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Qverview:

What?

Acoustic propagation in Bose—Einstein conden-
sates has the interesting property that the low-
energy spectrum exhibits an effective Lorentz
invariance (in terms of the speed of sound)
while at high energies the dispersion relation
turns over and becomes Newtonian.

Why?
This very concrete physical model provides an

explicit example of a " broken” Lorentz invari-
ance.



Acoustics in Bose-Einstein condensates:

BECs are described by the nonlinear Schrodinger
equation (Gross—Pitaevskii equation).

TLQ
—ih Oy (t, &) = —%v%p(t, Z) + X [|9]]2 (L, Z).

Use the Madelung representation to put the
Schrodinger equation in *hydrodynamic” form:

b = /p exp(—if m/h).

Take real and imaginary parts: You get a con-
tinuity equation and something that looks like
the Euler equation.

Continuity:

Otp + V- (p VO) = 0.
Velocity field:
v = V6.



Madelung form:

Hamilton—Jacobi equation:
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This is completely equivalent to irrotational in-
viscid hydrodynamics with an enthalpy

d A
p= [P =22

P m
plus a peculiar self-interaction:
AN
VQ = — VP = 0.
2m? /p

EOS:



The quantum metric:

Linearize around some background.
In the low-momentum limit neglect Vo-
Phonon:massless minimally-coupled scalar.

d'Alembertian equation/effective geometry:

[ _1 —’UO ]
gl”w(t,:l_f) = Z—O ...... e e
L = (21— vy ® vp)
Here
A
2 =210 vo = V.
m

Low-momentum phonon physics is QFT in
curved spacetime.

(Garay, Cirac, Anglin, Zoller;
PRL gr-qc/0002015, PRA gr-qc/0005131.
Barcelo, Liberati, Visser; CQG gr-qc/0011026.)
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ADM formalism:

- _ PO
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ds? =2 [—c2 dt? + ||dZ — 7 dt||?] .

Cs
Shift vector:

B = —tg = — V.

Lapse function:

N = cs.

The low-momentum physics looks completely
LLorentz invariant...

(Acoustic Lorentz invariance mind you...)
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Question:

But wait...

We started with the nonlinear Schrodinger
equation...

That equation is parabolic...
Characteristics move at infinite speed.

How did we get a hyperbolic d'Alembertian
equation?

The subtlety resides in neglecting the higher-
derivative term Vo



Breaking the Lorentz invariance:

Keep VQ. Go to the eikonal approximation:

(w— 10 /%’)2 =2 k2 + (ik2>2

2m

This is the curved-space generalization of the
Bogolubov dispersion relation. Equivalently

. h 2
w=7Ty- k=t c§k2+(—k2) .

2m

Group velocity:

2 h2 1.2
- ow o + <CS + 2m2k ) l;
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Phase velocity:




Generalized Bogolubov relation:

Consider:

| 2
w(k)z\}mg—l—kz-l—( K ) .

2Moo

(BEC condensates mg=0; c¢=h=1.)

Low momenta (k <€ mg):

k2 4
w(k) = mg + 0+O(k )

2m

Intermediate momenta (mg € k <€ moo):
Approximately relativistic.

Large momenta (k> moo):
k2

Moo

w(k) = 5 Mmoo + O(k~2).

Surprise!



Comments:

BECs are examples of physically realizable sys-
tems with “broken” Lorentz invariance.

They are not the only ones —
condensed matter physics is littered with “ana-
log models” for low-energy L.orentz invariance.

Other examples:

1) Acoustics plus viscosity.
(Visser, CQG, gr-qc/9712010)

2) Lattice phonons.

3) It's really just a matter of doing a low-
momentum field-theory normal-modes analy-
Sis.

(Barcelo, Liberati, Visser, CQG, gr-qc/0104001)

— HHH—



