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Abstract:

In 1990 Scharnhorst noticed that photons ex-
hibit anomalous propagation in the Casimir vac-
uum (the quantum vacuum between perfectly
conducting parallel plates).

This Scharnhorst effect can be phrased in the
language of nonlinear electrodynamics provided
one is careful to calculate the quantum expec-
tation value of the " effective metric”.

Based on general symmetry arguments one can
uniquely deduce the form of the quantum-averaged
effective metric and demonstrate the complete
absence of birefringence in the Casimir vac-
uum.



Basic Idea:

Consider the Casimir vacuum:;:

A region of empty space delimited by two per-
fectly conducting parallel plates.

Orthogonal to the z axis at positions z = zg
and z = zg + a.

The presence of the plates distorts the quan-
tum vacuum.

(C|Ew|C) = 0.

(C|Fyo F70|C) # 0.

This leads to both the Casimir effect (Casimir
energy) and anomalous propagation of pho-
tons.

Details: see quant-ph/0010055;
Liberati, Sonego, Visser.



Warning:

These effects are tiny — probably too small
to ever be seen.

We had hoped to find birefringence; that would
give us some hope for a measurable effect.

Unfortunately, no, there is no birefringence.
Experimentally this seems a lost cause...

In terms of basic physics however, this is still
very interesting.

In particular for almost all directions:

CCasimir vacuum - CMinkowski vacuum-

And this really is the signal speed I'm talking
about here — not the old group velocity versus
phase velocity shell game...



Nonlinear electrodynamics:

From the presentations by Mario Novello, San-
tiago Bergliaffa, and Jose Salim, we know that
nonlinear electrodynamics generically leads to
an effective metric description.

Integrate out the fermions to one loop:

ESchWinger = L(X,Y).

1 P
EzF'u,y*F'UIV:E'B.

Specific form of Lgchwinger NOt Needed yet.
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Nonlinear electrodynamics:

Complete equations of motion for nonlinear
electrodynamics:
Bianchi identity

Fluwa = 0,

Dynamical equation

1
(OxL) By FH 4 5 MH* 5 9o FYP = 0.

The tensor

MHe,s = (8ZL) FF Fyg+4 (85L) *FH*F,q
+8xyL (FHY*F 5+ *FHe F )

IS antisymmetric in both contravariant and co-
variant indices.

Define

Q,uozl/,B = &L (Nuv Nap — NMup Nav) + M,uauﬁ-
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Nonlinear electrodynamics:

‘Then
Qo O°FP = 0.

Qo

Split the electromagnetic field into a back-
ground plus a propagating photon.

Apply the eikonal approximation: Introduce a
slowly varying amplitude f*¥ and a rapidly vary-
ing phase ¢:

Y — Ft'l;li/g + FHveld.

The wave vector is k;, = 0u¢.

Retain terms linear in the propagating photon:

(Quav5>bkg K 7 =o0.

But the background field is itself subject to
quantum fluctuations.



Nonlinear electrodynamics: EM fluctuations

To take quantum fluctuations into account the
coefficients of the propagation equation are
identified with the expectation value of the
corresponding quantum operators in the back-
ground state |¢):

(W|Quanpl) K* fP = 0.

The Bianchi identity constrains f#” to be of
the form

Y = kM a¥ — k¥ oM,

Then
<¢|Q,uoa/ﬁ|¢> K kﬁ a” = 0.
In general, €2 can be decomposed into an isotropic

part plus anisotropic contributions:

<¢|M,uou/ﬁ|w> = d1 (M Nap — NMup Nav) + A,uoa/ﬁ7
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Nonlinear electrodynamics: Casimir vacuum

Here di is a function that can be computed
from the Lagrangian.

Define the function dg = (¥|0xL|Y):

<¢|Q,uoa/[3|¢> = (do + d1) (Muv NaB—Mups 77041/)+A,ua1/6'

In the Casimir vacuum, considerable informa-
tion can be extracted by using only symmetry
considerations.

(Similar to what Bryce DeWitt did for the stress-
energy-momentum tensor in the Einstein Cen-
tenary Survey.)

The presence of a preferred direction, and the
symmetry of the configuration, allow us to claim
that the functions dg and di can only depend
on the z coordinate.



Nonlinear electrodynamics: Casimir vacuum

Furthermore

AF%, 3 = do(2) (6"y n% ng — g n™ ny
—|—5O‘ﬁ n* ny, — %, nt ng),
where n* = (0,0,0,1) is a unit vector orthog-
onal to the plates, while d>(z) is a function of

<.

Define the function

do(z)
do(z) + d1(2)’

£(z) =
and the tensor

Juv = Nuv + fn,uny-

Then

<C|Q,ua1/,8|c> = [do(2)+d1(2)] (Yuv Jas—9pua gvﬁ)



Nonlinear electrodynamics: Casimir vacuum

Insert this into the photon EOM:

(C1008|C) k* kP 0¥ = 0.

Then

[g/J,l/ a'/] [gaﬁ Kk~ k'B} - [g,ua k'a] [gyﬁ a” kﬁ] = 0.

This implies:

9ap k™ K°| =0.

[g,,ﬁ a” kﬁ} = 0.

That is: photons follow null curves of g,5 and
so we are justified in calling this the effective

metric.
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Key points:

There is an effective metric that governs pho-
ton propagation.

Polarization vector is orthogonal to 4-momentum
— orthogonal with respect to this effective
metric.

As usual, there are two polarizations. They
travel at the same speed.

Therefore no birefringence in the Casimir vac-
uum.

Different from the usual situation in nonlinear
electrodynamics; the key here is that:

(C|Fuw|C) = 0.
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Phase and group velocities:

Dispersion relation:

= |k|? + ¢ |k|? cos?é.

Phase velocity:

1/2
’Uphase(e) = — (]_ + £ cos? 9) / :

= €

Group velocity:

0 1
Ugroup—% w[kz‘Ff(k n)n]

SO
1 .
?7group(9) = (Sln 0,0,(1 +€) COSH).
Uphase(e)
Indeed

14 2¢ c0520—|—§2c0520
1+ & cos26

vgroup(0) = J
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Size of the effect:

So far we have argued solely on the basis of
symmetry.

Our results apply equally well to Euler—Heisenberg
and Born—Infeld.

For real world estimates use Euler—Heisenberg.

1
LEn = —— X+ ¢1X2 + coy?,
47

a2 702
, Co = .
907m2mg 36072mg

€1 —

In this case

MM 5 = 2¢c1 F* Fo5 4 2cy *FHY *F .
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Size of the effect:

Then d1(z) and d»(z) are of order a?.

In the Casimir vacuum

1
do(2) = —7— + 2c1(CIX|C).

To first order in a?

£(z) = —4mnda(z2),

and

vphase(8) = vgroup(8) = 1 — 27do(z) cos? .

In principle the coefficient d>(z) could depend
on z, the position relative to the two plates.
In the specific case of the Casimir vacuum it
iIs simply a position-independent number.
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Size of the effect:

Performing a brief calculation

167
do(z) = 3

(c1 + ¢c2) (C |TZZ| C> .

The symmetries of the Casimir vacuum stress-
energy then imply

d(z) = 167m(c1 + c2) (C'|Too| C) .

Finally the well-known result
(C|Too|C) = —x*/(720a")
allows us to write

117a?
16200 a4 mg’

dp =

In particular, this implies d>(z) is position in-
dependent. Thus, at first order in o2,
11722

2
cos“ 6.
8100 a% mg

Uphase(f) = vgroup(8) = 1 +
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Conclusions:

The Scharnhorst effect is interesting funda-
mental physics.

Unfortunately it is well outside the realm of
experimental detectability.

Nevertheless it is good for “proof of principle”
calculations:

— it shows how the effective metric is a useful
tool.

— it shows how quantum vacuum polarization
modifies photon propagation.

— it forces you to sharpen your notions of
what birefringence means.
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