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Qverview:

What? In this survey I will talk about various
“analog models” for general relativity.

Why? Laboratory experiments with general
relativity black holes are basically impossible
(and also highly inadvisable).

There is now a lot of interest in simulating
black holes by using condensed matter ana-
logues.

Where? Here on Earth.
When? Five to ten years.

Who? Collaborative effort:
Relativity, Optics, Condensed matter, ...



Acoustic black holes:

Basic Idea:

Consider sound waves in a flowing fluid.

If the fluid is moving faster than sound, then
the sound waves are swept along with the flow,
and cannot escape from that region.

This sounds awfully similar to a black hole in
general relativity — is there any connection?

— YES! —



The models:

There are analog models based on:

1. Acoustics in flowing fluids;

2. Slow light in flowing fluid dielectrics;

3. Flowing Bose-Einstein condensates;

4. Quasi-particles in superfluids;

5. Nonlinear electrodynamics;

6. The Scharnhorst effect;

7. and more.



Common themes:

An effective Lorentzian metric that governs
perturbative fluctuations.

Fluctuations exhibit many of the kinematic fea-
tures of general relativity.

Dynamic features [those specifically based on
the Einstein-Hilbert action] typically do not carry
over.

It seems plausible that we might be able to
construct analog horizons in the laboratory in
the not too distant future.

Such analog horizons are expected to exhibit
Hawking radiation, but possibly/probably with-
out any analog of Bekenstein entropy.



Hawking radiation:

Analog models of general relativity are
of Hawking radiation.

Because the short-distance physics is explicitly
known (atomic physics), the cutoff is physically
understood.

This helps clarify the role of

In general relativity black holes, which
in these condensed-matter analogs are replaced
by “ " physics.

I will give an overview of some of these pro-
posals and indicate what the hopes are for lab-
oratory tests...



Focus — Most promising proposals:

1. Acoustic black holes (dumb holes; where
supersonic fluid flow traps sound),

2. Optical black holes (where a combination
of extremely high refractive index and di-
electric fluid flow traps light),

3. BEC holes (where phase oscillations in Bose-
Einstein condensates, which travel extremely
slowly, are trapped by the flowing
condensate),

4. Quasi-particle holes (where quasi-particles
in superfluids have a position-dependent
dispersion relation governed by the
background fluid flow).



Geometrical acoustics:

Acoustic propagation in fluids can be described
in terms of an acoustic metric which depends
algebraically on the fluid flow.

In a - if sound moves a distance dz
in time dt then

||dZ — ¥ dt|| = cs dt.
Write this as
(dZ — 7 dt) - (dT — T dt) = c2dt>.
Now rearrange a little:
—(c2 —v?) dt? — 2 §-dZ dt + dZ-dZ = 0.
Notation — coordinates:
o* = (z°; %) = (t; 7).
Then you can write this as

guv dzt dz¥ = 0.



Geometrical acoustics:

Pick off the coefficients: you get an effective
acoustic metric

C—(cz —v?) —7
g'u,/(t, f) o e e
! —U I
Acoustic geometry shares aspects of

general relativity, but not the
Euler equations versus Einstein equations.

The of geometrical acoustics are
the of this effective metric.

Geometrical acoustics, by itself, does not give
you enough information to fix an overall
multiplicative factor ( ).



Eikonals:

This analysis also works for geometrical optics
in a flowing fluid, with ¢s — ¢/n; replace the
speed of sound by the speed of light in the
medium (speed of light divided by refractive
index).

In fact it works whenever you can make an
eikonal approximation to some wave equation
— replacing “waves” by “rays”.

This is already enough to give you some very
powerful results:

Fermat's principle is now a special case of
geodesic propagation.

Ray focussing can be described by the
Riemann tensor of this effective metric.

But there is a lot more hiding in the woodwork,
beyond the eikonal approximation.



Physical Acoustics:

Suppose you have a non-relativistic flowing fluid,
governed by the Euler equation plus the
continuity equation.

Suppose the fluid flow is barotropic,
irrotational, and inviscid.

Suppose we look at linearized fluctuations.
Theorem: linearized fluctuations (aka sound
waves, aka phonons) are described by a scalar

field (massless minimally coupled) propagating
in a (3+1)-dimensional acoustic metric

N_ P
g’u,/(t,aj) — E ............ e e e

(Proof: Unruh81, Visser93, Unruh94, Visser97.)
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Other representations:

ds® = guv dxt dx”.

ds? =2 [—c2at? + ||dz — 7 dt]|?] .
C

If you move , null cones spread
out at the speed of sound.

The conformal factor is required to get a nice

minimally coupled d’'Alembertian equation of
motion for the velocity potential.
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Key points:

— The signature is (—, 4+, +,4+).

— There are two distinct metrics:
the physical spacetime metric, and
the acoustic metric .

— A completely general (3 4+ 1)—dimensional
Lorentzian geometry has 6 degrees of freedom
per point in spacetime. (4x4 symmetric matrix
= 10 independent components; then subtract
4 coordinate conditions).

—The acoustic metric is specified completely
by the three scalars: velocity potential, den-
sity, speed of sound. It has at most 3 degrees
of freedom per point in spacetime. Continuity
reduces this to 2 degrees of freedom.
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Event horizons and ergo-regions:

Event horizon: the boundary of the region
from which null geodesics (phonons; sound rays)
cannot escape.

At the event horizon, the inward normal com-
ponent of fluid velocity equals the speed of

sound.

Ergo surface: the boundary of the region of
supersonic flow.

In general relativity this is important for spin-
ning black holes.

13



Example: Draining bathtub

A (24 1) dimensional flow with a sink.

Use constant density, continuity, conservation
of angular momentum: (which automatically
implies that the pressure p and speed of sound
c are also constant throughout the fluid flow).

The velocity of the fluid flow is

(A7+ B 9)

r

U=
The acoustic metric is

A \? B \?2
ds? = —c2dt? + (dr _ —dt) + (r do — —dt) .

r r
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Example: Draining bathtub

The acoustic metric is

A \2 B \?2
ds? = —c?dt? + <dr _ —d,t) + (r do — —d,t) .
T

r

The acoustic event horizon forms once the ra-
dial component of the fluid velocity exceeds
the speed of sound, that is at

Al

Thorizon —

Supersonic flow sets in outside the event hori-
zon, when the magnitude of the velocity equals
the speed of sound.

_ A2+ B

Tergo—sur face c
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Example: Schwarzschild

Schwarzschild geometry in Painlevé—Gullstrand
coordinates:

2GM ’
dt)

r

ds® = —dt® + (dr +
+72 (492 +sin?6 dq52> .

Equivalently

2GM 2GM
d82:—(1— )dt2+ dr dt

r r

+dr® + 12 (d9? + sin? 0 d¢?) .

This representation of the Schwarzschild ge-
ometry is not particularly well-known and has
been rediscovered several times this century.
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Surface gravity:

If we restrict attention to a static geometry, we
can apply all of the standard tricks for calculat-

ing the “ " developed in general
relativity.

The iSs a useful characterization
of general properties of the and

IS given in terms of a normal derivative by

19(c? — vi) d(c—wv])
= — =c :
JH 2 on on

The IS essentially the accelera-
tion of the fluid as it crosses the horizon.

Non static geometries are

(Thanks to the second metric: It gives you an
unambiguous background for making compar-
isons.)
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Hawking radiation:

As discussed by Unruh81, (and many others)
an acoustic event horizon will emit Hawking
radiation in the form of a

at a temperature

h
kTH= QH.

27 Cs

(Yes, this really is the speed of sound, and gy
is really normalized to have the dimensions of
a physical acceleration.)

Ty = (1.2x107 %K mm) [;] Fa(c—m)

km s—1 C on

Experimental verification of this acoustic
Hawking effect will be rather difficult.
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Surface gravity: Naive Estimate

Estimate from dimensional analysis:

cg
9gg ~ —.
R

So for a 1 millimeter nozzle,
and a 1 kilometer/sec speed of sound:

Ty = 1.2 x 107°K.

And remember, this is a thermal bath of phonons,
not photons.

Difficult to detect.
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Difficulties and Opportunities

Plus: You need supersonic flow without
turbulence or shocks.

Difficult to achieve.

But: The dimensional analysis estimate is grossly
misleading.

If you actually solve the fluid dynamics equa-
tions for supersonic flow, you tend to get
iInfinite acceleration at the ergo-surface.

Once you add viscosity, this regulates things:
You find unexpectedly large but finite acceler-
ations at the ergo-surface — this looks like it
will improve experimental prospects.

Viscosity also smears out the event horizon:
It's no longer a sharp boundary.
20



Surface gravity: Improved estimate

With viscosity present, the typical scale for the
surface gravity turns out to be

2 3
- csR cg ¢

v R v

c2
~ Re =
g R

(Though you can “fine tune” gy to arbitrary
values.)

Viscosity is related to molecular dynamics: There
IS an automatic cutoff at interatomic distances.

(Liberati, Sonego, Visser, CQG)
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Slow light

Qualitatively similar phenomena happen for “slow
light”

World record refractive index (1999):

na~3x10'!

This is experiment, not theory!
That is:
c
Cslow—light = — ~ 10 metres/sec.
n

Reasonable hope of soon achieving:

n~ 3 x 10101

~ 1 centimetre/sec.

S|o

Cslow—light —
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Problem with slow light:

The refractive index in these systems is ex-
tremely frequency dependent — the high re-
fractive index persists only over a very narrow
frequency range.

(This is because you are mucking around with
an atomic resonance.)

You want to sit right next to the resonance to
get

As you dget close to the event horizon, the
motion of the fluid speeds up, and tends to
Doppler shift the light out of the “slow” regime.

The physics is rather non-trivial; several theo-
retical attacks in progress.

(Leonhardt, Piwnicki, PRL; PRA.)
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Bose-Einstein condensates:

Almost the same mathematical steps, but now
based on linearizing the nonlinear Schrodinger
equation (Gross—Pitaevskii equation).

2
RO E) = V() + V(L E) 95, 7)

m

+A (™) (3, ).

Use the Madelung representation to put the
Schrodinger equation in “hydrodynamic” form:

Y = \/p exp(—if/h).

Take real and imaginary parts: You get a con-
tinuity equation and something that looks like
the Euler equation.
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The quantum metric:

After linearizing and appropriate
approximations:

_ j _
)\ —1 : —’UO
g/“l’V(t,x)EC_3 ....... . .....j.....-... y
| v (c? 84 — vH v‘é)

with

A

CQE /007

m

and

(%) = 6% V ;6.

The conformal factor is different, the eikonal
approximation is the same.

(Garay, Cirac, Anglin, Zoller;
Barceld, Liberati, Visser.)
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BEC: Estimates

Present day technology:

Ccondensate ~ 1 mm/sec'

Less hopeful: Typical size of Y2K BECs:

R~ 1 macron.

Crossing time:

T ~ 1 millisecond.

The experimental issues boil down to getting
a decently large BEC and manipulating it.

(Garay, Cirac, Anglin, Zoller.)
26



Quasiparticles in superfluids:

Basic structure the same:
different experimental issues.

— Two-fluid models (normal and superfluid).
— First, second, and third sound.

— Can also look at fermionic quasiparticles,
not just “phonons’.

— Relevant speeds still tend to be high:

Cquasiparticle = 100 metres/sec.

— Cryogenics needed.

(Grigori Volovik.)
27



General Lessons:

Going from fluid dynamics to the acoustic met-
ric is relatively easy; ditto slow light to the “op-
tical metric’; BEC to the “quantum metric”,
etc.

Working backwards is downright impossible.

It's probably best to first worry about things
like lensing, geodesic propagation, and “proof
of principle” experiments before trying for event
horizons.

Eventually: ergo—surfaces, and then horizons,
would be nice...

So would naked singularities...

28



General Lessons: A Warning

Even if you find Hawking radiation, the notion
of may not even be mean-
ingful.

Lesson for any theory of quantum gravity:
(1) Finding Hawking radiation in your theory
does not imply that you have discovered quan-
tum gravity.
(2) If you find Hawking radiation, and you have
a theory that approximates classical

, then you must get black hole entropy
approximately proportional to area.

— it occurs
for any test field on any Lorentzian geometry
with event horizon independent of whether or
not the Lorentzian geometry is dynamical.

— to even de-
fine black hole entropy requires a geometrical
LLagrangian.
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Conclusions:

Analog models for GR are very good toy mod-
els that guide us in logically separating the
kKinematics of gravity from the dynamics.

Analog models should allow us to experimen-
tally test some features of GR that would be
completely unattainable with physical gravity.

Analog models for GR and for black holes can
teach us a lot.
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