the normal cone] is a relatively
simple algebraic cone of degree [2N],

the ray cone [Monge cone/null cone]

may have singularities, or isolated rays,

and need not consist of separate smooth
conical shells.
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Example 3:

ot — ¢4 = h(sP).

o4 ga = O B 1A, o
1 1= 5B s 1 o) B o1
0

Matrix notation:

¢1— ¢1 =L ¢1.

8 (F1 By )+TH auqsl%au(r“) $1+K ¢1 = 0.

v — fr =t prv L.
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Example 3:

Case A: Einstein equivalence principle.

Uniqueness of free fall for “normal matter’” im-
plies that to high accuracy (10~14) there is a
field redefinition such that:

M ap=10ap " =dap v—9g g"".

In arbitrary field variables:

Y ap=hap f* =hap v—g g"".

This *“factorization” condition on f#,p is a
necessary and sufficient condition for strict ad-
herence to the Einstein Equivalence Principle.

20



Example 3:

Case B: Multiple metrics.

For a multi-metric theory, there must be some
choice of field variables so that all the lin-
earized fields ¢¢ “decouple” and see indepen-

dent metrics:
]?,LU/AB diag{ffyafﬂyaf'uya'“a K[y}
diag{v/=g1 61", -, vV/~9n 9N }.

The necessary and sufficient condition for the
f* 4p to be simultaneously diagonalizable in
field space is that V u, v, o, 5

P aB o = P f* B

That is
[ f, fP1 = 0.

21



Example 3:

Case C: pseudo-Finsler geometry.

Riemann — pseudo-Riemann (Lorentzian).

Finsler — pseudo-Finsler.

Lorentzian geometry (norm)?:

Q2(q,p) = ¢""(q) pu pv-

pseudo-Finsler geometry (norm)2¥:

Qon(q,p) = det (f* 4p(q) pu pu) -

Homogeneous order N:

Qon (g, 2p) = XN Qon(a, p).

22
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Example 3:

Case C: pseudo-Finsler geometry.

(Complex) Lorentzian norm

Ipl| = [Q2(g, p)]Y/2.

(Complex) Finsler metric

dr(q,p) = [Q(g,p)]*/?N.

The standard notions of Finsler geometry must
be modified...

(Note: Elliptic systems = Finsler geometry;
Hyperbolic = pseudo-Finsler geometry.)

Much more general than we really need for GR.
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Basic message:

Hyperbolic PDE = pseudo-Finsler geometry.

Finsler geometries and pseudo-Finsler geome-
tries now have physics-motivated uses.

But in the most interesting cases:

Hyperbolic PDE = pseudo-Riemannian
geometry.

There are “effective metrics’ hiding in the
woodwork.

Used in physics to generate “analog models”
of Einstein gravity.

24



Physics example:

Sound in a Bose—Einstein condensate.

Mathematical description close to Example 2.

cs =~ 6 cm/sec.

Relatively easy to generate “acoustic horizons
from supersonic flow; black hole analogues
(dumb holes).

Should exhibit Hawking radiation...

Now phonons not photons.

THawki'rLg ~ 70 nK.

Tcondensate ~ 90 nK.

Experiments in 5 to 10 years?
25



Conclusions:

e Analogue models connect fundamental
issues of PDE systems with abstract
differential geometry.

e Lagrangians — pseudo-Riemannian
geometry.

e Rich mathematical structure;
brings together ideas from condensed
matter, fluid dynamics, general relativity,
etc.

e Analogue models are fun.
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