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Gravitational lensing in a weak but otherwise
arbitrary gravitational field can to linearized order be
described in terms of an analogy that uses a 3 x 3
tensor to characterize an “effective refractive index’.

If the sources generating the gravitational field all
have small internal fluxes, stresses, and pressures, then
the 3 x 3 tensor is automatically isotropic and the
“effective refractive index” is simply a scalar that can
be determined in terms of a classic result involving
the Newtonian gravitational potential.



In contrast if anisotropic stresses are ever
important then the gravitational field acts
similarly to an anisotropic crystal.

We derive simple formulae for the refractive
index tensor, and indicate some situations in
which this will be important.



Weak-field gravity in Einstein's general relativity is
actually more general than straightforward
Newtonian gravity.

While the approximate validity of Newtonian gravity is
certainly limited to the weak-field regime, Newtonian
gravity makes significant additional assumptions as to

the smallness of effects that depend on the internal
stresses, pressures, and energy fluxes in the massive
bodies that act as source for the gravitational field.



While there is no significant doubt that for planets, and
indeed most stars, internal stresses can safely be
neglected, the situation for neutron star crusts (or
indeed the “dark matter” that makes up approximately
90% of most spiral galaxies) is much more uncertain.

In view of this we have developed a formalism that
makes no assumptions about the relative smallness of
internal stresses (and pressures and fluxes), to see
how gravitational lensing is affected.



Null curve:

Gap AX () de()\) — 0.
Weak field (quasi-Cartesian coordinates):
Nap AXE(N) AXC(N) + gy dX(N) dXP(N) = 0.

Static weak-field:
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Now introduce the “coordinate speed of light” by defining:
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To connect the refractive index tensor to the
presence of stress-energy, define:

VQCI) =47 GN P,
VQ\Ifij — 47'(' GN Tij,
a Newtonian scalar potential,

and post-Newtonian tensor potential.

Because the spacetime is (for now) assumed static:
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In Einstein-Fock-de Donder gauge,
and with suitable boundary conditions:
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In terms of the density scalar potential and
stress-pressure tensor potential
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Refractive index tensor:
Internal stresses isotropic (perfect fluid):
Tij — p 0;5 and Wy; — Wy 05,

VQCI) = 47 GN P,

VZ\IJO — 47 GN D, ! ( O) !

Internal stresses negligible:

Anisotropic stress implies anisotropic refractive index.



Stationary non-static geometries:
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Photon trajectory:
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Refractive index:

n(k) =1+ % (Rt + 2hij B + by K BT + O(B?)
n(k) =ni; K'k + hy; B + O(h?)
Effective medium moving with velocity - htj

Define the “flux potential:

V2HJ — 47 GN Tt]

Einstein equations:
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Stationary case:
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Potentials:
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Charges:

Dominant multi-poles:
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The “null energy condition” [NEC] then guarantees the
refractive index is always greater than unity, and the
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Central messages:

Nt is always less than unity.
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|) Pressure and stress can affect gravity lensing.
2) Anisotropic stress-energy implies anisotropic
“refractive index” implies anisotropic propagation

of light.



