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Gravitational lensing in a weak but otherwise 
arbitrary gravitational field can to linearized order be 
described in terms of an analogy that uses a 3 x 3 
tensor to characterize an “effective refractive index”. 

If the sources generating the gravitational field all 
have small internal fluxes, stresses, and pressures, then 
the 3 x 3 tensor is automatically isotropic and the 
“effective refractive index” is simply a scalar that can 
be determined in terms of a classic result involving 
the Newtonian gravitational potential. 

Abstract:



Abstract:

In contrast if anisotropic stresses are ever 
important then the gravitational field acts 
similarly to an anisotropic crystal. 

 We derive simple formulae for the refractive 
index tensor, and indicate some situations in 
which this will be important. 



Weak-field gravity in Einstein's general relativity is 
actually more general than straightforward 

Newtonian gravity.

While the approximate validity of Newtonian gravity is 
certainly limited to the weak-field regime, Newtonian 
gravity makes significant additional assumptions as to 
the smallness of effects that depend on the internal 
stresses, pressures, and energy fluxes in the massive 
bodies that act as source for the gravitational field.



While there is no significant doubt that for planets, and 
indeed most stars, internal stresses can safely be 

neglected, the situation for neutron star crusts (or 
indeed the “dark matter” that makes up approximately 
90% of most spiral galaxies) is much more uncertain.

In view of this we have developed a formalism that 
makes no assumptions about the relative smallness of 

internal stresses (and pressures and fluxes), to see 
how gravitational lensing is affected.
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1. Introduction

Weak-field gravity in Einstein’s general relativity is actually more general than

straightforward Newtonian gravity [1, 2]. While the approximate validity of Newtonian

gravity is certainly limited to the weak-field regime, Newtonian gravity makes significant

additional assumptions as to the smallness of effects that depend on the internal stresses,

pressures, and energy fluxes in the massive bodies that act as source for the gravitational

field. While there is no significant doubt that for planets, and indeed most stars, internal

stresses can safely be neglected, the situation for neutron star crusts (or indeed the

“dark matter” that makes up approximately 90% of most spiral galaxies) is much more

uncertain.

In view of this we have developed a formalism that makes no assumptions about the

relative smallness of internal stresses (and pressures and fluxes), to see how gravitational

lensing is affected. In particular, weak Newtonian gravitational lenses can be interpreted

in terms of an analogy wherein a gravitational field is assigned an “effective refractive

index” [3, 4], and we extend these ideas to see how this “effective refractive index” is

affected by the presence of significant internal stress. Most strikingly we will see that

the “effective refractive index” is in general no longer a scalar, but is instead a 3 × 3

tensor — in analogy to the situation in an anisotropic crystal. (The use of analogies to

relate otherwise distinct phenomena, and to give qualitative insight as to what physical

effects might be important, has recently attracted significant interest in the general

relativity community [5], but related ideas under the name “electro-optical analogy”

have an independent history [6].) We organize the paper as follows:

• First we consider the static case where there are no internal energy fluxes (so in

particular we neglect the effects of rotation).

• Second we extend this to the more general stationary case, where rotation is

included.

• Third we indicate how time-dependent situations can in principle be dealt with.

• Finally we briefly discuss astrophysical situations in which the issues raised in this

article are likely to become important.

2. Static case

For light propagating in curved space along some curve parameterized by λ we have

gab dXa(λ) dXb(λ) = 0 . (1)

Looking at the specific case of a weak field, where gab = ηab +hab, the gravitational field

can be considered as a perturbation hab around the flat space ηab. This leads to:

gab dXa(λ) dXb(λ) = ηab dXa(λ) dXb(λ) + hab dXa(λ) dXb(λ) = 0 . (2)

Null curve:

Weak field (quasi-Cartesian coordinates):
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Here ηab dXa(λ) dXb(λ) is no longer zero. For a light ray propagating in a static weak

field we get

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ (δij + hij)
dxi

dλ

dxj

dλ
= 0 . (3)

Choosing λ = t equation (3) simplifies to

gab
dXa

dt

dXb

dt
= (−1 + htt) + (δij + hij) ẋi ẋj = 0 . (4)

We define a “coordinate speed of light” by calculating the norm ||ẋi|| of the “coordinate

velocity of light ” ẋi using δij, the unperturbed background metric for space. This allows

us to split the velocity into a speed and a direction

ẋi = ||ẋi|| k̂i; ||k̂i|| = 1 =
√

δij k̂i k̂j; (5)

where k̂i is a unit 3-vector. Putting this into equation (4), and noting that the hab are

small compared to unity we can usefully Taylor series expand, to obtain

||ẋi|| =

√√√√ 1− htt

1 + hij k̂i k̂j
≈ 1− 1

2
htt − 1

2
hij k̂i k̂j + O(h2

ab) (6)

for the coordinate speed of light. Note that we have adopted units where the physical

speed of light, measured by physical rulers and physical clocks, is always 1. Then the

spacetime refractive index for light travelling in the direction k̂ is

n(k̂) =
1

||ẋi|| ≈ 1 +
1

2
htt +

1

2
hij k̂i k̂j + O(h2

ab). (7)

We now define the 3× 3 refractive index tensor as:

nij ≡
(
1 +

1

2
htt

)
δij +

1

2
hij , (8)

so that n(k̂) = nij k̂i k̂j + O(h2
ab).

To connect this general formula to the presence of stress-energy, define

∇2Φ = 4π GN ρ, (9)

∇2Ψij = 4π GN Tij, (10)

where Φ is the ordinary Newton potential, with the mass-energy-density ρ as a source.

The Ψij are new post-Newton gravitational potentials arising from the internal pressures

and stresses of the source matter. Due to the assumption that the spacetime is static,

the total stress-energy tensor is

Tab =

[
ρ 0

0 Tij

]
. (11)

Note that because of the weak field assumption we do not need to distinguish the

coordinate components Tab from the orthonormal components Tâb̂ — they differ only at

O(h).

Using the weak-field Einstein equations,

∇2hab = −16π GN

(
Tab − 1

2
T ηab

)
+ O(h2), (12)

Choose:
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velocity of light ” ẋi using δij, the unperturbed background metric for space. This allows

us to split the velocity into a speed and a direction
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Refractive index:
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ẋi = ||ẋi|| k̂i; ||k̂i|| = 1 =
√

δij k̂i k̂j; (5)

where k̂i is a unit 3-vector. Putting this into equation (4), and noting that the hab are

small compared to unity we can usefully Taylor series expand, to obtain
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speed of light, measured by physical rulers and physical clocks, is always 1. Then the

spacetime refractive index for light travelling in the direction k̂ is

n(k̂) =
1

||ẋi|| ≈ 1 +
1

2
htt +

1

2
hij k̂i k̂j + O(h2

ab). (7)

We now define the 3× 3 refractive index tensor as:

nij ≡
(
1 +

1

2
htt

)
δij +

1

2
hij , (8)

so that n(k̂) = nij k̂i k̂j + O(h2
ab).

To connect this general formula to the presence of stress-energy, define

∇2Φ = 4π GN ρ, (9)

∇2Ψij = 4π GN Tij, (10)

where Φ is the ordinary Newton potential, with the mass-energy-density ρ as a source.

The Ψij are new post-Newton gravitational potentials arising from the internal pressures

and stresses of the source matter. Due to the assumption that the spacetime is static,

the total stress-energy tensor is

Tab =

[
ρ 0

0 Tij

]
. (11)

Note that because of the weak field assumption we do not need to distinguish the

coordinate components Tab from the orthonormal components Tâb̂ — they differ only at

O(h).

Using the weak-field Einstein equations,

∇2hab = −16π GN

(
Tab − 1

2
T ηab

)
+ O(h2), (12)

a Newtonian scalar potential, 
and post-Newtonian tensor potential.

Because the spacetime is (for now) assumed static:

Effective refractive index tensor for weak-field gravity. 3

Here ηab dXa(λ) dXb(λ) is no longer zero. For a light ray propagating in a static weak

field we get

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ (δij + hij)
dxi

dλ

dxj

dλ
= 0 . (3)

Choosing λ = t equation (3) simplifies to

gab
dXa

dt

dXb

dt
= (−1 + htt) + (δij + hij) ẋi ẋj = 0 . (4)

We define a “coordinate speed of light” by calculating the norm ||ẋi|| of the “coordinate

velocity of light ” ẋi using δij, the unperturbed background metric for space. This allows

us to split the velocity into a speed and a direction

ẋi = ||ẋi|| k̂i; ||k̂i|| = 1 =
√

δij k̂i k̂j; (5)

where k̂i is a unit 3-vector. Putting this into equation (4), and noting that the hab are

small compared to unity we can usefully Taylor series expand, to obtain

||ẋi|| =

√√√√ 1− htt

1 + hij k̂i k̂j
≈ 1− 1

2
htt − 1

2
hij k̂i k̂j + O(h2

ab) (6)

for the coordinate speed of light. Note that we have adopted units where the physical

speed of light, measured by physical rulers and physical clocks, is always 1. Then the

spacetime refractive index for light travelling in the direction k̂ is

n(k̂) =
1

||ẋi|| ≈ 1 +
1

2
htt +

1

2
hij k̂i k̂j + O(h2

ab). (7)

We now define the 3× 3 refractive index tensor as:

nij ≡
(
1 +

1

2
htt

)
δij +

1

2
hij , (8)

so that n(k̂) = nij k̂i k̂j + O(h2
ab).

To connect this general formula to the presence of stress-energy, define

∇2Φ = 4π GN ρ, (9)

∇2Ψij = 4π GN Tij, (10)

where Φ is the ordinary Newton potential, with the mass-energy-density ρ as a source.

The Ψij are new post-Newton gravitational potentials arising from the internal pressures

and stresses of the source matter. Due to the assumption that the spacetime is static,

the total stress-energy tensor is

Tab =

[
ρ 0

0 Tij

]
. (11)

Note that because of the weak field assumption we do not need to distinguish the

coordinate components Tab from the orthonormal components Tâb̂ — they differ only at

O(h).

Using the weak-field Einstein equations,

∇2hab = −16π GN

(
Tab − 1

2
T ηab

)
+ O(h2), (12)

Weak-field Einstein:

Effective refractive index tensor for weak-field gravity. 3

Here ηab dXa(λ) dXb(λ) is no longer zero. For a light ray propagating in a static weak

field we get

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ (δij + hij)
dxi

dλ

dxj

dλ
= 0 . (3)

Choosing λ = t equation (3) simplifies to

gab
dXa

dt

dXb

dt
= (−1 + htt) + (δij + hij) ẋi ẋj = 0 . (4)

We define a “coordinate speed of light” by calculating the norm ||ẋi|| of the “coordinate

velocity of light ” ẋi using δij, the unperturbed background metric for space. This allows

us to split the velocity into a speed and a direction

ẋi = ||ẋi|| k̂i; ||k̂i|| = 1 =
√

δij k̂i k̂j; (5)

where k̂i is a unit 3-vector. Putting this into equation (4), and noting that the hab are

small compared to unity we can usefully Taylor series expand, to obtain

||ẋi|| =

√√√√ 1− htt

1 + hij k̂i k̂j
≈ 1− 1

2
htt − 1

2
hij k̂i k̂j + O(h2

ab) (6)

for the coordinate speed of light. Note that we have adopted units where the physical

speed of light, measured by physical rulers and physical clocks, is always 1. Then the

spacetime refractive index for light travelling in the direction k̂ is

n(k̂) =
1

||ẋi|| ≈ 1 +
1

2
htt +

1

2
hij k̂i k̂j + O(h2

ab). (7)

We now define the 3× 3 refractive index tensor as:

nij ≡
(
1 +

1

2
htt

)
δij +

1

2
hij , (8)

so that n(k̂) = nij k̂i k̂j + O(h2
ab).

To connect this general formula to the presence of stress-energy, define

∇2Φ = 4π GN ρ, (9)

∇2Ψij = 4π GN Tij, (10)

where Φ is the ordinary Newton potential, with the mass-energy-density ρ as a source.

The Ψij are new post-Newton gravitational potentials arising from the internal pressures

and stresses of the source matter. Due to the assumption that the spacetime is static,

the total stress-energy tensor is

Tab =

[
ρ 0

0 Tij

]
. (11)

Note that because of the weak field assumption we do not need to distinguish the

coordinate components Tab from the orthonormal components Tâb̂ — they differ only at

O(h).

Using the weak-field Einstein equations,

∇2hab = −16π GN

(
Tab − 1

2
T ηab

)
+ O(h2), (12)



In Einstein-Fock-de Donder gauge, 
and with suitable boundary conditions:

Effective refractive index tensor for weak-field gravity. 4

in Einstein–Fock–de Donder gauge, and imposing suitable boundary conditions at

spatial infinity, we find:

∇2hij = − 16πGN

(
Tij − δij

1

2
[−ρ + δkl Tkl]

)
. (13)

∇2htt = − 8π GN (ρ + δklTkl) (14)

(15)

Or, in terms of the density and pressure potentials,

htt = − 2(Φ + δkl Ψkl); (16)

hij = − 2(2Ψij + δij[Φ− δkl Ψkl]). (17)

Thus, the refractive index tensor (8) takes the particularly simple form

nij = (1− 2Φ) δij − 2Ψij . (18)

If the internal stresses are negligible we can set Ψij → 0 to obtain the Newtonian limit

and recover the well-known results [3, 4]:

htt = − 2Φ; hij = −2Φ δij; nij = (1− 2Φ) δij . (19)

The novelty in the current analysis lies exactly in the manner in which internal stresses

in the body generating the gravitational field lead to a “stress potential” Ψij which then

influences both the weak-field metric (16–17) and the effective refractive index tensor

(18).

3. Stationary case

Let us now consider the stationary case, where

hab =

[
htt htj

hit hij

]
(20)

and due to symmetry htj = hjt. The condition for a photon trajectory then becomes:

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ 2htj
dt

dλ

dxj

dλ
+ (δij + hij)

dxi

dλ

dxj

dλ
= 0 . (21)

Choosing the parameter λ = t, this becomes a quadratic equation in ẋi with the

coordinate speed of light now being given by

||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (22)

Simplifying, Taylor expanding, and inverting gives the refractive index

n(k̂) = 1 +
1

2

(
htt + 2htj k̂j + hij k̂i k̂j

)
+ O(h2) (23)

which is a very straightforward extension of the static case. But because of the linear

term in k̂, it is not possible to bring this completely into 3-tensor form — there is

additional structure and we must write

n(k̂) = nij k̂i k̂j + htj k̂j + O(h2) (24)

Effective refractive index tensor for weak-field gravity. 4

in Einstein–Fock–de Donder gauge, and imposing suitable boundary conditions at

spatial infinity, we find:

∇2hij = − 16πGN

(
Tij − δij

1

2
[−ρ + δkl Tkl]

)
. (13)

∇2htt = − 8π GN (ρ + δklTkl) (14)

(15)

Or, in terms of the density and pressure potentials,

htt = − 2(Φ + δkl Ψkl); (16)

hij = − 2(2Ψij + δij[Φ− δkl Ψkl]). (17)

Thus, the refractive index tensor (8) takes the particularly simple form

nij = (1− 2Φ) δij − 2Ψij . (18)

If the internal stresses are negligible we can set Ψij → 0 to obtain the Newtonian limit

and recover the well-known results [3, 4]:

htt = − 2Φ; hij = −2Φ δij; nij = (1− 2Φ) δij . (19)

The novelty in the current analysis lies exactly in the manner in which internal stresses

in the body generating the gravitational field lead to a “stress potential” Ψij which then

influences both the weak-field metric (16–17) and the effective refractive index tensor

(18).

3. Stationary case

Let us now consider the stationary case, where

hab =

[
htt htj

hit hij

]
(20)

and due to symmetry htj = hjt. The condition for a photon trajectory then becomes:

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ 2htj
dt

dλ

dxj

dλ
+ (δij + hij)

dxi

dλ

dxj

dλ
= 0 . (21)

Choosing the parameter λ = t, this becomes a quadratic equation in ẋi with the

coordinate speed of light now being given by

||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (22)

Simplifying, Taylor expanding, and inverting gives the refractive index

n(k̂) = 1 +
1

2

(
htt + 2htj k̂j + hij k̂i k̂j

)
+ O(h2) (23)

which is a very straightforward extension of the static case. But because of the linear

term in k̂, it is not possible to bring this completely into 3-tensor form — there is

additional structure and we must write

n(k̂) = nij k̂i k̂j + htj k̂j + O(h2) (24)

In terms of the density scalar potential and 
stress-pressure tensor potential



Refractive index tensor:

Effective refractive index tensor for weak-field gravity. 4

in Einstein–Fock–de Donder gauge, and imposing suitable boundary conditions at

spatial infinity, we find:

∇2hij = − 16πGN

(
Tij − δij

1

2
[−ρ + δkl Tkl]

)
. (13)

∇2htt = − 8π GN (ρ + δklTkl) (14)

(15)

Or, in terms of the density and pressure potentials,

htt = − 2(Φ + δkl Ψkl); (16)

hij = − 2(2Ψij + δij[Φ− δkl Ψkl]). (17)

Thus, the refractive index tensor (8) takes the particularly simple form

nij = (1− 2Φ) δij − 2Ψij . (18)

If the internal stresses are negligible we can set Ψij → 0 to obtain the Newtonian limit

and recover the well-known results [3, 4]:

htt = − 2Φ; hij = −2Φ δij; nij = (1− 2Φ) δij . (19)

The novelty in the current analysis lies exactly in the manner in which internal stresses

in the body generating the gravitational field lead to a “stress potential” Ψij which then

influences both the weak-field metric (16–17) and the effective refractive index tensor

(18).

3. Stationary case

Let us now consider the stationary case, where

hab =

[
htt htj

hit hij

]
(20)

and due to symmetry htj = hjt. The condition for a photon trajectory then becomes:

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ 2htj
dt

dλ

dxj

dλ
+ (δij + hij)

dxi

dλ

dxj

dλ
= 0 . (21)

Choosing the parameter λ = t, this becomes a quadratic equation in ẋi with the

coordinate speed of light now being given by

||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (22)

Simplifying, Taylor expanding, and inverting gives the refractive index

n(k̂) = 1 +
1

2

(
htt + 2htj k̂j + hij k̂i k̂j

)
+ O(h2) (23)

which is a very straightforward extension of the static case. But because of the linear

term in k̂, it is not possible to bring this completely into 3-tensor form — there is

additional structure and we must write

n(k̂) = nij k̂i k̂j + htj k̂j + O(h2) (24)

Internal stresses isotropic (perfect fluid):

Effective refractive index tensor for weak-field gravity. 4

in Einstein–Fock–de Donder gauge, and imposing suitable boundary conditions at

spatial infinity, we find:

∇2hij = − 16πGN

(
Tij − δij

1

2
[−ρ + δkl Tkl]

)
. (13)

∇2htt = − 8π GN (ρ + δklTkl) (14)

(15)

Or, in terms of the density and pressure potentials,

htt = − 2(Φ + δkl Ψkl); (16)

hij = − 2(2Ψij + δij[Φ− δkl Ψkl]). (17)

Thus, the refractive index tensor (8) takes the particularly simple form

nij = (1− 2Φ) δij − 2Ψij . (18)

If internal stresses are isotropic (perfect fluid) Tij → p δij and Ψij → Ψ0 δij, we have

nij = (1− 2Φ− 2Ψ0) δij . (19)

with

∇2Φ = 4π GN ρ, (20)

∇2Ψ0 = 4π GN p, (21)

If the internal stresses are negligible we can set Ψij → 0 to obtain the Newtonian limit

and recover the well-known results [3, 4]:

htt = − 2Φ; hij = −2Φ δij; nij = (1− 2Φ) δij . (22)

The novelty in the current analysis lies exactly in the manner in which internal stresses

in the body generating the gravitational field lead to a “stress potential” Ψij which then

influences both the weak-field metric (16–17) and the effective refractive index tensor

(18).

3. Stationary case

Let us now consider the stationary case, where

hab =

[
htt htj

hit hij

]
(23)

and due to symmetry htj = hjt. The condition for a photon trajectory then becomes:

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ 2htj
dt

dλ

dxj

dλ
+ (δij + hij)

dxi

dλ

dxj

dλ
= 0 . (24)

Choosing the parameter λ = t, this becomes a quadratic equation in ẋi with the

coordinate speed of light now being given by

||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (25)

Effective refractive index tensor for weak-field gravity. 4

in Einstein–Fock–de Donder gauge, and imposing suitable boundary conditions at

spatial infinity, we find:

∇2hij = − 16πGN

(
Tij − δij

1

2
[−ρ + δkl Tkl]

)
. (13)

∇2htt = − 8π GN (ρ + δklTkl) (14)

(15)

Or, in terms of the density and pressure potentials,

htt = − 2(Φ + δkl Ψkl); (16)

hij = − 2(2Ψij + δij[Φ− δkl Ψkl]). (17)

Thus, the refractive index tensor (8) takes the particularly simple form

nij = (1− 2Φ) δij − 2Ψij . (18)

If internal stresses are isotropic (perfect fluid) Tij → p δij and Ψij → Ψ0 δij, we have

nij = (1− 2Φ− 2Ψ0) δij . (19)

with

∇2Φ = 4π GN ρ, (20)

∇2Ψ0 = 4π GN p, (21)

If the internal stresses are negligible we can set Ψij → 0 to obtain the Newtonian limit

and recover the well-known results [3, 4]:

htt = − 2Φ; hij = −2Φ δij; nij = (1− 2Φ) δij . (22)

The novelty in the current analysis lies exactly in the manner in which internal stresses

in the body generating the gravitational field lead to a “stress potential” Ψij which then

influences both the weak-field metric (16–17) and the effective refractive index tensor

(18).

3. Stationary case

Let us now consider the stationary case, where

hab =

[
htt htj

hit hij

]
(23)

and due to symmetry htj = hjt. The condition for a photon trajectory then becomes:

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ 2htj
dt

dλ

dxj

dλ
+ (δij + hij)

dxi

dλ

dxj

dλ
= 0 . (24)

Choosing the parameter λ = t, this becomes a quadratic equation in ẋi with the

coordinate speed of light now being given by

||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (25)

Effective refractive index tensor for weak-field gravity. 4

in Einstein–Fock–de Donder gauge, and imposing suitable boundary conditions at

spatial infinity, we find:

∇2hij = − 16πGN

(
Tij − δij

1

2
[−ρ + δkl Tkl]

)
. (13)

∇2htt = − 8π GN (ρ + δklTkl) (14)

(15)

Or, in terms of the density and pressure potentials,

htt = − 2(Φ + δkl Ψkl); (16)

hij = − 2(2Ψij + δij[Φ− δkl Ψkl]). (17)

Thus, the refractive index tensor (8) takes the particularly simple form

nij = (1− 2Φ) δij − 2Ψij . (18)

If internal stresses are isotropic (perfect fluid) Tij → p δij and Ψij → Ψ0 δij, we have

nij = (1− 2Φ− 2Ψ0) δij . (19)

with

∇2Φ = 4π GN ρ, (20)

∇2Ψ0 = 4π GN p, (21)

If the internal stresses are negligible we can set Ψij → 0 to obtain the Newtonian limit

and recover the well-known results [3, 4]:

htt = − 2Φ; hij = −2Φ δij; nij = (1− 2Φ) δij . (22)

The novelty in the current analysis lies exactly in the manner in which internal stresses

in the body generating the gravitational field lead to a “stress potential” Ψij which then

influences both the weak-field metric (16–17) and the effective refractive index tensor

(18).

3. Stationary case

Let us now consider the stationary case, where

hab =

[
htt htj

hit hij

]
(23)

and due to symmetry htj = hjt. The condition for a photon trajectory then becomes:

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ 2htj
dt

dλ

dxj

dλ
+ (δij + hij)

dxi

dλ

dxj

dλ
= 0 . (24)

Choosing the parameter λ = t, this becomes a quadratic equation in ẋi with the

coordinate speed of light now being given by

||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (25)

Internal stresses negligible:

Effective refractive index tensor for weak-field gravity. 4

in Einstein–Fock–de Donder gauge, and imposing suitable boundary conditions at

spatial infinity, we find:

∇2hij = − 16πGN

(
Tij − δij

1

2
[−ρ + δkl Tkl]

)
. (13)

∇2htt = − 8π GN (ρ + δklTkl) (14)

(15)

Or, in terms of the density and pressure potentials,

htt = − 2(Φ + δkl Ψkl); (16)

hij = − 2(2Ψij + δij[Φ− δkl Ψkl]). (17)

Thus, the refractive index tensor (8) takes the particularly simple form

nij = (1− 2Φ) δij − 2Ψij . (18)

If internal stresses are isotropic (perfect fluid) Tij → p δij and Ψij → Ψ0 δij, we have

nij = (1− 2Φ− 2Ψ0) δij . (19)

with

∇2Φ = 4π GN ρ, (20)

∇2Ψ0 = 4π GN p, (21)

If the internal stresses are negligible we can set Ψij → 0 to obtain the Newtonian limit

and recover the well-known results [3, 4]:

htt = − 2Φ; hij = −2Φ δij; nij = (1− 2Φ) δij . (22)

The novelty in the current analysis lies exactly in the manner in which internal stresses

in the body generating the gravitational field lead to a “stress potential” Ψij which then

influences both the weak-field metric (16–17) and the effective refractive index tensor

(18).

3. Stationary case

Let us now consider the stationary case, where

hab =

[
htt htj

hit hij

]
(23)

and due to symmetry htj = hjt. The condition for a photon trajectory then becomes:

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ 2htj
dt

dλ

dxj

dλ
+ (δij + hij)

dxi

dλ

dxj

dλ
= 0 . (24)

Choosing the parameter λ = t, this becomes a quadratic equation in ẋi with the

coordinate speed of light now being given by

||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (25)

Anisotropic stress implies anisotropic refractive index.



Stationary non-static geometries:

Effective refractive index tensor for weak-field gravity. 4

in Einstein–Fock–de Donder gauge, and imposing suitable boundary conditions at

spatial infinity, we find:

∇2hij = − 16πGN

(
Tij − δij

1

2
[−ρ + δkl Tkl]

)
. (13)

∇2htt = − 8π GN (ρ + δklTkl) (14)

(15)

Or, in terms of the density and pressure potentials,

htt = − 2(Φ + δkl Ψkl); (16)

hij = − 2(2Ψij + δij[Φ− δkl Ψkl]). (17)

Thus, the refractive index tensor (8) takes the particularly simple form

nij = (1− 2Φ) δij − 2Ψij . (18)

If internal stresses are isotropic (perfect fluid) Tij → p δij and Ψij → Ψ0 δij, we have

nij = (1− 2Φ− 2Ψ0) δij . (19)

with

∇2Φ = 4π GN ρ, (20)

∇2Ψ0 = 4π GN p, (21)

If the internal stresses are negligible we can set Ψij → 0 to obtain the Newtonian limit

and recover the well-known results [3, 4]:

htt = − 2Φ; hij = −2Φ δij; nij = (1− 2Φ) δij . (22)

The novelty in the current analysis lies exactly in the manner in which internal stresses

in the body generating the gravitational field lead to a “stress potential” Ψij which then

influences both the weak-field metric (16–17) and the effective refractive index tensor

(18).

3. Stationary case

Let us now consider the stationary case, where

hab =

[
htt htj

hit hij

]
(23)

and due to symmetry htj = hjt. The condition for a photon trajectory then becomes:

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ 2htj
dt

dλ

dxj

dλ
+ (δij + hij)

dxi

dλ

dxj

dλ
= 0 . (24)

Choosing the parameter λ = t, this becomes a quadratic equation in ẋi with the

coordinate speed of light now being given by

||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (25)
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||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (25)

Photon trajectory:

Choose:

Effective refractive index tensor for weak-field gravity. 3

Here ηab dXa(λ) dXb(λ) is no longer zero. For a light ray propagating in a static weak

field we get

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ (δij + hij)
dxi

dλ

dxj

dλ
= 0 . (3)

Choosing λ = t equation (3) simplifies to

gab
dXa

dt

dXb

dt
= (−1 + htt) + (δij + hij) ẋi ẋj = 0 . (4)

We define a “coordinate speed of light” by calculating the norm ||ẋi|| of the “coordinate
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√

δij k̂i k̂j; (5)
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small compared to unity we can usefully Taylor series expand, to obtain

||ẋi|| =

√√√√ 1− htt

1 + hij k̂i k̂j
≈ 1− 1

2
htt − 1

2
hij k̂i k̂j + O(h2

ab) (6)

for the coordinate speed of light. Note that we have adopted units where the physical

speed of light, measured by physical rulers and physical clocks, is always 1. Then the

spacetime refractive index for light travelling in the direction k̂ is

n(k̂) =
1

||ẋi|| ≈ 1 +
1

2
htt +

1

2
hij k̂i k̂j + O(h2

ab). (7)

We now define the 3× 3 refractive index tensor as:

nij ≡
(
1 +

1

2
htt

)
δij +

1

2
hij , (8)

so that n(k̂) = nij k̂i k̂j + O(h2
ab).

To connect this general formula to the presence of stress-energy, define

∇2Φ = 4π GN ρ, (9)

∇2Ψij = 4π GN Tij, (10)

where Φ is the ordinary Newton potential, with the mass-energy-density ρ as a source.

The Ψij are new post-Newton gravitational potentials arising from the internal pressures

and stresses of the source matter. Due to the assumption that the spacetime is static,

the total stress-energy tensor is

Tab =

[
ρ 0

0 Tij

]
. (11)

Note that because of the weak field assumption we do not need to distinguish the

coordinate components Tab from the orthonormal components Tâb̂ — they differ only at

O(h).

Using the weak-field Einstein equations,

∇2hab = −16π GN

(
Tab − 1

2
T ηab

)
+ O(h2), (12)

Coordinate speed of light:
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Simplifying, Taylor expanding, and inverting gives the refractive index

n(k̂) = 1 +
1

2

(
htt + 2htj k̂j + hij k̂i k̂j

)
+ O(h2) (26)

which is a very straightforward extension of the static case. But because of the linear

term in k̂, it is not possible to bring this completely into 3-tensor form — there is

additional structure and we must write

n(k̂) = nij k̂i k̂j + htj k̂j + O(h2) (27)

where nij has exactly the same form as in the static case [see equation (8)] and the new

“htj k̂j” term can be thought of as being due to motion of the “effective medium” with

respect to the quasi-Cartesian coordinate system (t, xi). From this point of view the

stationary case amounts to the gravitational field being viewed as a “medium” moving

with “velocity” htj, and with a refractive index nij.

To see this, it is useful to temporarily work with strong gravitational fields, pick a

particular point in spacetime (t0, xi
0). and consider the change of coordinates

t→ t̄ = t; xi → x̄i = xi + vi(t0, x0) [t− t0] (28)

with vi(t0, x0) = gik(t0, x0) gtk(t0, x0). Then

dt̄ = dt; dx̄i = dxi + gik(t0, x0) gtk(t0, x0) dt (29)

and in the immediate vicinity of (t0, xi
0) we have

gab dXa dXb = gtt dt2 + 2gti dt dxi + gij dxi dxj (30)

= [gtt − (gti gij gjt)]dt̄2 + gij dx̄i dx̄j (31)

which clearly has the effect of (locally) banishing the mixed time-space parts of the

metric at the cost that

ḡtt = gtt − (gti gij gjt); ḡti = 0; ḡij = gij. (32)

But because we wish to apply this in the weak field approximation gab = ηab + hab with

hab # 1, this simplifies tremendously. Since gti = hti +O(h2), whereas gti = hti exactly,

we see

h̄tt = htt +O(h2); h̄ti = 0; h̄ij = hij. (33)

That is, in weak field going to the moving coordinates defined by

t→ t̄ = t; xi → x̄i = xi + δik htk(t0, x0) [t− t0] +O(h2); (34)

dt̄ = dt; dx̄i = dxi + δik htk(t0, x0) dt +O(h2); (35)

allows us (locally) to copy the static calculation without change.

Since the “medium” is generally moving inhomogeneously this particular viewpoint

may not always be the best for performing explicit calculations — it may for practical

calculations be preferable to fix the coordinate system once and for all and to work with

the n(k̂) of equation (27) above.

We can furthermore define additional “flux potentials”

∇2Πj = 4π GN Ttj (36)
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that couple to the momentum flux. The corresponding weak-field Einstein equations

are very simple, since ηab vanishes for the off-diagonal elements:

∇2htj = −16π GN Ttj. (37)

Imposing appropriate boundary conditions

htj = −4 Πj, (38)

and the refractive index for the stationary case is

n(k̂) = nij(Φ, Ψ) k̂i k̂j − 4 Πj k̂j + O(Φ2, Ψ2, Π2) (39)

where nij(Φ, Ψ) is as in equation (18).

4. Charges and multipole expansions

For all of the potentials considered above, Φ, Πi, and Ψij, it is possible to define “charges”

m =
∫

Ttt d3x =
∫

ρ d3x; (40)

pi =
∫

Tti d3x =
∫

ji d3x; (41)

µij =
∫

Tij d3x; (42)

Σab =

[
m pi

pj µij

]
=

∫
Tab d3x. (43)

If all the sources are isolated bodies (which can internally be treated in the weak-

field approximation) then at large distances from these bodies the potentials are linear

combinations of

Φ = −GN m/r; Πi = −GN pi/r; Ψij = −GN µij/r. (44)

Therefore

n(k̂) = 1 +
2GN m

r
+

4GN pi k̂i

r
+

2GN µij k̂i k̂j

r
= 1 +

2GN Σab ka kb

r
, (45)

where ka = (1; k̂i) is a null vector with respect to the background metric. But if the

null energy condition [NEC] is satisfied, then in particular Tab ka kb ≥ 0, implying

Σab ka kb ≥ 0, so that n(k̂) ≥ 1. That is, the NEC implies the effective refractive

index is always greater than 1, thereby guaranteeing that the coordinate speed of light

is always less than 1. This connects the discussion back to the perturbative version of

“superluminal censorship” discussed in [7]. If there are many compact objects making

up the gravitational lens, one should simply sum the 1/r potentials for each object.

If the objects are in rapid accelerated motion the Laplace equations for the potentials

should be replaced by wave equations ∇2 → −c−2∂2
t + ∇2, which has the effect of

replacing the 1/r potential by the appropriate Lienard–Weichart potential [7]. If we are

considering a body that is at rest but rotating, then the overall momentum pi is zero

and the dominant term in the potential Πi comes from the dipole term in the monopole
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is always less than 1. This connects the discussion back to the perturbative version of

“superluminal censorship” discussed in [7]. If there are many compact objects making

up the gravitational lens, one should simply sum the 1/r potentials for each object.

If the objects are in rapid accelerated motion the Laplace equations for the potentials

should be replaced by wave equations ∇2 → −c−2∂2
t + ∇2, which has the effect of

replacing the 1/r potential by the appropriate Lienard–Weichart potential [7]. If we are

considering a body that is at rest but rotating, then the overall momentum pi is zero

and the dominant term in the potential Πi comes from the dipole term in the monopole
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in Einstein–Fock–de Donder gauge, and imposing suitable boundary conditions at

spatial infinity, we find:

∇2hij = − 16πGN

(
Tij − δij

1

2
[−ρ + δkl Tkl]

)
. (13)

∇2htt = − 8π GN (ρ + δklTkl) (14)

(15)

Or, in terms of the density and pressure potentials,

htt = − 2(Φ + δkl Ψkl); (16)

hij = − 2(2Ψij + δij[Φ− δkl Ψkl]). (17)

Thus, the refractive index tensor (8) takes the particularly simple form

nij = (1− 2Φ) δij − 2Ψij . (18)

If internal stresses are isotropic (perfect fluid) Tij → p δij and Ψij → Ψ0 δij, we have

nij = (1− 2Φ− 2Ψ0) δij . (19)

with

∇2Φ = 4π GN ρ, (20)

∇2Ψ0 = 4π GN p, (21)

If the internal stresses are negligible we can set Ψij → 0 to obtain the Newtonian limit

and recover the well-known results [3, 4]:

htt = − 2Φ; hij = −2Φ δij; nij = (1− 2Φ) δij . (22)

The novelty in the current analysis lies exactly in the manner in which internal stresses

in the body generating the gravitational field lead to a “stress potential” Ψij which then

influences both the weak-field metric (16–17) and the effective refractive index tensor

(18).

3. Stationary case

Let us now consider the stationary case, where

hab =

[
htt htj

hit hij

]
(23)

and due to symmetry htj = hjt. The condition for a photon trajectory then becomes:

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ 2htj
dt

dλ

dxj

dλ
+ (δij + hij)

dxi

dλ

dxj

dλ
= 0 . (24)

Choosing the parameter λ = t, this becomes a quadratic equation in ẋi with the

coordinate speed of light now being given by

||ẋi|| =
1

(δij + hij) k̂i k̂j

(
−htj k̂j +

√
(htj k̂j)2 − (−1 + htt)(δij + hij) k̂i k̂j

)
. (25)
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Here ηab dXa(λ) dXb(λ) is no longer zero. For a light ray propagating in a static weak

field we get

gab
dXa

dλ

dXb

dλ
= (−1 + htt)

(
dt

dλ

)2

+ (δij + hij)
dxi

dλ

dxj

dλ
= 0 . (3)

Choosing λ = t equation (3) simplifies to

gab
dXa

dt

dXb

dt
= (−1 + htt) + (δij + hij) ẋi ẋj = 0 . (4)

We define a “coordinate speed of light” by calculating the norm ||ẋi|| of the “coordinate

velocity of light ” ẋi using δij, the unperturbed background metric for space. This allows

us to split the velocity into a speed and a direction

ẋi = ||ẋi|| k̂i; ||k̂i|| = 1 =
√

δij k̂i k̂j; (5)

where k̂i is a unit 3-vector. Putting this into equation (4), and noting that the hab are

small compared to unity we can usefully Taylor series expand, to obtain

||ẋi|| =

√√√√ 1− htt

1 + hij k̂i k̂j
≈ 1− 1

2
htt − 1

2
hij k̂i k̂j + O(h2

ab) (6)

for the coordinate speed of light. Note that we have adopted units where the physical

speed of light, measured by physical rulers and physical clocks, is always 1. Then the

spacetime refractive index for light travelling in the direction k̂ is

n(k̂) =
1

||ẋi|| ≈ 1 +
1

2
htt +

1

2
hij k̂i k̂j + O(h2

ab). (7)

We now define the 3× 3 refractive index tensor as:

nij ≡
(
1 +

1

2
htt

)
δij +

1

2
hij , (8)

so that n(k̂) = nij k̂i k̂j + O(h2
ab).

To connect this general formula to the presence of stress-energy, define

∇2Φ = 4π GN ρ, (9)

∇2Ψij = 4π GN Tij, (10)

where Φ is the ordinary Newton potential, with the mass-energy-density ρ as a source.

The Ψij are new post-Newton gravitational potentials arising from the internal pressures

and stresses of the source matter. Due to the assumption that the spacetime is static,

the total stress-energy tensor is

Tab =

[
ρ 0

0 Tij

]
. (11)

Note that because of the weak field assumption we do not need to distinguish the

coordinate components Tab from the orthonormal components Tâb̂ — they differ only at

O(h).

Using the weak-field Einstein equations,

∇2hab = −16π GN

(
Tab − 1

2
T ηab

)
+ O(h2), (12)
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Simplifying, Taylor expanding, and inverting gives the refractive index

n(k̂) = 1 +
1

2

(
htt + 2htj k̂j + hij k̂i k̂j

)
+ O(h2) (26)

which is a very straightforward extension of the static case. But because of the linear

term in k̂, it is not possible to bring this completely into 3-tensor form — there is

additional structure and we must write

n(k̂) = nij k̂i k̂j + htj k̂j + O(h2) (27)

where nij has exactly the same form as in the static case [see equation (8)] and the new

“htj k̂j” term can be thought of as being due to motion of the “effective medium” with

respect to the quasi-Cartesian coordinate system (t, xi). From this point of view the

stationary case amounts to the gravitational field being viewed as a “medium” moving

with “velocity” htj, and with a refractive index nij.

To see this, it is useful to temporarily work with strong gravitational fields, pick a

particular point in spacetime (t0, xi
0). and consider the change of coordinates

t→ t̄ = t; xi → x̄i = xi + vi(t0, x0) [t− t0] (28)

with vi(t0, x0) = gik(t0, x0) gtk(t0, x0). Then

dt̄ = dt; dx̄i = dxi + gik(t0, x0) gtk(t0, x0) dt (29)

and in the immediate vicinity of (t0, xi
0) we have

gab dXa dXb = gtt dt2 + 2gti dt dxi + gij dxi dxj (30)

= [gtt − (gti gij gjt)]dt̄2 + gij dx̄i dx̄j (31)

which clearly has the effect of (locally) banishing the mixed time-space parts of the

metric at the cost that

ḡtt = gtt − (gti gij gjt); ḡti = 0; ḡij = gij. (32)

But because we wish to apply this in the weak field approximation gab = ηab + hab with

hab # 1, this simplifies tremendously. Since gti = hti +O(h2), whereas gti = hti exactly,

we see

h̄tt = htt +O(h2); h̄ti = 0; h̄ij = hij. (33)

That is, in weak field going to the moving coordinates defined by

t→ t̄ = t; xi → x̄i = xi + δik htk(t0, x0) [t− t0] +O(h2); (34)

dt̄ = dt; dx̄i = dxi + δik htk(t0, x0) dt +O(h2); (35)

allows us (locally) to copy the static calculation without change.

Since the “medium” is generally moving inhomogeneously this particular viewpoint

may not always be the best for performing explicit calculations — it may for practical

calculations be preferable to fix the coordinate system once and for all and to work with

the n(k̂) of equation (27) above.

We can furthermore define additional “flux potentials”

∇2Πj = 4π GN Ttj (36)

Potentials:



Charges:

Effective refractive index tensor for weak-field gravity. 6

that couple to the momentum flux. The corresponding weak-field Einstein equations

are very simple, since ηab vanishes for the off-diagonal elements:

∇2htj = −16π GN Ttj. (37)

Imposing appropriate boundary conditions

htj = −4 Πj, (38)

and the refractive index for the stationary case is

n(k̂) = nij(Φ, Ψ) k̂i k̂j − 4 Πj k̂j + O(Φ2, Ψ2, Π2) (39)

where nij(Φ, Ψ) is as in equation (18).

4. Charges and multipole expansions

For all of the potentials considered above, Φ, Πi, and Ψij, it is possible to define “charges”

m =
∫

Ttt d3x =
∫

ρ d3x; (40)

pi =
∫

Tti d3x =
∫

ji d3x; (41)

µij =
∫

Tij d3x; (42)

Σab =

[
m pi

pj µij

]
=

∫
Tab d3x. (43)

If all the sources are isolated bodies (which can internally be treated in the weak-

field approximation) then at large distances from these bodies the potentials are linear

combinations of

Φ = −GN m/r; Πi = −GN pi/r; Ψij = −GN µij/r. (44)

Therefore

n(k̂) = 1 +
2GN m

r
+

4GN pi k̂i

r
+

2GN µij k̂i k̂j

r
= 1 +

2GN Σab ka kb

r
, (45)

where ka = (1; k̂i) is a null vector with respect to the background metric. But if the

null energy condition [NEC] is satisfied, then in particular Tab ka kb ≥ 0, implying

Σab ka kb ≥ 0, so that n(k̂) ≥ 1. That is, the NEC implies the effective refractive

index is always greater than 1, thereby guaranteeing that the coordinate speed of light

is always less than 1. This connects the discussion back to the perturbative version of

“superluminal censorship” discussed in [7]. If there are many compact objects making

up the gravitational lens, one should simply sum the 1/r potentials for each object.

If the objects are in rapid accelerated motion the Laplace equations for the potentials

should be replaced by wave equations ∇2 → −c−2∂2
t + ∇2, which has the effect of

replacing the 1/r potential by the appropriate Lienard–Weichart potential [7]. If we are

considering a body that is at rest but rotating, then the overall momentum pi is zero

and the dominant term in the potential Πi comes from the dipole term in the monopole

Dominant multi-poles:
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that couple to the momentum flux. The corresponding weak-field Einstein equations

are very simple, since ηab vanishes for the off-diagonal elements:

∇2htj = −16π GN Ttj. (37)

Imposing appropriate boundary conditions

htj = −4 Πj, (38)

and the refractive index for the stationary case is

n(k̂) = nij(Φ, Ψ) k̂i k̂j − 4 Πj k̂j + O(Φ2, Ψ2, Π2) (39)

where nij(Φ, Ψ) is as in equation (18).

4. Charges and multipole expansions

For all of the potentials considered above, Φ, Πi, and Ψij, it is possible to define “charges”

m =
∫

Ttt d3x =
∫

ρ d3x; (40)

pi =
∫

Tti d3x =
∫

ji d3x; (41)

µij =
∫

Tij d3x; (42)

Σab =

[
m pi

pj µij

]
=

∫
Tab d3x. (43)

If all the sources are isolated bodies (which can internally be treated in the weak-

field approximation) then at large distances from these bodies the potentials are linear

combinations of

Φ = −GN m/r; Πi = −GN pi/r; Ψij = −GN µij/r. (44)

Therefore

n(k̂) = 1 +
2GN m

r
+

4GN pi k̂i

r
+

2GN µij k̂i k̂j

r
= 1 +

2GN Σab ka kb

r
, (45)

where ka = (1; k̂i) is a null vector with respect to the background metric. But if the

null energy condition [NEC] is satisfied, then in particular Tab ka kb ≥ 0, implying

Σab ka kb ≥ 0, so that n(k̂) ≥ 1. That is, the NEC implies the effective refractive

index is always greater than 1, thereby guaranteeing that the coordinate speed of light

is always less than 1. This connects the discussion back to the perturbative version of

“superluminal censorship” discussed in [7]. If there are many compact objects making

up the gravitational lens, one should simply sum the 1/r potentials for each object.

If the objects are in rapid accelerated motion the Laplace equations for the potentials

should be replaced by wave equations ∇2 → −c−2∂2
t + ∇2, which has the effect of

replacing the 1/r potential by the appropriate Lienard–Weichart potential [7]. If we are

considering a body that is at rest but rotating, then the overall momentum pi is zero

and the dominant term in the potential Πi comes from the dipole term in the monopole
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that couple to the momentum flux. The corresponding weak-field Einstein equations

are very simple, since ηab vanishes for the off-diagonal elements:

∇2htj = −16π GN Ttj. (37)

Imposing appropriate boundary conditions

htj = −4 Πj, (38)

and the refractive index for the stationary case is

n(k̂) = nij(Φ, Ψ) k̂i k̂j − 4 Πj k̂j + O(Φ2, Ψ2, Π2) (39)

where nij(Φ, Ψ) is as in equation (18).

4. Charges and multipole expansions

For all of the potentials considered above, Φ, Πi, and Ψij, it is possible to define “charges”

m =
∫

Ttt d3x =
∫

ρ d3x; (40)

pi =
∫

Tti d3x =
∫

ji d3x; (41)

µij =
∫

Tij d3x; (42)

Σab =

[
m pi

pj µij

]
=

∫
Tab d3x. (43)

If all the sources are isolated bodies (which can internally be treated in the weak-

field approximation) then at large distances from these bodies the potentials are linear

combinations of

Φ = −GN m/r; Πi = −GN pi/r; Ψij = −GN µij/r. (44)

Therefore

n(k̂) = 1 +
2GN m

r
+

4GN pi k̂i

r
+

2GN µij k̂i k̂j

r
= 1 +

2GN Σab ka kb

r
, (45)

where ka = (1; k̂i) is a null vector with respect to the background metric. But if the

null energy condition [NEC] is satisfied, then in particular Tab ka kb ≥ 0, implying

Σab ka kb ≥ 0, so that n(k̂) ≥ 1. That is, the NEC implies the effective refractive

index is always greater than 1, thereby guaranteeing that the coordinate speed of light

is always less than 1. This connects the discussion back to the perturbative version of

“superluminal censorship” discussed in [7]. If there are many compact objects making

up the gravitational lens, one should simply sum the 1/r potentials for each object.

If the objects are in rapid accelerated motion the Laplace equations for the potentials

should be replaced by wave equations ∇2 → −c−2∂2
t + ∇2, which has the effect of

replacing the 1/r potential by the appropriate Lienard–Weichart potential [7]. If we are

considering a body that is at rest but rotating, then the overall momentum pi is zero

and the dominant term in the potential Πi comes from the dipole term in the monopole



The “null energy condition” [NEC] then guarantees the 
refractive index is always greater than unity, and the 
coordinate speed of light is always less than unity.

This ties the discussion back to “superluminal censorship”, 
in that physically sensible sources always lead to 

Shapiro time delay (not a time advance).

Central messages: 
   
1) Pressure and stress can affect gravity lensing.
2) Anisotropic stress-energy implies anisotropic 
“refractive index” implies anisotropic propagation 
of light.


