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Abstract:    

A popular explanation for the microscopic origin of Bekenstein's 
black hole entropy is the conjecture that this entropy can be 
ascribed to a collection of (1+1) dimensional conformal field 
theories that reside at the horizon, and defined on the two-plane 
perpendicular to the horizon. 

If this is to be the case, then the Einstein equations must force 
the Ricci curvature to possess a high degree of symmetry at the 
horizon. 

We test this hypothesis by working directly with the spacetime 
geometry for a generic rotating black hole - constrained only by 
the existence of a stationary non-static Killing horizon, and with 
otherwise arbitrary matter content - to show that the Einstein 
tensor block diagonalizes on the horizon. 

This is a specific example of an "enhanced symmetry" that manifests 
only at the horizon itself.





Introduction:

Bekenstein’s concept of black hole entropy makes the 
horizon a somewhat special place.

When combined with the idea of QFT holography, 
it becomes plausible to think of the horizon as a 
“membrane” on which to define a set of surface 
degrees of freedom which are a “dual representation” 
of the internal degrees of freedom of the black hole.

If, as many people suspect, these surface degrees of 
freedom are some sort of 2-dimensional CFT, this 
would tightly constrain the form of the stress-energy 
at the horizon.



Introduction:

But then the Einstein equations would constrain 
the form of the spacetime curvature at the horizon.

So a consistency check on this whole scenario is that 
the spacetime geometry must exhibit an “enhanced 
symmetry” at the horizon. 

Since this “enhanced symmetry” must be there for 
arbitrary black holes, it must be possible to deduce such 
an enhanced symmetry on purely geometrical grounds, 
working solely from the geometrical definition of a black 
hole. 





Key result:

At the horizon of any stationary (or static) black hole 
the Einstein tensor satisfies:

Where         is a tensor that lies entirely within the 
horizon.

This is equivalent to the statement that on any Killing 
horizon the Einstein tensor block diagonalizes:

Gab|H = X gab + Yab

Gâ̂b|H =

 −X 0 0
0 X 0
0 0 X δ̂ı̂ + Yı̂̂


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Plausibility argument:

I first became aware of a related result in the 
context of spherical symmetry --- where there is a 
“boundary condition” which at the horizon enforces:          

Gab|H = X gab + Yab

Gâ̂b|H =

 −X 0 0
0 X 0
0 0 X δ̂ı̂ + Yı̂̂



Rt̂t̂ = −Rr̂r̂

Gt̂t̂ = −Gr̂r̂

1

Gab|H = X gab + Yab
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Gt̂t̂ = −Gr̂r̂
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or equivalently:

The easiest way to see this is to start from the general 
static spherically symmetric geometry and explicitly 
calculate the Einstein tensor.



Static spherical symmetry:

Write the metric in the form:

Calculate:

Gab|H = X gab + Yab

Gâ̂b|H =
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0 X 0
0 0 X δ̂ı̂ + Yı̂̂



Rt̂t̂ = −Rr̂r̂

Gt̂t̂ = −Gr̂r̂
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Static spherical symmetry:

The horizon occurs at: 

If the geometry is to be regular at the horizon, then    
        and its derivatives must be finite at the horizon.
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Static spherical symmetry:

Up to this point I have nowhere used 
the Einstein equations. 
If I now do so, I find that (independent of the 
nature and type of matter in the spacetime)  
regularity of the horizon enforces:
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ρH = −(pr)H

That is --- the energy density at the horizon is 
intimately related to the radial pressure. 
(Indeed there must be a radial tension at the horizon.)

Question:  To what extent does this result generalize 
away from spherical symmetry?



Generalizations:

Obvious generalizations to look at are:

--- Static but not spherically symmetric. 
     (Visser, Martin, Medved, gr-qc/0402069.)

--- Stationary but not static.
    (Visser, Martin, Medved, gr-qc/0403026.)

The same result continues to hold (generic matter).   
At any Killing horizon:

Gab|H = X gab + Yab

Gâ̂b|H =

 −X 0 0
0 X 0
0 0 X δ̂ı̂ + Yı̂̂
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 −X 0 0
0 X 0
0 0 X δ̂ı̂ + Yı̂̂


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Bifurcate Killing horizons:

The slickest proof we have been able to find 
works in the case of bifurcate Killing horizons.

That proof applies equally well to generic rotating 
Kerr-like black holes with bifurcate Killing horizons 
and surrounded by arbitrary matter fields, but is so 
slick you may not notice the black hole is rotating! 

Even if an astrophysically relevant black hole spacetime 
does not contain a bifurcation surface, as long as it 
approaches a stationary limit, that stationary limit will 
under mild conditions (Racz, Wald) have an extension 
that does contain a bifurcation surface...  



Bifurcate Killing horizons:

For all practical purposes,  bifurcation 
surfaces are not serious restrictions.

Pick an arbitrary spacelike section of the horizon.
Set up a null basis on that section:
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Now decompose the Einstein tensor in this null basis.

Here      is the Killing vector, 
while      is the “other” null normal.
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Bifurcate Killing horizons:

that the horizon contains a bifurcation surface — that is, a cross-sectional
(spacelike) 2-surface where the null Killing vector, χa, is precisely vanishing.
At a first glance, this may appear to be a highly restrictive constraint on the
spacetime; in particular, a physical black hole that forms from stellar collapse
will not be of this type. Nonetheless, a physical black hole will asymptoti-
cally approach such a spacetime. Indeed, Racz and Wald have shown that,
if the surface gravity is constant and non-vanishing over a patch of Killing
horizon (containing a spacelike cross-section), there will exist a stationary ex-
tension of the spacetime which does include a regular bifurcation surface [26].
Since the zeroth law is automatically satisfied for any stationary Killing hori-
zon [22], the existence of such an extension will, for our purposes, always be
ensured.

For the analysis of this section, it proves to be convenient if we employ a
different basis for the (on-horizon) coordinate system. To set up a suitable
basis, let us start by considering an arbitrary spacelike section of the horizon.
Like all spacelike 2-surfaces, it is possible — at every point — to find two null
vectors that are orthogonal to the section, as well as to each other. Let us
choose one of these to be the Killing vector χa and denote the other by Na.
For the sake of convenience, we will adopt the normalization χa Na = −1.
(And since both of these are null, χa χa = Na Na = 0.)

To complete our coordinate basis, we can choose any pair of orthogonal
spacelike vectors, ma

1 and ma
2, that are tangent to the horizon section in

question. It should be clear that, by construction, χa, Na, ma
1, and ma

2 form
an orthonormal basis for the tangent space. Consequently, there will exist
coefficients such that the Einstein tensor can be written as follows:

Gab = G++ χaχb + G−− NaNb + G+− {χaNb + Naχb}
+G+1 {χa[m1]b + [m1]aχb} + G+2 {χa[m2]b + [m2]aχb}
+G−1 {Na[m1]b + [m1]aNb} + G−2 {Na[m2]b + [m2]aNb}
+G11 [m1]a[m1]b + G22 [m2]a[m2]b
+G12 {[m1]a[m2]b + [m2]a[m1]b} . (63)

(With an analogous form, in fact, for any symmetric tensor.)
We can significantly simplify the above expression by, firstly, taking note

of equation (7.1.15) from Wald’s textbook [21] (re-expressed in one-form
notation),

χ ∧ (R · χ) = 0 , (64)
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which is valid [on the horizon] for any stationary Killing horizon. (Here, R
represents the two-form Ricci tensor rather than the scalar curvature.) It
immediately follows that, on the horizon,

(R · χ) ∝ χ (65)

or, equivalently,
Rb

a χb ∝ χa . (66)

But, since gb
a χb = χa , this also means that

Gb
a χb ∝ χa , (67)

and so the Einstein tensor (like the Ricci tensor) possesses a null eigenvector
on the horizon.

To make use of this last property, let us contract equation (63) with χb

and then apply the orthogonality properties. This process yields

Gab χb = −G−− Na −G+− χa −G−1 [m1]a −G−2 [m2]a . (68)

However, we know that, on the horizon, this contraction must be proportional
to χa; thus implying

G−− = G−1 = G−2 = 0 , (69)

so that the on-horizon Einstein tensor reduces to

Gab = G++ χaχb + G+− {χaNb + Naχb}
+G+1 {χa[m1]b + [m1]aχb} + G+2 {χa[m2]b + [m2]aχb}
+G11 [m1]a[m1]b + G22 [m2]a[m2]b
+G12 {[m1]a[m2]b + [m2]a[m1]b} . (70)

This is as far as we can go on an arbitrary section of the horizon, so let
us now specialize to the bifurcation surface. First note that

[g⊥]ab = χaNb + Naχb (71)

has a well-defined limit on the bifurcation 2-surface, even though χa → 0
as the surface is approached. This is because the second null normal limits
there as Na → ∞ , since it still must satisfy χa Na = −1 . It follows that
the above combination simply limits to the 2-metric perpendicular to the
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But anywhere on any Killing horizon it is 
a standard result that:

The Killing vector is a null eigenvector of the 
Einstein tensor!      This implies:
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Bifurcate Killing horizons:

So anywhere on any Killing horizon:

which is valid [on the horizon] for any stationary Killing horizon. (Here, R
represents the two-form Ricci tensor rather than the scalar curvature.) It
immediately follows that, on the horizon,

(R · χ) ∝ χ (65)

or, equivalently,
Rb
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But, since gb
a χb = χa , this also means that

Gb
a χb ∝ χa , (67)

and so the Einstein tensor (like the Ricci tensor) possesses a null eigenvector
on the horizon.

To make use of this last property, let us contract equation (63) with χb

and then apply the orthogonality properties. This process yields

Gab χb = −G−− Na −G+− χa −G−1 [m1]a −G−2 [m2]a . (68)

However, we know that, on the horizon, this contraction must be proportional
to χa; thus implying

G−− = G−1 = G−2 = 0 , (69)
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This is as far as we can go on an arbitrary section of the horizon, so let
us now specialize to the bifurcation surface. First note that

[g⊥]ab = χaNb + Naχb (71)

has a well-defined limit on the bifurcation 2-surface, even though χa → 0
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there as Na → ∞ , since it still must satisfy χa Na = −1 . It follows that
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But at the bifurcation surface:

χa, Na, ma
1, ma

2.

g(χ, χ) = 0; g(N, N) = 0; g(χ, N) = −1;

g(mi, mj) = δij; g(mi, χ) = 0; g(mi, N) = 0.

χa → 0

χa Na +Na χb +[m1]a [m1]b +[m2]a [m2]b → gab

χa, Na, ma
1, ma

2.

g(χ, χ) = 0; g(N, N) = 0; g(χ, N) = −1;

g(mi, mj) = δij; g(mi, χ) = 0; g(mi, N) = 0.

χa → 0

χa Na +Na χb +[m1]a [m1]b +[m2]a [m2]b → gab

while the coefficients in the expansion are constants.



Bifurcate Killing horizons:

So on the bifurcation surface:

χa, Na, ma
1, ma

2.

g(χ, χ) = 0; g(N, N) = 0; g(χ, N) = −1;

g(mi, mj) = δij; g(mi, χ) = 0; g(mi, N) = 0.

χa → 0

χa Na +Na χb +[m1]a [m1]b +[m2]a [m2]b → gab

Gab = G+− gab

+(G11 −G+−) [m1]a[m1]b
+(G22 −G+−) [m2]a[m2]b
+G12 {[m1]a[m2]b + [m2]a[m1]b}

That is:

Gab|H = X gab + Yab

Gâ̂b|H =

 −X 0 0
0 X 0
0 0 X δ̂ı̂ + Yı̂̂



1

Where         is a tensor that lies entirely 
within the bifurcation surface.

Gab|H = X gab + Yab

Gâ̂b|H =

 −X 0 0
0 X 0
0 0 X δ̂ı̂ + Yı̂̂



1



Bifurcate Killing horizons:

Although the present argument is limited to 
bifurcate Killing horizons, it is truly generic. 

 
The form of the stress-energy at the horizon 
is very tightly constrained by the geometry. 

The argument is easily seen to be dimension 
independent, and the symmetries are appropriate 
to a collection of CFTs living on the bifurcation 
surface, with SETs transverse to the bifurcation 

surface --- plus in-surface interactions.

Can we make all of this more explicit?





Stationary non-static  Killing horizons:

These are appropriate specifically for rotating black holes.

Under mild technical conditions:

where the metric components are functions of the remaining spacelike coor-
dinates, x2 and x3, only.

Let us now impose the additional constraint that our spacetime is invari-
ant under “time-reversal”, which means the spacetime is invariant under the
simultaneous change of

t→ −t and φ→ −φ . (4)

(That is, a change in the direction of time should correspond to a reverse in
the sense of rotation.) As a consequence, the above metric can be simplified
as follows (cf, Section 7.1 of [21]):

gµν =


gtt gφt 0 0
gφt gφφ 0 0
0 0 g22 g23

0 0 g23 g33

 . (5)

The existence of such a symmetry is, under certain circumstances, a theorem
that can be derived from integrability conditions placed on the Killing vec-
tors. However, we feel that most physicists would be happy to simply assume
the symmetry on physical grounds.

It is convenient to transform the 2×2–block in the t–φ-plane into an
ADM-like form; namely,

gµν =


−[N2 − g2

φt/gφφ] gφt 0 0
gφt gφφ 0 0
0 0 g22 g23

0 0 g23 g33

 , (6)

where N denotes the usual “lapse” function. This formulation makes it clear
that the ergosurface of the black hole is located at

gtt = 0 ⇐⇒ N2 = g2
φt/gφφ , (7)

while the horizon (or surface of infinite red-shift) is at

N = 0 . (8)

To proceed, it proves useful if the 2×2–block in the x2–x3-plane is ap-
propriately simplified. Let us call these two coordinates n and z; with n
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N = 0 . (8)

To proceed, it proves useful if the 2×2–block in the x2–x3-plane is ap-
propriately simplified. Let us call these two coordinates n and z; with n
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Convenience:    Define omega,   normal coordinate:
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We can be even more specific about the metric by considering some well-
known properties of stationary Killing horizons. Firstly, there is a zeroth law
of black hole mechanics [21, 22], which tells us that the surface gravity or

κH ≡ lim
n→0

∂nN (12)

must be a non-negative constant on the horizon. 5 Note that current con-
siderations will be restricted to non-extremal horizons, for which κH > 0. 6

5Following an analysis which is very similar to that of the appendix in [16], one can
readily verify that equation (12) complies with the standard definition of the surface
gravity [21].

6For the static case, we have previously shown that an extremal horizon (κH = 0) must
be located at an infinite proper distance, n = −∞ [16]. As briefly discussed in Section 3,
similar arguments lead to the same conclusion for any stationary black hole.
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Stationary non-static  Killing horizons:

Consider a Taylor series expansion:

3 Boundary conditions revisited

Next, we will be able to explicitly verify the constraint equations (15) and
(16), strengthen (17) and substantiate (19) by requiring on-horizon regular-
ity. More precisely, we will require a well-behaved horizon 2-geometry and
the absence of curvature singularities on the horizon. Note that any of the
following calculations can be obtained by a somewhat tedious hand calcu-
lation, although we have, at times, opted for a symbolic computation using
Maple.

We begin here by recalling the metric of equation (11), as appropriate
for the near-horizon geometry of a stationary Killing horizon with axial (and
time-reversal) symmetry. Keep in mind that the horizon is located, by con-
struction, at the surface where n = 0. (Note that this formalism can, strictly
speaking, only be valid for a non-extremal horizon, as an extremal horizon
cannot occur at a finite value of n [25]. Later on, when we look explicitly at
extremal horizons, this well-known fact will drop out quite naturally.)

For calculational purposes, let us expand the lapse and the rotation pa-
rameter in the most general manner possible [subject only to the constraint
that the lapse vanishes on the horizon]; that is,

N(n, z) = κH(z) n +
1

2
κ1(z) n2 +

1

3!
κ2(z) n3 + O(n4) , (20)

ω(n, z) = ωH(z) + ω1(z)n +
1

2
ω2(z) n2 +

1

3!
ω3(z) n3 + O(n4) . (21)

The following point should be emphasized: We are not assuming our refined
form for the lapse [cf, equation (19)] but, rather, attempting to verify this
result (along with the other refinements) by independent means.

Essentially, we are interested in the regularity (or lack thereof) of the
following curvature invariants at the horizon:

• The Ricci scalar, R.

• The traceless part of the Ricci tensor squared, RµνRµν − 1
4R

2 .

• The Weyl tensor squared.

Clearly, if any of these three scalars are infinite at the horizon, then a cur-
vature singularity exists.
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Demand curvature invariants finite at the horizon:

Ditto for other metric components.

First, a calculation of the Ricci scalar yields

R =
[gH ]φφ(z)

2 [gH ]zz(z) κH(z)2

[gH ]zz ω1(z)2 +

(
dωH(z)

dz

)2
 1

n2
+ o

(
1

n

)
. (22)

[Note that, since the horizon 2-geometry is assumed to be regular, gzz must be
positive on the horizon.] Now, to avoid a curvature singularity, the coefficient
of any negative power of n must be zero. Given that the leading-order term
is a sum of squares, we immediately obtain two conditions:

dωH(z)

dz
= 0 ⇒ ωH(z) = ωH = constant , (23)

ω1(z) = 0 . (24)

Hence, we have recovered both the rigidity theorem [23] and the anticipated
vanishing of the linear-order term.

Second, let us consider the traceless part of the Ricci tensor squared.
Using the previous results to simplify matters, we find that

4RµνR
µν −R2 =

{ (
d ln gzz

dz

∣∣∣
n=0

)2

+

(
d ln gφφ

dz

∣∣∣
n=0

)2

(25)

+
16 κ1(z)2

κH(z)2
+

8 (dκH(z)/dz)2

[gH ]zz(z) κH(z)

}
1

n2
+ o

(
1

n

)
.

This is, once again, a sum of squares, from which we can deduce the following
four constraints:

dκH(z)

dz
= 0 ⇒ κH(z) = κH = constant , (26)

κ1(z) = 0 , (27)
dgzz

dz
|n=0 = 0 ⇒ gzz = [gzz(z)]H + o(n2) , (28)

dgφφ

dz
|n=0 = 0 ⇒ gφφ = [gφφ(z)]H + o(n2) . (29)

Note that the first of these conditions allows us to recover the zeroth law [21,
22].

Finally, after imposing all the above constraints, we find that the Weyl
tensor squared yields a finite result as n → 0 [i.e., the leading order is at

9

Rigidity theorem!
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Zero’th law!
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For non-extremal black holes this is enough to keep all 
curvature invariants finite at the horizon.

(Similar results in extremal case.)
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Now calculate the on-horizon Einstein tensor.

For convenience define:

Such an outcome would confirm that, just as for a static Killing horizon [16],
the Einstein tensor block-diagonalizes and the transverse components of this
tensor are proportional to the transverse metric. (By transverse, we mean the
components orthogonal to any spacelike cross-section of the event horizon.)
Before elaborating further on our results, let us point out that there is, in fact,
a strong physical motivation for believing in the vanishing of [Gφ̂χ̂]H . By the
Einstein equations, this term is equivalent to a non-zero angular “flux” at the
horizon. Significantly, the null Killing vector, χ, effectively “rotates with the
horizon”. Hence, if any such flux does exist, the implication would be that
the dirt surrounding the black hole is “moving with respect to the horizon”.
But this would then torque the black hole — either spinning it up or slowing
it down — until the true state of stationarity is finally achieved. (Alas, we
have no analogously simple argument for the vanishing of the “stress” term
[Gnẑ]H .)

All three of these symmetries have indeed been verified by a symbolic
computation. To briefly elaborate, using our Taylor-series expansions [i.e.,
equations (15)–(17) with ω1 = 0 and (19)], we “ask” Maple to calculate the
Einstein tensor and, afterwards, take the n → 0 limit. A simple inspection
then confirms the validity of equations (52)–(54).

For the sake of completeness, we will also present the explicit form of these
on-horizon tensor components. It is useful, however, if we first introduce a
few more relevant expressions. For instance, considering just the in-horizon
2-metric or

ds2
‖ = gφφ(z) dφ2 + gzz(z) dz2 , (55)

we can calculate the corresponding scalar curvature and obtain

R‖ =
1

2

{
(∂z[gH ]φφ)2

[gH ]zz [gH ]2φφ

+
∂z[gH ]φφ ∂z[gH ]zz

[gH ]2zz [gH ]φφ
− 2

∂2
z [gH ]φφ

[gH ]zz [gH ]φφ

}
. (56)

Similarly, focusing on the χ̂–n-plane and looking at the induced transverse
2-metric,

ds2
⊥ = −

[
N2 − gφφ (ω − ΩH)2

]
dχ̃2 + dn2 , (57)

we find a corresponding Ricci scalar of the simple form

R⊥ = −2
{

κ2

κH

}
+

3

2

[gH ]φφ(z) ω2(z)2

κ2
H

. (58)

It should be noted that, in obtaining this last result, we had to expand
g(χ, χ) out to the fourth order in n [so that equation (38) is insufficient], as
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Transverse to the horizon set:

its symmetrical nature, it will first be necessary to introduce some additional
formalism.

To begin, let us take note of the null Killing vector for a stationary (black
hole) Killing horizon. That is (for instance, [21]),

χa = ξa + ΩH ψa . (33)

Then, in terms of our (t,φ, n, z) coordinate system, we have

χa = (1, ΩH , 0, 0) , (34)

ξa = (1, 0, 0, 0) , (35)

and
ψa = (0, 1, 0, 0) . (36)

Let us next consider the contraction

g(χ, χ) ≡ gab χa χb = gtt + 2ΩH gtφ + Ω2
H gφφ = −N2 + gφφ [ΩH − ω]2 , (37)

which, by an inspection of our Taylor-series expansions, implies that

g(χ, χ) = −κ2
H n2 + o(n4) . (38)

It would then seem sensible to define, outside of the event horizon, a normal-
ized vector of the form

χ̂ =
χ√

−g(χ, χ)
. (39)

We can similarly write

g(ψ, ψ) = gφφ = o(1) (40)

and

ψ̂ =
ψ√

g(ψ, ψ)
=

ψ√
gφφ

. (41)

Furthermore,

g(χ, ψ) = gab χa ψb = gtψ + ΩH gψψ = gψψ (ΩH − ω) = o(n2) (42)

and
g(χ̂, ψ̂) = o(n) . (43)
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}
. (56)

Similarly, focusing on the χ̂–n-plane and looking at the induced transverse
2-metric,

ds2
⊥ = −

[
N2 − gφφ (ω − ΩH)2

]
dχ̃2 + dn2 , (57)

we find a corresponding Ricci scalar of the simple form

R⊥ = −2
{

κ2

κH

}
+

3

2

[gH ]φφ(z) ω2(z)2

κ2
H

. (58)

It should be noted that, in obtaining this last result, we had to expand
g(χ, χ) out to the fourth order in n [so that equation (38) is insufficient], as
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Compute:

Such an outcome would confirm that, just as for a static Killing horizon [16],
the Einstein tensor block-diagonalizes and the transverse components of this
tensor are proportional to the transverse metric. (By transverse, we mean the
components orthogonal to any spacelike cross-section of the event horizon.)
Before elaborating further on our results, let us point out that there is, in fact,
a strong physical motivation for believing in the vanishing of [Gφ̂χ̂]H . By the
Einstein equations, this term is equivalent to a non-zero angular “flux” at the
horizon. Significantly, the null Killing vector, χ, effectively “rotates with the
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But this would then torque the black hole — either spinning it up or slowing
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have no analogously simple argument for the vanishing of the “stress” term
[Gnẑ]H .)

All three of these symmetries have indeed been verified by a symbolic
computation. To briefly elaborate, using our Taylor-series expansions [i.e.,
equations (15)–(17) with ω1 = 0 and (19)], we “ask” Maple to calculate the
Einstein tensor and, afterwards, take the n → 0 limit. A simple inspection
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+
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∂2
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[gH ]zz [gH ]φφ

}
. (56)

Similarly, focusing on the χ̂–n-plane and looking at the induced transverse
2-metric,

ds2
⊥ = −

[
N2 − gφφ (ω − ΩH)2

]
dχ̃2 + dn2 , (57)

we find a corresponding Ricci scalar of the simple form

R⊥ = −2
{

κ2

κH

}
+

3

2

[gH ]φφ(z) ω2(z)2

κ2
H

. (58)

It should be noted that, in obtaining this last result, we had to expand
g(χ, χ) out to the fourth order in n [so that equation (38) is insufficient], as
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Now pick up the pieces (Maple) :

non-trivial contributions occur at this order as a consequence of the normal
derivatives.

In terms of the above formalism, the non-vanishing components of the
on-horizon Einstein tensor are now expressible as follows:

[Gχ̂χ̂]H = −1

2
R‖ − 1

2
tr[g2]− 1

4
[gH ]φφ

ω2
2

κ2
H

, (59)

[Gnn]H = −[Gχ̂χ̂]H , (60)

[Gẑẑ]H = −1

2
R⊥ +

[g2]φφ

[gH ]φφ

+
1

2
[gH ]φφ

ω2
2

κ2
H

, (61)

[Gφ̂φ̂]H = −1

2
R⊥ +

[g2]zz

[gH ]zz
, (62)

where the trace operation (depicted by tr in the first equation) has been
performed with the in-horizon 2-metric defined by equation (55).

It is easily confirmed that the above results correctly limit to their static
analogues (cf, [16]) as ω → 0. In spite of the obvious complexities that
arise for a stationary but non-static horizon, the current case is still, in
some sense, a simplification from the most general static formalism. This is
because the property of axial symmetry now implies that g‖ (and, hence, [g2]‖
in particular) is diagonal in the φ–z-coordinates. Thus, G‖ is automatically
diagonal, which was not necessarily true in the static case. On the other
hand, there are now extra contributions from ω2. Note that ΩH drops out
of the on-horizon Einstein tensor completely — this can be viewed as a side
effect of having a rigidly rotating horizon.

5 An alternative method: Bifurcate Killing
horizons

It has now been confirmed that the anticipated symmetries in the Ein-
stein tensor [namely, equations (52)-(54)] are valid at any stationary (non-
extremal) Killing horizon; but what is still lacking is a clear physical mo-
tivation for this phenomenon. Here, we will help fill this gap by providing
a relatively simple and physically compelling argument for this highly sym-
metric form. Although the upcoming analysis applies irrespective of axial
symmetry, there is one important caveat: We will now restrict considera-
tions to bifurcate Killing horizons. Which is to say, it will now be assumed
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This is a lot more explicit than before, and relates 
the on-horizon Einstein tensor to the on-horizon 
and transverse-horizon curvatures, plus surface

gravity,    plus a few derivatives...

This verifies, by explicit computation, the result of 
our general argument, and provides additional and 

specific information regarding the coefficients...

It also provides, almost for free, a new viewpoint 
regarding the zero’th law and the 

rigidity theorem.





Conclusion:

At any Killing horizon:

Gab|H = X gab + Yab

Gâ̂b|H =

 −X 0 0
0 X 0
0 0 X δ̂ı̂ + Yı̂̂



1

Gab|H = X gab + Yab

Gâ̂b|H =

 −X 0 0
0 X 0
0 0 X δ̂ı̂ + Yı̂̂



1

where the tensor        lies entirely within the horizon.

This purely geometrical statement strongly constrains 
the near-horizon stress tensor in a manner compatible 
with the existence of on-horizon CFT-like microstates,
supporting the idea of a generic low-energy basis for 

the Bekenstein black hole entropy.
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