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Abstract

Since the introduction of object-oriented programming few
programming languages have attempted to provide program-
mers with more than objects and classes, i.e., more than
two levels. Those that did, almost exclusively aimed at de-
scribing language properties—i.e., their metaclasses exert
linguistic control on language concepts and mechanisms—
often in order to make the language extensible. In terms
of supporting logical domain classification levels, however,
they are still limited to two levels.

In this paper we conservatively extend the object-oriented
programming paradigm to feature an unbounded number
of domain classification levels. We can therefore avoid the
introduction of accidental complexity into programs caused
by accommodating multiple domain levels within only two
programming levels. We present a corresponding language
design featuring “deep instantiation” and demonstrate its
features with a running example. Finally, we outline the
implementation of our compiler prototype and discuss the
potentials of further developing our language design.

Categories and Subject Descriptors  D.3.3 [Programming
Languages]: Language Constructs and Features; D.3.2
[Programming Languages]: Language Classifications—EXx-
tensible languages

General Terms Languages, Design

Keywords domain metatypes, ontological metamodeling,
deep characterization

1. Introduction

Among the factors responsible for the success of object-
oriented programming languages is certainly their ability to
extend the number of types available to programmers. In
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the days of FORTRAN, types such as ‘Complex Number,’
‘Fraction’ or ‘Book’ were either directly supported or had
to be emulated with the help of supported types. There was
no direct support for handling the creation and management
of multiple instances of a type and in combination with the
lacking support for data abstraction this caused program
structures that hardly reflected the corresponding domain
types. In contrast, object-oriented languages allow the use
of such types, as if they had been built-in into the language.

One way to analyze the reason for this advantage of
object-oriented languages is to interpret user definable types
as a feature of an extensible language. The natural conse-
quence then is to look into other ways of making a language
extensible. However, even though many attempts have been
made to create languages and systems with programmer con-
trol over their concepts and semantics [29], none of them
managed to attract the majority of programmers.

We argue that object-oriented languages are not success-
ful because they feature a form of extensibility, but because
they provide means for accurately reflecting the problem do-
main. They can thus be understood as allowing programmers
to achieve a “direct mapping” [30] from problem domain to
program structure. However, given that object-oriented pro-
gramming languages support only two levels (classes and
objects) for reflecting the logical domain classification lev-
els, obviously the “direct mapping” quality cannot be main-
tained if the problem domain involves more than two classi-
fication levels.

In this paper, we use a running example that features
three domain classification levels in order to demonstrate
how workaround techniques—that accommodate multiple
domain levels within two programming levels—introduce
accidental complexity into programs (section 2). After rec-
ognizing the need for deep characterization and explaining
our corresponding deep instantiation mechanism (section 3),
we then show how multi-level support and deep instantia-
tion can be integrated into a programming language and ap-
ply its features to our example (section 4). Subsequently, we
briefly describe our prototype compiler (section 5) and con-
clude with a discussion of related work (section 6) and the
potentials of further developing our language design (sec-
tion 7).



2. Multi-Level Programming

In this section we introduce the concept of domain classifi-
cation levels and demonstrate the accidental complexity in-
troduced by mapping multiple domain levels into two pro-
gramming levels.

2.1 Ontological Metamodeling

In order to understand
the difference between
metaclasses as used
in reflective languages
(targeting flexibility and
extensibility [13]) and
metaclasses used for represens
mirroring a multi-level 7 m
domain model in a pro- S
gram structure, it is
important to make an
explicit distinction be-
tween linguistic classification versus ontological classifica-
tion [23].

Fig. 1 uses the UML [34] notation for objects and classes
to show the relationships between a real product (the DVD
“2001: A Space Odyssey™), the object representing it (object
'2001") and their respective classifiers. Looking at ‘2001’
from a language perspective results in its classification as
an ‘Object’, since ‘2001’ constitutes the usage of the UML
concept ‘Object'?.

If one wants to under-
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Figure 1. Ontological vs Lin-
guistic Classification
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Space Odyssey”) and then DVD
determine the latter’s do- taxRate = 19
main type. In our example, p”“E:F/'zat
the domain type turns out A
to be ‘DVD’. The fact that netaeeor
in an object-oriented pro- domain
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gram object 2001" would 2001
have class ‘DVD’ reflects price = 19.95

that the “instance of” re-
lationship between objects
and their classes is of on-
tological nature. In other
words, the programming levels mirror the domain classifi-
cation levels.

In a reflective language, ‘DVD’ would be further clas-
sified as ‘Class’, i.e., the classification would change from
ontological (between objects and classes) to linguistic (be-

Figure 2. Three Domain
Classification Levels

L1n recent versions “Object” has been replaced by “Instance Specification”.
Here, we are sticking to “Object” for brevity and clarity.

tween classes and metaclasses) (see also section 6). In our
approach, we continue to use ontological classification.

Fig. 2 shows 'Product-

Type' as the domain type of 2001

‘DVD’ assuming that an on-

line store offers products of VO
various types, such as ‘Book’,
‘CD’, ‘DVD’, etc. Note that
‘ProductType’ is not a gen-
eralization of 'DVD', i.e., not 2001
the latter’s supertype, but its

type. Fig. 3 illustrates the -—\
difference between a super-
type (here ‘Product’) and
a type (here ‘ProductType’)
of ‘DVD’ using a 3D Venn
diagram notation in which
the third dimension is used
to denote instantiation. Fig- Meta

ures 3(a) & 3(b) graphically

depict that the set theoretic interpretations of instantiation
and specialization are the elementhood (€) and the subset
(<) relations respectively, showing types and their subtypes
as sets and their subsets.

It is easy to distinguish between the two cases, where a
concept X is either the type or supertype of a given concept
T, by using the following litmus test: Take an instance I
(here 2001") of T" (here ‘DVD’") and check whether it can be
regarded as an (indirect) instance of X. If yes (as is the case
with ‘Product’), then X is Ts supertype. If not (as is the
case with ‘ProductType’), then X is T”s type. In this case,
using absolute terminology, X may then be regarded as a
metatype (relative to I).

While one can easily come up with examples involving
further levels? giving rise to meta-metatypes and so forth,
three levels are already sufficient to demonstrate the diffi-
culties entailed by the necessity to accommodate multiple
domain levels within only two programming levels.

(a) Generalization

(b) Classification

Figure 3. Super vs

2.2 Workarounds

A number of design patterns such as the “Item Description”
pattern [12] or the “Type Object” pattern [20] testify to the
recurring need for representing structures like that of Fig. 2,
involving multiple domain levels, with only two program-
ming levels. As in our online store example, there is often the
need to have a dynamic type level, i.e., be able to introduce
new types such as ‘HD DVD’, ‘Blu-ray’, etc. at runtime. As
a consequence, these types cannot be mapped to classes, but
need to be represented at the object level. Fig. 4 shows the
generic structure of the “Item Description” pattern in which
‘a description’ plays the role of a type for ‘an item’ at run-
time.

2For instance, element ‘2001’ could be regarded as the type for all copies
of this movie that may differ in packaging, condition when sold used, etc.
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Figure 4. Item Description Pattern

Note that the ‘type values’ in Fig. 4 can be thought of as
being shared by all item instances, thus avoiding their repli-
cation (see Fig. 5 for an example). Even if replication would
be tolerable in terms of memory efficiency, the information
kept in ‘type values’ (e.g., on flight routes) should be avail-
able even if no instances (e.g., actual flights) exist at a par-
ticular point in time [24].

Since many object-oriented languages feature class at-
tributes (e.g., so-called “static variables” (sic) in JAVA), one
may adequately represent the structure of Fig. 2 without re-
sorting to the “Item Description” pattern, provided that there
is no requirement to introduce new types at runtime. How-
ever, if the number of domain classification levels exceeds
three, one has to use the “Item Description” pattern a num-
ber of times [20] to obtain the required classification depth,
even if all type structures are completely static.

Together with the “Property Pattern” the “Type Object
Pattern” [20] supports the creation of “Adaptive Object-
Model” / “User Defined Product” frameworks , i.e., the run-
time creation of types with a dynamic specification of their
attributes. In such scenarios, the “Type Object” pattern is ap-
plied twice in a “type square” [37]. The “Dynamic Template
Pattern” [27] addresses the potential need for inheritance be-
tween represented types.

2.3 Accidental Complexity

Given a two-level limitation, the above described design pat-
terns provide welcome guidance as to how one may work
around the limitation. However, ideally one should not be
forced to know the patterns and live with their implemen-
tation overheads. Fig. 5 depicts the application of the “Item
Description” pattern to our example®. More explicitly than
Fig. 4, it shows that two domain levels are squeezed into one
programming level, causing considerably overhead:

e the programmer has to deal with two forms of instantia-
tion, i.e., the built-in language instantiation and the “in-
stance of” ‘isOfType'/'isOf Type’ relationships between
language types and language instances respectively.

e the ‘isOfType’ between domain instances and domain
types must be emulated by the programmer. There is no

3 German taxation features two tax rates, depending on the product type.
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Figure 5. Squeezing Three Levels into Two

language support for making sure that domain instances
typecheck against their domain types.

¢ inheritance between types has to be emulated.
e late binding of methods calls has to be emulated.

e the programmer has to deal with pattern artifacts which
do not represent any element in the domain. While ‘Prod-
uct’, in principle, could be a useful generalization in the
domain, it may not be required at all. In Fig. 5, it is
mandatory and its primary purpose is to be a class for
objects that represent domain instances, since the latter’s
domain types are just objects themselves which cannot
instantiate or control other objects.

The above list clearly enumerates what has been coined acci-
dental complexity by Brooks [8]. It is complexity that is not
induced by the complexity of the problem domain, but arti-
ficially introduced by limitations of the solution paradigm.
The solution shown in Fig. 5 is a good example for a de-
sign that does not maintain a direct mapping (one of Meyer’s
modularity criteria [30]) to the problem domain that induced
it (see Fig. 2). Many of the built-in concepts of object-
oriented programming languages have to be emulated to cre-
ate a solution that is less efficient, more error-prone, and
most importantly, less easy to understand and maintain [4].
The preceding discussion should have made it clear that
language support for an unbounded number of programming
levels—in order to be able to mirror any number of domain
classification levels—would be very desirable. Fortunately,
one can expect programmers with proficiency in the use of
the object-oriented paradigm to easily adapt to a correspond-
ing language. After all, one can always look at an n-level



classification hierarchy with a (sliding) two-level window,
treating the upper level as classes and the lower level as ob-
jects. With such a relative perspective, the middle level of
Fig. 2 contains objects, created and controlled by the classes
above it. The fact that said elements are classes and meta-
classes respectively in an absolute sense, can be safely ig-
nored in understanding their relative relationships.
However, there is one issue that distinguishes an n-level
classification hierarchy from a simple stacking of two-level
building blocks, which concerns the notion of instantiation.

3. Deep Instantiation

In a two-level classification hierarchy the type level only
describes the instance level directly below it. As soon as a
third level is added, the question arises whether elements in
the top level may influence elements in the bottom level,
requiring control extending over two level boundaries, as
opposed to just one.

Indeed, our online store example already motivates the
desire of being able to control elements across more than one
level boundary. Consider Fig. 2 and imagine the introduction
of a new type, such as ‘Book’. The new type is guaranteed
to have a ‘taxRate’ property but whether or not it declares
a 'price’ attribute is left to the discretion of the programmer
or code introducing the type. Yet, online store code dealing
with objects that represent products in a generic manner
should be guaranteed to always find a ‘price’ property.

We refer to any mechanism allowing the presence of the
‘price’ property to be specified from two (or more) lev-
els above as achieving deep characterization. In contrast,
traditional object-oriented classification/instantation seman-
tics only achieves shallow characterization. Deep charac-
terization is required whenever one level should not only
govern the well-formedness (i.e., allowed relationships be-
tween and required presence of properties within elements)
of the immediate level below, but also make sure that the
latter prescribes some well-formedness rules for the level
below it (and possibly further on) as well. One well-known
application for deep characterization are so-called process
metamodels, used in the definition of software develop-
ment methodologies [10]. The designer of a process meta-
model (at level 2) wishes to constrain the creation of process
models (level 1), but in addition also needs to make sure
that process enactments (level 0) obey certain rules. For in-
stance, the process metamodel may want to enforce that task
enactments are guaranteed to have a ‘duration’ property.
Gonzalez-Perez and Henderson-Sellers achieve deep char-
acterization by employing powertypes [10]. In this section,
we are discussing an alternative mechanism, called deep in-
stantiation®, which was originally developed for addressing
issues in the UML infrastructure [3].

4We compare deep instantiation to powertypes in section 6.

3.1 Clabjects

Understanding how, using deep instantiation, one may influ-
ence elements beyond one level boundary is easiest if one
first introduces the notion of a clabject, an element that is
both class and object at the same time [2]. Consider the ele-
ments in the middle level of Figures 2 & 6. They are objects
(with corresponding ‘taxRate’ properties) with respect to the
level above them and classes (with corresponding ‘price’ at-
tributes) with respect to the level below them. In fact, ev-
ery element in a classification hierarchy has both an instance
facet (w.r.t. its object role) and a type facet (w.r.t. its class
role), with the exception of the elements at the bottommost
and topmost levels. Hence, it makes sense to abandon the
distinction between objects, classes, metaclasses, etc. and
simply regard them as clabjects which only differ in the level
they occupy. The same unification can be applied to (object)
properties and (class) attributes to yield the notion of a field.

In the following we will continue to use terms like “type”,
“class”, “subclassing”, “attribute”, etc., but note that in a
multi-level environment populated with clabjects the above
terms refer to roles and relationships that may occur at any
level. The term “class”, for instance, thus should be read as
“the type facet of a clabject” without any determination of
the absolute level it may reside on.

3.2 Potency

Whether a field corresponds to a traditional property or at-
tribute is governed by its associated potency value. A field
with a potency value of 0 indicates an object property which
has no influence on potential instances of its owning clabject
(see the ‘taxRate’ property of the L, elements in Fig. 6). A
field with a potency value of 1 indicates an attribute, which
specifies the presence of a corresponding object property for
all instances of its owning clabject (see the ‘taxRate’ at-
tribute of ‘ProductType’ in Fig. 6).

L2 ProductType?

taxRate! : Integer
price? : Float
A
«instar'nceOf»
1

L, !
Book? DVD?
taxRate® =7 taxRate® = 19
price?! : Float price? : Float
A A
1 |
«instanceOf» «instanceOf»
1 |
| |
Lo I I
MobyDick?® 2001°
price® = 9.95 price® = 19.95

Figure 6. Deep Instantiation



Deep instantiation conservatively extends traditional shal-
low instantiation by letting potency values range over inte-
ger values {0, ..., n} where n corresponds to the maximum
characterization depth required. Fig. 6 shows the same sce-
nario as Fig. 5, however, this time making use of three pro-
gramming levels and a potency value of 2 for field ‘price’ at
Lo, in order to guarantee the presence of a ‘price’ property
for objects representing products at L.

Note that not only fields have potency values but clabjects
as well. As a result, a programmer can control the instan-
tiation depth for a given clabject and, for instance, choose
a potency value of 0 in order to specify an abstract class
(i.e., a clabject at Ly), whose fields may have potency val-
ues > 0. At what level a clabject resides can be specified
explicitly but this is optional since we are assuming a dis-
cipline according to which only “instance of” relationships
can cross level boundaries and must not cross more than one
level boundary. With this assumption, “classification” is a
level-respecting relationship which implies that no ambigu-
ity w.r.t. level membership may arise [23].

3.3 Instantiation Semantics

Given the two unified concepts clabject and field it becomes
very easy to informally define the semantics of instantiation
which intuitively simply amounts to creating a copy of the
element (that is required to have level and potency values
> 0), considering only fields with potency values > 0, and
decreasing all level and potency values by one. We do not
present a formal semantics here since its verbosity does not
match the simple intuition behind deep instantiation.

4. Programming Language Integration

In this section we show how an unbounded number of pro-
gramming levels and deep instantiation can be supported by
extending JAVA to DEEPJAVA. DEEPJAVA is a conservative
superset of JAVA, i.e., every correct JAVA program is also a
correct DEEPJAVA program.

4.1 Clabjects and Potency

Since DEEPJAVA naturally supports class properties by
defining them through metaclass attributes, there is no need
for a special concept like “static variables” (JavA) or “class
variables” (SMALLTALK (see also section 6)).

Listing 1 shows how metaclass ‘ProductType’ from
Fig. 6 is specified in DEEPJAVA. Note that we use pretty
printing for potency values. Using a standard text editor, po-
tency values are entered and appear as in “ProductType~2".

Compared to Fig. 6, we have slightly changed metaclass
‘ProductType’ to use a ‘netPrice’ and let a ‘price’ method
compute the retail price by referring to the corresponding tax
rate for a particular product. Method ‘price?’ hence demon-
strates how product instances may access the tax rate of their
types. When reading the code for method ‘price?’ one must
realize that its potency value is 2, i.e., it becomes an ordinary

public class ProductType?
extends ProductCategory? {

public ProductType(String categoryName,
int categoryCount,
int taxRate) {
super(categoryName, categoryCount);

taxRate (taxRate );
}
int taxRate;
public void taxRate(int t) { taxRate =t; }
public int taxRate () { return taxRate; }

private float netPrice?;
public void price(float p)2 { netPrice =p; }
public float price ()2 { return netPrice x*

(1 + type.taxRate / 100f);
}

Listing 1. Metaclass Definition

method in instances of ‘ProductType’, such as ‘DVD’°. One
must therefore understand its execution from the perspective
of products, e.g., instances of ‘DVD". It is then obvious that,
in the body of ‘price?’, we need to navigate to the ‘type’ of a
product in order to obtain its ‘taxRate’.

Note that in our code example ‘ProductType’ has a super
clabject ‘ProductCategory’, which we are going to use in the
following (see Fig. 8 for a complete overview over all static
and some dynamic online store elements).

4.2 Dynamic Class Creation

Our online store distinguishes between various product cate-
gories, one of them being software items. Listing 2 shows in
line 1 how to create the new class 'Softwareltem’ with initial
values for its category name and the number of sold items.
The same ‘ProductCategory’ constructor was already used
in line 7 of listing 1.

DEEPJAVA class properties, such as ‘taxRate’, corre-
spond to SMALLTALK class instance variables [17], i.e., each
instance of a class has its own set of class properties. In the
context of our online store example a useful application for
them is to store the number of sold items in product types
(such as ‘DVD’, ‘Book’, etc.) respectively and aggregate
these individual subcategory counts in respective supertypes
(e.g., ‘Softwareltem’), and so forth. Listing 3 shows how
method ‘soldOne’ (from ‘ProductType’) not only updates
the count for subcategories (product types, such as ‘DVD’)
but also for categories (such as ‘Softwareltem’).

5Guaranteeing that ‘DVD’ instances understand the message ‘price’.
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ProductCategory{"Software Items", 333} Softwareltem extends Product’;

DigitalMedium{DVD_Player, "DVDs", 222, 19} DVD extends Softwareltem {

/I create Softwareltem

/I create DVD

"public String toString () {return name() +\" (\" + type.categoryName() + \")\" +

(promoProduct() == null 2 \"\"

¥

: \" —>\"+promoProduct());}"

Listing 2. Dynamic Type Creation

public void soldOne() {
categorySoldCount++;
superType (). categorySoldCount++;

Listing 3. Making Use of Unshared Class Properties

Note that attribute ‘categorySoldCount’ is defined in
‘ProductCategory’ so that all categories (such as ‘Software-
Item’) have a counter of items sold. However, only product
types (such as ‘DVD') have instances that can be sold, hence,
method ‘soldOne’ is defined in ‘ProductType'.

By using the option to specify a superclass for the new
class by stating “extends Product®”, in line 1 of listing 2, we
make the freshly created class a subclass of the preexisting
class ‘Product’. The latter simply defines a name attribute
and corresponding access methods. Intriguingly, one can
already tell by “Product®” in line 1 that ‘Product’ is abstract
(has potency value 0), since DEEPJAVA optionally allows the
declaration of potency values in use positions (as opposed to
defining positions) of clabject identifers.

Instead of using ‘Product’ as a superclass, we could
have also defined ‘name’ with potency value 2 at ‘Pro-
ductCategory'—achieving the same effect for ‘Software-
Item' instances—but we specifically introduced ‘Product’ to
demonstrate DEEPJAVA’S ability to combine dynamic clab-
jects with statically existing superclabjects.

If in a type creation (such as the one in line 1) the inter-
section between the superclabject features and the features
defined through the clabject type by virtue of deep instan-
tiation is not empty, the superclass definitions take prece-
dence, thus allowing programmers to override generic fea-
ture definitions for specific cases. In analogy to subclassing,
it is left to the discretion of the programmer to provide only
compatible—in the sense of subtyping [26]—redefinitions.

Lines 3-6 of listing 2 create a new class ‘DVD’ as a
subclass of ‘Softwareltem’ and Listing 4 shows how this new
class can be used to create ‘DVD’ instances.

DVD aso = new DVD();

aso.price(19.95f / (1 + aso.type().taxRate() / 100f));
aso.name(*'2001: A Space Odyssey");
aso.promoProduct(haChi_779);

Listing 4. Using a Dynamic Type

11
12
13
14

4.3 Dynamic Feature Creation

Lines 4-5 of listing 2 demonstrate DEEPJAVA’S ability to
equip dynamically created types with any number of new
attributes or methods defined in strings (which need not
be based on string constants). This language feature al-
lows the dynamic introduction of new clabjects with fea-
tures that were not anticipated at the time their types and
supertypes were defined. Obviously, this level of flexibility
does not come with typesafety. In our DEEPJAVA imple-
mentation (see section 5) we check the validity (syntax and
well-formed access to features) at runtime and this may re-
sultin an exception (e.g., ‘NoSuchMethodException’) being
thrown. Furthermore, if the new features do not override ex-
isting features then access to them cannot be typesafe, since
there is no static definition that may guarantee their pres-
ence. The ‘DVD’ example of listing 2 redefines a statically
known method which can be used in a typesafe manner, but
assuming we had additionally provided features regarding
the director of DVD movies in lines 4-5 of listing 2 then
listing 5 illustrates how one can make use of one of them.
Note the use of a ‘#’ instead of a dot before the method
name (supplied as a string value) in order to allow access
to a statically unknown feature and to signal the potential
failure of such an attempt.

try {
System.out.printin("Director of " + aso.name() +

"is " + aso#("director)());
} catch (Exception e) { e.printStackTrace(); }

Listing 5. Invocation of a Statically Unknown Method

4.4 Typeparameters

In line 3 of listing 2 we use the type ‘DigitalMedium’ (see
listing 6) which subclasses ‘Medium’, which in turn sub-
classes ‘ProductType' (see Fig. 8). Note that the constructor
for digital media features an additional argument compared
to that of product types/categories. By passing the clabject
‘DVD _ Player’ as a parameter to the constructor that creates
‘DVD’ in line 3, we demonstrate DEEPJAVA’s ability to not
only use types as values but also use these values in type
positions.

In listing 6 we can see that said first parameter of ‘Dig-
italMedium'’s constructor has type ‘HarwdwareType’ (an-
other subclass of ‘ProductType’). The idea is to be able



public class DigitalMedium? extends Medium® {

public DigitalMedium(HardwareType HT,
String categoryName,
int categoryCount,
int taxRate) {
super(categoryName, categoryCount, taxRate);
CrossPromoType = HT,;

}

final HardwareType CrossPromoType;
CrossPromoType recProd?;

public void promoProduct(CrossPromoType rp)? {
recProd = rp;

}

public CrossPromoType promoProduct()? {
return recProd;

3
¥

Listing 6. Genericity through Typeparameters

to link digital media types (such as ‘DVD') to hardware
item types (such as ‘DVD _ Player’) for cross promotion pur-
poses. This is why ‘DVD _ Player' is passed to the construc-
tor that creates ‘DVD’. The type ‘CD’ would link to type
'‘CD_Player’, etc. Note, however, that the ultimate motiva-
tion of the online store for doing this is to link up digital
media instances to hardware instances. In line 10 of list-
ing 4 the ‘DVD’ instance 2001’ is linked to a correspond-
ing ‘DVD _Player’ instance (referenced by ‘haChi_779’).
This call to ‘promoProduct’ only accepts arguments of type
‘DVD_ Player’ since the argument type ‘CrossPromoType’
has been instantiated to ‘DVD _ Player’ when class ‘DVD’
was created. This is the reason for declaring ‘CrossPromo-
Type' to be final in listing 6, i.e., make it immutable after it
has received its initial value by the constructor. Otherwise,
instances of 'DigitalMedium’ (such as ‘DVD’) would have
volatile type facets, in other words, clients could not assume
stable feature types.

In essence, the parameterization of ‘DVD’ to only accept
cross promotion items of type ‘Hardwareltem’ corresponds
to supplying a type argument to a generic class. In other
words, DEEPJAVA’s ability to use types as values and use
these values in type positions, creates an alternativ approach
to genericity. With types (at all levels and all potencies) as
first-class entities in place, there is no need to add another
genericity concept to JAVA. In fact, the approach followed
by DEEPJAVA leads to more powerful ways of using type
parameterization than afforded by Java-genericity including
wildcards.

4.5 Static Typing

A comprehensive discussion of the type system required
for the opportunities opened up by DEEPJAVA is out of
scope for this paper. However, Sections 6 & 7 elaborate on
the nature of the required type system to some extent. Our
compiler prototype (see section 5) currently implements a
pragmatic mixture between rejecting a large class of type
incorrect programs and admitting some which may or may
not produce runtime errors. Any type-related runtime error
is dealt with by throwing a corresponding exception, though.
As a result, the currently supported version of DEEPJAVA is
not “unsafe” in the sense that a type-related error may go
unnoticed or corrupt program execution.

We also chose to allow some features (such as the ability
to call statically unknown methods) in order to provide the
associated flexibility in favor of an approach that attempts
to discover all type-related errors at compile time. Note that
Java itself follows a similar philosophy, e.g., by allowing
downcasts which may fail.

In spite of all the dynamics introduced to types by DEgP-
JAVA, thanks to deep instantiation and the possibility for dy-
namic types to refer to statically known superclasses, it is
possibly to statically typecheck code as generic and flexible
as the one in listing 7. The following sections explain list-
ing 7 and discuss a compatibility issue arising in the pres-
ence of multi-level class hierarchies.

45.1 Abstract Type Declarations

The heading of this section is to be read as “abstract type-
declarations”, since we are introducing a way to declare a
variable type in DEEPJAVA that enables very generic code.
Line 15 of listing 7 declares an array whose element’s types
are only known to be an instance of ‘ProductType’. Line 21
of listing 7 uses the same declaration—in which “@” is to
be read as “value of”—for a single variable. These declara-
tions are abstract in the sense that the concrete type of the
referenced elements need not be known.

A similar argument could be made for using a supertype
(such as ‘Product’) of all the types one wishes to capture.
However, note that instances of ‘ProductType’ may be part
of a number of unrelated inheritance hierarchies. In contrast
to the supertype declaration using ‘Product’, the abstract
type declarations in listing 7 do not require these inheritance
hierarchies to have a common root. An abstract DEEPJAVA
type declaration is hence more generic, i.e., admits more
types, than traditional declarations using supertypes.

Listing 7 iterates® through a number of product type in-
stances and prints them (implicitly using their ‘toString’
method) and their prices to the standard output. Note that
this will cause the dynamically redefined ‘toString’ method
(see lines 4-5 of listing 2) to be invoked in the case of ‘aso’

6We cannot use JAVA’s “for each” syntax since our compiler currently only
accepts Java 1.4 syntax.



15
16
17
18
19
20
21
22
23

@ProductType products[] = {mobyDick, aso,
haChi_779};

System.out.printin("In stock:");

for (int i=0; i<products.length; i++) {
@ProductType p = products[i];
System.out.printin(p + " for " + p.price());

}

Listing 7. Using Abstract Type Declarations

which will then include a reference to the cross promoted
‘haChi_779' player.

By replacing ‘@ProductType’ with ‘ProductCategory’
and populating the array with ‘Softwareltem’, ‘Hardware-
Item’, ‘DVD’, ‘DVD _ Player’, etc., very similar code could
be used to flexibly provide information about the number of
sold items in various (sub-)categories.

4.5.2 Metaclass Compatibility

In a multi-level class hierarchy where intra-level subclassing
may occur at more than one level and such generalization hi-
erarchies may be connected by inter-level “instance of” rela-
tionships, two Upward Compatibility and Downward Com-
patibility rules must be obeyed in order to avoid runtime er-
rors [6]. In the following we rephrase these rules and explain
how they are implemented in DEEPJAVA.

Upward Compatibility: If a clabject C' of type T is
subclassed by another clabject C” (with type T7), i.e,
C' < C'then T" must offer at least the features that are
offered by 7. This rule is necessary to ensure that all
methods of C inherited by C’ (whose method bodies
may navigate to 7" and use its features) are guaranteed
to also work in C” (in which the same type-navigation
leads to 7).

Note that the “upward compatibility” rule is trivially ful-
filled if a class and its subclass have the same type. In par-
ticular, this is the case when they do not use any specific do-
main type, but just a generic DEEPJAVA type such as ‘class;’,

.., ‘class,’, which is available for every level n.

Downward Compatibility: If a clabject 7" has an in-
stance I (i.e., is not abstract) and is subclassed by an-
other clabject 7”7, i.e., 7' < T, then an instance I’
of T" must offer at least the features that T' expects
from I. This rule is necessary to ensure that all meth-
ods of T (which may create T-instances in a generic
fashion and then call their methods) are guaranteed to
also work in 7" (whose instances must then be able to
perform the same method calls).

With the usual definition C' < C (i.e., a class qualifies as
its own subclass), one can address the above compatibility

issues, simply by demanding ¢’ < C = type(C’) <
type(C), i.e., subclassing between two classes implies sub-
classing between their types (— upward compatibility) and
type(C’) < type(C) = C’ < C subclassing between
two classes implies subclassing between their respective in-
stances (— downward compatibility). Of course, the latter
rule only applies for C/C’ with level values > 0. In com-
bination, these two rules enforce parallel subclassing hierar-
chies, i.e., the approach followed in Smalltalk [17] (see also
section 6).

5. Prototype Implementation

The following sections briefly describe our approach to cre-
ating a prototype compiler for DEEPJAVA.

5.1 Compiler

DEeEPJAVA syntax, typechecking rules, and semantics are de-
fined by using the Polyglot compiler front end which makes
it very easy to define language extensions for JAvA [32].
It provides a JAVA 1.4 grammar and an extensible LALR
parser generator. In contrast to other parser generators
(e.g., JavaCC), Polyglot also supports the adaptation of
typechecking—the DEEPJAVA type system is a true exten-
sion of the JAVA type system—and code generation.

Compiling a DEEPJAVA program is a two-phase process.
First, DEEPJAVA-sources are typechecked and transformed
into JAvA-sources which implement DEEPJAVA semantics.
Second, the generated JAVA-code is compiled to JAVA byte-
code by the regular javac compiler.

Our decision to design DEEPJAVA as a conservative su-
perset of JAvA implies that we could not always realize our
first choice regarding additional syntax, because we needed
to avoid shift/reduce conflicts for the overall grammar that
the Polyglot parser could not handle. For instance, potency
values for methods have to be specified after the parameter
list, instead of after the method name, and we would have
preferred to use round or square parentheses for constructor
parameter lists. Yet, maintaining the compatibility with the
standard JAvA grammar and being able to draw on the Poly-
glot framework made it easy to tolerate these minor syntac-
tical deficiencies.

Our Polyglot front end generates JAVA code that imple-
ments DEEPJAVA semantics, but it does not support the dy-
namic creation of classes and their features. Even though
JAvA provides a class loader which can dynamically load
classes for execution, it is per se not possible to define
classes at runtime. However, the class loader may be used to
incorporate bytecode that has been dynamically generated at
runtime. This is the main idea behind the Javassist class li-
brary [11] which enables the definition and manipulation of
JAVA classes at runtime without requiring the programmer
to deal with bytecode directly. We therefore use Javassist as
a runtime support for the output of the Polyglot compiler in
order to enable the creation of classes and their features.
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Figure 7. Compilation Approach

5.2 Compilation Approach

Since the focus of this paper is on demonstrating the utility
of DEEPJAVA, as opposed to detailing the inner mechanics of
its prototype compiler, we only briefly allude to the general
compilation approach in the following.

For every type facet induced by a DEEPJAVA class defi-
nition, we generate a corresponding JAVA class. For exam-
ple, ‘ProductType’ from listing 1 induces two facet defini-
tions, one instance facet definition (featuring ‘taxRate’) and
one type facet definition (featuring ‘price’). We consequently
generate one JAVA class definition ‘ProductType’ for the
instance facet and another, 'ProductType$instance ¢’ for
the type facet (see Fig. 7). Had ‘Product Type’ declared fea-
tures with potency values of 3, we would have obtained a
third definition ‘Product Type$Instance$instance_c’, defin-
ing the potency 3 features, and so forth.

Each generated facet definition exclusively defines the in-
stance facet of its instances. For example, ‘Product Type’ de-
fines that its instances have ‘taxRate’ features. Each clabject
that may instantiate further clabjects (e.g., ‘DVD' in Fig. 7)
is provided with a reference to the type facet of its instances.
This type facet, again describes the instance facet of its in-
stances, here the fact that instances of ‘ProductType’ in-

stances have 'price’ features. The DEEPJAVA compiler au-
tomatically generates respective ‘typeFacet’ attributes, ‘set-
TypeFacet' methods, and‘newlnstance’ methods, in order to
support the creation of clabjects behind the scenes.

Note that dynamically created classes, such as ‘DVD’,
are also associated with corresponding JAVA runtime ob-
jects (here the element ‘DVD’ with the grey background)
that represent classes. Such class objects (instances of
‘java.lang.Class') are used for instance creation and can be
accessed via the JAVA reflection API. Hence, ‘aso’ is an in-
stance of ‘DVD’ but note that its DEEPJAVA type is ‘DVD’
so that type features such as ‘taxRate’ can be accessed.

The leftmost ‘DVD’ element is dynamically composed
from a number of sources, overriding of identical features
taking place in the following order:

e it implements its type facet definition interface. Fig. 7
shows the latter using the UML lollipop notation. As we
can only implement an interface (single inheritance may
be required for another class, see below), the features to
be implemented must be copied from the corresponding
source. Hence the ‘based on’ relationship from ‘DVD’ to
'ProductTypeS$instance c'.



e it inherits features from a static JAVA class ‘Product’,
due to the “extends Softwareltem” line 3 of listing 2.
We have excluded ‘Softwareltem’ from Fig. 7 for brevity
since it does not contribute any type facet features.

e the 'toString()’ method is added last, due to lines 4-5 of
listing 2.

Interfaces for type facet definitions are required for yet
another reason: Dynamically created DEEPJAVA classes
(such as '‘DVD") cannot be associated with any known spe-
cific type. Variables referring to instances of such classes
are therefore typed with the interface of the type facet def-
inition. In particular for abstract type declarations, such as
'‘@ProductType', said interface is required since it may be
implemented by a multitude of classes which need not have
a common concrete root superclass.

The above described use of interfaces implies that DEep-
JAVA programs may not directly access attributes with po-
tency values > 2, since JAVA interfaces do not permit the
declaration of attributes. However, we perceive this limita-
tion as a built-in feature to remind programmers of the loss
in encapsulation implied by using public attributes instead
of access methods to private attributes.

6. Related Work

Work on programming languages abounds with attempts to
equip programmers with meta-level descriptions (and possi-
bly further classification levels).

The meta-object protocol [21] for CLOS is probably the
prototypical example for the approach to use meta-level de-
scriptions in order to adjust the language to better suit the
needs of its users. In contrast to DEEPJAVA’S classification
levels, however, the CLOS meta level interface is not in-
tended to provide a direct mapping from domain classifica-
tion levels to programming levels, but to give programmers
control over basic programming mechanisms, such as slot
access, method dispatch, and multiple inheritance. This ap-
proach can therefore be used to support programmer-defined
additions such as asynchronous communication, exceptions,
pre/post conditions, etc. This intention is not specific to
CLOS but characteristic of a whole range of meta-level de-
scription approaches:

One of the key ideas is to provide at the metalevel
generic metacomponents describing standard OO lan-
guage features and their decomposition into basic
facets [13].

Some of these approaches also aim at describing class prop-
erties, but from a linguistic perspective, addressing proper-
ties such as being abstract, being final, supporting multiple
inheritance, etc. DEEPJAVA class properties, in contrast, are
purely ontologically motivated, i.e. derive themselves from
the domain (see, e.g., our ‘taxRate’ feature).

The most recent addition to the linguistic-control camp
is Aspect-Oriented-Programming [22] whose aspect defini-

tions can be understood as second order predicates ranging
over programs. AOP applications typically do not address
domain-related concepts but system-oriented ones, such as
the famous logging aspect. There is also work on so-called
“early aspects”, addressing cross-cutting concerns at the re-
quirements level, but in any event, aspects cannot help to
adequately accomodate an n-level domain classification.

SMALLTALK [17] features metaclasses which are onto-
logically motivated, i.e., represent class level properties in-
duced by the domain, but supports them in a very restricted
way only. Metaclasses are singletons (have only one in-
stance), and classes have exactly one anonymous metaclass
which can only be reached by sending a ‘class’ message to a
class. As aresult, SMALLTALK metaclasses enable program-
mers to deal with classes in the same way as with objects and
introduce the ability to define class level properties (analog
to the static features of JAVA classes), but do not offer any
further advantages. It is, for instance, not possible for two
classes to have the same metaclass or build hierarchies with
a classification depth > 2, since SMALLTALK metaclasses
just add an instance facet to the class level and there is no
way to define meta-metaclasses.

The OBJVLISP reflective architecture [14] introduces
the analog of the concept of a clabject, but again with-
out an ontological motivation, but to create a more uni-
form SMALLTALK classification hierarchy with the inten-
tion to control inheritance, internal representation of ob-
jects, caching techniques, etc. The same linguistic con-
trol motivation is characteristic of other attempts to extend
SMALLTALK, such as CLASSTALK [25].

NEOCLASSTALK [6] introduces an approach that ensures
upward and downward compatibility (see section 4.5.1)
without causing all the properties of a metaclass to be in-
herited by all its (transitive) subclasses. This is important
in the context of NEOCLASSTALK since metaclasses are in-
tended to introduce class properties, such as being abstract
or disallowing subclassing. This is why NEOCLASSTALK
puts an emphasis on “per class properties” and supports in-
dependent “property composition”. In our DEEPJAVA design
we do not require such an approach since it is—for our on-
tologically induced clabjects—desirable that (ontological)
clabject properties are transitively inherited.

BETA [28] also supports relative types, i.e, accessing type
values through attributes, and also uses a genericity mech-
anism that differs from parametric polymorphism as used
in Java 1.5. However, unlike DEePJAVA, BETA’s formal
generic type parameters (virtual classes) are not constrained
by a type (e.g., ‘HardwareType') but by an upper bound (e.g.,
‘Hardwareltem’) that may be further bound in redefinitions
until constrained to a single type value in a final binding. In
analogy to the discussion on DEEPJAVA abstract typ declara-
tions (see section 4.5.1), type variables constrained by a type
are more generic then those controlled by a supertype (upper
bound) because they may admit types from different inheri-



tance hierarchies. We have not yet fully explored all poten-
tial further differences between the different approaches, but
believe that the simplicity of DEEPJAVA’s approach—a uni-
form classification hierarchy were everything is a value and
genericity naturally drops out as a byproduct—is convincing
even without being more powerful.

In section 3, we have already mentioned powertypes as
an alternative to achieving deep characterization. Appar-
ently invented by Cardelli [9] and introduced to the model-
ing community by Odell [33], the powertype concept works
by establishing an “instance of” relationship between a
metatype M and all the subtypes C,...,C,, of a super-
type S. While Odell only used powertypes to motivate the
need for (and explain a way to) describe class properties, a
powertype M can be used to prescribe the properties of in-
stances of the C4, . .., C,,, by forcing their classes to inherit
the to be guaranteed properties from the supertype S.

Deep instantiation achieves the same effect more con-
cisely, since powertypes distribute the description of the in-
stance facet and the common type facet of the C1,...,C,
to M and S respectively. Using deep instantiation, one only
needs to declare the S features at M/ and increase their po-
tency values by one. No matter how deep the characteriza-
tion depth is, deep instantiation allows the concise descrip-
tion at a single concept. Powertypes, in contrast, require a
staged application of multiple powertypes and supertypes,
adding up to a complex whole.

Furthermore, powertypes require a superclass S (e.g.,
‘Product’) independently of its utility in reflecting the do-
main structure. Using deep instantiation, one has a choice
of either introducing S or not. Due to DEEPJAVA’s abstract
type declarations, S is not even necessary as a variable type
for generic code, since one may use (more flexibly) ‘@M.

However, if the introduction of S appears to be benefi-
cial for other reasons then we can achieve the semantics of
powertypes with DEEPJAVA by using ‘extends' relationships
with a potency value of 1. A standard ‘extends’ relationship
between two classes has a potency value of 0 because it links
two classes with each other without being transferred to the
class instances (which in JAvA would amount to inheritance
between objects).

Line 2 of Listing 8 shows how we have previously created
a dynamic class with a superclass reference to a statically
known class (‘Product’).

Il instead of
ProductCategory Softwareltem extends Product?;

/I with
class ProductCategory? extends® Product?;

/I we only need
ProductCategory Softwareltem = new ProductCategory();

Listing 8. Powertypes with Deep Instantiation

If we extend the definition of ‘ProductCategory’ as shown
in line 5 of listing 8, we are guaranteed that every ‘Product-
Category’ instance (such as ‘Softwareltem' or (indirectly)
‘DVD’) will subclass ‘Product’. Hence, we may then create
‘Softwareltem’ without manually linking it to the ‘Product’
superclass as shown in line 8 of listing 8. Unfortunately, due
to the desire to stay compatible with the plain JAvA syntax,
we cannot abbreviate this line to ‘ProductType{} Software-
Item;’.

‘Softwareltem’ may still be assigned a superclass upon
creation as in line 2 of listing 8 but DEEPJAVA’S type system
then demands the specified type to be a subtype of ‘Prod-
uct’, otherwise we would introduce a form of multiple in-
heritance. In summary, we can naturally achieve powertype
semantics with deep instantiation but powertypes cannot at-
tain the conciseness of deep instantiation.

Materialization is a relationship between two concepts
which can also achieve deep characterization and has been
introduced for modeling databases [18]. Fig. 1 from [18] and
in particular the account on materialization given by Pirotte
et al. [35], reveals that materialization can be explained as
using the same principles as powertypes. In terms of our
example, ‘Product’ x— (materializes) ‘ProductType’ holds,
and both concepts are used to control the type and instance
facets of instances respectively (see Fig. 3 in [35]).

ConceptBase [19] is a knowledge representation system
based on Telos [31] which supports an arbitrary number of
ontological classification levels. Due to its focus on knowl-
edge representation, as opposed to programming, and the
fact that one models knowledge in terms of propositions, it
apparently, as of today, did not influence the design of pro-
gramming languages.

There are approaches, e.g., METABORG [7] and META-
AsPECTJ [38], that support the static checking of strings
containing program code, for instance the one shown at
lines 4-5 of listing 2. In general, this feature helps to reject
improper string contents at compile time and thus avoid
runtime errors. However, note that in order to support a fully
dynamic creation of types, DEEPJAVA allows any dynamic
string content in the definition of a dynamic type. The string
value shown at lines 4-5 of listing 2 could have been typed
in by a user at runtime. Static checking could still be applied
to string constants, such as the one in listing 2, though.

7. Future Work

The main purpose of this paper is to motivate multi-level
programming and to present the basis of a supporting pro-
gramming language. To some extent deliberately but to some
extent also out of necessity we did not attempt to present
a complete language design. While our working prototype
compiler for DEePJAVA allows the parsing, typechecking,
and execution of exciting multi-level programs, such as our
running example, it does not yet address a number of issues.



The most interesting issues concern DEEPJAVA’S type sys-
tem and extensions thereof.

In section 4.4 we have demonstrated how DEEPJAVA can
support generic classes without requiring additional con-
cepts such as JAVA generics or BETA’s virtual classes. By
only allowing ‘final’ type parameters, we give the program-
mer and type system a chance to exploit static knowledge
about type parameters, since—although they are assigned
dynamically once—they are immutable. Although we have
not finalized our work on an appropriate type system that is
permissive enough to allow interesting programs and strong
enough to reject as many type-related errors at runtime as
possible, we are strongly influenced by the approach of the
GBETA language [15]. The latter demonstrates how static
typechecking is possible in the presence of types as values,
which can be accessed as pattern members, and virtual types
whose type is only known by an upper bound. GBETA hence
allows a number of intriguing applications, such as family
polymorphism [16]. Just to hint at how types as dynamic as
those of GBETA or DEEPJAVA are still amenable to a static
type discipline, consider the following example.

The type of ‘aso.promoProduct()’ is unknown at com-
pile time, since its owning class ‘DVD’ and the associated
‘CrossPromotionType’ (in this case ‘DVD__ Player’) are not
known before their creation at runtime. However, the re-
sult of ‘aso.promoProduct()’ can still be used in a type-
safe manner: Assuming a further method of class ‘DVD’,
‘playOn(CrossPromotionType)’, the following code is stat-
ically safe: ‘aso.playOn(aso.promoProduct())’ or alterna-
tively, ‘aso.playOn(new aso.CrossPromotionType())’.

We are currently planning to add dependent types to
DeerJAVA which would not only provide a more than satis-
factory solution for fully typing generic classes, but would
also solve the important problem of covariant redefinitions.
When a class redefines a superclass method, it must not re-
define the method arguments to be more specific, otherwise
either runtime errors may occur or polymorphism has to be
forbidden [1]. This is a problem since polymorphism is the
key to generic program structures, while programmers of-
ten find a need to strengthen the argument types of methods
upon redefinition (e.g., ideally the ‘equals’ method would
constrain its argument type to be the receiver type, the lat-
ter obviously becoming more specific in a subclass). Many
solutions have been proposed to this problem but the only
one that really adequately pins down the source of the prob-
lem and addresses it accordingly, uses a form of dependent
types [36]. We therefore expect to kill two birds with one
stone by fitting a type system based on dependent types onto
DEEPJAVA.

8. Conclusion

Most of today’s programs have a high level of inherent com-
plexity. Any accidental complexity that is additionally in-
troduced because the solution technology cannot accommo-

date an adequate representation of the problem is therefore
doubly unwelcome. In this paper, we argued that a number
of systems need to adequately reflect multiple levels of do-
main classification and that this is in conflict with the current
two-level limitation of the object-oriented paradigm. While
workaround techniques exist, documenting the need to ad-
dress this issue, they add a lot of accidental complexity to
programs by requiring the programmer to reinvent the wheel
in terms of emulating built-in mechanisms of the program-
ming language.

This is why the title of this paper paraphrases the ti-
tle of John W. Backus’s 1977 ACM Turing Award Lecture
“Can Programming Be Liberated from the von Neumann
Style?” [5] in wich Backus sought for ways of escaping an
imperative programming style based on single assignment
semantics, because he judged this solution technology to
only inadequately address the challenges of programming.

Although a large body of intriguing work successfully ex-
tended the original two-level design of object-oriented pro-
gramming languages to three or more levels, the focus hith-
erto has been on exerting linguistic control on classes. This
approach is useful for creating extensible languages and sys-
tems, but does not address the mismatch between the num-
ber of domain classification levels and the number of on-
tological programming levels. Our DEEPJAVA language de-
sign, in contrast, does not constitute an extensible language.
The capability to let the number of supported ontological
levels grow as desired is a fixed, built-in feature of the lan-
guage. Through conservatively extending the two levels of
programming and the associated shallow instantiation mech-
anism of the object-oriented paradigm to multiple levels
with an associated deep instantiation mechanism, we have
achieved several advantages. The DEEPJAVA language de-
sign

¢ enables a direct mapping of domain classification levels
to programming levels.

e allows the dynamic creation of classes and their features.
e integrates its dynamic features with static typing.

¢ supports deep instantiation as a concise mechanism for
deep characterization.

o offers abstract type declarations, thus achieving a level of
abstraction beyond powertypes and virtual classes.

o features a natural approach to genericity as a byproduct
of its uniform ontological classification hierarchy.

e is a perfect target for incorporating dependent types and
their ability to solve the covariance problem.

We are well aware of the fact that the current state of DEgP-
Java’s language design cannot be considered final. How-
ever, we hope that we have managed to impart our enthu-
siasm for its already existing advantages and its potential for
further development on to the reader.
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