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How far can one really go without a specific 
model for the cosmological equation of state?



The Hubble law describes the recession of the  galaxies 
and the expansion of the universe --- it is one  of the 

foundation stones of 20th century cosmology.  

In particular, subtle deviations from the naive linear 
Hubble law underlie recent claims that the 
expansion of the universe is accelerating.  

I will present a broad overview of the current situation, 
and possible lessons for the future. 

Abstract:



[Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]
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Cosmography is the part of cosmology that depends only on symmetries and
kinematics and is independent of the dynamics encoded in the Einstein equations, or
their cosmological specialization, the Friedmann equations. Thus cosmological tests
based on cosmography are particularly useful and robust in that they are based on
an absolute minimum of clearly identifiable assumptions. We have performed several
such cosmographic tests of the Hubble relation, using recent supernova data. Our
results are quite mixed: While the existence of a leading linear part in the Hubble
relation is confirmed to high accuracy, the situation regarding the higher-order non-
linear terms is much more ambiguous. We develop several graphical representations
of the supernova data that make it visually clear why fitting the higher-order Hubble
parameters is quite problematic, and then back this up by numerical least squares
fits to suitable truncated Taylor series. We point out that the process of truncating
a Taylor series does not commute with the process of performing a least squares fit,
and discuss the model building uncertainties that this introduces. After fitting the
data, we report statistical, systematic, and combined uncertainties in the deceler-
ation and jerk. While segments of our results are quite compatible with standard
folklore, the overall situation is much less sanguine: We wish to sound a cautionary
note against reading too much precision into the current supernova data.

v = H0 d; H0 ≈ 500 (km/sec)/Mpc.
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The original
Hubble law:
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result, they make good distance indica-
tors. Refined methods for analyzing
the observations of type Ia supernovae
give the distance to a single event to
better than 10% (19, 20). The best
modern Hubble diagram, based on well
observed type Ia supernovae out to a
modest distance of !2 billion light
years, is shown in Fig. 3, where the
axes are chosen to match those of
Hubble’s original linear diagram (to
mask our uncertainties, astronomers
generally use a log-log form of this
plot as in Fig. 4). Far beyond Hubble’s
original sample, Hubble’s Law holds
true.

In table 2 of his original article (1)
(reproduced as Table 1, which is pub-
lished as supporting information on the
PNAS web site), Hubble inverted the
velocity–distance relation to estimate
the distances to galaxies of known red-
shift. For galaxies like NGC 7619 for
which he had only Humason’s recently
measured redshift, Hubble used the
velocity–distance relation to infer the
distance. This approach to estimating
distances from the redshift alone has
become a major industry with galaxy
redshift surveys. Today’s telescopes are
1,000 times faster at measuring red-
shifts than in Hubble’s time, leading to
large samples of galaxies that trace the
texture of the galaxy distribution (21–
24). As shown in Fig. 5, the 3D distri-
bution of galaxies constructed from
Hubble’s Law is surprisingly foamy,
with great voids and walls that form as
dark matter clusters in an expanding
universe, shaping pits into which the
ordinary matter drains, to form the
luminous matter we see as stars in gal-
axies. Quantitative analysis of galaxy

clustering leads to estimates for the
amount of clumpy dark matter associ-
ated with galaxies. The best match
comes if the clumpy matter (dark and
luminous, baryons or not) adds up to
!30% of the universe.

The interpretation of the redshift as a
velocity, or more precisely, as a stretch-
ing of photon wavelengths due to cosmic
expansion, which we assume today’s col-
lege sophomores will grasp, was not so
obvious to Hubble. Hubble was very
circumspect on this topic and, more gen-
erally, on the question of whether cos-
mic expansion revealed a genuine cos-
mic history. He referred to the redshift
as giving an ‘‘apparent velocity.’’ In a

letter to Willem de Sitter (25), Hubble
wrote, ‘‘Mr. Humason and I are both
deeply sensible of your gracious appreci-
ation of the papers on velocities and
distances of nebulae. We use the term
‘apparent’ velocities to emphasize the
empirical features of the correlation.
The interpretation, we feel, should be
left to you and the very few others who
are competent to discuss the matter
with authority.’’

Part of the difficulty with the inter-
pretation came from alternative views,
notably by the local iconoclast, Fritz
Zwicky, who promptly sent a note to
PNAS in August 1929 that advocated
thinking of the redshift as the result of
an interaction between photons and in-
tervening matter rather than cosmic ex-
pansion (26). The reality of cosmic
expansion and the end of ‘‘tired light’’
has only recently been verified in a
convincing way.

While the nature of the redshift was a
bubbling discussion in Pasadena, Olin
Wilson of the Mount Wilson Observa-
tory staff suggested that measuring the
time it took a supernova to rise and fall
in brightness would show whether the
expansion was real. Real expansion
would stretch the characteristic time,
about a month, by an amount deter-
mined by the redshift (27).

This time dilation was sought in 1974,
but the sample was too small, too
nearby, and too inhomogeneous to see
anything real (28). It was only with large
carefully measured and distant samples
of SN Ia (29, 30) and more thorough
characterization of the way supernova
light curves and supernova luminosities
are intertwined (31, 32) that this topic

Fig. 3. The Hubble diagram for type Ia supernovae. From the compilation of well observed type Ia
supernovae by Jha (29). The scatter about the line corresponds to statistical distance errors of "10% per
object. The small red region in the lower left marks the span of Hubble’s original Hubble diagram from
1929.

Fig. 4. Hubble diagram for type Ia supernovae to z ! 1. Plot in astronomers’ conventional coordinates
of distance modulus (a logarithmic measure of the distance) vs. log redshift. The history of cosmic
expansion can be inferred from the shape of this diagram when it is extended to high redshift and
correspondingly large distances. Diagram courtesy of Brian P. Schmidt, Australian National University,
based on data compiled in ref. 18.

Kirshner PNAS ! January 6, 2004 ! vol. 101 ! no. 1 ! 11

The Hubble diagram for type Ia supernovae. The scatter about the 
line corresponds to statistical distance errors of < 10% per object. 
The small red region in the lower left marks the span of Hubble’s 
original Hubble diagram from 1929.      [Kirshner 2003]
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universe: Hubble’s Law says that veloc-
ity ! Ho " distance and, because
time ! distance!velocity, there is a nat-
ural Hubble time, to, associated with the
Hubble expansion, to ! distance!veloc-
ity ! distance!(Ho " distance) ! 1!Ho.

Nearby objects recede slowly, and
more distant ones recede rapidly, but
both would take the same time to get
where they are in a universe that ex-
pands at a constant rate, and that time
is given by 1!Ho. So the Hubble con-
stant sets the time scale from the Big
Bang to today.‡

Although Hubble’s 1929 distances
were too small by a factor of 7, his con-
clusion about the nature of cosmic ex-
pansion was still valid because all his
distances were too small by about the
same factor. The form of the relation,
velocity proportional to distance, is not
changed by this scale error, although the
numerical values for the distances, and
for the Hubble constant (which Hubble
modestly called K) is far from the mod-
ern value. In this classic article, Hubble
quotes values of K of 530 and 500
km!s!megaparsec. Staring at his original
Hubble diagram, you can see that there
is a handful of nearby galaxies with
blueshifts, and a large scatter of veloci-
ties at any given distance. Hubble
shrewdly used plausible methods to av-
erage the data for galaxies that are at
the same distance to make his result
stand out more clearly from the noise.
He was fortunate to have data that be-
haved so well.

Over time, improved understanding of
the stars being used, the role of absorp-
tion by dust, and the local calibration of
the distance scale led to large revisions
in the cosmic distance scale, the Hubble
constant, and in the inferred Hubble
time. In Hubble’s time, to was #2 billion
yr, which was already in conflict with
the larger age of the Earth inferred
from radioactive decay. The Earth
should not be older than the universe in
which it formed. This conflict with the
age of the Earth and a similar problem
with the ages of the stars was a chronic
embarrassment during the decades when
the Hubble constant was poorly known.
The disagreement made it difficult to
accept the reality of cosmic expansion
acting over cosmic time, and Hubble
was always quite circumspect on the in-
terpretation of his discovery. But, as
shown in Fig. 2 of this Perspective, my
colleague John Huchra’s compilation of
the numerical value of the Hubble con-

stant shows how the prevailing value has
been dropping over the decades. The
quoted error bars are chronically much
smaller than the drift in the mean value
over time. The systematic errors are al-
ways underestimated. This plot lends
weight to the aphorism that astrophysi-
cists are always wrong, but never in
doubt.

Modern work, closely tied to the Cep-
heids in Virgo cluster galaxies observed
with the Hubble Space Telescope gives
Ho ! 72 $ 2 $ 7 km!s!megaparsec (9).
The errors quoted are one sigma, with
the first being the statistical error, and
the second, larger error being the sys-
tematic uncertainty due to factors like
the chemical composition of the Cep-
heids in different galaxies, the distance
to the Large Magellanic Cloud to which
the distance comparison is made, and
the calibration of the camera on the
Hubble Space Telescope. As in the past,
we believe these error bars are correct
(although for a contrasting view, see ref.
10). But now, the convergence from
completely independent methods such
as time delays in gravitational lenses,
scattering of microwave background
photons by hot gas in galaxy clusters,
and the physics of supernova atmo-
spheres is beginning to be significant
(12–16). With independent paths, sys-
tematic errors can be exposed. We are,
at last, coming to the end of the search
for the Hubble constant.

The remarkable result of this long
path of revision is that the Hubble time
is now taken seriously. The age of the
universe implied by the modern Hubble
constant with constant expansion is #14
billion yr. This result is in good accord
with the theoretical ages of stars. The

oldest stars in our galaxy have ages,
based on computations of stellar evolu-
tion through nuclear burning, of
#12.5 $ 1.5 billion yr, just enough
younger than the Hubble time to fit
comfortably into a scheme where galax-
ies form promptly after the Big Bang
(17). Even with the added wrinkle of
cosmic deceleration and cosmic acceler-
ation, the best value from the Hubble
diagram for the elapsed time since the
Big Bang is #13.6 $ 1.5 billion yr (18).
The expansion is no illusion; it is cosmic
history.

As in Hubble’s original article, where
he used the very brightest stars and
the light from entire galaxies, the mod-
ern path to deeper distance measure-
ments is through a brighter standard
candle than the Cepheids. Before
Hubble, astronomers had, from time to
time, noted new stars that f lared up in
extragalactic nebulae like M31 and its
cousins. In our own galaxy, these new
stars are called ‘‘novae.’’ Once Hubble
had established that the distances to
these nebulae were millions of light
years, the true nature of these novae
became clear. Because they were at
distances a thousand times larger than
novae in the Milky Way, they must be
a million times more energetic. Ex-
ploding stars in other galaxies were
dubbed ‘‘supernovae’’ by Fritz Zwicky,
Hubble’s contemporary down Lake Av-
enue in Pasadena at the California In-
stitute of Technology. The light output
of one particular type of supernova is
#4 billion times that of the sun. These
‘‘type Ia’’ supernovae can be seen half
way across the visible universe, and,
even better, they have a fairly narrow
distribution in intrinsic brightness. As a

‡The conventional units of the Hubble constant are a bit
obscure: 1 megaparsec (Mpc) ! 106 parsec ! 3.26 " 106

light years ! 3.086 " 1016 m. A Hubble constant of 70
km!s!Mpc corresponds to 2.27 " 10%18 s%1. Then, the
Hubble time is 1!2.27 " 1018 s or 13.9 " 109 yr.

Fig. 2. Published values of the Hubble constant vs. time. Revisions in Hubble’s original distance scale
account for significant changes in the Hubble constant from 1920 to the present as compiled by John
Huchra of the Harvard–Smithsonian Center for Astrophysics. At each epoch, the estimated error in the
Hubble constant is small compared with the subsequent changes in its value. This result is a symptom of
underestimated systematic errors.

10 " www.pnas.org!cgi!doi!10.1073!pnas.2536799100 Kirshner

“Published values of the Hubble parameter versus time. 
At each epoch, the estimated error in the Hubble parameter is 
small compared with the subsequent changes in its value. 
This is a symptom of underestimated systematic errors.”

Kirshner 
2003



Speed of light
since 1880:

It is part of human nature 
to be over-enthusiastic 
about the error bars.

This 
phenomenon 
not limited to
cosmology...



It is part of human nature 
to be over-enthusiastic 
about the error bars.

Speed of light
since 1940:

(There are many other examples 
of this phenomenon.)



Selected measurements from particle physics:



Selected measurements from particle physics:



People prefer to work with redshift:
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Cosmography is the part of cosmology that depends only on symmetries and
kinematics and is independent of the dynamics encoded in the Einstein equations, or
their cosmological specialization, the Friedmann equations. Thus cosmological tests
based on cosmography are particularly useful and robust in that they are based on
an absolute minimum of clearly identifiable assumptions. We have performed several
such cosmographic tests of the Hubble relation, using recent supernova data. Our
results are quite mixed: While the existence of a leading linear part in the Hubble
relation is confirmed to high accuracy, the situation regarding the higher-order non-
linear terms is much more ambiguous. We develop several graphical representations
of the supernova data that make it visually clear why fitting the higher-order Hubble
parameters is quite problematic, and then back this up by numerical least squares
fits to suitable truncated Taylor series. We point out that the process of truncating
a Taylor series does not commute with the process of performing a least squares fit,
and discuss the model building uncertainties that this introduces. After fitting the
data, we report statistical, systematic, and combined uncertainties in the deceler-
ation and jerk. While segments of our results are quite compatible with standard
folklore, the overall situation is much less sanguine: We wish to sound a cautionary
note against reading too much precision into the current supernova data.

v = H0 d; H0 ≈ 500 (km/sec)/Mpc.

d =
c z

H0
+O(z2).

1 + z =
λreceived

λemitted
=

ωemitted

ωreceived
.

1

Redshift is “easy” to measure...
                 distance is extremely difficult to measure... 
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v = H0 d; H0 ≈ 500 (km/sec)/Mpc.

d =
c z

H0
+O(z2).
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λreceived

λemitted
=
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ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

1

Modern version
of Hubble law:



a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

q(t) < 0; ⇔ ä > 0.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z + O(z2)

}
.

H0 =
ȧ(t0)

a(t)
; q(t0) = − ä(t0) a(t0)

ȧ(t0)2
.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z −

1

6

[
1− q0 − 3q2

0 + j0 +
kc2

H2
0 a2

0

]
z2 + O(z3)

}
. (1)

j(t) =
˙̈a a2

ȧ3

j(t) =
...
a (t) a(t)2

ȧ(t)3
; j0 =

...
a (t0) a(t0)2

ȧ(t0)3
.

∆z = 1.

O(z2) ?

2

What’s with the

As the universe expands, one might reasonably 
expect the expansion to slow down...

The expansion is after all fighting against gravity...

So as you look further out into the night sky, 
since you are also looking further back in time,

you might quite reasonably expect to be 
looking back to a time when the expansion

might be faster than it is today. 

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

q(t) < 0; ⇔ ä > 0.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z + O(z2)

}
.

H0 =
ȧ(t0)

a(t)
; q(t0) = − ä(t0) a(t0)

ȧ(t0)2
.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z −

1

6

[
1− q0 − 3q2

0 + j0 +
kc2

H2
0 a2

0

]
z2 + O(z3)

}
. (1)

j(t) =
˙̈a a2

ȧ3

j(t) =
...
a (t) a(t)2

ȧ(t)3
; j0 =

...
a (t0) a(t0)2

ȧ(t0)3
.

∆z = 1.

O(z2) ?
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Textbook 
   cosmology:

FLRW universe:

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor”; units of distance

r is just a label, dimensionless

k ∈ {−1, 0, +1}

2

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

2

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

2

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

2

To do this you just need symmetries, 
no dynamical assumptions...

[for example:    Weinberg,    Peebles]



Textbook 
definitions:

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t)a(t)

ȧ(t)2
; dimensionless deceleration parameter.

2

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

2

Until about 10 years ago everyone was expecting:

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

2

Current data seems to suggest the opposite:

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

q(t) < 0; ⇔ ä > 0.

2

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

q(t) < 0; ⇔ ä > 0.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z + O(z2)

}
.

H0 =
ȧ(t0)

a(t)
; q(t0) = − ä(t0) a(t0)

ȧ(t0)2
.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z −

1

6

[
1− q0 − 3q2

0 + j0 +
kc2

H2
0 a2

0

]
z2 + O(z3)

}
. (1)

j(t) =
˙̈a a2

ȧ3

j(t) =
...
a (t) a(t)2

ȧ(t)3
; j0 =

...
a (t0) a(t0)2

ȧ(t0)3
.

∆z = 1.

O(z2) ?

???

2



Textbook 
exercise:

[for example:    Weinberg,    Peebles]

For a suitable definition of distance:

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

q(t) < 0; ⇔ ä > 0.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z + O(z2)

}
.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z −

1

6

[
1− q0 − 3q2

0 + j0 +
kc2

H2
0 a2

0

]
z2 + O(z3)

}
. (1)

2

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

q(t) < 0; ⇔ ä > 0.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z + O(z2)

}
.

H0 =
ȧ(t0)

a(t)
; q(t0) = − ä(t0) a(t0)

ȧ(t0)2
.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z −

1

6

[
1− q0 − 3q2

0 + j0 +
kc2

H2
0 a2

0

]
z2 + O(z3)

}
. (1)

2

That is,   evaluate the Hubble and deceleration 
parameters now (current epoch).

[luminosity distance]



a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

q(t) < 0; ⇔ ä > 0.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z + O(z2)

}
.

H0 =
ȧ(t0)

a(t)
; q(t0) = − ä(t0) a(t0)

ȧ(t0)2
.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z −

1

6

[
1− q0 − 3q2

0 + j0 +
kc2

H2
0 a2

0

]
z2 + O(z3)

}
. (1)

j(t) =
˙̈a a2

ȧ3

j(t) =
...
a (t) a(t)2

ȧ(t)3
; j0 =

...
a (t0) a(t0)2

ȧ(t0)3
.

2

Modern version
of Hubble law:

[for example:    Chiba,   Sahni,   Visser]

ds2 = −c2 dt2 + a(t)2

{
dr2

1− kr2
+ r2

[
dθ2 + sin2 θ dφ2

]}

a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

q(t) < 0; ⇔ ä > 0.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z + O(z2)

}
.

H0 =
ȧ(t0)

a(t)
; q(t0) = − ä(t0) a(t0)

ȧ(t0)2
.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z −

1

6

[
1− q0 − 3q2

0 + j0 +
kc2

H2
0 a2

0

]
z2 + O(z3)

}
. (1)

2

“Jerk” parameter:

Higher-order expansions are possible...     [Visser]



Mechanics Cosmology

position scale factor
velocity Hubble parameter

acceleration deceleration
jerk jerk parameter

snap snap parameter

crackle ...
pop ...



Latest tests of the Hubble law are 
based largely on supernova data, 
approximately 200 supernovae.

Now have data out to redshift:    z ~ 1.75

Modern 
tests:

Major datasets:     
Gold+Silver+Nearby (gold06)

Supernova Legacy Survey (legacy05)
{

Lots of little “quirks” hiding in the processed data.
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equations does Ω0 have the standard interpretation as the ratio of total density to the

Hubble density, but we would be prejudging things by making such an identification in

the current cosmographic framework.) In the cosmographic framework k/a2
0 is simply

the present day curvature of space (not spacetime), while d −2
H = H2

0/c
2 is a measure

of the contribution of expansion to the spacetime curvature of the FLRW geometry.

More precisely, in a FRLW universe the Riemann tensor has (up to symmetry) only two

non-trivial components. In an orthonormal basis:

Rθ̂φ̂θ̂φ̂ =
k

a2
+

ȧ2

c2 a2
=

k

a2
+

H2

c2
; (17)

Rt̂r̂t̂r̂ = − ä

c2 a
=

q H2

c2
. (18)

Then at arbitrary times Ω can be defined purely in terms of the Riemann tensor of the

FLRW spacetime as

Ω =
Rθ̂φ̂θ̂φ̂(ȧ→ 0)

Rθ̂φ̂θ̂φ̂(k → 0)
. (19)

3. New versions of the Hubble law

New versions of the Hubble law are easily calculated for each of these cosmological

distance scales. Explicitly:

dL(z) = dH z

{
1− 1

2
[−1 + q0] z +

1

6

[
q0 + 3q2

0 − (j0 + Ω0)
]
z2 + O(z3)

}
. (20)

dF (z) = dH z

{
1− 1

2
q0z +

1

24

[
3 + 10q0 + 12q2

0 − 4(j0 + Ω0)
]
z2 + O(z3)

}
. (21)

dP (z) = dH z

{
1− 1

2
[1 + q0] z +

1

6

[
3 + 4q0 + 3q2

0 − (j0 + Ω0)
]
z2 + O(z3)

}
. (22)

dQ(z) = dH z

{
1− 1

2
[2 + q0] z +

1

24

[
27 + 22q0 + 12q2

0 − 4(j0 + Ω0)
]
z2 + O(z3)

}
. (23)

dA(z) = dH z

{
1− 1

2
[3 + q0] z +

1

6

[
12 + 7q0 + 3q2

0 − (j0 + Ω0)
]
z2 + O(z3)

}
. (24)

If one simply wants to deduce (for instance) the sign of q0, then it seems that plotting

the “photon flux distance” dF versus z would be a particularly good test — simply check

if the first nonlinear term in the Hubble relation curves up or down.

Cosmography: Extracting the Hubble series from the supernova data 10

In contrast, the Hubble law for the distance modulus itself is given by the more

complicated expression

µD(z) = 25 +
5

ln(10)

{
ln(dH/Mpc) + ln z

+
1

2
[1− q0] z −

1

24

[
3− 10q0 − 9q2

0 + 4(j0 + Ω0)
]
z2 + O(z3)

}
. (25)

However, when plotting µD versus z, most of the observed curvature in the plot comes

from the universal (ln z) term, and so carries no real information and is relatively

uninteresting. It is much better to rearrange the above as:

ln[dL/(z Mpc)] =
ln 10

5
[µD − 25]− ln z

= ln(dH/Mpc)

− 1

2
[−1 + q0] z +

1

24

[
−3 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2 + O(z3). (26)

In a similar manner one has

ln[dF /(z Mpc)] =
ln 10

5
[µD − 25]− ln z − 1

2
ln(1 + z)

= ln(dH/Mpc)

− 1

2
q0z +

1

24

[
3 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2 + O(z3). (27)

ln[dP /(z Mpc)] =
ln 10

5
[µD − 25]− ln z − ln(1 + z)

= ln(dH/Mpc)

− 1

2
[1 + q0] z +

1

24

[
9 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2 + O(z3). (28)

ln[dQ/(z Mpc)] =
ln 10

5
[µD − 25]− ln z − 3

2
ln(1 + z)

= ln(dH/Mpc)

− 1

2
[2 + q0] z +

1

24

[
15 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2 + O(z3). (29)

ln[dA/(z Mpc)] =
ln 10

5
[µD − 25]− ln z − 2 ln(1 + z)

= ln(dH/Mpc)

− 1

2
[3 + q0] z +

1

24

[
21 + 10q0 + 9q2

0 − 4(j0 + Ω0)
]
z2 + O(z3). (30)

These logarithmic versions of the Hubble law have several advantages — fits to these

relations are easily calculated in terms of the observationally reported distance moduli

µD and their estimated statistical uncertainties [1, 2, 3, 4, 5]. (Specifically there is no

need to transform the statistical uncertainties on the distance moduli beyond a universal

Photon flux
version of the
Hubble law:

Transform it:

--- simple probe for deceleration parameter

--- stellar magnitude and redshift provided in the data
--- plot the data...

[count photons, not energy]
[ Visser, Cattoen ]



We expect 
something 
like this:

acceleration

coasting

deceleration

In principle, 
intercept

yields
Hubble 

parameter.

Slope yields:

In practice,
intercept is 

noise... 

(overall 
calibration                  
difficult...)

(diagnostic?)
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Figure 3. The normalized logarithm of the deceleration distance, ln(dQ/[y Mpc]), as
a function of the y-redshift using the nearby and legacy datasets (legacy05) [2].
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Figure 4. The normalized logarithm of the photon flux distance, ln(dF /[z Mpc]), as
a function of the z-redshift using the nearby and legacy datasets (legacy05) [2].

an “eyeball estimate” that q0 ≈ 0. Note that this is not a plot of “statistical residuals”

We get this:

Smaller 
dataset,

but 
homogeneous.

legacy05
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Figure 6. The normalized logarithm of the photon flux distance, ln(dF /[z Mpc]), as
a function of the z-redshift using the gold06 dataset [2].

automatically reduces the leverage of high redshift outliers is a feature that is considered
highly desirable purely for statistical reasons. In particular, the method of least-squares

is known to be non-robust with respect to outliers. One could implement more robust

regression algorithms, but they are not as easy and fast as the classical least-squares

method. We have also implemented least-squares regression against a reduced dataset

where we have trimmed out the most egregious high-z outlier, and also eliminated the

so-called “Hubble bubble” for z < 0.0233 [32, 33]. While the precise numerical values of
our estimates for the cosmological parameters then change, there is no great qualitative

change to the points we wish to make in this article, nor to the conclusions we will draw.

7.3. Peculiar velocities

One point that should be noted for both the legacy05 and gold06 datasets is the way
that peculiar velocities have been treated. While peculiar velocities would physically

seem to be best represented by assigning an uncertainty to the measured redshift, in

both these datasets the peculiar velocities have instead been modelled as some particular

function of z-redshift and then lumped into the reported uncertainties in the distance

modulus. Working with the y-redshift ab initio might lead one to re-assess the model

for the uncertainty due to peculiar velocities. We expect such effects to be small and
have not considered them in detail.

We get this:

Larger 
dataset,
but not

homogeneous.

Combined 
dataset from
six different 
observing
platforms.

gold06



The situation is actually worse than it looks because the 
plotted error bars report only part of the uncertainty...

The plots include photometric uncertainties plus 
“intrinsic variability” in the supernovae...

The supernovae are not quite “standard candles”, 
they are only “standard on average”... 

You have to estimate intrinsic variability by looking at 
nearby supernovae, where we have independent 

distance measurements...

Lies, 
damned lies,

and statistics...



a(t) is the “scale factor” of the universe; units of distance.

r is just a label, dimensionless.

k ∈ {−1, 0, +1}.

H(t) =
ȧ(t)

a(t)
; Hubble parameter.

q(t) = − ä(t) a(t)

ȧ(t)2
; dimensionless deceleration parameter.

q(t) > 0; ⇔ ä < 0.

q(t) < 0; ⇔ ä > 0.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z + O(z2)

}
.

H0 =
ȧ(t0)

a(t)
; q(t0) = − ä(t0) a(t0)

ȧ(t0)2
.

dL(z) =
c z

H0

{
1 +

1

2
[1− q0] z −

1

6

[
1− q0 − 3q2

0 + j0 +
kc2

H2
0 a2

0

]
z2 + O(z3)

}
. (1)

j(t) =
˙̈a a2

ȧ3

j(t) =
...
a (t) a(t)2

ȧ(t)3
; j0 =

...
a (t0) a(t0)2

ȧ(t0)3
.

∆z = 1.

2

The plots do not include systematic uncertainties, 
neither  “known unknowns” nor a budget for

“unknown unknowns”.

“Known unknowns” are estimated to permit an 
uncertainty amounting to a drift of about 

5% in distance measurements over a 
redshift range of:                 .

“Unknown unknowns” can be estimated historically...

(This is traditional in cosmology...)

Lies, 
damned lies,

and statistics...



Historical 
     uncertainties:

Most recent:
As of 2006 the high redshift supernovae have 
all moved 5% closer than estimated in  2004.
(Improved understanding and characterization 

of nonlinearities in the photodetectors.)

*

* Over the last decade there have still been 15% 
disagreements over the size of our own galaxy...

(Hipparcos satellite data.)

* Hubble’s mis-calibrated Cephid variables 
led to some 666% error...



Type B evaluations of uncertainty:

“any method of evaluation of uncertainty by means 
other than the statistical analysis of a 

series of observations”

“A type B evaluation of standard uncertainty is usually 
based on scientific judgment using all of the relevant 
information available, which may include:    previous 

measurement data,   etc...”

NIST  
       guidelines:

NIST Technical Note 1297.



Lies, 
damned lies,

and statistics...

In the total error budget you should really include:

statistical photometric
intrinsic

* modelling *
systematic known unknowns

unknown unknowns

* more on this later...



Lies, 
damned lies,

and statistics...

NIST recommended practice:

Treat all uncertainties,   whatever their source, 
 “as though” they were statistical, 

and report an 
“equivalent one-sigma uncertainty”...

Always combine uncertainties in quadrature, 
unless you have good reason to believe 

there is a correlation...

*

*

In particular, combine statistical and systematic 
uncertainties in quadrature...

*



Modelling 
   uncertainty:

Essentially, ask the same statistical question 
several slightly different ways,  and see if 
the estimates are close to each other...  

There are at least five different  “natural” ways of 
estimating the deceleration and jerk parameters...

Perform least squares fits to the five 
models,  all slightly different...

Then extract five (slightly?) different estimates 
of the deceleration and jerk parameters...
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vertical axis of the Hubble plot, instead of using the standard default choice of luminosity

distance dL, let us now consider using one or more of:

• The “photon flux distance”:

dF =
dL

(1 + z)1/2
. (3)

• The “photon count distance”:

dP =
dL

(1 + z)
. (4)

• The “deceleration distance”:

dQ =
dL

(1 + z)3/2
. (5)

• The “angular diameter distance”:

dA =
dL

(1 + z)2
. (6)

• The “distance modulus”:

µD = 5 log10[dL/(10 pc)] = 5 log10[dL/(1 Mpc)] + 25. (7)

• Or possibly some other surrogate for distance.

Some words of explanation and caution are in order here [13, 14]:

• The “photon flux distance” dF is based on the fact that it is often technologically
easier to count the photon flux (photons/sec) than it is to bolometrically measure

total energy flux (power) deposited in the detector. If we are counting photon

number flux, rather than energy flux, then the photon number flux contains one

fewer factor of (1 + z)−1. Converted to a distance estimator, the “photon flux

distance” contains one extra factor of (1+z)−1/2 as compared to the (power-based)

luminosity distance.

• The “photon count distance” dP is related to the total number of photons absorbed

without regard to the rate at which they arrive. Thus the “photon count distance”

contains one extra factor of (1+ z)−1 as compared to the (power-based) luminosity

distance. Indeed D’Inverno [16] uses what is effectively this photon count distance as

his nonstandard definition for luminosity distance. Furthermore, though motivated

very differently, this quantity is equal to Weinberg’s definition of proper motion
distance [1], and is also equal to Peebles’ version of angular diameter distance [2].

That is:

dP = dL,D’Inverno = dproper,Weinberg = dA,Peebles. (8)

• The quantity dQ is (as far as we can tell) a previously un-named quantity that seems
to have no simple direct physical interpretation — but we shall soon see why it is

potentially useful, and why it is useful to refer to it as the “deceleration distance”.

Other
“distances”

It should 
not matter 

which notion 
of distance 
you use...
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Furthermore we choose to set

Ω0 = 1 +
kc2

H2
0a

2
0

= 1 +
k d2

H

a2
0

. (16)

For our purposes Ω0 is a purely cosmographic definition without dynamical content.

(Only if one additionally invokes the Einstein equations in the form of the Friedmann

equations does Ω0 have the standard interpretation as the ratio of total density to the

Hubble density, but we would be prejudging things by making such an identification in
the current cosmographic framework.) In the cosmographic framework k/a2

0 is simply

the present day curvature of space (not spacetime), while d −2
H = H2

0/c
2 is a measure

of the contribution of expansion to the spacetime curvature of the FLRW geometry.

More precisely, in a FRLW universe the Riemann tensor has (up to symmetry) only two

non-trivial components. In an orthonormal basis:

Rθ̂φ̂θ̂φ̂ =
k

a2
+

ȧ2

c2 a2
=

k

a2
+

H2

c2
; (17)

Rt̂r̂t̂r̂ = −
ä

c2 a
=

q H2

c2
. (18)

Then at arbitrary times Ω can be defined purely in terms of the Riemann tensor of the

FLRW spacetime as

Ω = 1 +
Rθ̂φ̂θ̂φ̂(ȧ → 0)

Rθ̂φ̂θ̂φ̂(k → 0)
. (19)

3. New versions of the Hubble law

New versions of the Hubble law are easily calculated for each of these cosmological
distance scales. Explicitly:

dL(z) = dH z

{

1 −
1

2
[−1 + q0] z +

1

6

[

q0 + 3q2
0 − (j0 + Ω0)

]

z2 + O(z3)

}

. (20)

dF (z) = dH z

{

1 −
1

2
q0z +

1

24

[

3 + 10q0 + 12q2
0 − 4(j0 + Ω0)

]

z2 + O(z3)

}

. (21)

dP (z) = dH z

{

1 −
1

2
[1 + q0] z +

1

6

[

3 + 4q0 + 3q2
0 − (j0 + Ω0)

]

z2 + O(z3)

}

. (22)

dQ(z) = dH z

{

1 −
1

2
[2 + q0] z +

1

24

[

27 + 22q0 + 12q2
0 − 4(j0 + Ω0)

]

z2 + O(z3)

}

. (23)

dA(z) = dH z

{

1 −
1

2
[3 + q0] z +

1

6

[

12 + 7q0 + 3q2
0 − (j0 + Ω0)

]

z2 + O(z3)

}

. (24)

Other 
Hubble 
laws:
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If one simply wants to deduce (for instance) the sign of q0, then it seems that plotting

the “photon flux distance” dF versus z would be a particularly good test — simply check

if the first nonlinear term in the Hubble relation curves up or down.

In contrast, the Hubble law for the distance modulus itself is given by the more

complicated expression

µD(z) = 25 +
5

ln(10)

{

ln(dH/Mpc) + ln z

+
1

2
[1 − q0] z −

1

24

[

3 − 10q0 − 9q2
0 + 4(j0 + Ω0)

]

z2 + O(z3)

}

. (25)

However, when plotting µD versus z, most of the observed curvature in the plot comes

from the universal (ln z) term, and so carries no real information and is relatively
uninteresting. It is much better to rearrange the above as:

ln[dL/(z Mpc)] =
ln 10

5
[µD − 25] − ln z

= ln(dH/Mpc)

−
1

2
[−1 + q0] z +

1

24

[

−3 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (26)

In a similar manner one has

ln[dF /(z Mpc)] =
ln 10

5
[µD − 25] − ln z −

1

2
ln(1 + z)

= ln(dH/Mpc)

−
1

2
q0z +

1

24

[

3 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (27)

ln[dP /(z Mpc)] =
ln 10

5
[µD − 25] − ln z − ln(1 + z)

= ln(dH/Mpc)

−
1

2
[1 + q0] z +

1

24

[

9 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (28)

ln[dQ/(z Mpc)] =
ln 10

5
[µD − 25] − ln z −

3

2
ln(1 + z)

= ln(dH/Mpc)

−
1

2
[2 + q0] z +

1

24

[

15 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (29)

ln[dA/(z Mpc)] =
ln 10

5
[µD − 25] − ln z − 2 ln(1 + z)

= ln(dH/Mpc)

−
1

2
[3 + q0] z +

1

24

[

21 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (30)

These logarithmic versions of the Hubble law have several advantages — fits to these

relations are easily calculated in terms of the observationally reported distance moduli

What you actually use:

data

noise? fit
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If one simply wants to deduce (for instance) the sign of q0, then it seems that plotting

the “photon flux distance” dF versus z would be a particularly good test — simply check

if the first nonlinear term in the Hubble relation curves up or down.

In contrast, the Hubble law for the distance modulus itself is given by the more

complicated expression

µD(z) = 25 +
5

ln(10)

{

ln(dH/Mpc) + ln z

+
1

2
[1 − q0] z −

1

24

[

3 − 10q0 − 9q2
0 + 4(j0 + Ω0)

]

z2 + O(z3)

}

. (25)

However, when plotting µD versus z, most of the observed curvature in the plot comes

from the universal (ln z) term, and so carries no real information and is relatively
uninteresting. It is much better to rearrange the above as:

ln[dL/(z Mpc)] =
ln 10

5
[µD − 25] − ln z

= ln(dH/Mpc)

−
1

2
[−1 + q0] z +

1

24

[

−3 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (26)

In a similar manner one has

ln[dF /(z Mpc)] =
ln 10

5
[µD − 25] − ln z −

1

2
ln(1 + z)

= ln(dH/Mpc)

−
1

2
q0z +

1

24

[

3 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (27)

ln[dP /(z Mpc)] =
ln 10

5
[µD − 25] − ln z − ln(1 + z)

= ln(dH/Mpc)

−
1

2
[1 + q0] z +

1

24

[

9 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (28)

ln[dQ/(z Mpc)] =
ln 10

5
[µD − 25] − ln z −

3

2
ln(1 + z)

= ln(dH/Mpc)

−
1

2
[2 + q0] z +

1

24

[

15 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (29)

ln[dA/(z Mpc)] =
ln 10

5
[µD − 25] − ln z − 2 ln(1 + z)

= ln(dH/Mpc)

−
1

2
[3 + q0] z +

1

24

[

21 + 10q0 + 9q2
0 − 4(j0 + Ω0)

]

z2 + O(z3). (30)

These logarithmic versions of the Hubble law have several advantages — fits to these

relations are easily calculated in terms of the observationally reported distance moduli

Other 
Hubble 
laws:



Huh, why are 
  the estimates

 different?

Because the process of performing a least squares fit 
does not commute 

with the process of truncating a Taylor series...

(And the amount by which these processes 
fail to commute gives you an estimate of the 

extent to which you should trust the 
output of the statistical analysis...) 

((Trust me, you really do not want to 
see the relevant formulae))

[Cattoen,  Visser,  gr-qc/0703122]
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Table 1. Deceleration and jerk parameters (legacy05 dataset, y-redshift).

distance q0 j0 + Ω0

dL −0.47 ± 0.38 −0.48 ± 3.53

dF −0.57 ± 0.38 +1.04 ± 3.71

dP −0.66 ± 0.38 +2.61 ± 3.88

dQ −0.76 ± 0.38 +4.22 ± 4.04

dA −0.85 ± 0.38 +5.88 ± 4.20

With 1-σ statistical uncertainties.

Table 2. Deceleration and jerk parameters (legacy05 dataset, z-redshift).

distance q0 j0 + Ω0

dL −0.48 ± 0.17 +0.43 ± 0.60
dF −0.56 ± 0.17 +1.16 ± 0.65

dP −0.62 ± 0.17 +1.92 ± 0.69

dQ −0.69 ± 0.17 +2.69 ± 0.74

dA −0.75 ± 0.17 +3.49 ± 0.79

With 1-σ statistical uncertainties.

Table 3. Deceleration and jerk parameters (gold06 dataset, y-redshift).

distance q0 j0 + Ω0

dL −0.62 ± 0.29 +1.66 ± 2.60

dF −0.78 ± 0.29 +3.95 ± 2.80

dP −0.94 ± 0.29 +6.35 ± 3.00
dQ −1.09 ± 0.29 +8.87 ± 3.20

dA −1.25 ± 0.29 +11.5 ± 3.41

With 1-σ statistical uncertainties.

Table 4. Deceleration and jerk parameters (gold06 dataset, z-redshift).

distance q0 j0 + Ω0

dL −0.37 ± 0.11 +0.26 ± 0.20

dF −0.48 ± 0.11 +1.10 ± 0.24

dP −0.58 ± 0.11 +1.98 ± 0.29

dQ −0.68 ± 0.11 +2.92 ± 0.37

dA −0.79 ± 0.11 +3.90 ± 0.39

With 1-σ statistical uncertainties.

legacy05
dataset
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As an extra consistency check we have independently calculated these quantities (which

depend only on the redshifts of the supernovae) and compared them with the spacing we

find by comparing the various least-squares analyses. For the n = 2 quadratic fits these

formulae reproduce the spacing reported in tables 1–4. As the order n of the polynomial

increases, it was seen that the differences between deceleration parameter estimates

based on the different distance measures decreases — unfortunately the size of the
purely statistical uncertainties was simultaneously seen to increase — this being a side

effect of adding terms that are not statistically significant according to the F test. Thus

to minimize “model building ambiguities” one wishes n to be as large as possible, while

to minimize statistical uncertainties, one does not want to add statistically meaningless

terms to the polynomial.

Note that if one were to have a clearly preferred physically motivated “best”
distance this whole model building ambiguity goes away. In the absence of a clear

physically justifiable preference, the best one can do is to combine the data as per

the discussion in Appendix B, which is based on NIST recommended guidelines [41],

and report an additional model building uncertainty (beyond the traditional purely

statistical uncertainty).

Turning to the quantity (j0 + Ω0), the different notions of distance no longer yield
equally spaced estimates, nor are the statistical uncertainties equal. This is due to the

fact that there is a nonlinear quadratic term involving q0 present in the relation used to

convert the polynomial coefficient b2 into the more physical parameter (j0 + Ω0). Note

that while for each specific model (choice of distance scale and redshift variable) the

F -test indicates that keeping the quadratic term is statistically significant, the variation

among the models is so great as to make measurements of (j0 +Ω0) almost meaningless.

The combined results are reported in tables 5–6. Note that these tables do not yet
include any budget for “systematic” uncertainties.

Table 5. Deceleration parameter summary: Statistical plus modelling.

dataset redshift q0 ± σstatistical ± σmodelling

legacy05 y −0.66 ± 0.38 ± 0.13

legacy05 z −0.62 ± 0.17 ± 0.10

gold06 y −0.94 ± 0.29 ± 0.22
gold06 z −0.58 ± 0.11 ± 0.15

With 1-σ statistical uncertainties and 1-σ model building uncertainties,

no budget for “systematic” uncertainties.

Again, we reiterate the fact that there are distressingly large differences between
the cosmological parameters deduced from the different models — this should give one

pause for concern above and beyond the purely formal statistical uncertainties reported

herein.

Combine the 
analyses:

(We shall draw a veil of discrete silence over the 
unfortunate status of the jerk parameter.)

**************************************

*************************************
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11.2. Jerk

Turning to the second derivative a similar analysis implies

1

2
∆

[

d2µ

dz2

]

historical

∆(redshift)2 = ∆µhistorical. (96)

Note the absence of various factors of 2 as compared to equation (89). This is because we

are now assuming that for “historical” purposes the nearby supernovae are accurately

calibrated and it is only the distant supernovae that are potentially uncertain — thus in

estimating the historical uncertainty the second-order term in the Taylor series is now
to be saturated using the entire redshift range. Thus

∆

[

d2µ

dz2

]

historical

=
2 ∆µhistorical

∆(redshift)2
, (97)

which then propagates to an uncertainty in the jerk parameter of at least

σhistorical ≥
3 ln 10

5
∆

[

d2µ

dz2

]

historical

=
6 ln 10

5

∆µhistorical

∆(redshift)2
≈ 2.75

∆µhistorical

∆(redshift)2
. (98)

Again taking ∆µhistorical = 0.10 this implies an “equivalent 1-σ uncertainty” for the

combination j0 + Ω0 is

σhistorical = 0.28. (99)

Note that this is (coincidentally) one quarter the size of the systematic uncertainties

based on “known unknowns”, and is still quite sizable.

The systematic and historical uncertainties are now reported in tables 7–8. The

estimate for systematic uncertainties are equivalent to those presented in [4], which is

largely in accord with related sources [1, 2, 3]. Our estimate for “historical” uncertainties

is likely to be more controversial — with, we suspect, many cosmologists arguing that
our estimates are too generous — and that σhistorical should perhaps be even larger

than we have estimated. What is not (or should not) be controversial is the need for

some estimate of σhistorical. Previous history should not be ignored, and as the NIST

guidelines emphasize, previous history is an essential and integral part of making the

scientific judgment as to what the overall uncertainties are.

Table 7. Deceleration parameter summary:
Statistical, modelling, systematic, and historical.

dataset redshift q0 ± σstatistical ± σmodelling ± σsystematic ± σhistorical

legacy05 y −0.66 ± 0.38 ± 0.13 ± 0.09 ± 0.09

legacy05 z −0.62 ± 0.17 ± 0.10 ± 0.09 ± 0.09

gold06 y −0.94 ± 0.29 ± 0.22 ± 0.09 ± 0.09

gold06 z −0.58 ± 0.11 ± 0.15 ± 0.09 ± 0.09

With 1-σ effective statistical uncertainties for all components.

Include 
       systematics:

I think you can see where this is headed...

(Some astrophysicists think we should provide 
even larger historical uncertainties.)

************************************************

************************************************
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4.3. Other singularities

Other singularities that might further restrict the radius of convergence of the Taylor
expanded Hubble law (or any other Taylor expanded physical observable) are also

important. Chief among them are the singularities (in the Taylor expansion) induced

by turnaround events. If the universe has a minimum scale factor amin (corresponding

to a “bounce”) then clearly it is meaningless to expand beyond

1 + zmax = a0/amin; zmax = a0/amin − 1; (41)

implying that we should restrict our attention to the region

|z| < zmax = a0/amin − 1. (42)

Since for other reasons we had already decided we should restrict attention to |z| < 1,
and since on observational grounds we certainly expect any “bounce”, if it occurs at all,

to occur for zmax " 1, this condition provides no new information.

On the other hand, if the universe has a moment of maximum expansion, and then

begins to recollapse, then it is meaningless to extrapolate beyond

1 + zmin = a0/amax; zmin = −[1 − a0/amax]; (43)

implying that we should restrict our attention to the region

|z| < 1 − a0/amax. (44)

This relation now does provide us with additional constraint, though (compared to the
|z| < 1 condition) the bound is not appreciably tighter unless we are “close” to a point

of maximum expansion. Other singularities could lead to additional constraints.

5. Improved redshift variable for the Hubble relation

Now it must be admitted that the traditional redshift has a particularly simple physical
interpretation:

1 + z =
λ0

λe
=

a(t0)

a(te)
, (45)

so that

z =
λ0 − λe

λe
=

∆λ

λe
. (46)

That is, z is the change in wavelength divided by the emitted wavelength. This is

certainly simple, but there’s at least one other equally simple choice. Why not use:

y =
λ0 − λe

λ0

=
∆λ

λ0

? (47)

That is, define y to be the change in wavelength divided by the observed wavelength.

This implies

1 − y =
λe

λ0

=
a(te)

a(t0)
=

1

1 + z
. (48)

New redshift
variable:

No one can stop me from defining:
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y =
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in which case

There is no physics reason to prefer “z” over “y”,
and for some purposes “y” is better...

(better convergence properties for  “z” > 1.)
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a = a0/2

Complex z plane

z = 0

a = a0

radius of convergence

z = −1

a = +∞
z = 1 z = +∞

a = 0

Figure 1. Qualitative sketch of the behaviour of the scale factor a and the radius of
convergence of the Taylor series in z-redshift.

Consequently, we must conclude that observational data regarding dL(z) for z > 1

is not going to be particularly useful in fitting a0, H0, q0, and j0, to the usual traditional

version of the Hubble relation.

4.2. Pivoting

A trick that is sometimes used to improve the behaviour of the Hubble law is to Taylor
expand around some nonzero value of z, which might be called the “pivot”. That is, we

take

z = zpivot + ∆z, (36)

and expand in powers of ∆z. If we choose to do so, then observe

1

1 + zpivot + ∆z
= 1+H0 (t−t0)−

1

2
q0 H2

0 (t−t0)
2+

1

3!
j0 H3

0 (t−t0)
3+O([t−t0]

4). (37)

The pole is now located at:

∆z = −(1 + zpivot), (38)

which again physically corresponds to a universe that has undergone infinite expansion,

a = ∞. The radius of convergence is now

|∆z| ≤ (1 + zpivot), (39)

and we expect the pivoted version of the Hubble law to fail for

z > 1 + 2 zpivot. (40)

So pivoting is certainly helpful, and can in principle extend the convergent region of the

Taylor expanded Hubble relation to somewhat higher values of z, but maybe we can do

even better?
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Consequently, when looking into the future, in terms of the variable y we expect to

encounter problems at y = −1, when the universe has expanded to twice its current

size. Figure 2 illustrates the radius of convergence in the complex plane of the Taylor

series expansion in terms of y.

a = +∞

radius of convergence

Complex y plane

y = −1 y = 0 y = 1

a = 2a0 a = a0 a = 0

y = −∞

Figure 2. Qualitative sketch of the behaviour of the scale factor a and the radius of
convergence of the Taylor series in y-redshift.

Note the tradeoff here — z is a useful expansion parameter for arbitrarily large

universes, but breaks down for a universe half its current size or less; in contrast y is

a useful expansion parameter all the way back to the Big Bang, but breaks down for

a universe double its current size or more. Whether or not y is more suitable than z

depends very much on what you are interested in doing. This is illustrated in Figures 1
and 2. For the purposes of this article we are interested in high-redshift supernovae —

and we want to probe rather early times — so it is definitely y that is more appropriate

here. Indeed the furthest supernova for which we presently have both spectroscopic data

and an estimate of the distance occurs at z = 1.755 [10], corresponding to y = 0.6370.

Furthermore, using the variable y it is easier to plot very large redshift datapoints.

For example, (though we shall not pursue this point in this article), the Cosmological
Microwave Background is located at zCMB = 1088, which corresponds to yCMB = 0.999.

This point is not “out of range” as it would be if one uses the variable z.

6. More versions of the Hubble law

In terms of this new redshift variable, the “linear in distance” Hubble relations are:

dL(y) = dH y

{

1 −
1

2
[−3 + q0] y +

1

6

[

12 − 5q0 + 3q2
0 − (j0 + Ω0)

]

y2 + O(y3)

}

. (56)

dF (y) = dH y

{

1 −
1

2
[−2 + q0] y +

1

24

[

27 − 14q0 + 12q2
0 − 4(j0 + Ω0)

]

y2 + O(y3)

}

. (57)
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dP (y) = dH y

{

1 −
1

2
[−1 + q0] y +

1

6

[

3 − 2q0 + 3q2
0 − (j0 + Ω0)

]

y2 + O(y3)

}

. (58)

dQ(y) = dH y

{

1 −
q0

2
y +

1

12

[

3 − 2q0 + 12q2
0 − 4(j0 + Ω0)

]

y2 + O(y3)

}

. (59)

dA(y) = dH y

{

1 −
1

2
[1 + q0] y +

1

6

[

q0 + 3q2
0 − (j0 + Ω0)

]

y2 + O(y3)

}

. (60)

Note that in terms of the y variable it is the “deceleration distance” dQ that has the

deceleration parameter q0 appearing in the simplest manner. Similarly, the “logarithmic

in distance” Hubble relations are:

ln[dL/(y Mpc)] =
ln 10

5
[µD − 25] − ln y

= ln(dH/Mpc)

−
1

2
[−3 + q0] y +

1

24

[

21 − 2q0 + 9q2
0 − 4(j0 + Ω0)

]

y2 + O(y3). (61)

ln[dF /(y Mpc)] =
ln 10

5
[µD − 25] − ln y +

1

2
ln(1 − y)

= ln(dH/Mpc)

−
1

2
[−2 + q0] y +

1

24

[

15 − 2q0 + 9q2
0 − 4(j0 + Ω0)

]

y2 + O(y3). (62)

ln[dP /(y Mpc)] =
ln 10

5
[µD − 25] − ln y + ln(1 − y)

= ln(dH/Mpc)

−
1

2
[−1 + q0] y +

1

24

[

9 − 2q0 + 9q2
0 − 4(j0 + Ω0)

]

y2 + O(y3). (63)

ln[dQ/(y Mpc)] =
ln 10

5
[µD − 25] − ln y +

3

2
ln(1 − y)

= ln(dH/Mpc)

−
1

2
q0 y +

1

24

[

3 − 2q0 + 9q2
0 − 4(j0 + Ω0)

]

y2 + O(y3). (64)

ln[dA/(y Mpc)] =
ln 10

5
[µD − 25] − ln y + 2 ln(1 − y)

= ln(dH/Mpc)

−
1

2
[1 + q0] y +

1

24

[

−3 − 2q0 + 9q2
0 − 4(j0 + Ω0)

]

y2 + O(y3). (65)

Other 
Hubble 
laws:
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(never mind the 
details, you just 
need to know 

that such 
expansions 

exist...)

Other 
Hubble 
laws:
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As an extra consistency check we have independently calculated these quantities (which

depend only on the redshifts of the supernovae) and compared them with the spacing we

find by comparing the various least-squares analyses. For the n = 2 quadratic fits these

formulae reproduce the spacing reported in tables 1–4. As the order n of the polynomial

increases, it was seen that the differences between deceleration parameter estimates

based on the different distance measures decreases — unfortunately the size of the
purely statistical uncertainties was simultaneously seen to increase — this being a side

effect of adding terms that are not statistically significant according to the F test. Thus

to minimize “model building ambiguities” one wishes n to be as large as possible, while

to minimize statistical uncertainties, one does not want to add statistically meaningless

terms to the polynomial.

Note that if one were to have a clearly preferred physically motivated “best”
distance this whole model building ambiguity goes away. In the absence of a clear

physically justifiable preference, the best one can do is to combine the data as per

the discussion in Appendix B, which is based on NIST recommended guidelines [41],

and report an additional model building uncertainty (beyond the traditional purely

statistical uncertainty).

Turning to the quantity (j0 + Ω0), the different notions of distance no longer yield
equally spaced estimates, nor are the statistical uncertainties equal. This is due to the

fact that there is a nonlinear quadratic term involving q0 present in the relation used to

convert the polynomial coefficient b2 into the more physical parameter (j0 + Ω0). Note

that while for each specific model (choice of distance scale and redshift variable) the

F -test indicates that keeping the quadratic term is statistically significant, the variation

among the models is so great as to make measurements of (j0 +Ω0) almost meaningless.

The combined results are reported in tables 5–6. Note that these tables do not yet
include any budget for “systematic” uncertainties.

Table 5. Deceleration parameter summary: Statistical plus modelling.

dataset redshift q0 ± σstatistical ± σmodelling

legacy05 y −0.66 ± 0.38 ± 0.13

legacy05 z −0.62 ± 0.17 ± 0.10

gold06 y −0.94 ± 0.29 ± 0.22
gold06 z −0.58 ± 0.11 ± 0.15

With 1-σ statistical uncertainties and 1-σ model building uncertainties,

no budget for “systematic” uncertainties.

Again, we reiterate the fact that there are distressingly large differences between
the cosmological parameters deduced from the different models — this should give one

pause for concern above and beyond the purely formal statistical uncertainties reported

herein.

Combine the 
analyses:

(We shall draw a veil of discrete silence over the 
unfortunate status of the jerk parameter.)
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11.2. Jerk

Turning to the second derivative a similar analysis implies

1

2
∆

[

d2µ

dz2

]

historical

∆(redshift)2 = ∆µhistorical. (96)

Note the absence of various factors of 2 as compared to equation (89). This is because we

are now assuming that for “historical” purposes the nearby supernovae are accurately

calibrated and it is only the distant supernovae that are potentially uncertain — thus in

estimating the historical uncertainty the second-order term in the Taylor series is now
to be saturated using the entire redshift range. Thus

∆

[

d2µ

dz2

]

historical

=
2 ∆µhistorical

∆(redshift)2
, (97)

which then propagates to an uncertainty in the jerk parameter of at least

σhistorical ≥
3 ln 10

5
∆

[

d2µ

dz2

]

historical

=
6 ln 10

5

∆µhistorical

∆(redshift)2
≈ 2.75

∆µhistorical

∆(redshift)2
. (98)

Again taking ∆µhistorical = 0.10 this implies an “equivalent 1-σ uncertainty” for the

combination j0 + Ω0 is

σhistorical = 0.28. (99)

Note that this is (coincidentally) one quarter the size of the systematic uncertainties

based on “known unknowns”, and is still quite sizable.

The systematic and historical uncertainties are now reported in tables 7–8. The

estimate for systematic uncertainties are equivalent to those presented in [4], which is

largely in accord with related sources [1, 2, 3]. Our estimate for “historical” uncertainties

is likely to be more controversial — with, we suspect, many cosmologists arguing that
our estimates are too generous — and that σhistorical should perhaps be even larger

than we have estimated. What is not (or should not) be controversial is the need for

some estimate of σhistorical. Previous history should not be ignored, and as the NIST

guidelines emphasize, previous history is an essential and integral part of making the

scientific judgment as to what the overall uncertainties are.

Table 7. Deceleration parameter summary:
Statistical, modelling, systematic, and historical.

dataset redshift q0 ± σstatistical ± σmodelling ± σsystematic ± σhistorical

legacy05 y −0.66 ± 0.38 ± 0.13 ± 0.09 ± 0.09

legacy05 z −0.62 ± 0.17 ± 0.10 ± 0.09 ± 0.09

gold06 y −0.94 ± 0.29 ± 0.22 ± 0.09 ± 0.09

gold06 z −0.58 ± 0.11 ± 0.15 ± 0.09 ± 0.09

With 1-σ effective statistical uncertainties for all components.

Include 
       systematics:

I think you can see where this is headed...

(Some astrophysicists think we should provide 
even larger historical uncertainties.)
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Table 8. Jerk parameter summary:
Statistical, modelling, systematic, and historical.

dataset redshift (j0 + Ω0) ± σstatistical ± σmodelling ± σsystematic ± σhistorical

legacy05 y +2.65 ± 3.88 ± 2.25 ± 1.11 ± 0.28

legacy05 z +1.94 ± 0.70 ± 1.08 ± 1.11 ± 0.28

gold06 y +6.47 ± 3.02 ± 3.48 ± 1.11 ± 0.28

gold06 z +2.03 ± 0.31 ± 1.29 ± 1.11 ± 0.28

With 1-σ effective statistical uncertainties for all components.

12. Combined uncertainties

We now combine these various uncertainties, purely statistical, modelling, “known

unknown” systematics, and “historical” (“unknown unknowns”). Adopting the NIST

philosophy of dealing with systematics, these uncertainties are to be added in
quadrature [41]. Including all 4 sources of uncertainty we have discussed:

σcombined =
√

σ2
statistical + σ2

modelling + σ2
systematic + σ2

historical. (100)

That the statistical and modelling uncertainties should be added in quadrature is clear

from their definition. Whether or not systematic and historical uncertainties should

be treated this way is very far from clear, and implicitly presupposes that there are

no correlations between the systematics and the statistical uncertainties — within

the “credible bounds” philosophy for estimating systematic uncertainties there is no

justification for such a step. Within the “all errors are effectively statistical” philosophy
adding in quadrature is standard and in fact recommended — this is what is done

in current supernova analyses, and we shall continue to do so here. The combined

uncertainties σcombined are reported in tables 9–10.

13. Expanded uncertainty

An important concept under the NIST guidelines is that of “expanded uncertainty”

Uk = k σcombined. (101)

Expanded uncertainty is used when for either scientific or legal/regulatory reasons one

wishes to be “certain” that the actual physical value of the quantity being measured lies
within the stated range. We shall take k = 3, this being equivalent to the well-known

particle physics aphorism “if it’s not three-sigma, it’s not physics”. Note that this is not

an invitation to randomly multiply uncertainties by 3, rather it is a scientific judgment

that if one wishes to be 99.5% certain that something is or is not happening one should

look for a 3-sigma effect. Bitter experience within the particle physics community has
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within the stated range. We shall take k = 3, this being equivalent to the well-known

particle physics aphorism “if it’s not three-sigma, it’s not physics”. Note that this is not

an invitation to randomly multiply uncertainties by 3, rather it is a scientific judgment

that if one wishes to be 99.5% certain that something is or is not happening one should

look for a 3-sigma effect. Bitter experience within the particle physics community has
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led to the consensus that 3-sigma is the minimum standard one should look for when

claiming “new physics”. Thus we take

U3 = 3 σcombined. (102)

The best estimates, combined uncertainties σcombined, and expanded uncertainties U , are
reported in tables 9–10.

Table 9. Deceleration parameter summary:
Combined and expanded uncertainties.

dataset redshift q0 ± σcombined q0 ± U3

legacy05 y −0.66 ± 0.42 −0.66 ± 1.26

legacy05 z −0.62 ± 0.23 −0.62 ± 0.70

gold06 y −0.94 ± 0.39 −0.94 ± 1.16
gold06 z −0.58 ± 0.23 −0.58 ± 0.68

Table 10. Jerk parameter summary:
Combined and expanded uncertainties.

dataset redshift (j0 + Ω0) ± σcombined (j0 + Ω0) ± U3

legacy05 y +2.65 ± 4.63 +2.65 ± 13.9

legacy05 z +1.94 ± 1.72 +1.94 ± 5.17

gold06 y +6.47 ± 4.75 +6.47 ± 14.2

gold06 z +2.03 ± 1.75 +2.03 ± 5.26

14. Results

What can we conclude from this? While the “preponderance of evidence” is certainly

that the universe is currently accelerating, q0 < 0, this is not yet a “gold plated”

result. We emphasise the fact that (as is or should be well known) there is an enormous

difference between the two statements:

• “the most likely value for the deceleration parameter is negative”, and

• “there is significant evidence that the deceleration parameter is negative”.

When it comes to assessing whether or not the evidence for an accelerating universe

is physically significant, the first rule of thumb for combined uncertainties is the well

known aphorism “if it’s not three-sigma, it’s not physics”. The second rule is to be

conservative in your systematic uncertainty budget. We cannot in good faith conclude
that the expansion of the universe is accelerating. It is more likely that the expansion

of the universe is accelerating, than that the expansion of the universe is decelerating

Combine
      uncertainties:

Expanded uncertainty:

Used when you need to be “certain” for either 
scientific or legal/ regulatory reasons...

Bitter experience in particle physics:

“If it’s not 3-sigma, it’s not physics...”

[ NIST ]

[now 5-sigma?]



The 3-sigma 
standard:

Three-sigma corresponds to being 99.5% statistically  
sure you have a real effect...

Three-sigma is the minimum standard considered 
acceptable in particle physics before claiming 

“new physics”...

(This is of course a scientific judgment based on the
historical record of what has worked in the past...)
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led to the consensus that 3-sigma is the minimum standard one should look for when

claiming “new physics”. Thus we take

U3 = 3 σcombined. (102)

The best estimates, combined uncertainties σcombined, and expanded uncertainties U , are
reported in tables 9–10.

Table 9. Deceleration parameter summary:
Combined and expanded uncertainties.

dataset redshift q0 ± σcombined q0 ± U3
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Combined and expanded uncertainties.

dataset redshift (j0 + Ω0) ± σcombined (j0 + Ω0) ± U3

legacy05 y +2.65 ± 4.63 +2.65 ± 13.9

legacy05 z +1.94 ± 1.72 +1.94 ± 5.17

gold06 y +6.47 ± 4.75 +6.47 ± 14.2

gold06 z +2.03 ± 1.75 +2.03 ± 5.26

14. Results

What can we conclude from this? While the “preponderance of evidence” is certainly

that the universe is currently accelerating, q0 < 0, this is not yet a “gold plated”

result. We emphasise the fact that (as is or should be well known) there is an enormous

difference between the two statements:

• “the most likely value for the deceleration parameter is negative”, and

• “there is significant evidence that the deceleration parameter is negative”.

When it comes to assessing whether or not the evidence for an accelerating universe

is physically significant, the first rule of thumb for combined uncertainties is the well

known aphorism “if it’s not three-sigma, it’s not physics”. The second rule is to be

conservative in your systematic uncertainty budget. We cannot in good faith conclude
that the expansion of the universe is accelerating. It is more likely that the expansion

of the universe is accelerating, than that the expansion of the universe is decelerating

The 3-sigma 
standard:

That is:   not statistically significant at three-sigma.



Preponderance of evidence: 

The universe is accelerating.

But (based on supernova data alone), 
this acceleration is not established 

“beyond reasonable doubt”.

There are an awful lot of subtleties hiding in the 
woodwork of the statistical analyses...

Antidote to excessive statistical sophistication:
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Figure 3. The normalized logarithm of the deceleration distance, ln(dQ/[y Mpc]), as
a function of the y-redshift using the nearby and legacy datasets (legacy05) [2].
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Figure 4. The normalized logarithm of the photon flux distance, ln(dF /[z Mpc]), as
a function of the z-redshift using the nearby and legacy datasets (legacy05) [2].

an “eyeball estimate” that q0 ≈ 0. Note that this is not a plot of “statistical residuals”

Antidote:

(statistical
uncertainties 

only)

(legacy05)



Cosmography: Extracting the Hubble series from the supernova data 22

!0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9
Logarithmic Photon flux distance versus z!redshift using gold06

z!redshift

ln
(d

F
/r

e
d

s
h

if
t)

Figure 6. The normalized logarithm of the photon flux distance, ln(dF /[z Mpc]), as
a function of the z-redshift using the gold06 dataset [2].

automatically reduces the leverage of high redshift outliers is a feature that is considered
highly desirable purely for statistical reasons. In particular, the method of least-squares

is known to be non-robust with respect to outliers. One could implement more robust

regression algorithms, but they are not as easy and fast as the classical least-squares

method. We have also implemented least-squares regression against a reduced dataset

where we have trimmed out the most egregious high-z outlier, and also eliminated the

so-called “Hubble bubble” for z < 0.0233 [32, 33]. While the precise numerical values of
our estimates for the cosmological parameters then change, there is no great qualitative

change to the points we wish to make in this article, nor to the conclusions we will draw.

7.3. Peculiar velocities

One point that should be noted for both the legacy05 and gold06 datasets is the way
that peculiar velocities have been treated. While peculiar velocities would physically

seem to be best represented by assigning an uncertainty to the measured redshift, in

both these datasets the peculiar velocities have instead been modelled as some particular

function of z-redshift and then lumped into the reported uncertainties in the distance

modulus. Working with the y-redshift ab initio might lead one to re-assess the model

for the uncertainty due to peculiar velocities. We expect such effects to be small and
have not considered them in detail.

Antidote:

(statistical
uncertainties 

only)

(gold06)



Notes on ...

Matt

13 April 2007; LATEX-ed May 19, 2007

Cosmography is the part of cosmology that depends only on symmetries and
kinematics and is independent of the dynamics encoded in the Einstein equations, or
their cosmological specialization, the Friedmann equations. Thus cosmological tests
based on cosmography are particularly useful and robust in that they are based on
an absolute minimum of clearly identifiable assumptions. We have performed several
such cosmographic tests of the Hubble relation, using recent supernova data. Our
results are quite mixed: While the existence of a leading linear part in the Hubble
relation is confirmed to high accuracy, the situation regarding the higher-order non-
linear terms is much more ambiguous. We develop several graphical representations
of the supernova data that make it visually clear why fitting the higher-order Hubble
parameters is quite problematic, and then back this up by numerical least squares
fits to suitable truncated Taylor series. We point out that the process of truncating
a Taylor series does not commute with the process of performing a least squares fit,
and discuss the model building uncertainties that this introduces. After fitting the
data, we report statistical, systematic, and combined uncertainties in the deceler-
ation and jerk. While segments of our results are quite compatible with standard
folklore, the overall situation is much less sanguine: We wish to sound a cautionary
note against reading too much precision into the current supernova data.

v = H0 d; H0 ≈ 500 (km/sec)/Mpc.

d =
c z

H0
+O(z2).

d =
c z

H0
+O(z2),

1 + z =
λreceived

λemitted
=

ωemitted

ωreceived
.

1

The fact that there is no overwhelmingly obvious 
visual trend in these two graphs tells you that

extracting the deceleration parameter will
at best be a very tricky and uncertain process.  

However,   the leading term in the Hubble law, 

is certainly well supported 
by the supernova data.

*

*



result, they make good distance indica-
tors. Refined methods for analyzing
the observations of type Ia supernovae
give the distance to a single event to
better than 10% (19, 20). The best
modern Hubble diagram, based on well
observed type Ia supernovae out to a
modest distance of !2 billion light
years, is shown in Fig. 3, where the
axes are chosen to match those of
Hubble’s original linear diagram (to
mask our uncertainties, astronomers
generally use a log-log form of this
plot as in Fig. 4). Far beyond Hubble’s
original sample, Hubble’s Law holds
true.

In table 2 of his original article (1)
(reproduced as Table 1, which is pub-
lished as supporting information on the
PNAS web site), Hubble inverted the
velocity–distance relation to estimate
the distances to galaxies of known red-
shift. For galaxies like NGC 7619 for
which he had only Humason’s recently
measured redshift, Hubble used the
velocity–distance relation to infer the
distance. This approach to estimating
distances from the redshift alone has
become a major industry with galaxy
redshift surveys. Today’s telescopes are
1,000 times faster at measuring red-
shifts than in Hubble’s time, leading to
large samples of galaxies that trace the
texture of the galaxy distribution (21–
24). As shown in Fig. 5, the 3D distri-
bution of galaxies constructed from
Hubble’s Law is surprisingly foamy,
with great voids and walls that form as
dark matter clusters in an expanding
universe, shaping pits into which the
ordinary matter drains, to form the
luminous matter we see as stars in gal-
axies. Quantitative analysis of galaxy

clustering leads to estimates for the
amount of clumpy dark matter associ-
ated with galaxies. The best match
comes if the clumpy matter (dark and
luminous, baryons or not) adds up to
!30% of the universe.

The interpretation of the redshift as a
velocity, or more precisely, as a stretch-
ing of photon wavelengths due to cosmic
expansion, which we assume today’s col-
lege sophomores will grasp, was not so
obvious to Hubble. Hubble was very
circumspect on this topic and, more gen-
erally, on the question of whether cos-
mic expansion revealed a genuine cos-
mic history. He referred to the redshift
as giving an ‘‘apparent velocity.’’ In a

letter to Willem de Sitter (25), Hubble
wrote, ‘‘Mr. Humason and I are both
deeply sensible of your gracious appreci-
ation of the papers on velocities and
distances of nebulae. We use the term
‘apparent’ velocities to emphasize the
empirical features of the correlation.
The interpretation, we feel, should be
left to you and the very few others who
are competent to discuss the matter
with authority.’’

Part of the difficulty with the inter-
pretation came from alternative views,
notably by the local iconoclast, Fritz
Zwicky, who promptly sent a note to
PNAS in August 1929 that advocated
thinking of the redshift as the result of
an interaction between photons and in-
tervening matter rather than cosmic ex-
pansion (26). The reality of cosmic
expansion and the end of ‘‘tired light’’
has only recently been verified in a
convincing way.

While the nature of the redshift was a
bubbling discussion in Pasadena, Olin
Wilson of the Mount Wilson Observa-
tory staff suggested that measuring the
time it took a supernova to rise and fall
in brightness would show whether the
expansion was real. Real expansion
would stretch the characteristic time,
about a month, by an amount deter-
mined by the redshift (27).

This time dilation was sought in 1974,
but the sample was too small, too
nearby, and too inhomogeneous to see
anything real (28). It was only with large
carefully measured and distant samples
of SN Ia (29, 30) and more thorough
characterization of the way supernova
light curves and supernova luminosities
are intertwined (31, 32) that this topic

Fig. 3. The Hubble diagram for type Ia supernovae. From the compilation of well observed type Ia
supernovae by Jha (29). The scatter about the line corresponds to statistical distance errors of "10% per
object. The small red region in the lower left marks the span of Hubble’s original Hubble diagram from
1929.

Fig. 4. Hubble diagram for type Ia supernovae to z ! 1. Plot in astronomers’ conventional coordinates
of distance modulus (a logarithmic measure of the distance) vs. log redshift. The history of cosmic
expansion can be inferred from the shape of this diagram when it is extended to high redshift and
correspondingly large distances. Diagram courtesy of Brian P. Schmidt, Australian National University,
based on data compiled in ref. 18.
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Some parts of cosmology are 
already precision science.

Cosmological distance determinations, 
however,  are not yet 

precision science.

“Precision cosmology? Not just yet.”

*

*



   “It is important to keep an 
open mind;  just not so open 

that your brains fall out”
 

                         --- Albert Einstein


