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♦
A child

does not dis-
cover the world by

learning abstract rules.
Instead it learns by looking

at concrete examples. An example
contains the rules as well. In contrast to

rules, the recognition of examples can be based
on tangible reality. The knowledge extracted from

an example serves as a Pattern that is used to remember
facts and to construct new solutions. When grown-ups

are about to learn something or have to apply
unknown tools, they are put into a child’s

position again. They will favor concrete
examples over abstract rules. The

rules will happily be gen-
erated automatically,

for this is how
the brain

works.
♦
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Thesis

Design patterns inspired by functional programming concepts can advance object-
oriented design.

Problem

The object-oriented paradigm has undoubtfully raised our ability to design and
maintain large complex software systems. However, it does not seem to have meet
the high expectations concerning reuse and ease of evolution which have been pro-
moted ever since its commercial success.

There are many potential reasons for the above observation such as unquali-
fied staff, immature languages, inadequate methodologies, inappropriate business
processes, etc.

The view presented here is that although the object-oriented paradigm is a pow-
erful basis, it is incomplete in its inherent concepts and therefore restricts the design
space to inappropriate solutions. It is assumed that both software development and
language design are restrained from achieving their full potential when restricted
to a purely object-oriented world view.

Solution

Since the complementary paradigm to object-orientation is represented by func-
tional programming, I investigate high-level, well-known to work functional con-
cepts and examine their suitability to enhance object-oriented design. I explore the
software engineering relevance of each concept and present its intent, applicability,
implementation, and consequences in the literate form of a design pattern.

My approach clearly motivates functional techniques for object-oriented design
from a software engineering point of view. This is different to the usual procedure
of designing a new language with an “ad-hoc” conglomeration of functional and
object-oriented features. The latter case requires excellence in language design and
makes it hard to find out and evaluate uses of the new language.

In contrast, design patterns are already widely used to improve design. As func-
tional concepts constitute a powerful paradigm by themselves, it is more than sug-
gestive to assume that design patterns expressing successful functional concepts
will enhance the object-oriented paradigm with new capabilities.
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Contribution

Feasibility

I demonstrate the feasibility of using functional techniques in object-oriented de-
signs which are to be implemented by ordinary object-oriented programming lan-
guages. This is done at the level of a calculus comparison and in concrete design
pattern implementation descriptions. I demonstrate synergetic effects caused by
concept integration, which together with the advantages of functional patterns,
thus, show the utility of the approach.

Software production

Object-oriented practitioners hopefully will use the names of functional design pat-
terns as a vocabulary to discuss solutions in a new design space. I present a system
of patterns which are connected by relations that describe how individual patterns
may interact and collaborate with each other. This system, consisting of state-of-
the-art mini-architectures, may allow thinking and designing beyond restrictions
imposed by a dogmatic object-oriented approach. As a result, the quality of soft-
ware is hoped to improve.

Language Design

Using functional patterns for object-oriented design can be regarded as dual-
paradigm design. In this light, functional design patterns appear as language id-
ioms that lift an object-oriented language to a dual paradigm implementation lan-
guage.

It is very instructive to verify how well an object-oriented language supports the
implementation of these idioms, since limiting properties are expected to interfere
in other attempts to produce flexible and maintainable software as well.

Unless one is restricted to use a certain existing language, it is, however, only
natural to consider direct language support in order to avoid the repetitive im-
plementation of these idioms. A holistic language that encompasses both object-
oriented and functional paradigms should provide more ease of use, increased
safety, better initial execution efficiency, and higher optimization potential.

I consider each presented design pattern for its contribution to language con-
structs that support a dual paradigm language. The software engineering consid-
erations, contained in each design pattern description, help to avoid “featurism” in
favor of conceptually founded language principles.

Ultimately, impulses initiated by the functional pattern system lead to a reeval-
uation of the role distribution between a programming language and its associated
environment. The result allows transcending the limitations of each paradigm by
providing the optimal paradigm view on demand.
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Prologue 1

Prologue

A paradigm is not a dogma.
– me

P
aradigms define ways to perceive the world. Is a cannery a hierarchi-
cal structure of functions defined on passive data, or a set of interacting
active objects, or a web of concurrent processes? In analogy to theories,

the value of a paradigm is determined by the usefulness of creating models accord-
ing to it. A paradigm, therefore, is a means to an end. In software development
the goal is to avoid semantic gaps inbetween analysis, design, and implementation
while achieving reusable components, extendable applications, and maintainable
software.

Motivation

During its now three decades spanning history, the object-oriented paradigm has
proved to be tremendously useful as a basis for development methodologies and as
an implementation strategy. Object-oriented languages are truly general purpose
languages since they may conquer any domain by defining the appropriate abstrac-
tions. Domain specific libraries or frameworks enable designers to define and use
application languages, specifically tailored to model particular domains [Hudak96].
Application languages avoid an impedance mismatch between analysis and imple-
mentation. Object-oriented languages to a large extent allow a natural definition of
application languages with the help of class abstractions. They, hence, enable a
so-called middle-out development [Ward94], where one team implements the appli-
cation language while another builds the application on top of it. It appears to be
almost certain that object-orientation will not cease as a dead end in the evolution
of programming and design paradigms.

However, there are signs of a disintegrating kingdom. The fact that the
next Kuhnian paradigm shift [Kuhn70] is overdue [Quibeldey-Cirkel94] is not
a strong indication, but in 1994 an issue of BYTE magazine devoted to compo-
nent software shook the object-oriented community by stating that object-oriented
technology failed to keep its promises and that VISUAL BASIC-like, component
oriented languages offer higher productivity [Byte94]. Subsequently, the func-
tional paradigm scored higher in analysis suitability [Harrison et al.94] and the
supremacy of the object-oriented paradigm was found to be “an open research
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issue” [Menzies & Haynes95]. Further competition appeared promoting “Subject-
oriented programming” [Harrison & Ossher93, ObjectExpert97].

It is not my intent to refute alternative approaches to be futile, but this thesis
makes a definite statement that first, object-orientation is still well in the game and
second, should be the basis for an evolution rather than a revolution. But why did
object-orientation not live up to its promises? A possible answer is given the the
August 1995 issue of IEEE COMPUTER:

“Poor design is a major culprit in the software crisis.” – Bruce W. Weide

Or, more elaborate:

“But simply using an object-oriented programming language or environ-
ment does not, in itself, guarantee miraculous results. Like any other human
endeavor, software design is an art: discipline, hard work, inspiration, and
sound technique all play their parts. Object-oriented technology has much to
offer, certainly. But how may it best be exploited? [Wirfs-Brock et al.90]”

– Rebecca Wirfs-Brock et al.

This question is still unanswered as evidenced by the 1997 call for papers of the
OOPSLA ’97 workshop “Object-Oriented Design Quality”:

“Despite the burst in the availability of OO analysis and design methodolo-
gies, languages, database management systems, and tools, relatively little work
has been done in the area of OO design quality assurance, assessment, and
improvement. We badly need a better understanding of the properties of OO
system design, in the small and in the large, and their effect on quality factors
such as maintainability, evolvability, and reusability.” – Rudolf K. Keller

Design patterns [Gamma et al.94], i.e., the documentation of successful mini-
architectures, are hoped to be part of the solution to the persisting design problem.
They can be used to hand down design excellence from experts to novices. Indeed,
pattern books may contribute to make software engineering a true engineering sci-
ence by representing engineering handbooks containing known to work solutions.
In fact, patterns can make software more reusable, allow reusing of design, aid in
designer communication, and can be used in teaching good design.

Paradigm integration

While object-orientation and design patterns — the buzzwords of the eighties and
nineties respectively — receive a great deal of attention, it got rather quiet around
a field which has mostly been of academic interest only: Functional programming
is known for its elegance but also has the reputation of being an academic toy only.
Quite often the desirable features of functional programming are believed to be
inaccessible from other programming language types.
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“Functional programming can not, apart from modest attempts, be applied
with algorithmic programming languages in common use1 [Schneider91].”

– H. J. Hoffmann

Especially higher-order functions, i.e., the ability to support closures, are a desir-
able feature, believed to be absent in programming languages like C++, EIFFEL,
and so on [Baker93, Kofler93, Gamma et al.94].

Continuing attempts to explain potential benefits of functional program-
ming [Hughes87], this thesis uses the literate form of design patterns to capture
the benefits of functional concepts and idioms. It, therefore, demonstrates the fea-
sibility of supporting a functional programming style in the above mentioned lan-
guages. Of course, it is not possible to turn stateful languages into pure functional
programming languages. This is not intended, however.

“This discussion suggests that what is important is the functional program-
ming style, in which the above features are manifest and in which side effects
are strongly discouraged but not necessarily eliminated. [Hudak89].”

– Paul Hudak

Although some of the functional patterns to be presented introduce restrictions to
gain safety, they are intended to be additions rather than constraints to existing
object-oriented practices.

Prior to the formulation of patterns an analysis of the two paradigms is per-
formed with the view to embed functional programming into the object-oriented
paradigm. This is, as such, a valuable endevour.

“We need to find, generalize, and integrate similarities in programming
languages. Otherwise, there will be a proliferation of concepts which nobody
will be able to overview and understand [Reynolds96].” – John C. Reynolds

In addition to that, the world of object-oriented design is enriched with the func-
tional paradigm. The result is a multi-paradigm design space. The author is in
good company in his belief that multi-paradigm programming will play a crucial
role in the future:

“. . . mixed language working — “integration of programming paradigms”
is an important theme [Hankin et al.97].” – Chris Hankin et al.

A multi-paradigm toolkit does not only represent an enhanced choice of tools but
also enhances the tool user.

“Research results from the psychology of programming [Petre89] indicate
that expertise in programming is far more strongly related to the number of dif-
ferent programming styles understood by an individual that it is to the number
years experience in programming [Budd95].” – Timothy Budd

1Translated from German.
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This can be explained by the fact that the available notions of a particular program-
ming language restrict the solution space of a designer who is familiar with this
language only.

“Wir müssen den starken und unbestreitbaren Einfluß unserer Sprache auf
die Art unseres Denkens erkennen. Mit ihr wird in der Tat der abstrakte Raum
definiert und begrenzt, in dem wir unsere Gedanken formulieren, ihnen eine
Form geben.” – Nicklaus Wirth

In the context of this thesis it is appropriate to interpret the term “Sprache” (lan-
guage) as “paradigm”. The single paradigm possibly implied by even a group
of programming languages, thus, restricts designers that are familiar with this
paradigm only. The introduction of functional patterns, hence, enlarges the de-
sign space of formerly pure object-oriented designers. Interestingly, this is possible
without requiring them to learn a new language, since the functional patterns are
expressed with well-known object-oriented concepts.

The attempt to capture functional concepts as patterns, evaluate their software
engineering properties and then document them as parts of a engineering hand-
book for design, is in tune with the primal definition of science.

“It is my aim to first enumerate experience and then to proof with reason
why it must act in this way.” – Leonardo da Vinci

Design patterns can be a blessing for design practitioners but they are also
often testimony to the weaknesses of implementation languages or underlying
paradigms [Baumgartner et al.96, Seiter et al.96, Norvig96]. A further lesson to be
learned from the functional pattern system is, therefore, how to better support it in
future languages.

Hints on reading

The “Newsreader” approach to this thesis is to read chapter “Thesis” on page iii
only. A more comprehensive quicktour is obtained by adding the prologue on
page 1 and epilogue on page 261. Anybody interested in a glance at the patterns
may take a pattern quicktour by reading chapters catalog on page 85 and collab-
oration on page 221. Design practitioners, however, will savor the whole pattern
system part starting on page 85.

Chapters of interest to language designers are the calculus comparison on
page 45, the analysis of paradigm integration on page 55, and the whole language
design part beginning on page 233.

Chapters functional programming on page 9, object-orientation on page 29, and
design patterns on page 69 are meant as an introduction to the uninitiated but also
serve to establish and clarify terminology.
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1 Functional programming

T
his chapter introduces functional programming and defines some terms
that are used in later discussions. I explain the underlying worldview
(section 1.1) and the most important concepts (section 1.2 on the next

page). Finally, section 1.3 on page 17 enumerates pros and cons of functional pro-
gramming.

1.1 Worldview

The functional paradigm suggests to regard everything as an expression. This
can be seen as the logical conclusion from FORTRAN (mathematical flavor
through expressions), to functions in PASCAL, to expression oriented style in
SCHEME [Hudak89]. Since the value of mathematical expressions does not change
over time, there is no need for any notion of state. Also, there is no need for control
flow, because the order of expression evaluation has no impact on the final result
(as long as partiality is excluded).

The most important type of expression is called function application, i.e., some
data is fed into a function and the function produces a result. We might say “The
functional paradigm suggests to regard everything as a function” and loose only a
little bit of truth. In fact, it is possible to model everything with functions only (e.g.,
with the pure λ-calculus [Barendregt84, Hankin94]), but functional programming
languages typically provide built-in primitive data structures and operations.

Apparently, functional programming corresponds to two outdated software
paradigms: On a small scale the transformation of data with functions corresponds
to the Input/Processing/Output model [Pepper92], which has been replaced by
more modern views such as distributed computation and event-triggered behav-
ior. On a large scale the structuring of a program into a hierarchy of functions
corresponds to structured analysis and design, which has been replaced by entity-
relationship or object-oriented decomposition techniques.

The above should not create the impression that functional programming is
of no use anymore. On the contrary, we will see that data transformation and
functional decomposition are still very useful concepts. Also, apart from the on-
going academic interest in functional programming languages (e.g., [Hudak96,
Gostanza et al.96, Läufer96]) the rise of new parallel computer architectures adds
importance to languages with a strong potential for parallel execution models.
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1.2 Concepts

The following sections are meant to briefly introduce concepts in functional pro-
gramming. For a more thorough discussion and also for a history of functional
programming languages the reader is referred to [Ebert87] and [Hudak89]. Some
readers may miss the concepts of polymorphism, strong static typing, data abstrac-
tion, and garbage collection. These are not discussed since they can be regarded as
orthogonal to language paradigms. Equally, all these concepts have been adopted
by both functional and object-oriented languages. Type inference is not paradigm
specific either but has not been successfully applied to object-oriented languages
yet and therefore will be a stimulus for the extension of object-oriented languages
(see part III starting at page 233).

Subsequently, I will use the syntax of the functional language HASKELL to de-
pict functional concepts. The notation is very intuitive, but you may want to refer
to an introduction like [Hudak & Fasel92].

1.2.1 Functional decomposition

I already mentioned the correspondence between functional decomposition and
structured analysis and design. A program is viewed as a main function, that is
decomposed into more functions with less work to accomplish (see figure 1.1).

Main Function

Decomposition FunctionDecomposition Function

Decomposition FunctionLibrary Function

Operations Operations

Figure 1.1: Functional decomposition

By functional decomposition I also include the separation between functions
and data, i.e., the tools and materials metaphor. New functionality typically does
not require to change existing data structures. It is simply added with external
functions operating on top of existing data structures. However, changes to data
structures often require to change existing functions. As functions depend on data,
they must be adapted to properly react to, e.g., new constructors. See [Cook90] for
a technical and Chapter 12 of [Meyer88] for a software engineering discussion of
functional versus object-oriented decomposition.
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1.2.2 Reduction Semantics

Computations within a functional programming language are performed just like
reductions in a calculus. Instead of altering an implicit state with instructions, com-
putation is defined as the reduction of expressions. Intuitively, we can think of a
reduction step as a replacement of a term with a simpler term1. For instance:

1+2+4 =⇒ 3+4 =⇒ 7

Reduction does not always mean simplification in a naı̈ve sense, i.e., expressions
may as well grow in size in intermediate steps:

(1+2)2 =⇒ (1+2)∗ (1+2) =⇒ 3∗3 =⇒ 9 (1.1)

Yet, reduction is guaranteed to produce a unique so-called normal form, if it ter-
minates at all2. An expression in normal form cannot be reduced any further and
is what we intuitively think of as the value of an expression. Uniqueness of nor-
mal forms for the untyped λ-calculus is guaranteed by the Church-Rosser Theorem
I [Hudak89].

In addition, the normal form may be reached through every possible reduction
order, e.g.,

(1+2)2 =⇒ (3)2 =⇒ (3)∗ (3) =⇒ 9 (1.2)

yields the same result as the above calculation. We have to be more precise if errors
(e.g., division by zero) or non-termination may also occur. For instance,

False∧ (1/0 = 1) =⇒ False

but only if logical conjunction (∧) is non-strict, that is, does not evaluate its second
argument unless necessary. Here, the reduction order used in reduction 1.2 called
applicative-order reduction3 would not produce the normal form “False”, but pro-
duce a division by zero error.

Fortunately, normal-order reduction4, the strategy used in reduction 1.1, always
yields the normal form, if it exists. This is stated by the Church-Rosser Theorem II
for the untyped λ-calculus [Hudak89].

Reduction results, as well as any other expression, are immutable values.
Adding an element to a list produces a new list copy with that element appended.
Furthermore, the result is not distinguishable from a second list with identical el-
ement order that was obtained in a different way (e.g., by removing an element),
that is, values have no identity. This is a remarkable property. To see why, consider
the following (non-HASKELL) code:

1Though this view is a crude oversimplification it suffices for our purposes here.
2Termination is not guaranteed in general. However, there are special systems like the simply

typed λ-calculus, the polymorphic typed λ-calculus, system F, and languages like FP that even
guarantee termination.

3Evaluate arguments first; then apply function (just like call-by-value parameter passing).
4Evaluate function first; then arguments (akin to call-by-name parameter passing).
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x := 1+6
y := 2+5

Here are some questions (adapted from [Appel93]):

• Is x the same 7 as y?

• If we modify x does y change?

• Do we need a copy of 7 to implement z := x?

• When we no longer need x how do we dispose of the 7?

You rightfully consider these questions as silly but what about posing them again
in a different context?

x := aList.add(anItem)
y := aList.add(anItem)

We can conclude that numbers have value semantics5 and many “silly” questions
arise when reference semantics, i.e., references, mutable objects, and identity come
into play.

For our purposes we may recall reduction semantics to mean:

1. No implicit state→ No side-effects→ Great freedom in reduction order.

2. No mutable objects nor identity→ Aliasing is not an issue.

1.2.3 Higher-Order Functions

Functions are first-class values often called first-class citizens. A function can be an
argument to another function (downward-funarg) as well as be the result of another
function (upward-funarg). An example for passing a function as an argument is the
mapfunction:

map f [ ] = [ ] (1.3)
map f (x : xs) = ( f x) : map f xs (1.4)

It applies a function to all elements of a list. Hence,

map(+ 1) [1,2,3] =⇒ [2,3,4]

and

[”House” , ”Boat” ]
map(”my” ++)6

=⇒ [”myHouse” , ”myBoat” ].

5Even in imperative languages!
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Thus, downward-funargs are a perfect means to achieve behavior parameteriza-
tion.

Let us look at a very basic function for an example of returning a function,
namely function composition:

compose f g = λx→ f (g x)7.

From two functions f and g a new function is produced that applies g to its argu-
ment and then applies f to the result of the former application. So,

7
compose(+ 21) (∗ 3)

=⇒ 42,

since the result of 7 multiplied by 3 added to 21 yields 42. The composefunction
is an example for a functional, i.e., higher-order function, since it takes functions
as arguments and produces a new function. Returning functions makes it easy to
define new functions by a combination of existing functions. An interesting varia-
tion of creating a new function by supplying less parameters than needed is called
partial application and uses a curried8 function: Given

add x y = x+y

several functions can be defined by supplying only one of two parameters:

inc = add1

dec = add(−1)
addTen = add10

inc 98 =⇒ 99

dec3 =⇒ 2

addTen1 =⇒ 11.

In fact, currying is possible with runtime values. We may create a function
addXby supplying add with a number from user input. The function inc actually
represents a closure. It represents function add but carries the value of x with it.
Another typical way to create a closure is by capturing the value of a free (or global)
variable as in

let y= 13 in

λx→ add x y.

Here we created a function that will add its argument (x) to 13. Variable y is said
to be a free variable in the scope of the λ abstraction, as its value is determined by
the function’s environment rather than by a function parameter (Functions with no
free variables are also called combinators). Closures are truly functions created at

6(+1) and (”my” ++) (append) are called sections and denote the partial application of “+” to 1
and append to ”my” respectively.

7λ builds a function abstraction and binds a variable (in this case x) to the value that will be
received by a later function application.

8Named after the logician Haskell B. Curry, who used the notation f x y to denote ( f x) y, previ-
ously written as f (x,y).
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runtime which is also documented by the fact that they cannot be optimized by
partial evaluation [Davies & Pfenning96].

The essence of the above is that higher-order functions provide more possibil-
ities than functions normally do in imperative languages. In C, for instance, one
can pass and return function pointers, but without a means to capture environment
values. PASCAL allows closures as downward-funargs but (for reasons of language
implementation) not as upward-funargs. With true first-class functions, however,
the modularity of programs can be enhanced significantly [Hughes87].

1.2.4 Lazy evaluation

Most programming languages have strict semantics. We already got to know this
type of evaluation strategy in section 1.2.2 on page 11 as applicative-order reduction
and it is also known as call-by-value parameter passing. Yet another name for it is
eager evaluation. Here is why: Given

select x y = x

we may obtain a reduction sequence like

select1 (2+3) =⇒ select1 5 =⇒ 1.

The intermediate result 5 was computed although it was subject to be thrown away
immediately. Even worse, eagerness may not only cause unnecessary work to be
done it can also prevent the computation of meaningful results. Just imagine a
non-terminating expression or (1/0) in place of (2+3). The result would be non-
termination or a division-by-zero error, though the result 1 would be perfectly rea-
sonable.

The solution is to use normal-order reduction, akin to call-by-name. With a
non-strict selectfunction the reduction sequence becomes

select1 (2+3) =⇒ 1,

which is both faster and safer. Indeed, almost any programming language contains
at least one non-strict operator/statement in order to allow recursion or choice of
side-effects. Typically, it is an if-statement that does not evaluate its branching ar-
guments until one can be chosen.

Nevertheless, we already have seen an example when lazy evaluation causes
more work than eager-evaluation. If you compare reduction sequence 1.2 on
page 11 using eager evaluation to reduction sequence 1.1 you will note that it needs
one addition operation less. The problem was created by duplicating an expression
(by unfolding exponentiation to multiplication) which also duplicated the compu-
tation amount. Alas, all we need to do is to record the duplication and to share com-
putation results. Speaking in calculi terms we replace string reduction by graph
reduction. Then, reduction sequence 1.1, becomes
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(1+2)2 =⇒ (• ∗ •)
↘↙︷ ︸︸ ︷

(1+2)

=⇒ (• ∗ •) =⇒ 9

↘↙︷︸︸︷
3

causing (1+2) to be evaluated only once. The combination of normal-order reduc-
tion and sharing of expression results is known as call-by-need.

With call-by-need we may not only save some computations we may even re-
duce the computational complexity of algorithms. Let us obtain the minimum of a
list by first sorting the list and then retrieving the first element:

min xs = hd ◦ 9sort xs

When we implement sorting with insertion-sort [Bird & Wadler88] the complexity
of algorithm min with eager evaluation is O(n2), n being the number of elements
in the input list. With lazy evaluation the complexity of min is reduced to O(n),
since insertion-sort finds the first element of the sorted list in O(n) time and sorting
of the rest of the list does not take place, as it is thrown away by the application
of hd. In effect, what is thrown away is a function closure that could produce the
rest of the list — item by item — if demanded. We can directly transfer the above
observation for the implementation of Kruskal’s algorithm for minimal spanning
trees. This algorithm uses a sorted list of edges to construct a minimal spanning
tree of a graph [Aho & Ullmann92]. If the number of edges in the original graph is
large compared to the number of edges needed to constitute the resulting spanning
tree it pays off to use lazy sorting (e.g., lazy quicksort) that just sorts as much as is
requested by the algorithm [Okasaki95a].

Besides efficiency improvements, lazy evaluation opens up the world of infinite
data structures. A definition like

ones = 1 : ones

is not possible with a strict version of cons (:)10. There would be no reasonable use
of ones, in that every function accessing it would not terminate. With a lazy cons,
however, the above definition provides an infinite number of ones. Only as much
ones as needed are produced, e.g.,

take5 ones =⇒ [1,1,1,1,1].

We can even perform infinite transformations as in

twos = map(+1) ones

( =⇒ [2,2,2, . . .]).

A more useful definition is the list of all prime numbers:

primes = sieve[2, . . .] (1.5)
sieve(p : xs) = p : sieve(filter (( 6= 0)◦ (mod p)) xs) (1.6)

9Infix notation for the composefunction of section 1.2.3 on page 12.
10This operator produces a list by appending the second argument to the first.
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The algorithm uses the famous Sieve of Erathostenes11 and filters all non-prime
numbers by testing an infinite amount of generated numbers ([2, . . .]) against all
already found prime numbers. Most importantly, it relies on an infinite supply of
numbers to test against and produces an inexhaustible list of prime numbers. There
is no need to speculate about the highest number a client could possibly request for.

Summarizing, we keep in mind that lazy evaluation avoids unnecessary non-
termination or errors by creating a network of data dependencies and evaluating
just that and nothing more. A considerable amount of computation can be spared
this way to the amount of reducing the complexity of algorithms. Computation
complexity, thus, may not depend on an algorithm’s nature, but on its usage, i.e.,
which data in what order is requested. Finally, lazy constructors allow for infinite
data structures [Friedman & Wise76]. Lazy functions imply lazy data but there are
languages like HOPE that provide lazy data only in order to avoid non-strict seman-
tics for functions [Burstall et al.80]. The reason for this is to avoid closure creation
for suspended function applications and to retain an applicative order reduction,
e.g., for side-effects or easier debbuging.

Anyway, lazy evaluation, similar to higher-order functions, can significantly
enhance the modularity of programs [Hughes87], as they free data generators from
knowing about the specifics of consumers. Termination control can be shifted to
the consumer as opposed to a conventional mix of generation and control.

1.2.5 Pattern Matching

Pattern matching is a typical example for syntactic sugar. Instead of testing for
argument values within the function body, e.g.,

fac n = if n == 0 then1

else n∗ fac(n−1)
or

fac n = case n of

n == 0→ 1

n> 0→ n∗ fac(n−1)

we may write:

fac0 = 1

fac(n+1) = (n+1)∗ fac n.

Along with the idea of using equations as part of the syntax, pattern matching adds
much to the declarative nature of functional programs. All case discriminations are
clearly separated from each other and the implicit assembly of partial function def-
initions is very appealing. Note, however, besides a possibly psychological factor
there is no real software engineering significance associated with pattern matching.
The expressive power of a language [Felleisen91] is not augmented with pattern
matching in any way.

11Eratosthenes was a Alexandrian Greek philosopher in the third century B.C.
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1.2.6 Type inference

Among the many innovations of ML [Milner et al.90, Wikström87] was a type sys-
tem that liberated a programmer from explicitly declaring the types of expressions.
For instance, the type system would automatically infer the type of function map
(see definition 1.3 on page 12) to be

map :: (a→ b)→ [a]→ [b], (1.7)

that is, a function from type a to b and a list of elements of type a is used to produce
a list with elements of type b. This is an example of parametric polymorphism, that
is, a single function definition works in the same way for many types.

A strongly and statically typed language with type inference ensures the ab-
sence of any runtime type errors without putting any declaration burden on the
programmer. For each expression the most general (so-called principle) type is
computed. With explicit type declarations a programmer might over-specify types
and thereby unintentionally narrow the use of a function. For instance, someone
programming functions on integer lists may type mapas

map :: (Int→ Int)→ [Int]→ [Int],

thus, excluding many other possible applications of map.
There is a different view on this matter that argues that type declarations are

not just a service to compilers but constitute a part of the programs documenta-
tion and even constitutes an albeit weak specification contribution. The nice thing
about type inference is that it allows a mixed style, i.e., explicit type declarations
overrule computed types and affect the type inference of associated expressions. In
effect, in the presence of type declarations the type system performs type checking,
comparing the inferred with the declared type.

Like pattern matching there is no real impact of type inference in comparison
with type checking on software designs. Notwithstanding, the impact of the read-
ability of programs should not be underestimated. An example how type declara-
tions can get in the way of an otherwise clean syntax is LEDA [Budd95].

1.3 Review

The following two sections give a subjective assessment of functional programming
from a software engineering point of view.

1.3.1 Pro

Pointers are like jumps, leading wildly from one part of the data structure to another.
Their introduction into high-level languages has been a step backwards

from which we may never recover.
– C.A.R. Hoare
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We already highlighted functional concepts (e.g., higher-order functions and
lazy evaluation) and their ability to improve software properties (e.g., modularity
of programs) in the preceding sections. Now, we turn to the foundations of func-
tional programming and its positive implications.

1.3.1.1 Programming Discipline

We can think of functions as a disciplined use of gotos [Dijkstra76] and parameter
binding as a disciplined use of assignment. In this light, the absence of imperative
control structures and side-effects is not regarded as inhibiting expressiveness but
as a discipline for good programming [Hudak89].

Referential Transparency Representing computations in terms of expressions
promotes the specification of problems and establishes data dependencies rather
than giving an over-specified algorithm and execution order. That is why func-
tional languages are considered to be declarative. Maintaining programs is facil-
itated by the fact that equals may be replaced by equals, i.e., equivalent expres-
sions can be interchanged without regard for introducing interferences through
side-effects.

Furthermore, the absence of side-effects makes programs much more amenable
to parallelization. With regard to the multi-processor and massive parallel architec-
ture designs trend in hardware there is a great demand for languages with a high
potential for parallel execution.

Finally, correctness proofs are much easier in a language with reduction seman-
tics. Imperative languages require an additional calculus such as Dijkstra’s pred-
icate calculus or Hoare’s weakest preconditions. Program transformations can be
proven to be correct almost as easily as manipulating mathematical formulas.

1.3.1.2 Concise programs

Functional programs are typically shorter than their imperative counterparts; at
least given an appropriate problem domain which is amenable to a mathematical
description [Harrison et al.94].

Short Syntax The most important operation in functional programming — func-
tion application — is denoted as juxtaposition, that is, it does not need any syn-
tactical elements! This economy in syntax pays back in short programs. Also, the
frequent use of manifest constants reduces the amount for preliminary initializa-
tions. In

take5 (filter even[1..]) (1.8)

we need five characters to denote an infinite list of integers. The creation of a
new function by composing two existing functions (filter and even) solely requires
a space. There is even no need for bracketing, since function application associates
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to the left. For the very same reason, we actually need to bracket the list argu-
ment for take, i.e., this time we need a space and parentheses in order to express the
sequencing of functions12.

The fact that the above short program involves the concepts of

• infinite data structures,

• lazy evaluation (by list construction, filter and take),

• higher-order functions (passing the predicate even), and

• type-safe instantiation of polymorphic functions (especially specialization of
takeand filter to integers)

clearly witnesses the expressiveness of functional programming syntax.
Another useful syntactical shortcut, inspired by mathematical notations to de-

fine the contents of sets, are list comprehensions:

[x∗y | x← [6,9..],y← [1..9], odd y]

denotes a list of all products between two lists ranging from one to nine (but odd
numbers only) and from six to whatever number is reached by picking numbers in
steps of three. Note that due to the nesting semantics of ‘,’ in list comprehensions
the first list produces unique numbers only while the second recycles again and
again.

Compositionality As there is just one world of expressions in functional pro-
gramming rather than two worlds of expressions and statements like in imperative
programming [Backus78] the composition of program parts is especially easy. The
result of calling filter in program 1.8 on the facing page is simply passed on to take
without a need for a communication device. Compare the program fragments in
figure 1.2. The functional version much more clearly expresses the intent of the

l1.add(’a’)
l2.add(’b’)
l1.concat(l2);
Result:=l1;

versus (′a′ : l1) ++ (′b′ : l2)

Figure 1.2: Comparison between imperative and functional style

program, does not need to pass the result via l1 , and leaves l1 and l2 intact for
other uses.

During the examination of program 1.8 on the facing page we have already
seen that not only values but also functions may be “glued” together13. A nice

12Another way for writing the same function is (take5)◦ (filter even) [1..].
13By the simple fact that functions are values too, i.e., first-class expressions.
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demonstration of composing programs (parsers) with higher-order functions is
given in [Hutton92].

Yet another type of gluing is enabled by the use of lists as a paradigmatic data
structure. Many types of data structures in functional programming are modeled
with lists, e.g., sequences, sets, flattened trees, etc14. An instructive example is the
modeling of a chessboard by a list of numbers in the eight queens problem: Find
a configuration of eight queens on a chessboard such that no queen threatens an-
other [Bird & Wadler88]. The full program incrementally produces solutions with
increasing board sizes [Wadler85], but we only look at the function that checks
whether a new queen can safely be put on column n given a board configuration p
(list of taken columns).

safe p n = and[not (check(i, j)(m,n)) | (i, j)← zip([1..#p], p)] (1.9)
where m= #p+1

For the reason that only column positions are stored, whereas rows are implicitly
encoded in list positions, safehas to construct one position for the new queen (col-
umn n & row m) and reconstruct one position tuple for all old queens respectively.
The latter part is accomplished by (zip) that joins the column positions with a gener-
ated list of row positions. All thus reconstructed position tuples are checked against
the new position, yielding a list of safeness indicators. This list of booleans is then
reduced to a single boolean result by and. The use of zip and andwas possible only
by using a list to model column positions and using a list of safeness indicators.

Many standard functions take and produce lists and, therefore, can be often
reused for purposes as above. The list effectively serves as a lingua franca between
functions.

As a final example for the elegance of functional programming have a look at
the definition of the famous quicksort algorithm.

quicksort[ ] = [ ]
quicksort(x : xs) = quicksort(filter (< x) xs)

++[x] ++
quicksort(filter (>= x) xs)

The idea of the algorithm (to conquer by dividing the problem into the concatena-
tion of two lists and a pivot element) almost springs to the eye of the reader. A typ-
ical imperative solution (using nested while-statements to pre-sort the list in-place)
almost gives no clue about the design idea.

Assuming that concise programs are faster to write the compactness of func-
tional programs translates to increased programmer productivity [Ebert87].

Despite their shortness functional programs are often said to execute ineffi-
ciently. However, experiments with a heavily optimizing compiler for the strict

14Lists are used as the single and universal data structure in John Backus’ FP language [Backus78].
Many functions are just there to navigate values to their right position in lists.
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functional language SISAL show that functional programs can be faster than FOR-
TRAN [Cann92] and programs that require complicated and expensive storage man-
agement in C may run faster in a ML implementation with a good garbage collec-
tor [Clinger & Hansen92].

1.3.2 Contra

Purely applicative languages are poorly applicable.
– Alan J. Perlis

The more light there is, the more shadow one might expect. Indeed, a part of the
same aspects that we mentioned in favor of functional programming can be turned
into counterarguments from a different perspective.

1.3.2.1 Functional decomposition

Functional decomposition works fine for the tools and materials metaphor when
programming in the small. Also, a decomposition based on actions and trans-
formations can often be more intuitive than some entity-relationship organiza-
tion [Moynihan94]. On the other hand, it is difficult to assign a “main function”
to any large system and any choice is likely to be invalidated some time. A func-
tional decomposition is inherently instable, since the topmost functions are not
grounded in the problem domain and are subject to change whenever new re-
quirements occur. Additionally, often systems are expected to cope with new data
which demands to accommodate all affected functions. Precisely these reasons led
to the redemption of structured analysis and design by object-oriented methodolo-
gies [Meyer88].

1.3.2.2 Reduction semantics

The very same feature — renunciation of state — that gives functional program-
ming its strength (absence of side effects) is responsible for its main weakness (lack
of updates).

“How can someone program in a language that does not have a notion of
state? The answer, of course, is that we cannot. . . [Hudak89].” – Paul Hudak

Of course, Hudak goes on explaining that functional languages treat state explicitly
rather than implicitly. Passing around state for clarity and modeling references by
indirection is fine but some serious problems remain.

Essential State

Felder sind physikalische Zustände des Raumes.
– Albert Einstein
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We perceive the real world as consisting of objects which change over time. Real
objects have identity and state. There is a great impedance mismatch between re-
ality and software solution if we have to, say, deal with copies of a pressure tank
every time pressure or temperature changes. Modeling a bank account with fair ac-
cess to multiple users is a problem in functional languages [Abelson & Sussman87].
In fact, the problems to model state with a feedback model [Abelson & Sussman87]
(see also figure 1.4 on page 28) and the prospect to incorporate functional pro-
gramming into an object-oriented approach with a functional design pattern sys-
tem caused the MUSE project to cancel the use of the functional programming
language SAMPλE [Henhapl et al.91, Deegener et al.94, Jäger et al.88, Kühnapfel93,
Kühnapfel & Große94].

Something fundamental and innocent looking as simple I/O has been a hard
problem for functional languages. Many models, such lazy streams, continuation
semantics, and systems model [Hudak & Sundaresh88, Gordon93b, Gordon93a]
have been proposed to overcome the discrepancy between a referential trans-
parent language and I/O side effects. Hudak gives examples of the above
I/O styles [Hudak89] and although imperative syntax is mimicked they look
very un-intuitive and cumbersome to someone used to plain I/O statements.
Recently, a step forward has been made by employing so-called monads for
I/O [Jones & Wadler93, Carlsson & Hallgren93]. This model has also been adopted
for the latest revision for HASKELL. It remains a matter of taste whether such a
treatment of I/O state is conceived as natural or unacceptable.

A related area, also suffering from lack of updates, are cyclic data structures
(e.g., cyclic graphs). While these are easily and elegantly expressible in functional
programming updating them is very inefficient, since there is no way around re-
building the whole cycle15. One circumvention is to emulate pointers with mutable
arrays (e.g., in HASKELL) [van Yzendoor95], but then we start to experience a mis-
match between paradigm (imperative) and language (functional) used.

Especially reactive systems, furthermore, demand a notion of event. An image
recognizing robot must stop improving its assumptions when some movement is
absolutely necessary. Functional languages cannot express such time-dependent
planning, since an event interrupt implies execution order, which has no meaning
in a functional program [Meunier95a].

Howbeit the tasteful use of a goto may improve a program [Knuth74] it is
not difficult to do without goto altogether. To renounce implicit state, how-
ever, appears much harder. Although, monads may emulate backtracking, non-
determinism, exceptions, and state, in sum —

“. . . it is true that programming with updates is a proven technology, and
programming entirely without them is still ‘research’ [Appel93]16.”

– Andrew W. Appel

Monads especially do not seem to allow decoupling and structuring state in a sys-
tem.

15Unless the whole data structure is single-threaded which can be difficult to prove.
16Appel already knew about Monads and cites [Wadler92].
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Desirable State Arrays are often used due to efficiency considerations. Yet, func-
tional programming languages must conceptually copy whole arrays for single up-
dates. Only if the compiler can detect a single threaded array use it can use efficient
destructive updates [Wadler90, Odersky91, Jones & Wadler93]. Monadic arrays are
guaranteed to be single threaded, though.

It is very convenient to side-effect a result cache, e.g., to reduce the runtime
complexity of

fib 1 = 0

fib 2 = 1

fib n = fib (n−1) +fib (n−2)

from O(en) down to O(n). There are purely applicative version of memoiza-
tion [Keller & Sleep86], but to overcome limitations like expensive quality checks
on lists more advanced approaches are necessary. Hughes’ so-called lazy memo-
functions are not syntactic sugar anymore, since an identity predicate — normally
not provided by a functional language — is required [Hughes85].

“The interesting thing about memoization in general is that it begins to
touch on some of the limitations of functional languages — in particular, the
inability to side effect global objects such as caches — and solutions such as lazy
memo-functions represent useful compromises. It remains to be seen whether
more general solutions can be found that eliminate the need for these special-
purpose features [Hudak89].”

– Paul Hudak

There are more function definitions like the fibonacci function definition above that
look beautiful but are hopelessly inefficient. Often the culprit is the ++ operator
which takes time linear to the size of its left argument. So, instead of

reverse[ ] = [ ]
reverse(x : xs) = (reverse xs) ++ [x]

one should apply the accumulator technique [Burstall & Darlington77,
Bird & Wadler88] and use

reverse = rev [ ]
rev acc[ ] = acc

rev acc(x : xs) = rev(x : acc) xs.

This version of reverse is O(n) instead of O(n2) but undoubtedly lost clarity as well.
For the very same reason the nice formulation of displaying a tree

showTree(Leaf x) = show x

showTree(Branch lr) = ′′ <′′ ++ showTree l++ ′′|′′++ showTree r++ ′′ >′′

should be replaced by a less nice version using shows[Hudak & Fasel92].
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Transformations aimed at efficiency like the accumulator technique or tail-
recursive functions often destroy the clarity and beauty of initial solutions17: One
cannot really speak of declarative programming, concise programs, and mathe-
matical specifications in view of the tweaked definition of a function to produce
permutations:

perms[ ] tail res = tail ++ res

perms(x : xr) tail res = cycle[ ] x xr tail res

cycle left mid[ ] tail res = perms left(mid : tail) res

cycle left mid right@(r : rr ) tail res = cycle(mid : left) r rr tail

(perms(left ++ right) mid : tail res)

fastperms xs = perms xs[ ] [ ]

“Functional languages etc. do of course abstract away from more of the
machine-level details than do imperative ones, but real programs in any lan-
guage contain a great deal of ‘how’. The nearest thing I know to a declarative
language in this sense is Prolog, as described in lecture 1. Unfortunately, lec-
tures 2. . . n follow :-) [Sargeant96a].”

– John Sargeant

So, unfortunately a lot of the over-specification of “how” to do things that could
be left out in nice formulations must be given later in case more efficient version
are needed. Note that the definition of quicksort(see definition 1.10 on page 20)
compares each element twice for creating two new input lists. A more efficient
version using an auxiliary split function already appears less clear. Beyond this, the
combination of result lists with append (++) is very inefficient again in time (adding
an O(n) factor) and cannot compete with the in-place sort of the imperative version
(zero space overhead).

Beyond aesthetical considerations there appears to be a class of algorithms that
are inherently imperative causing one to end up asymptotically worse without im-
perative features [Ponder88, Hunt & Szymanski77].

Just to achieve O(1) complexity for insertion and deletion of elements in list — a
triviality in imperative programming — some tricky machinery has to be employed
in functional programming [Okasaki95c].

Also, some algorithms have a very intuitive imperative form. In John Horton
Conway’s Game of Life cells need to count the number of inhabited neighbor cells.
One approach is to iterate all cells and determine their neighbor count by testing
all adjacent cells (see functional version on the left of figure 1.3 on the next page,
needing eight tests).

17Evil imperative programmers might remark that they do not care whether their programs are
amenable to transformations, since they get acceptable efficency at once and functional programs
need to be transformable because of the poor performance of initial versions.
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!?

Figure 1.3: Functional and imperative LIFE

Alternatively, one may list
inhabited cells only and in-
crease (by a side-effect) the
neighbor count of all adjacent
cells (see imperative version on
the right of figure 1.3, needing
just three18 updates).

Unavoidable State Again, it
is not possible to circumvent
state. Ordering of actions in
imperative solutions translates
to ordering of data dependen-
cies or nesting in functional
solutions. Consider Joseph
Weizenbaum’s Eliza program. One part of it needs to replace words in order to
use User input for Eliza’s questions. Given the input list inpsand the replacement
list reps—

inps = [” i” , ”am” , ” i” , ”says” , ”Eliza” ]
reps = [(”you” , ” i”),(” i” , ”you”),(”am” , ”are”)]

— you are invited to convince yourself which of the following two expressions
(substitute1 or substitute2) does the correct substitutions:

replace org(from, to) xs = if org == from then to else xs

replace′ (from, to) org = if org == from then to else org

substitute1 = map(λw→ foldr (replace w) w reps) inps

substitute2 = foldr (λ p→map(replace′ p)) inps reps.

The above problem is akin to the considerations to be made when you have to
determine the order of list generators in a list comprehension. Unless the correct
nesting is specified the result will not be as desired.

While one of the above alternatives is wrong there is another example of two
correct but nevertheless different solutions: To calculate all possible chessboard
configurations of eight queens that do not threaten each other (see the correspond-
ing ‘safe’ function in definition 1.9 on page 20) both programs queensand sneeuq,
with the relation

queens m= map reverse(sneeuq m),

need the same time. Notwithstanding, sneeuqis ten times slower in producing just
one solution [Bird & Wadler88]. This effect is due to the order relevance of steps

18In general, the number of neighbors, which is usually low.
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that produce potential solutions to be tested. An unfavorable order causes much
more invalid configurations to be tested19.

Another example how ordering corresponds to nesting are monads used in con-
junction with folds [Meijer & Jeuring95]. The functions foldr and foldl replace list
constructors with functions. When an associative function (together with an iden-
tity element) is used the choice of foldl and foldr does not affect the result20 but is
made according to runtime characteristics. However, when the function is, say, a
state monad the result will be affected, akin to an imperative left or right traversal
of a sequence with side-effects.

Finally, if one needs to model references, e.g., to represent sharing of nodes in
a graph, of course aliasing may occur just as in imperative languages. In this case,
the danger is much more concentrated and explicit in a functional program, but
nevertheless, unavoidable.

In conclusion, treating state explicitly does not make reasoning about state eas-
ier. It only may make reasoning about programs easier, which — though of course
desirable in itself — is not the same as the former.

1.3.2.3 Deceptive Clearness

Functional programs often look very nice but a deeper inspection frequently re-
veals unexpected behavior.

Inefficient lists Given the often weak performance of algorithms using lists it
appears unfortunate that much reuse is gained by representing data structures
with lists and using standard list functions for processing and interconnection (see
paragraph Compositionality in section 1.3.1 on page 17). Moreover, often abstract
datatypes are more appropriate for encapsulating data and providing natural op-
erations. For instance, a representation of a list of columns for a chessboard con-
figuration (see definition 1.9 on page 20) is fine but should be encapsulated by an
abstract data type.

Machine lurks below Albeit transformations such as (a+b)+c =⇒ a+(b+c) are
possible and valid one should not be surprised if floating point results are affected
in case machine arithmetic rounding effects come into place. Also, the illusion of
a mathematical world is destroyed when recursion does not terminate and, thus,
causes the control stack to overflow. In fact, the problems aligned with uncontrolled
user defined recursion (unproved termination, necessity for inductive proofs, un-
known time and space complexity, hindrance of automatic optimization) have been
a motivation for the so-called Squiggol school to allow a fixed set of recursive com-

19The author once wrote a backtracking program to generate a solution for the well-known soli-
taire game. A different ordering of north, east, south, and west moves caused a one megahertz 6502
processor to conclude in 30 seconds while an eight megahertz 68000 processor calculated for 2 days.

20First duality theorem of folds [Bird & Wadler88].
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binators only [Bird & de Moor92, Meijer et al.91]. This research direction towards a
more algebraic notion of functional programming demonstrates that

1. reasoning about general recursion is not easy and

2. there is a need to optimize the time and space efficiency of functional pro-
grams.

Pattern Matching Often, nice definitions as

pred0 = 0

pred(n+1) = n

are shown but one should not be mislead to believe that the automatic inverse
calculation of operands is possible in general. The n+ k pattern is just a special
case and often one will need to decompose arguments with functions as opposed
to patterns.

In lazy languages subtle effects may occur:

f 1 1 = 1

f 2 = 2

behaves differently than

g 1 1 = 1

g 2 = 2

because f 2 ⊥ 21 yields 2 but g ⊥ 2 yields⊥ [Hudak89], i.e., contrary to intuition
pattern matching depends on the ordering of arguments. The same applies to the
ordering of patterns which is crucial for the correct definition of the function. By
exchanging the first two patterns of take

take0 = [ ]
take [ ] = [ ]

take(n+1) (x : xs) = x : take n xs

one can tune a preference for possibly getting a result though the numeric argu-
ment (or alternatively the list argument) is not available (i.e., ⊥). Other subtle ef-
fects of pattern and argument ordering caused by pattern matching are discussed
in [Hudak89]. HASKELL uses a top-to-bottom left-to-right ordering of patterns and
arguments. Note that this imposes restrictions for compilers. They are no longer
free to evaluate arguments in any order.

21“Bottom” is used to denote “error” or non-termination.
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init

resps

reqs
client server

Figure 1.4: I/O feedback model

Laziness meets pattern matching also in
case of circular dependencies: HASKELL’s
I/O model was based on a feedback loop
defined by

reqs = client init resps

resps = server reqs

The associated function definitions
are [Hudak & Fasel92]:

client init (resp: resps) = init : client (next resp) resps

server(req : reqs) = process req: server reqs.

Before client has issued a request it already “pattern matches” for a response. Pat-
tern matching causes evaluation and subsequently a deadlock. Note that the more
conventional version without pattern matching

client init resps = init : client (next(head resps)) (tail resps)

would work! For these and other cases HASKELL provides a lazy pattern matching
operator.

Sometimes pattern matching works but causes unexpected inefficiencies: The
definition of merge sort

merge[ ] ys = [ ]
merge xs[ ] = [ ]

merge(x : xs) (y : ys) = x : merge xs(y : ys), x<= y

y : merge(x : xs) ys, x> y

splits the heads from input lists only to reassemble them in two branches respec-
tively [Buckley95]. HASKELL allows naming patterns, e.g., merge xs′@(x : xs) ys′@(y :
ys) in order to use xs′ for a recursive call for merge, thereby adding another special
option to pattern matching. This option introduces a further subtlety: Actually, the
type (given in parentheses) of

data Sum a b = L a | R b

copyr(R b) = R b (:: Sum a b→ Sum a c)

is different to

copyr r@(R b) = r (:: Sum a b→ Sum a b),

since the former definition amounts to a reconstruction [Okasaki95b].
An interesting collection of typical problems students encounter when learning

functional programming is given in [Clack & Myers95].
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2 Object-orientation

Computing is viewed as an intrinsic capability of objects
that can be uniformly invoked by sending messages.

– Adele Goldberg

T
his chapter introduces object-orientation and defines some terms that
are used in later discussions. I explain the underlying worldview (sec-
tion 2.1) and the most important concepts (section 2.2 on page 31). Fi-

nally, section 2.3 on page 38 enumerates pros and cons of object-orientation.
In this dissertation I restrict myself to class based languages like C++, EIFFEL,

and SMALLTALK. There is another interesting class of so-called delegation based
or prototyping languages like SELF which use a dynamic type of inheritance and
renounce classes. However, classless languages are not in widespread use and one
of my aims is to improve the practice in object-oriented design.

2.1 Worldview

The object-oriented paradigm suggests to decompose systems in autonomous ob-
jects. Autonomous means an object

1. represents a complete entity. It is not just material or tools but both at once.

2. has a self-supporting state. It manages and keeps its state without needing
support.

3. provides self-sustained operations. In case it refers to other objects it does not
matter to clients.

In terms of real world modeling objects represent real world objects and capture
their identity, state, and behavior. In terms of software decomposition each object
can be regarded as a little computer inside the computer.

“For the first time I thought of the whole as the entire computer and
wondered why anyone would want to divide it up into weaker things called
data structures and procedures. Why not divide it up into little comput-
ers. . . ? [Kay96]”

– Alan Kay
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So, object-oriented systems have a less hierarchical but a more collaborative nature.
Even when reducing complexity by decomposition it is not done at the expense of
the power of the parts.

“The basic principle of recursive design is to make the parts have the same
power as the whole.” – Bob Barton

In a purely object-oriented languages there are no free functions that are defined
on objects. Every function must be part of a data abstraction. Hence, an object-
oriented systems bears no resemblance to an Input/Processing/Output model but
constitutes a network of interactive events and responses.

Objects can be thought of as abstract datatypes. This correspondence is fine
with regard to real world modeling but from a software engineering perspective
we have to take a closer look. Abstract datatypes define functions on constructors,
i.e., provide data abstraction. Objects, distribute operations to constructors, i.e.,
provide procedural abstraction [Cook90]. An object operation implicitly knows
the constructor it operates on, since it is tied to its definition. A function on an
abstract data type has to distinguish between constructors first. That is why, it
is hard to introduce new constructors to abstract datatypes (all functions must be
extended) and easy to just add a new object. Conversely, it is hard to add a function
to objects (all objects must be changed) and easy just to define a new function for
all constructors.

Note, that most object-oriented languages allow using classes for both abstract
datatypes (hide representation of implementation) and procedural abstraction (dis-
tribute constructors to subclasses and bind dynamically). In any case, objects are
accessible only via the operations they provide. These are invoked by so-called
message sends (or method calls).

Object-orientation not only decomposes complex systems into smaller parts cor-
responding to real world entities, but also captures these entities in a taxonomy of
inheritance relationships. Inheritance may denote:

BIRDMAMMAL

WHALE PIG

ANIMAL

VULTURE

Figure 2.1: Object-oriented taxonomy
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Is-a The heir is of the kind of its ancestor (also referred to as specialization inher-
itance). This relationship classifies entities, similar to the classification of
animals in zoology1 (e.g., Whale is a Mammal ).

Subtype The heir can be used whenever the use of its ancestor is appropriate Heirs
conform in interface and behavior and provide monotonic extensions only.
This is also known as the Liskov Substitution principle [Liskov & Wing93] (e.g.,
a Vulture can be used whenever a Bird is expected).

Code reuse Heirs inherit code from their ancestors (also known as subclassing).
Either through directly re-exporting inherited features or by their use for the
definition of new features heirs may exploit ancestor code (e.g., Pig may reuse
code templates of Mammal ).

CAR

SPORTSCAR

VEHICLE

Figure 2.2: Ideal
inheritance

Ideally, these three types of inheritance coincide (see fig-
ure 2.2), but normally they are in conflict with each other. For
instance, a IntegerSet is-a Set but it is not a subtype, since
clients may want to insert strings. Furthermore, Set may in-
herit code from HashArray but neither is-a nor subtyping are
accurate [LaLonde & Pugh91].

The object-oriented worldview can be said to rule the soft-
ware engineering world. Since its birth through SIMULA in
1967 it became the programming language and methodology
paradigm [Rumbaugh et al.97] of choice. There was a 60% in-
crease in SMALLTALK uses in 1993–1994 [Shan95] and today it is
even used in embedded systems like oscilloscopes [Thomas95].

2.2 Concepts

The following sections are meant to briefly introduce concepts of object-oriented
languages. For a more thorough discussion the reader is referred to [Wegner87,
Wegner90, Beaudouin-Lafon94] for technical matters, to [Nelson91] for a clarifica-
tion of terms, and to [Meyer88, Nierstrasz89, Jacobson et al.94, Booch94] for soft-
ware engineering and system development relevance.

Subsequently, I will use the syntax of the object-oriented language EIFFEL in
order to depict object-oriented concepts. The syntax is very clean and intuitive,
but you may want to refer to a definition [Meyer92], introduction [Racko94],
textbook [Rist & Terwilliger95, Thomas & Weedon95], or application development
books [Walden & Nerson95, Jézéquel96]. EIFFEL’s garbage collection avoids dis-
tractions from memory management and its static type system allows typing issues
to be discussed. EIFFEL’s clear syntax, simple semantics, and support of correctness
through the use of assertions made it the premier choice for an education language
for many universities throughout the world [Meyer93].

1With multiple inheritance one may even let whales inherit from mammals and fishes, thus,
avoiding duplications caused by single inheritance.
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2.2.1 Object-oriented decomposition

The idea to draw subsystem boundaries around data and associated functions is
one of the most important aspect of object-orientation. Actually, it is a simple ap-
plication of information hiding [Parnas72]. That way, the representation of data
and the implementation of functions is hidden from other subsystems. Object-
orientation supports this modularity by encapsulation (see section 2.2.2) and boosts
it by allowing multiple instances of modules. The latter lifts a tool to control soft-
ware complexity to a paradigm for real world modeling.

Right in the spirit of SIMULA object-oriented systems simulate real world pro-
cesses. Each participant in the real world can be represented by a software artifact
called object. In an object-oriented bureau we would not see functions like “file
content of incoming letter into drawer”, but objects like Letter (supporting retrieval
of content) and Drawer (supporting addition of information). Clearly, objects offer
services and do not prescribe the order of actions. The object-oriented secretary be-
comes a conductor of object capabilities as opposed to a hierarchical manipulator
of materials. As a result, the design is much more stable, because even if processes
in the bureau are drastically changed the basic participants (objects) are likely to
stay. This promises less software maintenance in case of change but also greater
potential for reuse of objects in other domains (e.g., Letter will be useful in other
domains as well). Again, the reason for this reuse potential is the absence of a rigid
top-down conceived function call structure. The bottom-up provision of general
services is more suited to be reused in altered conditions.

The recursive decomposition of data works especially fine due to the concept
of procedural abstraction (see section 2.2.5 on page 35). In the object-oriented bu-
reau objects issue goals to each other. The secretary may ask a drawer to file an
information. The drawer in turn forwards the goal to one of its sub-compartments
and so on until the goal is achieved. The secretary does not need to know about
the internal organization of drawers which also do not care what types of sub-
compartments exist. Clients never care about the types of their servers. Conse-
quently, servers may be exchanged without need to alter clients. This would not be
the case if, e.g., a secretary took different actions depending on drawer types.

2.2.2 Encapsulation

We already noted above that encapsulation supports the mutual protection of in-
dependent software entities. This observation is important for programming in the
large. For programming in the small it is important to recognize the support of
encapsulation for data integrity. An object is responsible for its own initialization
after creation. It is ought to establish a consistent state at this point. Later ma-
nipulations to the object’s state may only occur through the associated procedures.
These, however, are designed to keep the object’s state consistent as well. It is not
possible to accidentally add an element to the bottom of a Stack because one has
access to the stack’s List representation and choose an invalid operation. A client
of the chessboard data structure from section 1.3.2 on page 21 may insert an integer
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out of range which does not correspond to a column. Encapsulation would prevent
a chessboard to get in such an invalid state.

For the reason that procedures and functions (i.e., methods) are defined on an
encapsulated object it is reasonable to allow an implicit access to the object’s fea-
tures (methods and attributes). Hence, object descriptions get shorter and the tight
binding of features to an object is emphasized. One can think of methods to always
have one2 (the object reference) implicit argument.

The combination of encapsulation and procedural abstraction (see section 2.2.5
on page 35) allows for a nice treatment of non-free abstract data-types. For in-
stance, a rational number object may keep its numerator and denominator always
in normalized form and clients cannot be confused by comparing non-normalized
instances with seemingly unequal normalized instances.

Object-oriented languages differ in their encapsulation scope. A language with
class encapsulation — such as C++ — allows methods to access internals of entities
of the same class. A Stack class may access the representation of a stack argument
in the implementation of a pushAllFromStack method. In a language with object
encapsulation — such as EIFFEL — objects are protected against each other even if
they are instances of the same class. The pushAllFromStack from above would have
to use the public Stack interface (e.g., to pop all elements one by one) only.

2.2.3 Inheritance

In comparison to languages like PASCAL or C, object-oriented languages empower
the programmer much more, since it is not only possible to define new types
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Figure 2.3: Classes as versions and variants

but these can be made to appear just
like built-in types3. Even beyond,
types can be incrementally derived
from other types by inheritance. An
heir inherits both interface (method
signatures) and code (attributes and
method bodies) from its ancestor. A
typical use of inheritance is to spe-
cialize a type, e.g., derive a sports-
car from a car. Other uses of inher-
itance are discussed in section 2.3.2
on page 41. Inheritance can be use
to classify both data (see figure 2.1 on
page 30) and algorithms [Schmitz92].
Therefore, it can be used as an orga-
nization principle for libraries.

There is also an interesting corre-
spondence between Inheritance and

2CLOS methods may break the encapsulation of more than one object.
3C++ and EIFFEL even allow user defined infix operators.



34 2 Object-orientation

version/variant control4 (see figure 2.3 on the preceding page). When inheritance
is used to factor out code, that is, a set of subclasses uses and shares superclass code,
it establishes a system of variants. Changes that should affect all classes are made
in the common superclass. Changes meant for individual variants only are made
to subclasses only. A subclass can be regarded as being a variant to its siblings or
to be a version of its ancestor.

When object-oriented languages began to compete for market-shares their
prominently advertised feature was inheritance. As a mechanism directly support-
ing reuse it was promoted as a unique and most important feature. The presence
or absence of inheritance was used to distinguish between truly object-oriented or
just object-based languages [Wegner90].

After all, inheritance turned out to be of less significance. The author rates data
centered design, encapsulation, and dynamic binding to be of much more value. In
fact, until today inheritance is not fully understood yet (see critique in section 2.3.2
on page 41). My view is supported by the fact that SMALLTALK-72 did not even
have inheritance [Kay96], though its paragon SIMULA67 did.

2.2.4 Subtyping

scale

FIGURE

ELLIPSE

scale

CIRCLE

scale
radius1
radius2

radius

Figure 2.4: Subtyping inheritance

We already got subtyping to know as a
special kind of inheritance in section 2.1
on page 29. Yet, Subtyping has less
to do with incremental class definitions
but rather denotes a particular form
of polymorphism called inclusion poly-
morphism [Cardelli & Wegner85]. Fig-
uratively, one can assume the type Fig-
ure (see figure 2.4) to include the type
Circle , since a Circle will behave ex-
actly as a Figure when viewed and
manipulated through a Figure inter-
face. For subtyping, or the Liskov Sub-
stitution principle [Liskov & Wing93], to
hold true it is important that not only argument types vary contravariantly and
result types vary covariantly, but also the pre- and post-conditions must obey the
same principle. That is, pre-conditions may be weakened and post-conditions can
be be strengthened. Subtyping, hence, works especially well with a programming-
by-contract model, which is supported by EIFFEL. Its language support for pre-
and post-conditions promotes the verification of behavioral subtyping as well.

Inclusion polymorphism is one of the distinguished features of object-oriented
languages in comparison to functional languages. Functional languages, typically
offer so-called parametric polymorphism only5. For instance, in the type of map

4Consult [Schroeder95] for terminology, history, and classification of version controlling.
5Of course, subtyping is desirable for functional languages too and its integration into functional
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(see typing judgment 1.7 on page 17) there is an implicit all-quantifier in front of
the judgment. This type corresponds to unconstrained generic classes in object-
oriented languages [Meyer92]. A variable of type Figure , however, is existentially
quantified. The difference is that a parametric polymorphic function does the same
for all instantiations of the type variable. Inclusion polymorphism just states that
there is a concrete type which will behave individually.

Subtyping is of special value for the user of a library. It guarantees the sub-
stitutability of classes. A piece of code will work for all subtypes, if it works
for the supertype. Library writers, on the other hand, often long for subclassing
(for code reuse) and is-a relationships (for classification). For the reason of these
diverging goals subtyping should not be tied to subclassing as it is the case in
C++ or EIFFEL. Rare exceptions to this rule are POOL [America & v. Linden90] and
SATHER [Murer et al.93a].

In sum, subtyping can be regarded as putting a discipline on inheritance (al-
lowing conforming subclasses only) and polymorphism (excluding ad-hoc poly-
morphism, which allows no assumption about behavioral commonalities).

2.2.5 Dynamic Binding

Just as structure programming hid the functionality of goto behind if/else, while and do;
OOP has hidden the functionality of indirect goto behind polymorphism.

– Robert C. Martin

Subtyping without existential qualification of type variables would be akin to
HASKELL’s type classes. This is a fine mechanism to make ad-hoc polymorphism
less ad-hoc [Wadler & Blott89]. Contrary to an occasional misconception [Berger91]
type classes do not allow for true object-oriented programming.

Most important for true object-oriented programming is the concept of dynamic
binding. Subtyping just restricts dynamic binding “vertically” to the inheritance
hierarchy. Now, a routine call to an object variable is not compiled as a standard
subroutine call. The code to be executed is not determined before runtime. That is
why, dynamic binding is often also called late binding. The code selection depends
on the actual object contained in the variable at runtime. Consider the code

figure : FIGURE;

!CIRCLE!figure;
figure.display;
figure.typeMessage;

Although figure is of type Figure it refers to an object of type Circle . In figure 2.5
on the next page the lookup of methods is depicted.

All method searches start at Circle . As method display is defined by Circle it is
used in spite the presence of a general display method in Figure . As innocent as this

languages is a important research topic [Läufer96].
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"display"

"typeMessage"

FIGURE

display
printType
typeMessage

CIRCLE

display
printType

print "I am a ";
printType;
print " object.";

print "Circle";

Figure 2.5: Dynamic method lookup

looks it is most important for the reuse promise of object-oriented programming,
for it allows old code to use new code. For instance, a drawing editor may use an
iterator to display all visible objects. If the editor uses the Figure interface to invoke
display one can add new figure types without any need to change the iterator code.
This inversion of control (don’t call us — we call you), or Hollywood-principle,
is typically not possible in procedural languages like C6. Indeed, however, it lifts
reuse from plain library reuse to the reuse of design, that is, prefabricated applica-
tion skeletons (called frameworks). The prefabricated code can be tailored through
the use of dynamic binding.

For this to work properly it is most important that self calls (implicit calls to
methods of the object itself) are also subject to dynamic binding. To see why, con-
sider the typeMessage call in figure 2.5. First, it is redirected to Figure as there is no
redefined version in Circle . The implementation of typeMessage prints a string tem-
plate and calls printType to output the actual information. Now, instead of invoking
the implementation in Figure this self-call is also late bound to the implementation
in Circle . This leads to the desired result of printing “I am a Circle object”. Late bind-
ing of self-calls, ergo, enable this factoring of code into code templates7 that can be
altered and refined by new classes.

Dynamic binding effectively defers behavior distinction from the main program
to the datatypes. This opens up the possibility to build frameworks that do not

6One may exploit function pointers for this but it is not a common programming style.
7Method typeMessage is indeed part of the Template Method pattern [Gamma et al.94].
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need to know about new types to come. Dynamic binding also makes it reasonable
to operate with lists of heterogeneous types. Functional lists are homogenous, i.e.,
allow one element type only. One may use a sum type for homogenous lists but
in order to differentiate actions according to individual element types type cases
become necessary. Dynamic binding assigns the responsibility to differentiate to
the elements and, therefore, avoids the type cases. Actually, the main “trick” used
is the data centered approach, i.e., distributing operations to their data. Hence,
case statements — otherwise contained in functions scattered around the whole
program – are concentrated at data abstractions. Dynamic binding “merely” hides
the indirection used to access the distributed operations. In this light it appears as
language support for data centered programming which can be pursued also (by
the albeit clumsy use of function pointers) in C.

Note that functional languages also allow using old code with new code. For
instance, mapcan be used with any new function with appropriate type. Notwith-
standing, this type of parameterization does not amount to the same flexibility,
since the variable parts (e.g., function to map) must be specified in advance. An
object-oriented framework, however, can be adapted in many unforeseen ways, as
it is possible to override any methods — not just those intended for parameteriza-
tion. For instance, Circle may also redefine typeMessage to print “Circle, I am”.

Since the latter form of reuse requires knowledge about the internals of the
reused classes it is called “white-box reuse”. The corresponding name for com-
posing opaque parts — just like higher-order functions — is “black-box reuse”.

Akin to lazy evaluation (see section 1.2.4 on page 14) dynamic binding sup-
ports modularization. Analog to the separation of data generation and control the
separation between method selection and method invocation decouples the client
from the server. The client does not need to prescribe the server’s action. It just
declares a goal (through a message send) and the server is free to choose whatever
appropriate action.

Almost all object-oriented languages use single-dispatch, i.e., dynamic binding
is used for the receiver of a message send only. If dynamic binding is extended
to the arguments of the message send it is called multi-dispatch. The languages
CECIL [Chambers92b] and CLOS [Bobrow et al.86a] hereby allow implementations
to be selected with respect to all argument types.

2.2.6 Identity

All objects are created unequal.
– me

The concept of object identity [Khoshafian & Copeland86] is easily overlooked
due to the presence of more prominent concepts like inheritance, encapsulation,
and polymorphism. Nevertheless it also significantly contributes to the expressive-
ness of the object-oriented paradigm. What does object identity mean? One way
to look at it is to observe that objects are mutable. When an object changes, e.g., an
element is inserted into a list, there is no new list being created. The list remains the
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same but has a different value. This property gives rise to easy real world model-
ing but also may induce problems due to unwanted aliasing. Aliasing occurs when
two or more variables refer to one object and some interference takes place, e.g., a
client with access to an object is not aware of other accesses and is invalidated by
external changes made to its referenced object.

In contrast values (from functional programming) are immutable and lack iden-
tity [MacLennan82, Eckert & Kempe94]. It does not make sense to make a differ-
ence between two numbers of the same value or two lists with the same elements.
This perspective, however, leads to the second way to look at identity: Consider
personal data, such as name, age, city of birth, etc., held in records. Let us assume
Ivan Smith exists twice with the same age. One Ivan is born in St. Petersburg (Rus-
sia) and the other is born in St. Petersburg (Florida). Unless we include the state of
birth the two Ivan’s have the same value, i.e., they are the same person in a func-
tional language. Represented as objects, there is no problem at all. If one compares
for data equality one will find out about the curiosity of the coincidental birth date.
Yet, if one compares for identity it is clear that we have two distinct persons and
not just one person that we somehow received twice. Objects may join their values
but their identity remains [Harrison & Ossher93].

Summarizing, identity is very closely related to state, but one should emphasize
its role in modeling real world objects with identity (A tank does not change only
because its pressure does) and its role to distinguish between objects that happen
to have the same value (Ivan is not Ivan).

2.3 Review

The following two sections give a subjective assessment of object-oriented pro-
gramming from a software engineering point of view.

2.3.1 Pro

Why does the combination of the above presented concepts work well? This section
examines the positive implications of the object-oriented paradigm.

2.3.1.1 Real world modeling

Whereas Turing machine behavior can be expressed by mathematical models,
the observable behavior of interaction machines corresponds to that

of empirical systems in the natural sciences.
– Peter Wegner

Two properties allow for real world modeling without impedance mismatch8:

8When a modulated current flows through a conductor which is not properly terminated some
energy will be lost due to reflections. Similarly, “energy” will be lost if the modeling domain cannot
adequately express the things to be modeled.
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1. The emphasis on a collaborative set of self-sustained objects and

2. direct support for the notions of state and identity.

Real world systems are often composed of a collaborative set of self-sustained ob-
jects themselves and their structure provides a natural starting point for an object-
oriented design. Maintaining the system, thus, will be possible without recon-
structing too many transformation and abstraction steps. An insufficient under-
standing of the system would lead to faulty changes or bug fixes.

With regard to state support it is instructive to note that all of the arguments
against reduction semantics (in section 1.3.2 on page 21) vanish. Furthermore, the
usually as negative discredited implications of state support like references and
aliasing are by no means just a crude copy of an underlying primitive von Neu-
mann hardware. Consider an office software where you may embed pictures into
word-processor texts. Often we want to share images between multiple texts. A
correction to the image should be reflected in all uses of the image9. This is a truly
useful use of aliasing. Also, we may have a link to our office software represented
by an icon to click on in order to start the software. The link allows changing the
location or version of the software without bothering the user with a new place to
start from or a new icon to use. This is a truly useful use of referencing. Changes
to documents are modifications to mutable objects with an identity. A model re-
flecting this employs a truly useful use of state. Given these useful applications of
identity and state it seems worthwhile to assign them direct language support.

2.3.1.2 Maintainability

“Software systems are long-lived and must survive many modifications
in order to prove useful over their intended life span. The primary linguis-
tic mechanisms for managing complexity are modularity (separating a system
into parts) and abstraction (hiding details that are only relevant to the internal
structure of each part). A challenge for future language design is to support
modularity and abstraction in a manner that allows incremental changes to be
made as easily as possible. Object-oriented concepts have much to offer and are
the topic of much on-going investigation [Hankin et al.97].”

– Chris Hankin et al.

Seamless development All phases of a software development (requirements
analysis, analysis model, design, implementation) are based on the same founda-
tion, hence, avoiding paradigm shifts inbetween. Phase transitions are considered
seamless [Walden & Nerson95] and, ergo, backward or forward changes have less
implications compared to a methodology involving paradigm shifts, i.e., redesigns.

9A individual change can be realized by first making a copy of the image.
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Object-oriented decomposition Building up on a base of reusable self-sustained
domain or business objects yields more stable systems. There is no main function
that can be invalidated by a series of requirement changes. The introduction of
new data — i.e., the “know how” of a system is applied to a new domain — is easy,
for it amounts to a local addition of code only. Similarly to extensions, changes
should occur more localized too. The distribution of functionality from a hierar-
chy of functions to the former “dead data”, consequently, can be thought of as a
complexity reducing mechanism. Class definitions create a small working space
and make the first argument of their methods implicit. Changes, ergo, become a
matter of altering a small encapsulated system fraction with short access to local
data. Usually, there is no need to teach binding environments and techniques like
display tables or static links anymore due to the simple structure of classes10.

Modularity We already explained in the preceding concept sections how encap-
sulation (section 2.2.2 on page 32) and procedural abstraction (section 2.2.5 on
page 35 and section 2.2.1 on page 32) aid the modularity of programs. Clients
do not care how servers fulfill their services and can rely on consistent and self-
managing objects at any time.

2.3.1.3 Beyond the imperative

Although the object-oriented paradigm is closely related to an imperative style of
programming it has been argued that there are important differences [Kühne96a].
Objects successfully hide the use of state and represent explicit substates to change
and to handle, hence, escape the von Neumann bottleneck. The famous critique of
John Backus [Backus78] towards imperative languages like FORTRAN and ALGOL
must be re-evaluated with regard to the object-oriented paradigm. Let us recall
the quotation of Alan Kay on page 29: He viewed objects as a decomposition of
the whole computer with equal power. Now, the whole computer and its decom-
position objects do not need to be von Neumann architectures. It is possible to use
objects in a referential transparent way [Meyer94a] or as nodes in a dataflow graph.

“What I got from Simula was that you could now replace bindings and
assignment with goals. The last thing you wanted any programmer to do
is mess with internal state even if presented figuratively. . . . It is unfortu-
nate that much of what is called ‘object-oriented programming’ today is simply
old style programming with fancier constructs. Many programs are loaded
with ‘assignment-style’ operations now done by more expensive attached pro-
cedures. [Kay96]”

– Alan Kay

In particular, the improved control abstraction facilities of object-oriented lan-
guages compared to early imperative languages weaken Backus’ critique. We will
return to the object-oriented possibilities to escape the limitations of plain impera-
tive languages in section 4.2 on page 57.

10C++and JAVA allow nested classes though.
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2.3.2 Contra

Programming today is a race between software engineers
striving to build bigger and better idiot-proof programs,

and the Universe trying to produce bigger and better idiots.
So far, the Universe is winning.

– Rich Cook

2.3.2.1 Imperative heritage

Most object-oriented languages are based on ALGOL-like languages (C++, SIMULA,
EIFFEL) and some on LISP (SMALLTALK, CLOS, DYLAN). All share an imperative
base trough their ancestors. While we argued in section 2.3.1.2 on page 39 that
object-oriented languages reach beyond their imperative roots, they still suffer from
their imperative heritage. One example are system shut-downs due to method
calls on void references. This is clearly an initialization problem which in general
has already been criticized by John Backus [Backus78] and which we will tackle in
chapter 11 on page 191.

Aliasing Consider a program fragment using a complex number library:

!!a.make(2,0);
b:=a;
c:=a+b;
!!a.make(0,2);
d:=a+b;

We would expect d to have the value 2+2i but if complex numbers are implemented
with reference semantics — which is quite likely to be the case due to efficiency
considerations — the result will be 4i. The reason for this is the unexpected aliasing
of b with a. Though object-oriented languages typically provide support for value
semantics (e.g., expanded classes in EIFFEL, part-objects in BETA, non-reference
variables in C++) there is no agreed system how to choose between reference and
value semantics.

Another source of aliasing are interferences between parameters and results. A
method does not represent a good abstraction if the effects of

o.m(x, y)

differ to

o.m(x, x).

Also,

aMatrix.multiply(aMatrix2)

possibly yields the wrong result when aMatrix2 happens to reference aMatrix ,
since then result elements will override still to be used argument elements.
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Broken encapsulation When object state is distributed over several sub-objects
and these objects are accessible from outside the object the state-encapsulation of
the object is broken. For instance, a careful bank customer, aiming at never having
less than $2000 on his account, will be invalidated by his wife, if she has access
to the account too [Duke95]. Similarly, a balanced tree can get unbalanced if one
of its element is changed by a side-effect. A solution for these problems has been
proposed by the use of so-called Islands [Hogg91].

2.3.2.2 Classes for everything

The class concept is used for representing modules, encapsulation borders, in-
stance generation, code pools, types, visibility mechanism, and interfaces. Al-
though the strive for unification, i.e., to capture many things with a single ab-
straction, is desirable, the wealth of a class’ functions appears too much. There
has been arguments to separate modules and classes [Szyperski92], code pools and
types [Murer et al.93a], and encapsulation and classes [Limberghen & Mens94]. So-
called Kinds have been proposed to aid classes with typing [Yu & Zhuang95] and
“namespaces” are supposed to cluster C++ classes. Obviously, there will be more
research necessary to remove the overloading of concepts on classes.

2.3.2.3 Inheritance for everything

A modeling tool is more than a passive medium for recording our view of reality. It shapes
that view, and limits our perceptions. If a mind is committed to a certain [tool], then it will
perform amazing feats of distortion to see things structured that way, and it will simply be

blind to the things which don’t fit that structure [Kent78].
– W. Kent

Inheritance has been the “hammer” for many problems (be they “nails” or not)
for both language designers and language users. Though inheritance is primarily
an incremental modification operator on classes it fulfills many purposes:

Language designers use inheritance for

Subtyping An heir is implicitly assumed to be a subtype to its ancestor and, thus,
is allowed to be substituted for it.

Code reuse Code reuse happens through inheriting methods which continue to
work in the heir but also by deliberately importing methods only meant to be
used for the implementation of the heir.

Interfaces So-called pure, abstract, or deferred classes only specify interfaces and
do not contain any code. They are used to define an interface that implemen-
tations may adhere to.
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Modules The collection of mathematical constants in the EIFFEL library is an ex-
ample for solely using a class as a namespace and container of data without
intending to use it as a instance generator.

Mixins Languages with multiple inheritance suggest a LEGO approach to the com-
position of code. Each superclass mixin provides a facet of a class like per-
sistence, observeability, etc. This style is also referred to as facility inheri-
tance [Meyer94b].

Language users exploit inheritance for

Classification Libraries are sometimes organized as a taxonomy of concepts (see
figure 2.1 on page 30). This helps to understand classes in terms of others.
Also, algorithms may be subject to classification [Schmitz92]. Each branch in
the inheritance hierarchy then represents a design decision.

Specialization Heirs narrow the scope of ancestors, e.g., a Student is a special Per-
son , typically by adding information (e.g., student identification). Special-
ization may conform to subtyping (like in the SportsCar and Car example in
figure 2.2 on page 31) but does not necessarily (a 3DPoint is not a subtype of
Point due to the covariant equality method).

Generalization Heirs cancel limitations of their ancestors. For instance an all pur-
pose vehicle may be subclassed to obtain an all purpose vehicle that allows
steering of the rear axle. This usage is typically due to unforeseen extensions
and coincides with code reuse.

Versioning As explained earlier (see figure 2.3 on page 33) it is possible to use heirs
as versions of their ancestors. This allows extending data records in a system
while reusing all of the control code unchanged.

Parameterization Partially abstract classes are used as ancestors to concrete sub-
classes that specify the missing code. This type of code parameterization has
been described as the Template Method pattern [Gamma et al.94].

The problem with all these uses for inheritance is that always the same rules
for visibility, substitutability, and namespaces are applied. While breaking en-
capsulation is necessary for white-box reuse it leads to fragile base classes in gen-
eral [Snyder86, Kühne95b]. Also,

• inheritance used for code reuse or covariant specialization should not enable
substitutability [LaLonde & Pugh91].

• Inheritance used for parameterization should not break encapsula-
tion [Kühne95b].

• Interface inheritance should not allow covariant redefinitions of argu-
ments [Cook89b], etc.
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Consult section 2.3.2.2 on page 42 for a list of suggestions to escape the “one-trick-
pony” mentality towards inheritance in object-oriented languages.

Especially multiple inheritance causes additional problems like aggravating en-
capsulation, modularity and the open-closed principle [Carré & Geib90], which is
why many languages do not provide it (e.g., SMALLTALK, BETA, JAVA).

It can be argued about whether it is positive or negative that inheritance typ-
ically is a static mechanism. There is no doubt, however, that inheritance should
not be used when more dynamic solutions are appropriate. We will return to this
subject in chapter 7 on page 93.



45

3 Calculus comparison

A
s we are going to subsume functional concepts with the object-oriented
paradigm in chapter 4 on page 55 and aim at capturing functional tech-
niques with object-oriented design patterns in part II starting at page 85

this chapter shall assure us about the validity of this approach.
Of course, all functional and object-oriented languages are Turing complete

with regard to their computation power. There is no doubt that any of these lan-
guages can emulate one of the other. In spite of that it is quite interesting to ask
whether one emulation is easier to accomplish than the other. If it is easier to cap-
ture object-oriented programming with a functional language we should write pat-
terns facilitating object-oriented programming in a functional language. The goal
of this chapter is to prove the opposite.

3.1 Language comparisons

Looking for the computational difference between two languages is like
comparing apples to oranges only to find out that both are fruit.

– me

What is left if we beware of falling into to the Turing tarpit, i.e., try to find a
difference in computational power that is simply not there? What other indica-
tors for expressiveness are available? One interesting approach is to evaluate the
amount of restructuring a program necessary to emulate the addition of new con-
struct [Felleisen91]. If local changes are necessary only then the new construct can
be judged to add no further expressiveness. Unfortunately, the theoretical frame-
work used for this approach does work for conservative extensions to languages
only, i.e., cannot be used to compare two fundamentally different languages.

For the purpose of this chapter my idea was to define a translation of one lan-
guage into the other and vice versa and then compare the translation complexities.
The rational is that a language should emulate a less expressive language with
ease while a considerable amount of machinery would be necessary the other way
round.

In order to compare the fundamental mechanisms instead of technicalities of
specific languages it appeared most reasonable to compare calculi expressing the
nature of the two paradigms respectively. The calculus representing functional pro-
gramming is easily found and is referred to as the λ-calculus. You might want to
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refer to an introduction for its syntax and semantics [Barendregt84, Hankin94]. It is
much less obvious to choose a calculus representing the object-oriented paradigm.
Many approaches to model object-oriented principles with calculi use an extended
version of the λ-calculus or do contain first-order functions [Abadi94, Bruce94,
Cardelli84, Cook89a, Fisher & Mitchel95, Pierce & Turner94, Reddy88]. A com-
parison with such a calculus would be ridiculous because of the trivial emula-
tion of the λ-calculus within it. When I made the decision which calculus to
choose there where two candidates that did not model objects as records in a
functional language but attempted to model object-oriented languages from first
principles. One was OPUS [Mens et al.94, Mens et al.95] and the other was the σ-
calculus [Abadi & Cardelli94]. In fact, the latter calculus was inappropriate too for
it allowed to bind the self reference of an object to an arbitrary name and, thus,
enabled to access variables of arbitrary nesting depth. In a comparison carried
out by Dirk Thierbach this feature was found out to be very “functional” in na-
ture [Thierbach96] and also would have prevented a fair comparison. Thierbach
also identified several weaknesses of OPUS and developed an improvement called
OPULUS. He proved OPULUS to have the Church-Rosser property and gave a com-
parison to both OPUS and σ-calculus [Thierbach96].

3.2 Opulus

OPULUS is a simple calculus that denotes

• encapsulation of multiple methods to an object by . . . . . . . . . . . . . . . [E],

• referencing “Self” as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $,

• sending a message N with Argument F to object E with . . . . . E N : F ,

• referencing the parameter of a message send as . . . . . . . . . . . . . . . . . . .#,

• incremental modification (E is subclassed by F) by . . . . . . . . . . .E +F ,

• declaration of attributes as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N = E,

• declaration of methods (with Name N and body E) as . . . . . . λN = E,

• the empty object by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

• and finally, hiding of methods (N1–Nk) with . . . . . . . . . . .E{N1, . . . ,Nk}.

Table 3.1: Opulus syntax

Its grammar (with start-symbol “Expression”), therefore, is as given in table 3.2
on the facing page.

For a more thorough definition please consult [Thierbach96]. For our purposes
we will be satisfied with just one example showing how the calculus works. Con-
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Expression ::= ”[” Expression ”]” | Expression ”+” Expression |
Expression ”{” Namelist ”}” |
Expression Name ”:” Expression |
Name ”=” Expression | ”λ” Name ”=” Expression |
”#” | ”$” | ” ” |
”(” Expression ”)”

Namelist ::= Name ”,” Name

Name ::= Character { Character }
Character ::= ”a” | ”b” | . . . | ”z”

Table 3.2: Opulus BNF

sider an object POINT:

POINT ≡ [x = 7+y = 13+λsetx= [$+x = #]].

It has two attributes x and y and one method setxthat changes the value of x by
producing a new object. The new object is the old object (referenced by $) modified
by an attribute x that has the value of the setxparameter.

The reduction occurs as follows:
POINT setx: 42

→β app(POINT,setx, ,42)

≡ app(λsetx= [$+x = #],setx,x = 7+y = 13+λsetx= ($+x = #),42)

≡ [x = 7+y = 13+λsetx= ($+x = #) +x = 42]

→→η [x = 7+(y = 13+(λsetx= ($+x = #) +x = 42))]

→η [y = 13+(λsetx= ($+x = #) +x = 42))]

The result is a new object with x possesing the value 42. It is one of the distin-
guishing features of OPULUS to be able to get rid of the overriden “x = 7” attribute
by η-reduction.

3.3 Opulus within λ-calculus

A standard translation of OPULUS into the λ-calculus represents OPULUS terms
in a tree structure and uses programmed reduction rules to manipulate the
tree [Thierbach96]. The fixpoint combinator Y can then be employed to, e.g., re-
peatedly apply β-reduction.

A more efficient translation is achievable

• by recognizing that substitution in OPULUS (e.g., replacing # with the argu-
ment value) can be captured with λ-abstraction variable bindings,
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• using a continuation passing style for method calling that might “backtrack”
to search in A after B in the case of (A+B) message: ,

• and by directly translating OPULUS terms into structure evaluating func-
tions instead of separating term representation and reduction rule applica-
tion [Thierbach96].

The complete (fast) translation of OPULUS to the λ-calculus is given in table 3.3
(parameter d refers to the self-reference, e to the value of an argument, n to the
name of a method, and f to the continuation to be used in case a message must be
redirected to the modified operand, e.g., A in A+B).

� $� ≡ self

� #� ≡ arg

� � ≡ Y λy.λd en f.y

� [A]� ≡ λd en f.((λx.xx)� A�) en f

≡ λd.(λx.xx)1� A�
� A+B� ≡ λd en f.� B� d en(� A� d en f)

� A M : B� ≡ � A�� �� B��M�
� λN = A� ≡ λd en f.� N� ((λself.λarg� A�) d e) f n

�N = A� ≡ λd en f.� N�� A� f n

� A{N}� ≡ λd en f.� N� f (� A� d en f) n

Table 3.3: Translation of Opulus to λ-calculus

It should be noted that η-reductions are not considered anymore and that a
translation for OPUS would not be possible in this manner.

The translation appears straightforward (e.g., message send corresponds to
function application) but we should pay attention to the fact that OPULUS names
(such as method names) must be encoded in the λ-calculus, since it does not sup-
port a similar notion. Thierbach translated names to an encoding of numbers in the
λ-calculus, because all one really needs is to compare names for equality. One can,
alternatively, also think of an extended λ-calculus with δ-reductions for numerals
or names. In our case, however, comparing names adds a complexity factor of O(v),
where v is the number of distinct names used in the OPULUS term.

Figures 3.1 and 3.2 on the facing page show an OPULUS term and its mechani-
cally2 derived translation to the λ-calculus respectively. Both are screenshots taken
of a system generated by CENTAUR [Despeyroux88, Jager et al.91, Centaur92] from
specifications written by Dirk Thierbach [Thierbach96].

The M and N macros in figure 3.2 on the next page represent the encodings of
OPULUS names.

1An object has itself as an implicit argument.
2Some minor modifications have been made by hand to enhance clarity.
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Figure 3.1: Screenshot: OPULUS expression

Figure 3.2: Screenshot: OPULUS expression represented in the λ-calculus

3.4 λ-calculus within Opulus

Again a standard translation is easily obtained by encoding λ-terms into objects
which understand application and substitution messages [Thierbach96]. The diffi-
culties with α-conversions necessary for β-reductions are easily avoided by calcu-
lating weak-head-normal-forms only [Field & Harrison88].

A cleverer translation is obtained by exploiting the closure like nature of
objects. Closures are functions that carry their variable environment with
them [Field & Harrison88]. How can we make use of closures then? It is easy to
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translate the identity function (λx.x) to OPULUS as

[λapp= #].

Then the application to an argument

[λapp= #] app:

yields the argument itself, i.e., .
However, we need a more sophisticated approach in the case of λx.λy.x. When

λy.x is applied to a value we need to remember the value of x. This is precisely the
case for a closure which can remember earlier variable bindings. Hence, the result
of applying λx. . . .must be a closure representing the function λy.xbut remembering
the value of x. A closure, howbeit, is most easily represented by an object storing
the variable binding in its state, ergo

[λapp= [x = #+λapp= ($ x : )]]

represents the function λx.λy.x (the sub-term “$ x : ”retrieves the function body
value from the variable environment). Note that if the lambda term had been
λx.λy.y the variable access of the innermost function body translation would have
been “#” instead of “$ x : ”. As a result, we need a context dependent translation
of parameter access [Thierbach96]. In table 3.4 the parameter context is denoted
with subscript indices.

� λX.B� ≡ λapp=� B�X (3.1)
� λX.B�Y ≡ [$+Y = #+λapp=� B�X] (3.2)
� L R� ≡ � L� app:� R� (3.3)
� L R�Y ≡ � L�Y app:�R�Y (3.4)
� X�X ≡ # (3.5)
� X�Y ≡ ($ X : ), if X 6≡Y (3.6)
� X� ≡ ($ X : ) (3.7)

Table 3.4: Translation of λ-calculus to Opulus

The subscript index is defined and respected by lambda abstraction (rules 3.1
and 3.2 of table 3.4) and distributed over application (rules 3.3 and 3.4). If the cur-
rent binding variable coincides with the variable to be accessed then the parameter
symbol is used (rule 3.5). Otherwise, the variable is accessed via the variable envi-
ronment (rules 3.6 and 3.7).

Interestingly, in contrast to the standard translation the fast translation above
even allows to dispose the restriction of calculating the weak-head-normal-form
only. Figure 3.3 on the next page shows a lambda expression in a CENTAUR win-
dow. Figure 3.4 on the facing page shows the corresponding OPULUS term which
was derived by automatic translation.
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Figure 3.3: Screenshot: λ-calculus expression

Figure 3.4: Screenshot: λ-calculus expression represented in OPULUS

3.5 Conclusion

It did not come as a surprise that either translation was possible at all but how
about the results of comparing the complexity of performing one calculus in the
other? Table 3.5 on the next page summarizes the results for emulating OPULUS in
the λ-calculus and table 3.6 on the following page shows the results for emulating λ-
calculus in OPULUS. Ranges of complexity denote the best and worst case, whereas
the average case is always closer to the lower bound.

Let us first regard the standard translation which we did not explicate in the
preceding sections but that we remember as using a straightforward term repre-
sentation with associated reduction functions. We note that the derivation of emu-
lating the λ-calculus in OPULUS was done within two pages [Thierbach96] resulting
in three conceptually easy object definitions all implementing two messages each
(substitution and β-reduction). Deriving the opposite standard translation took
more than three pages and resulted in nine translation rules needing nine construc-
tors with nine associated selection functions. In addition, this does not include the
emulation of OPULUS names in the λ-calculus.

The difference in verbosity of the two emulations can be explained by two rea-
sons:

1. The λ-calculus is somewhat weaker in its basic operations causing the need
for a name comparison emulation and
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2. OPULUS is a somewhat bigger calculus with a larger grammar causing the
need for more (nine compared to three) emulation rules.

On the one hand the size of OPULUS may appear arbitrary given the current ma-
turity of object-oriented calculi and one may easily excuse the λ-calculus for its
efforts to emulate such a “clumsy” formalism. On the other hand, OPULUS does
a very good job of capturing the basic mechanisms of class based object-oriented
languages. Capturing the others calculus’ richness is part of the game and the λ-
calculus has obviously a harder job.

The first of the above argument also shows up in the complexity comparison:
One full reduction step in OPULUS needs O(nv) steps in the λ-calculus (see table 3.5),
whereas v is the number of distinct names in the OPULUS term.

Fast translation Standard translation

Substitution O(1) O(n)

Application O(nv) O(nv)

Redex contraction O(nv) O(nv)

Redex recognition O(1) O(1)–O(nv)

Reduction-step O(nv) O(nv)–O(n2v)†

† It easy to reduce this to O(nv) by combining the functions that search a
redex and perform a reduction.

Table 3.5: Complexity of Opulus in the λ-calculus

Fast translation Standard translation

Substitution O(n) O(n)

Redex contraction O(n) O(n)

Redex recognition O(1) O(1)–O(n)

Reduction-step O(n) O(n)

Table 3.6: Complexity of λ-calculus in Opulus

It is interesting to note that the built-in name comparison of OPULUS causes
extra work when emulated in the λ-calculus. Yet, it should not be given to much
importance, since the λ-calculus can easily be extended with δ-reductions that ac-
complish the required comparisons with O(1) complexity.

So, abstracting from the name evaluation overhead the two standard transla-
tions essentially do not differ (compare table 3.5 and table 3.6). Let us turn to the
fast translations: It immediately strikes our attention that redex recognition is O(1)
in either translation. This is due to the fact that redexes are directly translated into
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redexes of the other calculus. Besides this exception, there is the usual overhead for
name comparisons in the λ-calculus. Notwithstanding, substitution in OPULUS (re-
placing $ and #) is just O(1) in the λ-calculus. This is achieved by using β-reduction,
i.e., the application of λsel f.λarg.� A� to the values of $ and #, reduces in two
(constant) steps.

Substitution of λ-calculus terms in OPULUS has linear complexity, because vari-
ables have to be looked up in the variable environment. In an object-oriented pro-
gramming language this step is constant too, since it simply requires an attribute
access or — in the worst case — an access through an indirection table in case of an
overridden attribute.

So, on the one hand substituting λ-calculus terms takes linear time in OPULUS
but on the other hand note that looking up OPULUS methods takes linear time in
the λ-calculus (see row “Application” in table 3.5 on the facing page). There is no
equivalent to looking up method names in the λ-calculus which is why there is
no such entry in table 3.6 on the preceding page. De facto, these prominent dif-
ference in complexity of emulations point out a crucial difference of the underly-
ing paradigms: Object-orientation is characterized by the atomicity of looking up
a name and performing the corresponding method. Functional programming is
characterized by having access to function parameters at any place in any nesting
depth.

Overall, the two calculi appear to be almost equal in expressiveness3, since
their translations involve linear complexity respectively (excluding the overhead
for comparing names in the λ-calculus). Where differences are present (method
lookup and variable substitution) they point out paradigm fundamentals.

Especially, the fast translations — we might also say native translations, since
idiomatic constructs were used — demonstrated a very direct way of translating
calculi constructs: Functions in the λ-calculus could be captured by objects operat-
ing as closures. Objects in OPULUS could be represented by λ-terms and selector
functions, e.g., an object with the fields a, b, and c —

λs.s a b c

— receives a message (selector) “b” by being applied to λx y z.y, yielding field b.
Finally, one may note that fast and standard emulation of the λ-calculus are very

close to each other (see table 3.6 on the facing page). This may hint to the fact that
objects are a good abstraction for simulation. The direct simulation of λ-calculus
was almost as efficient as the version that exploited native features of OPULUS.

Also, we may recall that an object-oriented languages would not need linear
complexity to look up λ-variables in the environment. In contrast, an implementa-
tion of OPULUS in a functional programming language will still need linear com-
plexity to look up names, unless further efforts like introducing method lookup
arrays or similar machinery is introduced.

Before we derive further conclusions from the translation complexities found
here, a small investigation is in order. Apparently, translation complexities depend

3You may want to consider [Thierbach96] for a full account including η-reductions.
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on the translation strategies. What if a better scheme, say for translating OPU-
LUS into the λ-calculus, could be found? Is it not possible that one calculus is still
superior but we have not found the right translation scheme yet? The fact that
both translations exhibit mostly linear characteristics gives us confidence that we
found optimal translations and future translation schemes will not affect the over-
all result. But what about sub-linear translations? Are they possible? Consider, a
translation from a RAM model with just numerical addition into one that features
multiplication also. When addition loops are converted into multiplications this
could result into a sub-linear translation. However, the reverse translation would
obviously be super-linear. If one our translations could be optimized to a sub-linear
translation, the other one could not possibly have linear characteristics right now.
Proof by false assumption: Assume the forth translation to be sub-linear and the
back translation to be linear. With repeated back and forth translations a program
could be made infinitely faster. As the conclusion is obviously false, so must be the
assumption [Thierbach97].

In summary, it is certainly not a reverse logic approach to aim at subsuming
functions with objects. While the other way round is not impossible either it ap-
pears less natural. Moreover, when leaving the level of calculi, it appears more rea-
sonable to subsume reduction semantics with state than to “ruin” the basic assump-
tion of referential transparency with the introduction of stateful objects. Note, how-
ever, the striking correspondence of some well-known combinators with impera-
tive statements: S≡ “:= ”, K≡ “const ”, I ≡ “goto ”, and CB≡ “; ” [Hudak89], sug-
gesting how to emulate imperative features in a declarative language. I will con-
tinue the discussion about the conflict between state and referential transparency
in section 4.1.1 on the next page and section 4.2.1 on page 57.
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4 Conflict & Cohabitance

When two worlds collide the question is whether they cancel out or enlighten each other.
– me

N
ow that we know the foundations of both functional and object-oriented
programming and convinced ourselves that subsuming functional pro-
gramming with an object-oriented language works fine at the calculus

level it is time to refocus our overall goal. Part II starting at page 85 is going to
present functional concepts made amenable to object-oriented design by captur-
ing them in design patterns. But which functional concepts are appropriate? This
chapter discusses functional and object-oriented concepts that seem to be at odds
with each other (section 4.1) and shows a path of possible integration (section 4.2
on page 57) partly reconciling conflicts discovered in the following section.

4.1 Conflict

Although, the preceding chapter gave us confidence that an integration of func-
tional concepts into an object-oriented language is viable it might be the case that
incommensurable properties prevent an integration at the programming language
level. Indeed, the following sections reveal some immediate oppositions and re-
dundancies.

4.1.1 Oppositions

This section discusses diametral oppositions of the functional and the object-
oriented paradigm.

4.1.1.1 Semantic model

As elaborated in section 1.2.2 on page 11 functional programming is founded on
reduction semantics, i.e., excludes the presence of side-effects. Object-orientation,
however, relies on stateful objects (see section 2.2.6 on page 37). This is a serious
conflict. Abandoning either reduction semantics or stateful objects seems to de-
stroy one of the paradigm foundation piles respectively. Actually, the integration
of functional and object-oriented features amounts to combining both declarative
and algorithmic language paradigms (see figure 4.1 on the next page).
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proceduralobject-orientedfunctionallogic

declarative algorithmic

Programming Paradigms

Figure 4.1: Classification of programming paradigms

4.1.1.2 Decomposition

There is a fundamental dichotomy between the decomposition strategies in func-
tional and object-oriented programming on two levels: On a large scale we must
decide whether to decompose a software system into functions (section 1.2.1 on
page 10) or into objects (section 2.2.1 on page 32) [Meyer88]. On a small scale we
have to choose between data abstraction (section 1.2.1 on page 10) or procedural ab-
straction (section 2.2.1 on page 32) [Cook90]. Either we package data constructors
and use functions that dispatch on those or we package functions and distribute
them to their respective constructors.

4.1.1.3 Evaluation

In section 1.2.2 on page 11 and section 1.2.4 on page 14 we have learned that normal-
order reduction or lazy evaluation has desirable properties. This is the case as long
as side-effects are not allowed. Side-effects do not fit with lazy evaluation with
its unintuitive and data dependent evaluation order. For this reason, functional
languages with side-effects (e.g., ML or UFO) use eager evaluation. Then, side-
effects of the function arguments will appear prior to that of the function itself.

It has also been said that laziness can conflict with dynamic binding. In order
to dynamically bind on an argument it needs to be evaluated anyway without any
option of delay [Sargeant95].

4.1.1.4 Encapsulation

Data abstraction, i.e., exposing data constructors to functions of an abstract
datatype works well with pattern matching (section 1.2.5 on page 16) but is at odds
with encapsulation (section 2.2.2 on page 32). This is not an issue of object en-
capsulation but has been recognized in the functional programming community as
well [Wadler87]. A function that uses pattern matching for a datatype is exposed
to its representation — as it accesses its constructors — and is subject to change
whenever the datatype has to be changed. There has been a number of propos-
als how to avoid this drawback, each trying to improve on the weaknesses of the
former [Wadler87, Thompson89, Burton & Cameron94, Gostanza et al.96].
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4.1.2 Redundancy

It is obvious that opposing concepts exclude their integration. All the same, it is
of no use to integrate concepts that are redundant to each other. Concepts must
complement each other otherwise a software solution will become an incoherent
mix of styles which is hard to understand but does not justify its diversity with
corresponding properties.

4.1.2.1 Parameterization

Higher-order functions (see section 1.2.3 on page 12) and inheritance (see sec-
tion 2.2.3 on page 33) can both be used for behavior parameterization [Kühne95b].
The Template Method pattern uses subclassing to achieve behavior parameteriza-
tion akin to higher-order functions. Unless the two mechanism do not yield soft-
ware solutions with different properties and no further complement of one to the
other can be found, one should be dismissed.

4.1.2.2 Dispatch

Pattern matching (section 1.2.5 on page 16) and dynamic binding (section 2.2.5 on
page 35) can both be used to decompose a function into partial definitions and to
select the appropriate portion when executing the function. Both mechanisms di-
vide a function according to the constructors it operates on. While pattern matching
keeps the patterns at one place, dynamic binding distributes it to the constructors.
It should be clear whether two code selection mechanisms are needed.

4.2 Cohabitance

If we literally agreed to all the arguments made in the previous sections it would be
time to abandon any paradigm integration at all. Luckily, many points made above
that at first appear excluding are in fact complementing. In the following, I propose
how to subsume and integrate functional concepts into those of the object-oriented
paradigm. The last section goes beyond feasibility and presents synergistic effects
between the two paradigms.

4.2.1 Subsumption

Subsuming functional concepts into object-oriented ones means to find ways to
express them without changing an object-oriented language.

4.2.1.1 Pure functions

Even without motivation from functional languages it has been suggested to use
side-effect free functions only [Meyer88]. The so-called command-query separation
principle prescribes to use side-effects for commands only. For instance the code,
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a:=io.nextChar;
b:=io.nextChar;

should be written as a:=io.lastChar;
io.nextChar;
b:=io.lastChar;
io.nextChar;

because the latter version clearly differentiates between reading input (query) and
advancing the input stream (command). Thus, it is possible to assign a charac-
ter from the input stream to two variables without accidently advancing the input
stream in between.

Concerning the side-effects of functions one might make a difference between
abstract state and concrete state of objects. The latter may change without affecting
the former. For instance, a complex number may have two states of representation:
A Polar coordinates state for fast multiplication and a Cartesian coordinates state
for fast addition. A complex number object may autonomously switch between
these concrete states without affecting the abstract state, i.e., its complex number
value. Also, some side-effects that do not affect the behavior of a system can be
allowed too. The protocoling of executed commands [Dosch95] is a typical example
of harmless side-effects.

As a result, the command-query separation principle reconciles state with re-
duction semantics and also state with lazy evaluation. The reduction semantics
of functional languages is embedded into an imperative environment by restrict-
ing functions to query functions only. Especially, with the interpretation of objects
being sub-states of a system [Kühne96a] the configuration of side-effect free func-
tions operating on system states is close to the design of John Backus’ AST1 sys-
tem [Backus78] with its main-computations between system states.

Furthermore, when functions do not cause state changes and also are not influ-
enced by state changes (see section 4.2.2.2 on the facing page) they may be executed
in any order. This opens up the possibility of lazy evaluation again.

4.2.1.2 Dispatch

We have seen that pattern matching is responsible for many subtleties (section 1.3.2
on page 21) and problems (section 4.1.2.2 on the preceding page) without a real im-
pact on software engineering properties (section 1.2.5 on page 16). We therefore de-
cide to abandon pattern matching in favor of dynamic binding which is capable of
achieving the same but in addition provides further opportunities (see section 2.2.5
on page 35).

I admit it is unfortunate to loose the nice syntax of pattern matching and to be
forced to work with several classes (representing constructors) in order to deal with
one function. Notwithstanding, the question of how to present and manipulate a
function seems to be more a matter of tools rather than language [Kühne96b]. Al-
though functions are distributed over objects they can be presented to the program-
mer as a single definition with an appropriate tool (see the epilogue on page 261
for a further discussion).

1Applicative-State-Transition
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4.2.2 Integration

In contrast to subsumption, integration demands for adaptions of the host language
in order to encompass functional concepts.

4.2.2.1 Evaluation

We already regained functions for lazy evaluation (section 4.2.1.1 on page 57)
but may also want to have lazy object state semantics too. Otherwise, internal
object state might be computed without being requested at all. One approach
to achieve lazy effects relies on a refined state monad concept [Launchbury93,
Launchbury & Jones94]. Another opportunity is to use models from concurrent
object-oriented languages and to propose lazy message mailboxes for objects. In
the context of this dissertation we will be satisfied with lazy functions only, though.

A short note is in order regarding the remark that dynamic binding does not co-
habit with lazy evaluation (see section 4.1.1.3 on page 56). First, dynamic binding
only requires to know the type the receiver which amounts to a partial evaluation
only. Second, function application is strict in its first argument anyway. One might
evaluate arguments first but eventually the function to be applied must be eval-
uated to a function abstraction. Therefore, dynamic binding poses no additional
requirements that would render lazy evaluation useless.

4.2.2.2 Closures

Section 3.4 on page 49 demonstrated how to use objects as closures in order to im-
plement functions with lexical scoping. Closures capture the values of variables at
their declaration and/or application environment as opposed to the point of exe-
cution. That is why, one can safely use closures in conjunction with lazy evaluation
(see section 4.2.1.1 on page 57). Once applied to values closures do not depend on
state changes anymore.

Why do closures need to be integrated rather than subsumed? Most object-
oriented languages do not allow free functions2 and require class definition over-
head for closures which especially gets worse when currying should be supported.
Moreover, few object-oriented languages (e.g., SMALLTALK and JAVA) provide
mechanisms for anonymous closures (e.g., blocks [Goldberg & Robson83] and in-
ner classes [Sun97] respectively).

4.2.3 Synergy

Synergy occurs when two or more concepts complement each other in a way that
results in properties that cannot be described by the sum of the separated concepts.

2C++ being an exception but then its functions are too weak to support closures.
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4.2.3.1 Parameterization

Section 4.1.2 on page 57 postulated to either surrender higher-order functions or
inheritance unless a good reason not to do so can be found. This section argues
that both concepts are necessary and even amplify each other. We will proceed
with an example involving a cook who accepts recipes in order to prepare dishes.
Written mathematically: Cook⊕ Recipe⇒ Dish. We will try several instantiations
for the ⊕-operator, i.e.,

⊕= object responsibility

⊕= single-, multiple-, repeated-inheritance

⊕= parameterization

We can evaluate the resulting solutions by asking a set of questions:

Category Question

SIMPLICITY What is the number of classes and the nature of class rela-
tions needed?

FLEXIBILITY How flexible are we in adding new cooks and recipes?
Is it possible to adapt cooks?

SCALABILITY How does the model scale up when we add new cooks and
recipes?

SELECTABILITY What support do we have in selecting cooks and recipes?

REUSABILITY Can we reuse cooks and recipes for other purposes?

ENCAPSULATION Which degree of privacy is maintained in a cook and recipe
combination?

Table 4.1: Criteria to evaluate cook and recipe combination

We will now try each of the above alternatives for the ⊕ combinator. We assess
the resulting solutions by referring to the above criteria by a SMALL CAPS typeset-
ting.

prepare2 : Dish2
prepare1 : Dish1

Cook

Figure 4.2: Cooking with
object responsibility

Object responsibility The first natural approach is to
consider recipes as the cook’s knowledge and, thus, as-
sign them to a cook as methods (see figure 4.2). This is
the most SIMPLE model but it does not offer much FLEX-
IBILITY: If the Cook does not know how to prepare our
favorite dish, we are lost. There is no way to extend the
available recipes except by changing cook itself. Sub-
classing Cook for cooks with more recipes is akin to the
alternative discussed in the next paragraph. Another
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drawback is that we cannot REUSE the recipes for other purposes, e.g., nutrition
analysis. Finally, we have to SELECT recipes by name (prepare1 , prepare2 , . . . ), i.e.,
we cannot exploit dynamic binding for recipe selection. Consequently, code that
demands a Cook to prepare a dish is sensitive to the addition of new dishes.

Cook2Cook1

recipe : Dish2recipe : Dish1

recipe : Dish

Cook

prepare : Dish

Figure 4.3: Cooking with single inheritance

Single inheritance Creating a
cook subclass for each new recipe
allows to add recipes without
changing existing cooks (see fig-
ure 4.3; prepare is a template
method using recipe as a hook
method, hence this design fol-
lows the design pattern Template
Method [Gamma et al.94]). How-
ever, the price to pay for this FLEX-
IBILITY is a lot of traffic in the class
name space for all these specialized
cooks especially when we consider
multiple cooks (e.g., French and
Italian chefs de cuisine). Neverthe-

less, the SELECTABILITY problem is coincidentally solved too. Now we can say
prepare to Cook and depending on the actual subclass (Cook1 or Cook2 ) we get
the corresponding dish. Code can rely on the abstract recipe method and is not
invalidated by the addition of new recipes. Unfortunately, we still cannot REUSE
recipes for other purposes.

Cook1

Recipe1

recipe : Dish1

Cook2

Recipe2

recipe : Dish2

recipe : Dish

Cook

prepare : Dish

Figure 4.4: Cooking with multiple inheritance

Multiple inheritance The
only way to make the recipes
reusable is to make them en-
tities (classes) of their own.
Using inheritance this leads
to multiple inheritance (see
figure 4.4). Now we can
REUSE recipes, SELECT recipes
with dynamic binding, and
are FLEXIBLE in adding new
recipes. But the model gets
more COMPLEX, because of the
inheritance relations. SCAL-
ABILITY suffers by the fact
that each new recipe demands
for an additional combinator
class. A new cook multiplies
the inheritance relationships.
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Finally we experience a loss of ENCAPSULATION: Not only cook and recipes break
the encapsulation of each other (as already the case with single inheritance) but the
combinator classes break the encapsulation of both cook and recipes. A change to
the implementation of Recipe2 may produce a conflict with the implementation of
Cook (e.g., through the use of a common variable name).

Recipe1

recipe : Dish1

Recipe2

recipe : Dish2

prepare1 : Dish1

AllPurposeCook

prepare2 : Dish2

prepare : Dish

Cook

prepare : Dish

Figure 4.5: Cooking with repeated inheritance

Repeated inheritance The
final try involving inheri-
tance aims at saving combi-
nator classes, hence, regain-
ing SIMPLICITY and SCALA-
BILITY. The idea is to fold
all combinator classes from
the solution above to a sin-
gle combinator class (see fig-
ure 4.5). This combina-
tor class (AllPurposeCook ) re-
peatedly inherits Cook and
distributes each inheritance
path and recipe to a unique
recipe name [Meyer92]. We
gained a little SIMPLICITY
but did not really gain on
SCALABILITY, since for many
recipes we get big combina-
tor classes with a lot of re-
naming needed inside. More-
over, adding a Cook means
adding a new big combinator. As a serious drawback we lost on SELECTABILITY.
We cannot exploit late binding for choosing cooks or recipes anymore. Finally, EN-
CAPSULATION problems represent the worst of all solutions.

Parameterization Clearly, inheritance does not provide a satisfactory answer to
the combination of cooks with recipes. Now let us take a fresh look at the prob-
lem and regard cooks as a higher-order function parameterized with recipes. Now
Cook “takes-a3” Recipe (see figure 4.6 on the next page). This is a client/server
relationship, hence, ENCAPSULATION is provided. The Cook asks recipes to apply
themselves and depending on the actual Recipe1 the corresponding dish is pre-
pared. Ergo, SELECTABILITY is also enabled. All components are REUSABLE and
the model SCALES up without problems. The model also is fairly SIMPLE especially
since one can forget about the (abstract) inheritance relationship as a model user. It
only needs to be considered when adding new recipes which must simply contain
an inherit clause in their class definition.

3“uses” or accepts as a parameter.
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apply : Dish2

Recipe2

apply : Dish1

Recipe1

Cook

prepare(recipe : Recipe) : Dish apply : Dish

Recipe

Figure 4.6: Cooking with parameterization

Now is the above model the solution to all problems? Unfortunately not, as
it is not as FLEXIBLE as the inheritance models. Why is this so? Remember, the
criterion for FLEXIBILITY (see table 4.1 on page 60) also asked for the ADAPTABILITY
of cooks: Let us assume we receive an exquisite recipe requiring a special procedure
of evaporation. Our standard cook is not capable of that so we need an extended
version. The inheritance solutions have no difficulties with that requirement, for
they can add the extension in the subclass that combines cook and recipe. In a
pure parameterization model a redesign would require to change the parameter of
Cook to something like CookAdapter , provide a dummy adapter for old recipes,
and develop a special adapter — containing the cooking extension — for the new
recipe.

Parameterization and Inheritance To reconcile FLEXIBILITY with parameteriza-
tion one can simply combine inheritance and parameterization in their appropriate
places (see figure 4.7).

Cook*

prepare(recipe : Recipe) : Dish
evaporate : Something apply : Dish2

Recipe2

Cook

apply : Dish1

Recipe1

prepare(recipe : Recipe) : Dish

Recipe

apply : Dish

Figure 4.7: Cooking with synergy
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In this setup both parameterization and inheritance contribute to a solution that
yields optimal criteria evaluation except for a little loss of ENCAPSULATION be-
tween the cook classes. Yet, this appears inevitable considering the amount of
FLEXIBILITY possible with regard to a cook adaption. Note that using a pure pa-
rameterization model it is not an option to simply add a new cook to the system
since that would not allow subtyping between cooks, that is, we cannot reuse code
that assumes the existence of one cook type only.

What are the lessons to be learned from this excursion? Parameterization is su-
perior to inheritance to model behavior variability. Although, it is not true — as
often claimed [Pree94] — that inheritance allows for static combinations only, it in-
volves severe encapsulation problems between the entities to combine. Note that it
is easy to apply the arguments for cooks and recipes to other domains. For instance,
let cook be an iterator and recipes iteration actions. Indeed, even the repeated in-
heritance solution has been suggested for combining iterators with several iteration
actions [Meyer94b]. Parameterization achieves its complexity and encapsulation
advantages through the principle of black-box reuse [Johnson & Foote88, Griss95],
that is, to reuse components as is without further modification.

Nonetheless, parameterization alone can reduce flexibility. The strength of in-
heritance, i.e., to adapt a class in unforeseen ways, is also called “white-box reuse”.
White-box reuse breaches encapsulation and requires internal knowledge of the
reused component but is a powerful supplement to black-box reuse due to its flex-
ibility.

Of course, inheritance has many other useful purposes we did not mention here
(see section 2.3.2.3 on page 42) that justifies its coexistence with parameterization.
Parameterization in turn has more to offer than demonstrated here. This discus-
sion is continued in chapter 7 on page 93 mentioning, among other issues, why
restricted flexibility can also be of advantage.

4.2.3.2 Decomposition

Data abstraction We already mentioned the fundamental dichotomy between a
functional and an object-oriented decomposition (see section 4.1.1.2 on page 56).
Today there is no doubt about the advantages of structuring a software system ac-
cording to the business objects it handles. Enormous grow rates for object-oriented
systems, languages and publications, give testimony to the historical win of the
object-oriented paradigm since the mid eighties over structured design and analy-
sis [Quibeldey-Cirkel94, Shan95]. Apparently, there is no need for functions oper-
ating on data, i.e., data abstraction, since everything can be — with advantage —
expressed with data annotated with functions, i.e., procedural abstraction.

Unfortunately, it is not as easy like this. The decision for data abstraction of
procedural abstraction is an inevitable trade-off. It just happens to be the case that
choosing procedural abstraction more often results in better future maintainability.
Why is this? Consider table 4.2 on the next page.

The first row contains data constructors while the first column contains opera-
tions. The intersection cells contain operation implementations for the correspond-
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Line Rectangle Circle

move(x, y) move two
points

move four
points

move center

scale(f) scale one
point

scale one
point

scale radius

display draw line draw four
lines

draw circle

Table 4.2: Decomposition matrix

ing data constructor. If we slice table 4.2 into columns we obtain an object-oriented
decomposition. Each constructor packages its operation implementations. If we
slice table 4.2 into rows we obtain a functional decomposition. Each function pack-
ages the implementations for all constructors.

What happens when we add a new constructor (e.g., Rhombus) to table 4.2 repre-
senting our our software system? This is the case where functional decomposition
requires to modify all functions in order to account for the new constructor (see ta-
ble 4.3). It does not matter whether we need to add a new function pattern or have
to extent a type switch. The crucial point is that all functions must be changed and
that they might be spread over the whole software system hiding in unexpected
regions. This is the case where the object-oriented decomposition excels. All that
needs to be done is to add another object to the system supporting all required
operations.

Adding

constructor function

Functional open all
functions

local function
additionDecomposition

Object-oriented local object
addition

open all objects

Table 4.3: Sensitivity of decomposition types

Now, what happens when we add a new function (e.g., rotate(a)) to table 4.2?
The object-oriented decomposition requires to open all objects and add the opera-
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tion implementation (see table 4.3 on the preceding page). At least, no client code
has to be modified. Still, we must perform changes at distributed locations and pos-
sibly re-testing (→ regression test) of objects becomes necessary. Furthermore, op-
erations will accumulate at object interfaces which become bloated sooner or later.
Is display an operation an object should support? Or should display be a function
of an external view component whose exchange would allow for eased manage-
ment of changing presentation style? The addition of a function is the case where
functional decomposition excels. Only a local addition of a function covering all
constructors is necessary.

Two reasons speak for preferring the object-oriented decomposition. First, it
is more likely to expect the addition of constructor. A software system can be re-
garded as a competence provider. Quite often one wants to expand the compe-
tence to more data (e.g., handle more graphical objects) rather than expanding the
competences (adding yet another user interaction). Second, extending objects with
operations (monotonously) does not affect clients. Changing data in a functional
decomposition, on the contrary, involves changing client code at many different
places.

Nevertheless, there are opportunities where a functional decomposition pays
off. For instance, you might want to experiment with language tools working on
an abstract syntax representation. Then the language will not change, that is, the
constructors are fixed, but often new operations will be defined on the abstract
syntax tree. Here, the functional decomposition is better suited as it, in addition,
keeps individual operations — which are the focus in this scenario — at a single
place rather than distributing them over abstract syntax nodes. This discussion is
continued in chapter 12 on page 201 that combines functional decomposition with
local semantic functions.

In summary, there are reasons for both object-oriented and functional decom-
position. One accounts for data- and the other for operational extensions. It is
my understanding of Ivar Jacobson’s control objects [Jacobson et al.94] that these ac-
count for operational extensions. Jacobson also features entity objects which could
be — using a dogmatic object-oriented view — extended to support any required
functionality. However, a division of functionality into intrinsic object properties
(e.g., a circle’s center and radius) and extrinsic properties (e.g., displaying a circle
or calculating π by stochastically dropping a needle onto a circle) results in a system
that features hot spots for extending both data and operations.

Part III beginning at page 233 will discuss a third option to interpret table 4.2 on
the preceding page, elegantly escaping the dichotomy.

Structured programming While it appears worthwhile to retain functions — out-
side of class definitions — there is further motivation caused by the need to struc-
ture functions. It has been argued that functional decomposition techniques are
still useful for the decomposition of methods [Henderson & Constantin91]. Fur-
thermore, functional decomposition techniques should also be applied to extract
methods from objects. Consider the simulation of planes. During take-off a lot of
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management is needed to control landing gear, throttle, vertical rudder, etc. This
is best managed by a dedicated takeOff function that abstracts from individual ac-
tions required. In case we also want to handle helicopters we may simply alter
takeOff adding rotor adjustments etc. Other code remains unchanged since it relies
on a take-off abstraction. With this view, takeOff is a business-transaction [Coplien92]
that orchestrates multiple objects to achieve an operational effect. It is not a direct
property or capability of an object. It is true that it is perfectly natural to create
an abstraction FlyingObject that supports takeOff as a method. In this case object
and function abstraction just happily coincide. But what about checkPlane? Is it a
feature of planes or of service personnel? Is the presentation (view) of an object its
responsibility or an external function?

ShaftPiece

Collision

interface
dependency

Piece

collision(s : Shaft)

interface
dependency

Shaft

representation
dependency

Figure 4.8: Restructured dependencies

Is it the responsibility of a
Tetris piece or the shaft to de-
tect collisions? In the latter ex-
ample with either choice a rep-
resentation dependency would
be created (see upper half of
figure 4.8). Representation
changes to the class containing
the collision method would af-
fect the method’s implementa-
tion and interface changes to
the other class would require to
adapt the former. Ergo, a nat-
ural solution would be a free
collision function belonging to
neither Piece nor Shaft (see
lower half of figure 4.8). In that
case changes to piece or shaft
representation do not affect the
collision function and interface
changes are not propagated be-
yond the collision function. In
either case a potential ripple ef-
fect of changes through the sys-
tem is prevented. Object-oriented purists might invent a Part object abstraction that
would feature a collision method and let Piece , Shaft , or both inherit from it. Just
in order to avoid a free function (Collision ) the resulting design would posses the
natural coincidence of object and function abstraction as in the takeOff case above
and, furthermore, would have worse properties than that of figure 4.8. If Part is
used for other function abstractions and even holds data then a restructuring of
one function abstraction affects the others and may require the data hierarchy to
be changed. This should not happen and would be the result of forcing function
abstractions into a pure object-oriented view.
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4.3 Conclusion

Although a fruitful integration of functional concepts into object-oriented program-
ming appeared to be impossible first (section 4.1 on page 55) I demonstrated the
most concepts to be complementary rather then excluding (section 4.2 on page 57).

We retained stateful objects for real world modeling without impedance mis-
match, efficiency, and for maintenence reasons.

“Pure languages ease change by making manifest the data upon which each
operation depends. But, sometimes, a seemingly small change may require a
program in a pure language to be extensively restructured, when judicious use
of an impure feature may obtain the same effect by altering a mere handful of
lines. [Wadler92]” – Philip Wadler

Nevertheless, the virtues of referential transparency are still available due to the
command-query separation principle.

We have seen that a restriction to a pure functional or object-oriented de-
composition leads to unsatisfactory results in either case. Both object-oriented
or functional decomposition can be appropriate depending whether the objects
or the functions (business-transactions) are the more stable concept. After an
initial repulsion of any function which is not a object method it is time to re-
integrate free functions into object-oriented design again. A move towards this
direction are so-called command objects, e.g., used for application callback func-
tions [Meyer88, Gamma et al.94]. Still, these are not acknowledged as functions
but as representations of actions to be undone or protocoled [Meyer88].

Regarding the separation between subsumption (section 4.2.1 on page 57) and
integration (section 4.2.2 on page 59) it should be noted that the borderline be-
tween is somewhat arbitrary. One may also claim that objects subsume functions
without further integration needed or that side-effect free functions and value se-
mantics need further integration. With the assessment that stateful programming
subsumes functional programming and objects subsume values I meant the op-
portunity to partly renounce side-effects by programmer discipline. Of course, it is
acknowledged that language support for controlling side-effects is highly desirable
(see section 14.5 on page 243).

In conclusion, it appears quite reasonable and promising to integrate two seem-
ingly contradicting paradigms. However, someone using such a dual-paradigm
approach needs guidance when to choose which alternative. Figuratively speaking,
when to choose the declarative or the procedural branch of figure 4.1 on page 56. It
is the intent of the pattern system presented in part II starting at page 85 to provide
a base of arguments for a decision.
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Once is an event, twice is an incident, thrice it’s a pattern.
– Jerry Weinberg

T
he notion of a software design pattern is not formally defined. More
than two years after design patterns have been popularized in 1994 there
are still argues about their correct definition and their meaning for soft-

ware development [Gabriel96]. In order to define the role of design patterns in the
context of this dissertation I provide an introductory definition starting with ex-
amples from everyday life (section 5.1). After considering the origins of patterns
(section 5.2 on page 74) I mention some of the promises to be expected from design
patterns (section 5.3 on page 76). This chapter concludes with an explanation of
the design pattern format (section 5.4 on page 76) and a description of the diagram
notation (section 5.5 on page 79) both to be used in part II beginning at page 85.

5.1 Definition

Patterns are ubiquitous. Most often they are not recognized and less often they are
captured by a literate form, but still they exist. This is true of the everyday meaning
of the word “pattern”, but also, and more importantly, it is also true for a special
meaning first described by the architect Christopher Alexander:

“Each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution [Alexander79].”

– Christopher Alexander

However, it is the nature of patterns to recur, so let us simplify the above to:

A pattern is a recurring solution to a problem in a context.

That is why patterns are ubiquitous. People, but also the mechanisms of nature,
repeatedly apply the same solutions to problems that occur in a certain context.

5.1.1 A gentle introduction

Let us assume the context of writing a piece of music for the mass market. We are
confronted with conflicting forces:
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• Easy listening. For quick reception and lasting pleasure we need a catching
theme that is often repeated.

• Boring monotony. Simple repetition of the same stuff will turn people off and
we will loose their interest.

A solution to these forces that has been applied again and again by composers all
over the world is to use two basic themes that are repeated in turn and throw in
a special theme near the end of the song. If we name the themes A, B, and C, the
successful composition pattern is depicted by figure 5.1.
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Figure 5.1: A composer’s pattern

Using this pattern has several consequences:

• Familiarity. The listener is smoothly introduced into our musical ideas and
can learn the themes due to their repetition. After the exiting change with
special theme “C” we calm him down again.

• Keep awake. At the point when the listener might think there is no new stuff
to discover we surprise him with the more exiting “C” theme.

• Regularity. If we build all our songs according to this knitting pattern the lis-
tener will recognize it in the long run and be bored in spite of the surprising
variation of repetition.

This description does not aim at completeness. It merely attempts to explain the
pattern concept with everyday notions. If we travel a bit further down this road we
can see how patterns may collaborate with each other. Let us imagine we composed
a song according to the “ABACAB” pattern but aim at a very dramatic coda. We
may use another item from a composer’s toolbox that can tentatively be called “One
Note Up”. It is another pattern resolving a different set of forces:

• Keep attention. Listeners accustomed to the “ABACAB” pattern may loose
their interest towards the end of the song.

• Do not confuse. Introducing yet another theme will overstrain the listener.



5.1 Definition 71

We resolve the forces by repeating the last theme again but this time with all notes
increased by one note. As consequences we have:

• Cosy feeling. The listener recognizes the variation to the theme and is not re-
quired to learn a new one.

• Boredom prevented. The added note creates a dramatic effect that keeps the
listener tuned.

Note, how the solution of the first pattern provides the context for the second pat-
tern. This is how true pattern languages work. We can think of single patterns as
elements of a grammar that, by its production rules, defines a language which tell
us how to weave patterns together. In contrast, a set of patterns that provides use-
ful collaborations but does not provide guidance how to choose patterns from a
lower level when higher level decisions have been made is called a pattern system.

Also, we have seen how the names of patterns like “ABACAB” and “One Note
Up” establish a vocabulary to discuss the design of songs. As language can lever
our level of thinking we may now design songs on a higher level. In fact, patterns
work as chunks and instead of handling only three simple things at once we may
deal with the same amount of high level chunks.

Let us recapitulate by assuring that “pattern” is indeed a good name for the
above described notion. Table 5.1 features everyday meanings on the left hand side
and their interpretation in our context on the right hand side:

Facet1 Meaning

pattern recognition; in-
ducing attention by re-
peated occurrence.

Patterns are not invented, they are discovered.

form or model proposed
for imitation.

Resolving forces in a successful way is worthwhile
to be copied.

knitting pattern; form
or style in literary or mu-
sical composition.

A pattern description suggests to arrange existing
participants in a certain style rather than prescribing
the participants.

dress pattern; a con-
struction plan.

Pattern descriptions also tell you how to arrive at the
solution described.

configuration; like frost-
or a wallpaper patterns.

The participants in a pattern solution form a struc-
ture by their relations.

behavior pattern; com-
plex of individual or
group characteristics.

Each pattern participant plays a characteristic role in
the solution.

Table 5.1: Facets of “pattern”
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With regard to patterns we may have several level of consciousness.

1. We are not aware of a recurring solution.

2. We know some “tricks” that jump to our help in some situations, but we can-
not fully capture what the real magic is, neither can we determine the charac-
ter of the applicable situations.

3. We exactly know when we can apply a recurring solution.

4. We know when to apply the solution and are aware of all consequences in-
volved.

5. We are able to linearize our knowledge into a literate form such that others
can learn from our experience.

The last level of course refers to design pattern descriptions. Considerable in-
sight is necessary to write a comprehensible pattern description and the result can
be considered to be novel work, although the main content on the contrary must
be well-known to work. Of course, it is possible to use a pattern description style
(see, e.g., section 5.4 on page 76) to document original solutions, i.e., that did not
yet recur. It has been suggested to call these “Proto-Patterns”.

5.1.2 Software Patterns

Patterns are useful in the context of software development, since software engi-
neering is not a science yet. There is no straight way of creating an optimal system
and probably never will be. This is the case for patterns. They are useful when
something creative has to be build and no hard and fast rules apply. Patterns are to
be applied by humans not by (today’s) computers.

“. . .software designers are in a similar position to architects and civil en-
gineers, particularly those concerned with the design of large heterogeneous
constructions, such as towns and industrial plants. It therefore seems natural
that we should turn to these subjects for ideas about how to attack the design
problem. As one single example of such a source of ideas I would like to mention
Christopher Alexander: Notes on the Synthesis of Form [Alexander64].”

– Peter Naur

“Subsystems created by the composition of objects or interaction machines
do not conform to any accepted notion of structure and are very hard to charac-
terize, though they do determine subsystems that exhibit reusable regularities
of interface behavior. The term pattern is used to denote reusable regularities
of behavior exhibited by interactive subsystems created by the composition of
interaction primitives. [Wegner95].” – Peter Wegner

1These are partly taken from a dictionary [Harkavy & et al.94].
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“A pattern is a piece of literature that describes a design problem and a
general solution for the problem in a particular context.” – James O. Coplien

As yet, no methodology (e.g., [Booch94]) offers a means to describe designs as ap-
propriately as patterns can do2.

“The problem specification and results for sorting can be formally spec-
ified, while the problem class and effects of interactive patterns cannot gen-
erally be formalized and require a sometimes complex qualitative descrip-
tion. [Wegner95]”

– Peter Wegner

Patterns tie a design solution to its driving forces and its related consequences.
Why is it important to capture the forces too? First, this helps to decide whether a
pattern is applicable or not.

escher-space-filling.ps

Figure 5.2: Space filling pattern

2The upcoming UML Method integrates patterns, though [Rumbaugh et al.97].
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Second, when you look, for instance, at a space filling pattern by the Dutch artist
M.C. Escher the complexity of its derivation is completely hidden in the beauty of
its solution. However, if you try a variation to the basic filling pattern you might
be able to fill some space, only to find out it does not work in general. Similarly,
it has been observed that month of work flow into the change of a system only to
find out that there was a particular good reason for the old solution, which has to
be restored then.

In addition to presenting a concrete solution, rather than a set of first principles
(like e.g., aim at low coupling and high cohesion), patterns also tie the solution to
a concrete example.

“If a prior experience is understood only in terms of the generalization or
principle behind the case, we don’t have as many places to put the new case
in memory. We can tell people abstract rules of thumb which we have derived
from prior experiences, but it is very difficult for other people to learn from
these. We have difficulty remembering such abstractions, but we can more
easily remember a good story. Stories give life to past experience. Stories make
the events in memory memorable to others and to ourselves. This is one of the
reasons why people like to tell stories [Shank90].” – Roger C. Shank

Design expertise is not a collection of abstract rules, because rules, though useful
for evaluations, do not generate solutions. Design experts know many working
solutions and know when to apply them:

“. . .wisdom is often ascribed to those who can tell just the right story at the
right moment and who often have a large number of stories to tell [Shank90].”

– Roger C. Shank

5.2 History

It is hard to determine who described the notion of a pattern first. Because of its
fundamental and universal meaning for the human mind it should not come as
a surprise to discover works as old as Liu Hsieh‘s (465–522) “The Literary Mind
and the Carving of Dragons” (subtitle: A study of thought and pattern in Chinese
literature). He discusses forty nine different patterns in Chinese literary classics in
the style of a cookbook [Freddo96].

The first to popularize patterns, however, was Christopher Alexander. He cap-
tured successful architectural solutions in pattern descriptions that are supposed
to allow even non-architects to create their own individual architectural solutions
(e.g., rooms, houses, gardens) [Alexander et al.77, Alexander79]. His patterns form
a language, i.e., they provide a top-down guidance from the arrangements of cities
down to areas, houses, and the shaping of rooms. Alexander’s work also caused the
software community to pay attention to patterns. His first influence already took
place at the 1968 NATO conference3 in Garmisch when Naur, referring to Alexan-
der’s Ph.D. thesis [Alexander64], mentioned the connection between architecture

3Coincidentally, Friedrich L. Bauer coined the term “Software Engineering” at this conference.
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and software construction [Naur69] (see section 5.1.2 on page 72). Alexander’s the-
sis is even said to have been the basis for the structured design concepts of coupling
and cohesion [Ballard95].

In retrospect, Robert Floyd mentioned pattern-like ideas in his 1978 Turing
Award lecture, where he proposed to teach concepts or paradigms like “prompt-
read-check-echo” and “generate-filter-accumulate”, rather than concrete program-
ming languages [Floyd87].

But officially, it took the software community nineteen (19!) years to rediscover
patterns when Ward Cunningham and KentBeck, inspired by Alexander’s work,
in 1987 decided to let future users of a system design it by supplying them with
a small pattern language for developing user interfaces with SMALLTALK. They
reported the results at OOPSLA ’87 [Meyrowitz87].

Independently, Erich Gamma was dealing with ET++ [Weinand & Gamma94]
and realized the importance of recurring design structures in his Ph.D. thesis about
ET++ [Gamma91].

Ralph E. Johnson used patterns to document a framework in 1992 [Johnson92]
and also James O. Coplien’s C++ idioms4 contributed to the pattern litera-
ture [Coplien92]. Further publications on patterns followed [Gamma et al.93,
Beck & Johnson94]. A landmark was established with the first design pattern cat-
alog book by the GOF5 in 1994 [Gamma et al.94]. In August 1994, the first con-
ference on patterns were held at the Allerton Park estate near Monticello, Illinois.
Many followed since then and are sure to follow in the future.

Curiously, the foundation of object-orientation was perceived by Alan Kay
through a typical pattern discovery. First, in 1961 he noticed a particularly clever
solution to store and retrieve data for the Burroughs 220 machine [Kay96]. The
scheme provided a flexible file format by using three file sections: The first was
an indirection table to procedures (residing in the second part) that knew how to
read and write the data of arbitrary size and format in the third pard. This scheme
corresponds to objects that “know” how to store and restore themselves. The next
occurrence for Kay was the Program Reference Table of the Burroughs B5000. It
similarly allowed a procedural access to modules. The third encounter in 1966
was caused by the Sketchpad6 system. It used embedded pointers to procedures
to achieve an indirection in calls to procedures. Finally, Kay was asked to fix an
ALGOL compiler, which has been doctored to compile SIMULA. When, during his
compiler studies, he noticed the similarity between Sketchpad and SIMULA objects
and discovered the independent nature and message sending activities of SIMULA
instances the “pattern” object-orientation came alive in his mind.

4Idioms can be considered to be language-specific patterns that are used to circumvent limita-
tions in — and/or to provide extra functionality beyond — an implementation language.

5Gang of Four: Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides; authors of
the first design pattern catalog book [Gamma et al.94].

6An early interactive computer graphics system.
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5.3 Promise

Design patterns recommend themselves by many good reasons (see table 5.2).

Category Description

Reusable Software Software systems built with patterns are easier to main-
tain, since patterns, among other aspects, often capture the
key solutions that make software extensible.

Reusable Design Patterns can be used as building blocks for system de-
signs [Beck & Johnson94]. There is no need to invent these
micro-architectures again and again.

Documentation Augmenting a design documentation with pattern names
and assigning pattern roles to system components in-
stantly communicates a chosen design decision to a pat-
tern connoisseur7 [Johnson92].

Communication Pattern names establish a vocabulary that enables to dis-
cuss about designs at a higher level.

Teaching As recorded experience patterns can be used for teaching
successful designs. Patterns are a way to hand down cul-
ture from generation to generation [Coplien96b].

Language Design If a recurring solution can be recognized as a work-around
due to an inappropriate implementation language, it
should be taken in consideration for the design of new lan-
guages [Baumgartner et al.96, Seiter et al.96].

Table 5.2: Promise of design patterns

The last category in table 5.2 is not usually promoted as a benefit of patterns, yet
plays an important role for this dissertation: Part III starting at page 233 discusses
the impact on language design caused by the pattern system presented in part II
beginning at page 85.

5.4 Form

All design pattern descriptions of part II use a slightly modified GOF pattern tem-
plate [Gamma et al.94]. Besides minor changes to style and the division of the mo-
tivation into a problem and solution section I added categories to section “Related
Patterns” in order to clarify the nature of each relation. The following template
description has been adapted from the original GOF template description:

7A scientific proof of this statement has been made with a controlled experiment showing the
recognition of patterns to result in faster and better changes to a program [Prechel et al.97].
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escher-pattern-system.ps

Figure 5.3: Software system of interwoven patterns.

Pattern Name

The pattern’s name conveys the essence of the pattern succinctly. A good name is
vital, because it will be used in design discussions.

Intent

A short statement that answers the following questions: What does the design pat-
tern do? What is its rationale and intent? What particular design issue or problem
does it address?

Also Known As

Other well-known names for the pattern, if any.
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Motivation

A scenario that illustrates —

Problem

— a design problem —

Solution

— and how the class and object structures in the pattern solve the problem.
The scenario will help you understand the more abstract description of the pat-

tern that follows.

Applicability

What are the situations in which the design pattern can be applied? What are ex-
amples of poor designs that the pattern can address? How can you recognize these
situations?

• An applicability bullet. An applicable situation.

Structure

A diagram showing relationships between participating classes and/or objects.

Participants

The classes and/or objects participating in the design pattern and their responsi-
bilities.

• Participant Name

– Responsibility for what.

Collaborations

An interaction diagram and verbal description explaining how the participants col-
laborate to carry out their responsibilities.

• Collaboration.
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Consequences

How does the pattern support its objectives? What are the trade-offs and results of
using the pattern? What aspect of system structure does it let you vary indepen-
dently?

• An consequence bullet. Description of consequence.

Implementation

What pitfalls, hints, or techniques should you be aware of when implementing the
pattern? Are there language-specific issues?

• An implementation bullet. Description of implementation aspect.

Sample Code

Code fragments that illustrate how you might implement the pattern in EIFFEL.

Known Uses

Examples of the pattern found in real systems or languages.

Related Patterns

What design patterns are closely related to this one?

Categorization

Patterns with important similarities and differences.

Collaboration

Patterns that allow useful collaborations.

Implementation

Patterns likely to be used for implementation.

5.5 Diagram notation

Following the GOF pattern template, all interaction-, class- and object diagrams
use an extended OMT diagram notation [Rumbaugh91]. In the following figures
shadowed ellipses are used to separate notational elements from their description.
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5.5.1 Class diagram notation
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Class name

Type parameter

Abstract Method

method(argument : ArgType)

AbstractClass

GenericClass

inherits

uses

method(argument : ArgType)

method(argument : ArgType) : ResultType

ConcreteClass

Figure 5.4: OMT Notation: Class diagram

Aggregation, as usual, means that a class has an attribute of the pointed-to class
type. The uses relation denotes the pointed-to class to be a server and thus includes
aggregation and parameter passing.

5.5.2 Object diagram notation

anObjectanObject

anObject

references creates

Figure 5.5: OMT Notation: Object diagram
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5.5.3 Interaction diagram notation

Object active

Skipping time
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anObject

method call

create

anObject anObject

Object identifier

method(argument)

returning a result

Figure 5.6: OMT Notation: Interaction diagram
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6 Catalog

Design patterns are points in a multidimensional design space
that denote configurations of abstract design rules that actually work.

– me

C
hapter 3 on page 45 discussed the compatibility and utility of several
functional concepts for object-oriented design. Now we select the con-
cepts to be presented as design patterns. First, I briefly discuss the ten-

sion between Patterns and Proto-Patterns. Second, I motivate the particular selec-
tion of concepts made and use so-called pattlets to generalize on each resulting
pattern’s solution or supporting idea. Table 6.3 on page 92 lists all patterns with
page index and intent description. Finally, I motivate the use of EIFFEL for sam-
ple code. Chapter 13 on page 221 elaborates on the possible interactions between
patterns of the system.

6.1 Proto-Patterns

Before I am going to present a system of patterns I should elucidate whether it
should better be called a system of Proto-Patterns. Section 5.1.1 on page 69 intro-
duced the term “Proto-Pattern” to denote patterns that lack the empirical evidence
of successful application. After all, I aim at enriching object-oriented culture with
concepts from a different paradigm. Indeed, for most of the presented patterns
and their variants I cannot fulfill the rule of three, that is, name three occurrences
in software systems. Does that make the patterns less useful? My answer is no!
First, it is problematic to define the quality of something by its quantitative occur-
rence. According to this measure, FORTRAN and COBOL would probably be the
best programming languages. Neither does the widespread use of a design solu-
tion imply its quality. Second, the patterns presented are proven designs though
not in object-oriented systems. Nevertheless, they record successful designs from
functional programming.

Apparently, the rule of three is a good idea to motivate pattern authors to do
their homework but should not be taken too literally.

“And occasionally, we do not start from concrete observation at all, but
build up the invariant by purely abstract reasoning.
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For of course, the discovery of patterns is not always historical. Some of
the examples I have given might make it seem as though the only way to find
patterns is to get them from observation. This would imply that it was impossi-
ble to find patterns which do not already exist in the world already: and would
therefore imply a claustrophobic conservatism; since no patterns which do not
already exist could ever be discovered. The real situation is quite different. A
pattern is a discovery in the sense that it is a discovery of relationship between
context, forces and relationships in space, which holds absolutely. This discov-
ery can be made on a purely theoretical level [Alexander79].”

– Christopher Alexander

Anyway, the presented patterns capture the software engineering properties of
functional concepts and techniques and introduce object-oriented designers to
some remarkable solutions.

6.2 Pattern System

The subsequent sections motivate each pattern (see table 6.3 on page 92) in the
context of the discussion in chapter 4 on page 55. The actual patterns are presented
in the following chapters using the template description of section 5.4 on page 76.
Any collaboration between patterns within the presented system will be covered in
chapter 13 on page 221.

Subsequently, I use so-called pattlets to express the general idea, wisdom be-
hind, or observations supporting a pattern. Pattlets recommend themselves to ex-
press a practical advise without the overhead of a full blown pattern description.
For instance:

Pattlet I

Describe a very general pattern extremely poignant and concise with a pattlet.
♦

A pattlet just very briefly expresses a statement that has a very general applica-
bility and would need specializations at least in the form of multiple examples or
even dedicated patterns in order to be a comprehensible pattern description.

6.2.1 Function Object

One of the most important concepts in functional programming are higher-order
functions [Hughes87]. Coincidentally, parameterization was shown to cohabit with
inheritance even synergistically (see section 4.2.3.1 on page 60):

Pattlet II

For mature domains use black-box reuse.
♦
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This statement refers to the fact that object composition, i.e., function parame-
terization is superior to white-box reuse [Johnson & Foote88, Griss95] but the hot-
spots of the domain have to be known. In other words, use white-box reuse until
you found out the right spots to parameterize. Then, black-box reuse is more safe,
dynamic, and comfortable.

A Function Object [Kühne94, Kühne95b, Kühne95a, Kühne96c, Kühne97] is
foremost a method object (akin to the Strategy pattern [Gamma et al.94]) but — as
a variant — also subsumes a message object (Command pattern [Gamma et al.94]).
A method object “objectifies” [Zimmer94] a method, thus, lifting it to first class sta-
tus. A message object reifies a message, hence, making it amenable to persistence,
logging, undoing, and most importantly allows to postpone it. The latter property
is ideal for implementing callbacks [Meyer88, Gamma et al.94].

Beyond this, Function Object adopts the functional technique of currying (see
section 1.2.3 on page 12). Hence, it expands on Strategy by capturing real closures
and extends Command applications with partial parameterization.

6.2.2 Lazy Object

The second most important concept supporting modularity — next to higher-order
functions — from functional programming is lazy evaluation [Hughes87]. It is
worthwhile attempting to achieve the same decoupling between generators and
consumers, to aim at a similar independence of irrelevant dependencies —

Pattlet III
The early bird gets the worm but the lazy lion gets the flesh.

♦

— and to capture infinite data structures.

Pattlet IV
Capture infinity by creating a cycle.

♦

Lazy Object handles both aspects of call-by-need semantics:

1. Latest possible evaluation and
2. at most once evaluation of expressions.

It also leads to the particular useful notion of lazy streams, which can be used to
support iteration and conversion of collections.

6.2.3 Value Object

Section 4.2.1.1 on page 57 argued in favor of pure, i.e., side-effect free functions.
A deliberate renunciation of state in programming was chosen to reduce software
complexity due to state interactions.
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Pattlet V

Expand your freedom by restricting yourself.
♦

Beyond that, we might want to exclude certain procedures from changing other-
wise mutable objects. The desirable properties of values from functional program-
ming motivate the need for declaring immutable access paths to objects. Further-
more, some objects should behave like values, that is, should have copy semantics.

6.2.4 Transfold

Whereas in object-oriented programming iterators are very popular (see Iterator
pattern [Gamma et al.94]) functional programmers use so-called mappers.

Pattlet VI

For safety and reuse: Don’t call us we call you.
♦

Mappers (e.g., mapand fold) accept a function and apply it to all elements of a
collection. Transfold, therefore, is an application of the functional principle to use
general purpose library functions which can be specialized by using higher-order
functionality. Transfold is shown to be specializeable to a plethora of operations.

Pattlet VII

Provide the most powerful concept and specialize it to solve concrete problems.
♦

Although, it is acknowledged that functional mappers are easier and safer to
use than conventional iterators, it is commonly assumed that

• they are not applicable in languages without built-in support for closures and

• they are less flexible than iterators.

Transfold invalidates both arguments by generalized folding with function objects.

6.2.5 Void Value

Void Value [Kühne96b] is inspired by pattern matching. Yet, instead of establishing
a similar mechanism I observe that pattern matching is simply another form of case
statements. One of the fundamentals of object-oriented design, however, is

Pattlet VIII

Replace case statements with dynamic binding.
♦
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Although this guideline can also be taken too far (see the Translator pattern on
page 201 for a discussion when external dispatching is superior) it is at the heart of
object-oriented design to avoid change sensitive client code. Surprisingly, object-
oriented languages force their users to write case statements all the time, namely
in the form of conditionals testing for object references to be uninitialized (Nil1)
or initialized (non-Nil) [Kühne96b]. This is caused by the fact that empty or non-
initialized data is often represented as a Nil value. Dispatching on Nil does not
work since it is not a type but an exceptional reference state. Luckily, another pattlet
comes to our rescue:

Pattlet IX

Dispatch on values by making them types.
♦

Void Value shows how to represent datatype constructors as subtypes in or-
der to avoid client code checking for uninitialized data. Coincidentally, the values
as types metaphor shows the object-oriented way of pattern matching. Instead of
representing, e.g., the empty or non-empty state of a list as the list’s state one can
define NilList and ConsList as subclasses of List and distribute any function’s defi-
nition respectively.

Curiously, for Void Value the functional concept was not the prototype, but
pointed out a weak and inconsistent spot in the object-oriented framework.

6.2.6 Translator

Translator [Kühne98] uses external functions to avoid element interfaces from be-
coming bloated and being subject to changes. It, accordingly, prefers a functional
over an object-oriented decomposition (see section 4.2.3.2 on page 64). Actually, it
employs the Generic Function Object pattern on page 109 to implement free multi-
dispatching functions. Translator is inspired by denotational semantics descrip-
tions [Schmidt86] and facilitates incremental evaluation.

Pattlet X

Incremental evaluation calls for homomorphic translations.
♦

Homomorphic translations are well-known in functional programming (e.g., by
the so-called fold operators [Bird86, Gibbons & Jones93]) and Translator relies on
them for local function descriptions and incremental evaluation.

Translator also uses an intermediate data structure which is in close correspon-
dence to the explicit data structures used in functional programming to facilitate
proofs and clarify design [King & Launchbury93]. John Backus’ FP language com-

1Nil has many different names such as Null, None, and Void.
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pletely relied on such intermediate structures which were processed by the avail-
able set of fixed functional forms [Backus78].

Summarizing, Translator joins the four aspects of

• homomorphic translations,

• separation of translation and semantics,

• potential incremental translations, and

• external polymorphism.

and thus describes a general approach for homomorphic translations in an object-
oriented language.

In conclusion, I certainly do not claim to have presented all patterns existing in
functional programming. Functional programming is full of interesting techniques
that are worthwhile to be documented and are not presented here. Nevertheless,
the patterns chosen for this thesis provide a complete coverage of concepts sup-
ported by functional languages. See section 4 on page 55 for the discussion about
concepts worthwhile to be covered and reasons for rejecting others.

Most importantly, higher order functions and lazy evaluation are captured by
Function Object and Lazy Object. The virtues of immutability are discussed by
Value Object. With Transfold we leave the realm of language concepts and enter
language usage. Using folds on collections stems from functional programming
folklore rather than being a particular language concept2. Also, Void Value does
not capture pattern matching in full but draws an important lesson from this func-
tional language concept. Finally, Translator builds on Function Object and the idea
of Transfold — to replace constructors with functions — to externalize function-
ality for homomorphic interpretations. While less obvious then folding, recursive
interpretations and explicit intermediate data structures are certainly reoccurring
concepts in functional programming. Coincidentally, Transfold is an ideal example
to showcase the virtues of higher-order functions and lazy evaluation contributing
to a design solution that resolves surprisingly many issues at once.

The presented patterns cover a spectrum from functional language concepts to
typical uses of functional languages as depicted in table 6.1.

Language concept

➠

◊ ➠ Language usage

Function
Object

Lazy
Object

Value
Object Transfold Void

Value Translator

Functional programming

➠

◊ ➠ Object-Orientation

Table 6.1: Functional pattern spectrum

2Higher order functions certainly suggest to use internal iteration, though.
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6.3 Why Eiffel?

I choose EIFFEL as the language to illustrate pattern issues with sample code, since

• it is well-known,

• uses garbage collection,

• has a clean-syntax,

• and is purely object-oriented.

A language like C++ would force the examples to include code for memory
management, distracting from the prior goals. EIFFEL’s syntax is sufficiently easy
to read in order to allow C++- or SMALLTALK programmers to benefit from the
examples. BETA has a much less clear syntax and is also already influenced by
functional ideas which makes it less clear to demonstrate the emulations needed
for pure object-oriented languages.

EIFFEL scores well above a number of other well-known general purposes lan-
guages with 21 source statements per function point [Jones96] (see table 6.2).

Language Level

Average source
statements per
function point

ADA 95 6.50 49

CLOS 15.00 21

C++ 6.00 53

EIFFEL 15.00 21

HASKELL 8.50 38

JAVA 6.00 53

SMALLTALK 15.00 21

Table 6.2: Language levels

JAVA would have been a very good candidate too. I expect a correction to the
language level given in table 6.2. Unfortunately, until today JAVA lacks support for
generic datatypes. Any generic treatment of datatypes means to create superfluous
subclasses or spurious cast statements. Given this limitation, EIFFEL was the best
choice to express pattern goals with the least distraction from language limitations.
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Name (page) Intent

Function Object (93) Encapsulate a function with an object. This is useful for
parameterization of algorithms, partial parameterization
of functions, delayed calculation, lifting methods to first-
class citizens, and for separating functions from data.

Lazy Object (115) Defer calculations to the latest possible point in time.
This is useful for resolving dependencies, calculation
complexity reduction, increased modularity and infinite
data structures.

Value Object (149) Use immutable objects with generator operations for
protection against side-effects and aliasing.

Transfold (163) Process the elements of one or more aggregate objects
without exposing their representation and without writ-
ing explicit loops.

Void Value (191) Raise Nil to a first-class value. This allows to treat void
and non-void data uniformly, is a way to provide default
behavior, facilitates the definition of recursive methods,
and enables to deal with error situations more gracefully.

Translator (201) Add semantics to structures with heterogeneous ele-
ments without changing the elements. Separate interpre-
tations from each other and use local interpretations that
allow for incremental reevaluation.

Table 6.3: Functional pattern system
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7 Function Object

The secret of dealing successfully with a child is not to be its parent.
– Mell Lazarus

7.1 Intent

Encapsulate a function with an object. This is useful for parameterization of algo-
rithms, partial parameterization of functions, delayed calculation, lifting methods
to first-class citizens, and for separating functions from data.

7.2 Also Known As

Lexical Closure [Breuel88], Functor [Coplien92], Agent [Hillegass93], Agent-
Object [Kühne94], Functionoid [Coleman et al.94], Functoid [Läufer95], Function-
Object [Stepanov & Lee94, Kühne95b, Kühne97].

7.3 Motivation

Almost any software system makes use of behavior parameterization in one or
the other way. Iterators are a good example. The iteration algorithm is constant
whereas an iteration action or function varies. A special kind of iteration is the
has (member test) function of a collection. Consider a collection of books. Member
testing should cover testing for a particular book title, book author, book type, etc.

7.3.1 Problem

We may implement the predicate in the collection’s elements. This works nicely if

• the element’s natural interface contains the predicate.

• the predicate implementation may vary with the element type, but we do not
want to have a selection of several predicates for one element type.

Composing traversal algorithm and predicate as above uses dynamic binding of
the element’s predicate method. For instance, it is acceptable for a SortedList of
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Comparable elements to defer the compare predicate to the elements [Meyer94b].
As it is the sole purpose of such a collection to transpose an element property (e.g.,
ordering relation) to the entire collection, it is convenient that the element type
automatically provides a fixed predicate. The collection of books, however, should
be sortable according to various criteria, like author, title, and date. In order to be
able to change the sorting criterion at runtime, we do not want to encumber the
traversal algorithm with a switch statement that would select the appropriate book
compare method.

One way to achieve this is to use an external iterator. Then the varying predicate
(compare title, compare author, etc.) can be combined with the traversal algorithm
by placing the predicate in an explicit loop that advances the external iterator one
by one. As a result, the number of explicit loops corresponds to the number of
member test predicates uses.

However, there are good reasons to write such a loop only once (see “Write a
Loop Once” [Martin94], the discussion in the Iterator pattern [Gamma et al.94] and
chapter 10 on page 163). Consequently, we use an internal iterator. Given a predi-
cate, it returns true if any of the books fits the predicate. Here is how the predicate
is “given” to the internal iterator conventionally: The actual member test method is
a Template Method [Gamma et al.94], which depends on an abstract predicate. The
implementation for the abstract predicate, and thus the specific member test op-
eration, is given in descendants [Madsen et al.93, Meyer94b, Martin94]. Selection
of the member tests is done by selecting the appropriate descendant. So, traversal
algorithm and functions in general are combined through dynamic binding of the
abstract function method. Note that this forces us to place the member test method
outside the collection of books (e.g., at iteration objects) since we do not want to
create book collection subclasses but member test variations only. Further disad-
vantages aligned with the above application of an object-oriented design, using
inheritance and dynamic binding are:

Static combination. All possible combinations of iteration schemes and functions are
fixed at compile time. Neither is it possible to create a new function at runtime.

Combinatorial explosion. Sometimes it is useful to select not just one, but a combi-
nation of functions or tests and functions. With subclassing, it is not feasible to
provide any independent combination, since it leads to an exponentially growing
number of subclasses.

Subclass proliferation. Each new function demands a new Iterator subclass. The class
name space is cluttered by many concrete Iterator subclasses. We may use repeated
inheritance to combine all functions in one subclass [Meyer92], but this makes
things worse. First, it is non-local design to lump all functions in one class. Sec-
ond, we have to apply heavy renaming for iteration schemes and functions in the
subclass; any combination of iteration scheme and function must be given a dis-
tinct name. Third, we lose the ability to use dynamic binding for the selection of
a function. Since all functions belong to one class, we no longer can use concrete
Iterator instances to select the actual combination of iteration and function.
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Awkward reuse. Reusing the functions for other iteration schemes or different pur-
poses is practically impossible if they are defined in Iterator subclasses. The solu-
tion is to extract the functions in classes of their own. But now multiple inheritance
is necessary in order to inherit from Iterator and to inherit from a particular func-
tion. At least multiple tests or functions can be “mixed-in”, but scope resolution
is needed, and each function combination results in a combinator subclass. Note
that some languages, such as SMALLTALK and JAVA do not even allow multiple
inheritance.

Poor encapsulation. Composing an iteration scheme and a function with inheritance
joins the name spaces of both. In fact, the multiple inheritance solution causes
iterator, function, and combinator class to share the same name-space. Implemen-
tation changes to either of the classes can easily invalidate the other. An interface
between super- and subclasses, as the private parts in C++ [Ellis & Stroustrup90],
alleviates the problem considerably. As an evidence for the relevance of this prob-
lem consider the programming of a dialog in JAVA. If you use an is valid flag to
record the validity of the dialog fields you will not get a dialog display although
the program compiles fine. It probably takes a while till you find out about a flag
is valid in class Component (you happen to indirectly inherit from) which is used
for recording whether a window has been displayed already [Maughan96].

Unrestricted flexibility. Creating a designated class for the combination of an iter-
ation scheme and a function opens up the possibility of overriding the iteration
scheme for particular actions. Explicitly counting the elements in a collection could
be replaced by just returning the value of an attribute count. Unfortunately, this
advantage for the designer of a library is a disadvantage for the user of a library.
The user may rely on properties of the original iteration scheme. If the iteration
function not only counts the elements, but in addition produces some side-effect,
the side-effects will not be executed in the optimized version described above. Or,
referring to the cook and recipe example of section 4.2.3.1 on page 60, an adapted
cook may accompany its cooking with singing which is not always expected and
desirable.

Also, it is possible that the optimized version does not fully conform to the
original version, not to speak of plain errors. An original robust iteration
scheme [Coleman et al.94], that first evaluates all tests and then applies all func-
tions, could be replaced by a standard scheme, that evaluates test and functions on
each element separately. The two versions will behave differently when iteration
functions side-effect neighboring elements.

Pre- and postconditions [Meyer88] can help to enforce behavioral identity between
iteration schemes, but problems like the above are hard to cover and checking con-
tracts at runtime boils down to testing, as opposed to rigorous proofs.

Identity changes. In order to change the iteration function a different iterator in-
stance must be used. While one would seldom need to rely on an unchanging
iterator instance, this property is inhibiting in other settings of parameterization.
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For instance, it might be mandatory to keep the same instance of a cook, while
being able to process different recipes.

7.3.2 Solution

The best way to get rid of the above disadvantages is to objectify predicates with the
Function Object pattern. Combining traversal algorithm and function with Func-
tion Object works through literally “giving” an objectified function to an internal
iterator. In our example, the member test method accepts a test predicate to be used
during iteration:

has(predicate : Function[Book, Boolean]) : Boolean is
do

from i:=1;
until i>count or Result
loop

if predicate @ (books.item(i)) then
Result:=true;

end;
i:=i+1;

end;
end

Here, the collection of books simply consists of an array of books that is tra-
versed with an integer loop. Note how EIFFEL allows using a nice function appli-
cation syntax for passing the current book to the predicate. The operator “@” is
defined as an infix operator in the common interface for all function objects:

deferred class Function[In, Out]
feature

infix "@" (v : In) : Out is deferred end;
end

The @-operator is defined to take a generic argument type In and to return a
generic result type Out . The member test method from above instantiates these to
Book and Boolean respectively.

A predicate to check for a bible instance is:

class IsBible
inherit Function[Book, Boolean]
feature

infix "@" (b : Book) : Boolean is
do

Result:=(b.title.is_equal("Bible"));
end;

end
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Now member testing looks like:

containsBible:=library.has(isBible));

Checking for a book with a certain title can be achieved by passing a predicate
that receives the book title through its constructor:

!!checkTitle.make("Moby Dick");
library.has(checkTitle);

The code for CheckTitle is straightforward:

class CheckTitle
inherit Function[Book, Boolean]
creation make
feature

title : String;

make(b : Book) is
do

title:=clone(b.title);
end;

infix "@" (b : Book) : Boolean is
do

Result:=(b.title.is_equal(title));
end;

end

Yet, there is another exciting way to achieve the same thing. Suppose the ex-
istence of a predicate that compares the titles of two books, e.g., for sorting books
with respect to titles. Although the member test method expects a predicate with
one book parameter only we can make the two argument compare function fit by
passing a book with the title to be looked for in advance:

library.has(titleCompare @ mobyBook);

Predicate titleCompare has two parameters. Passing mobyBook results in a
predicate with one parameter that perfectly fits as an argument to the has method.
Class titleCompare is easily implemented like this:

class TitleCompare
inherit Function[Book, Function[Book, Boolean]]
feature

infix "@" (b : Book) : CheckTitle is
do

!!Result.make(b);
end;

end
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Thanks to the generic type parameters of function objects the compiler can check
for correct function application and will reject wrong uses concerning number or
type of arguments.

Finally, we may combine multiple search criteria like title comparison and date
checking by composing predicates with a composite function object:

library.has(and @ pred1 @ pred2);

Function object and takes a variable number of predicates as arguments, applies
each of them to the book it receives, and returns true if all predicates hold.

7.4 Applicability

• Parameterization. Function objects are a good candidate whenever general be-
havior can be adapted to special behavior:

Dynamics. In addition to runtime selection of existing function objects, new
function objects can also be created at runtime. A user may dynamically com-
pose a multi-media function object from text-, graphic-, and sound-producing
function objects.

Orthogonality. Having more than one behavior parameter creates the problem
of handling all possible combinations of the individual cases. Function objects
can freely be mixed without interfering and without combinator classes.

Reuse. Function objects can be used by any adaptable algorithm that knows
their interface. Even if the algorithm was not designed to supply a function
with mandatory arguments, it is often possible to supply them to the func-
tion in advance. Consider an error reporter, parameterized by output format
functions, only intended for generating text messages. We can upgrade the re-
porter to create a graphical alert-box by passing a function object that already
received information about box-size, colors, etc.

Identity. When the behavior of an object should change while keeping its
identity, function objects can be used as behavior parameters to the ob-
ject. In contrast, encoding behavior in subclasses calls for something like
SMALLTALK’s “become:” in order to achieve the same effect.

• Business transactions. Often the functions are the stable concepts of a system
and represent good maintainance spots, in order to cope with changing func-
tionality. Instead of being a well-defined operation on one single object,
transactions are “an orchestration of objects working together toward a common
goal” [Coplien92]. When transactions do not naturally fit into existing data ab-
stractions, Function Object can lift them to first-class status while providing a
uniform function application interface. Functions may even form a hierarchy,
just like algorithms, for classification and reuse purposes [Schmitz92].
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• Monolithic algorithms. Just like Strategy [Gamma et al.94] Function Object can
be used to define localized algorithms for data structures. When a data struc-
ture is stable, but the operations on it often change, it is not a good idea to
use the standard object-oriented method to distribute the operations over the
object types involved. For instance, each change or addition of an algorithm
on abstract syntax trees (such as typeCheck, compile) demands a change in all
node-object types. In addition, it is not possible to exchange the operations at
runtime.

If we turn the algorithm into a Function Object, we must use a generic Func-
tion Object (see section 7.10 on page 107) to dispatch on the node types, but
in analogy to the Strategy pattern [Gamma et al.94],

• the algorithm logic is localized,

• a function’s state can accumulate results, and

• we can dynamically choose an algorithm.

See section 7.12 on page 111 for a comparison of Command, State, Strategy,
and Function Object.

• Small interfaces. When an object potentially supports many extrinsic opera-
tions (e.g., CAD-objects may support different viewing methods, cost- and
stability calculations, etc.), but its interface preferably should contain the ba-
sic, intrinsic functions only (e.g., geometric data), then the functionality can
be implemented in function objects that take the object as an argument. The
MVC-framework is an example for separating views from data structures
though presentation might be considered to be the model’s responsibility at
first glance.

• Method simplification. If a large method, containing many lines of code, can-
not be split into smaller, more simple methods, because the code heavily uses
temporary variables for communication, then the method can be transformed
into a function object. The main transformation is to replace the temporary
variables with function object attributes. As a result, the method can be split
up into more manageable sub-methods, without passing parameters between
inter-method (but still intra-object) invocations, since communication still can
take place via function object attributes. The main computation method sim-
ply puts the pieces together, itself being as clear as documentation [Beck96].

• Symmetric functions. Some functions do not need to privilege (break the en-
capsulation of) one of their arguments, by making it the receiver of a method.
For instance, checking whether a Tetris piece hits something in the shaft can
equally be implemented by Piece or Shaft . We are even forced to introduce
a free function if the source code of neither class is available. Likewise, basic
types are often not extendible. Note that the free function replaces a mutual
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dependency between two classes by two classes depending on the free func-
tion. If the two classes belong to separate large clusters, we decoupled the
clusters with regard to change propagation and recompilation.

• Delayed calculation. Function objects postpone the calculation of their result
until it is actually needed. When a function object is passed as a parameter
but the receiving method does not make use of it, it will not be evaluated. If
the result is never needed, this pays off in run time efficiency. Function Ob-
ject effectively supports lazy evaluation and thus can be used to implement
infinite data structures and supports modularization by decoupling data gen-
eration from data consumption [Hughes87].

Trying to achieve this with methods establishes a function object one way or
the other. We may delay method invocation by passing the object that sup-
ports the method. Then we use the object as a closure with the disadvantage
of non-uniform method names. When we allow the client to call the method,
although the client might not really need the result, the method must produce
an object which stands for the calculation of the result. This is precisely the
case of returning a Function Object.

Do not use Function unless you have a concrete reason. There is a time and
space penalty in creating and calling a function object, instead of just invoking a
method. Also, there is an initial effort to write an extra function class. Functions
with many parameters require just as many class definitions in order to exploit
partial parameterization. Finally, sometimes unrestricted flexibility as mentioned in
section 7.3.1 on page 93 is clearly desirable. Functions that vary with the imple-
mentation of their argument should be members of this abstraction and not free
function objects. Also, see the remarks concerning flexibility and efficiency in sec-
tion 7.8 on page 102.

7.5 Structure

See figure 7.1 on the next page.

7.6 Participants

• Function

– declares an interface for function application.

• ConcreteFunction (e.g., isBible)

– implements a function.

– collects argument values until evaluation.
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Client

application(argument)

Function

ConcreteFunction

constructor(initial args)
application(argument)

collected arguments

Invoker

Figure 7.1: Function Object structure diagram

• Client

– creates or uses a ConcreteFunction .

– possibly applies it to arguments.

– calls Invoker with a ConcreteFunction .

• Invoker (e.g., Iterator)

– applies ConcreteFunction to arguments

– returns a final result to its Client .

7.7 Collaborations

• A client creates a function and possibly supplies arguments.

• An invoker takes the function as a parameter.

• The invoker applies the function to arguments.

• The client receives a result from the invoker.

Client and invoker do not necessarily have to be different objects. A client may
evaluate a function object itself if no further arguments are needed or it does not
need an invoker to determine the point of evaluation. If an invoker does not supply
further argument but uses a dummy argument only to evaluate the function object
than we have an application of the Command pattern.
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aClient

make(initial args)Creation

Parameterization invokerMethod(aFunction)

aFunction anInvoker

apply(arg)Application

Figure 7.2: Function Object interaction diagram

7.8 Consequences

• Abstraction. Function objects abstract from function pointers and in particular
from pointers to methods [Coplien92]. Instead of the C++ code:

aFilter.*(aFilter.current)(t);

we can write

aFilter(t);

• Simplicity. The use of function objects does not introduce inheritance relation-
ships and does not create spurious combinator classes.

• Explicitness. The code cook.prepare(fish) is easy to understand. When
recipes are wired into Cook subclasses, cook.prepare depends on the
actual Cook type. Clever variable names (e.g., fishCook.prepare )
often are not an option, e.g., cook.prepare(fish) , followed by
cook.prepare(desert) .

Note that the client must know the function object. A variability on the im-
plementation — rather than the behavior — of Cook is better treated with a
Bridge [Gamma et al.94]. Clients of Cook s should not know about implemen-
tation alternatives, unless they explicitly want to decide on time and space
behavior.

• Compositionality. In analogy to Macro-Command [Gamma et al.94], function
objects can be dynamically composed to form a sequence of functions by
forwarding intermediate results to subsequent function objects. Composite
function objects may also apply several component function objects in paral-
lel. Composite function object variants differ in the way they produce a final
output from the single results.
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• Uniform invocation. Imposing a function object’s interface on related oper-
ations allows uniformly invoking them. Instead of switching to different
method names (like compTitle and compAuthor), we evaluate an abstract func-
tion object and rely on dynamic binding [Meyer88, Gamma et al.94]. Conse-
quently, we can add new operations, without changing the caller (e.g., event
handler).

Whenever specific evaluation names (e.g., evaluate, solve, find) are consid-
ered important, then they can be provided as aliases.

• Encapsulation. As function objects establish client relationships only, they
are protected from implementation changes to algorithms that use them.
Likewise, the implementation of function objects can change without
invalidating the algorithms. Hence, Function Object allows black-box
reuse [Johnson & Foote88] and helps to advance reuse by inheritance to
reuse by composition [Johnson94].

• Security. A client of an adaptable algorithm can be sure to use a fixed algo-
rithm semantics. It is impossible to be given an optimized version which does
not fully comply to the original semantics (see 7.3.1 on page 93, Unrestricted
flexibility).

• Flexibility.

+ A statement like iterator.do(f) is polymorphic in three ways:
1. Iterator may internally reference any data structure that conforms to

a particular interface.
2. The actual instance of Iterator determines the iteration strategy (e.g.,

pre- or post-order traversal on trees).
3. The actual instance of f determines the iteration function.

− It is not possible to automatically optimize algorithms for specific func-
tions. Nevertheless, one more level of indirection can explicitly construct
optimized combinations of functions and algorithms.

− As discussed in section 4.2.3.1 on page 60 black-box composition does
not allow adapting, e.g., cooks for new recipes. Often, it is nonetheless
possible to use new recipes with unaltered cooks by partial application
of recipes. If a new class of recipes needs the room temperature as an
argument (which cooks do not supply) it is possible to curry the recipe
with the room temperature in advance. Thus, the new recipe class looks
just like the old ones to cooks (see how keyword parameters boost this
option in section 7.10 on page 107).

− When a function has been extracted from a data structure, it is no longer
possible to simply redefine it in future derivations. One way to account
for this is to make the extracted function a generic Function Object (see
section 7.10 on page 107) that will discriminate between data structure
variations.
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• Separation. The ability to carry data (e.g., alert box size) enables function ob-
jects to operate on data from outside an (e.g., error-reporter) algorithm as well
as (e.g., error text) data from inside the algorithm. The data from outside the
algorithm can be local to the algorithm caller. There is no need to communi-
cate via global data. Since function objects can combine local data spaces, they
allow decoupling data spaces from each other while still supporting commu-
nication.

• Reuse. Adaptable algorithms become more reusable because they do not need
to know about additional parameters for functions.

Moreover, function objects are multi-purpose:

+ Functions can easily be used for different iteration strategies. They are
are not bound to a particular adaptable algorithm, e.g., comparing book-
titles is useful for sorting and for membership testing in collections.

+ One function with n parameters actually represents n functions and one
value. The first function has n parameters. The second, created by ap-
plying the first to an argument, has n−1 parameters, and so on, until the
last function is applied to an argument and produces the result1.
An example from physics shows the useful functions which can be cre-
ated from the gravitational force function [Leavens94]:

GravityLaw m1 r m2 =
G m1 m2

r2

forceearth = GravityLaw massearth

forcesurface = forceearthradiusearth

forcemy = forcesurfacemassmy

• Iteration. Function Object suggests the use of internal, rather than external, it-
eratorsiterator. Internal iterators avoid explicit state and re-occurring explicit
control loops. Often external iterators are promoted to be more flexible. It is
said to be practically impossible to compare two data structures with an in-
ternal iterator [Gamma et al.94]. However, the Transfold pattern on page 163
simply extends an iterator to accept not just one, but n data structures. A
transfold-method accesses the first, second, etc., elements of all data struc-
tures simultaneously.

Function Object allows making iteration a method of data structures since it
does not demand for subclassing the data structure. This facilitates the use
of iterators and allows redefining iteration algorithms for special data struc-
tures. Moreover, the data structure (e.g., Dictionary ) then does not need to
export methods (e.g., first, next) in order to allow iterators to access its ele-
ments.

1Which could again be a function.
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• Efficiency.

+ A function object may calculate partial results from arguments and pass
these to a result function. Hence, the partial result is computed only
once, no matter how many times the resulting function object will be
applied to different arguments in the future, e.g.,

forcesurface= forceearthcostlyCalculation

and then

forcemy = forcesurfacemassmy

forceyour = forcesurfacemassyour.

− Passing client parameters to function objects can be more inefficient than
to, e.g., directly access internal attributes of an iterator superclass. In
principle this could be tackled by compiler optimizations [Sestoft88].

− Care should be taken not to unnecessarily keep references to unevalu-
ated calculations, i.e., function objects. Otherwise, the occupied space
cannot be reclaimed.

− Finally, function objects access the public interface of their servers only.
This is why Symmetric functions (see section 7.4 on page 98) enforce the
encapsulation of their arguments. This represents positive decoupling,
but can be more inefficient than unrestricted access. However, selective
export (EIFFEL) or friends (C++), allow trading in efficiency for safety.

− It is not possible to apply partial evaluation techniques to clo-
sures [Davies & Pfenning96]. Hence, function objects typically cannot
be evaluated before runtime. However, this is just a price to pay for
flexibility. Dynamic binding introduces runtime overhead exactly for
the same reason.

7.9 Implementation

• Creation. Quite naturally, function objects must be created before they can be
used. A typical code fragment shows the overhead in notation to create the
object:

...
local

times : Times[Integer];
do

!!times;

Result:=times @ 6 @ 7;
end;
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The fragment coincidentally also illustrates the danger in forgetting the cre-
ation instruction, causing a runtime exception. Fortunately, EIFFEL enables
the useful idiom of declaring a variable of expanded type, i.e., rendering the
creation instruction unnecessary. With —

...
local

times : expanded Times[Integer];
do

Result:=times @ 6 @ 7;
end;

— the declaration already takes care of providing times with a value. No
sharing of function objects can occur since the first application of times cre-
ates a new instance anyway (see 7.12.3 on page 113, Prototype).

• Call-by-value. Function objects must copy their arguments. Otherwise, their
behavior will depend on side-effects on their arguments. In general, this
would produce unpredictable results. In some cases, however, it may be de-
sirable. The function object then plays the role of a future variable, which is
passed to an invoker before all data needed to compute the result is avail-
able. Long after the function object has been passed to the invoker, it can be
supplied with the necessary data by producing side-effects on arguments.

• Initial arguments. Real closures (e.g., SMALLTALK blocks) implicitly bind vari-
ables, which are not declared as parameters, in their creation environ-
ment. This is not possible with function objects. One way out is to treat
initial arguments and standard arguments uniformly through lambda lift-
ing [Field & Harrison88]: Initial arguments are passed as arguments to the
function object in its creation environment.

Alternatively, it is possible to pass initial arguments through the function ob-
ject constructor (see CheckTitle in section 7.3.2 on page 96). This saves the
intermediate classes needed to implement the partial application to initial ar-
guments. Of course, both variants do not exclude each other.

Note, however, that explicit binding is equivalent to implicit binding. This
follows from the reverse application of β-reduction. Yet, the implicit variable
binding of real closures forces them to use the the same variables names as
its creation environment. In contrast, a function object can be used in various
environments without the need to make initial argument names match the
environment.

• Delayed calculation. Commonly a function is evaluated after it has received its
last argument. Yet, function object application and evaluation can be sepa-
rated by corresponding methods for application and evaluation. As a result,
the client, triggering evaluation, does not have to know about the last argu-
ment. Also, the supplier of the last argument does not need to enforce the
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calculation of the result, which is crucial for lazy evaluation. In order to en-
able automatic evaluation on full argument supply while still supporting the
above separation, it is possible to evaluate on the last parameter and use a
kind of dummy parameter (called unit in ML [Wikström87]).

So function objects that separate their evaluation from the supplement of the
last parameter (e.g., Call-back functions) are defined with a dummy parame-
ter, which is supplied by the evaluator.

• Interface width. As already mentioned in section 7.8 on page 102 function ob-
jects may force their argument classes to provide access to otherwise non-
public features. If a particular function object is closely coupled to a specific
object type, then declaring the function object as the object’s friend, i.e., us-
ing selective export, allows efficient access to internal data nevertheless. As a
result the object can keep its public interface to other clients to a minimum.

• Partial parameterization. Two extremes to implement partial parameterization
exist. The less verbose is to always keep the same instance of function ob-
ject and assign incoming arguments to corresponding internal attributes. This
will cause trouble when the same function object is used by several clients. As
the application of a function object does not create a new instance, the clients
will get confused at the shared state. Furthermore, static typing becomes im-
possible. If each application of a function object produces a new instance of a
different type, then static typing is enabled again and no unwanted sharing of
function object state can occur. Unfortunately, this forces us to write at least
n−1 classes for a function object with n parameters.

Note, that it is not necessary to provide application methods, that allow pass-
ing multiple arguments at once. This would only produce even more imple-
mentation overhead and can easily replaced by passing the arguments one by
one.

• Covariance. In principle, EIFFEL allows using a non-generic function interface
since the application method can be covariantly redefined. A general ancestor
would have the type Any to Any and descendents could narrow input and out-
put types. However, we recommend to use a generic interface as presented
in order to avoid complications2 through the combination of polymorphism
and covariant redefinition, i.e., catcalls [Meyer96].

7.10 Function Object variants

This section shortly touches upon important extensions to Function Object.

• Keyword Parameters. In addition to standard application, function objects may
provide keyword parameters. Accordingly, parameters can be passed in any

2Until today no EIFFEL compiler implements system-level validity checking, which is necessary
to catch type errors resulting from mixing argument covariance with polymorphism.
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order. This makes sense, in order to create useful abstractions. If the definition
of the gravitational force in the example of section 7.8 on page 102 had been

GravityLaw m1 m2 r =
G m1 m2

r2 ,

(note the different order of parameters) we cannot define:

forcesurface= GravityLaw massearthradiusearth.
3

With keyword parameters, notwithstanding, we can write:

force:=gravityLaw.m1(earthMass).r(earthRadius);

Keyword parameters effectively extend currying to partial application. Be-
yond the reusability aspect above, however, they also enhance the clarity of
programs: Consider the initialization of a node with a label and an identifica-
tion. The code

node.make(a, b);

does not tell us what parameter plays which role. The meaning is hidden in
the position of the arguments. Surely, we should use more expressive variable
names but these should reflect the meaning in their environment, e.g.:

node.make(name, counter);

In other words, we use a name and a counter to initialize a node but still are
confused about the argument meanings. Only the version using keyword
parameters —

node.label(name).id(counter);

— documents the meaning of arguments without compromising the docu-
mentation of the environment variable meanings. In another case a node is
possibly created using a number string and a random number which should
be visible in the initialization statement. Keyword parameters respect that
there is both an inner and an outer meaning for parameters and that both
meanings are important to document.

• Default Parameters. A keyword parameter does not need to be mandatory.
Recipes may be designed to work for four persons by default but allow a
optional adaption. So, both

cook.prepare(dinner);

and
3Functional programmers know this problem and use the flip function to exchange the order of

(howbeit only) two arguments.
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cook.prepare(dinner.people(2));

are valid. Default parameters in general have been described as the design
pattern Convenience Methods [Hirschfeld96]. Unix shell commands are an
example for the application of both default- and keyword parameters.

• Imperative result. It is possible to use the internal state of a function object to
calculate one or multiple results (add accumulated results to ConcreteFunction
in the structure diagram of section 7.5 on page 100). For instance, one func-
tion object may count and simultaneously sum up the integers in a set during
a single traversal. The set iteration client must request the results from the
function object through an extended interface (add an arrow getResult from
aClient to aFunction in the diagram of section 7.7 on page 101). Note that im-
perative function objects may produce any result from a standard traversal
algorithm. The latter does not need any adaption concerning type or whatso-
ever.

• Procedure Object. If we allow function objects to have side effects on their
arguments we arrive at the Command pattern extended with parameters
and result value. Procedure Object makes methods amenable to persistent
command logging, command histories for undoing, network distribution
of commands, etc. Like Command, Procedure Object may feature an undo
method, which uses information in the procedure object’s state to undo op-
erations [Meyer88, Gamma et al.94]. Note how easy it is to compose a pro-
cedure object, to be used as an iteration action, with a function object pred-
icate that acts as a sentinel for the action. As a result, special iterations as
“do if” [Meyer94b] can be replaced with a standard iteration.

• Multi-dispatch. Sometimes an operation depends on more than one argument
type. For instance, adding two numbers works differently for various pairs
of integers, reals, and complex numbers. Simulating multi-dispatch with
standard single-dispatch [Ingalls86] results in many additional methods (like
addInteger, addReal). The dispatching code is thus distributed over all in-
volved classes. If, as in the above example, the operation must cope with
a symmetric type relation (e.g., real+int & int+real), each class has to know all
other argument types.

A generic4 function object removes the dispatching code from the argument
types and concentrates it in one place. It uses runtime type identification to
select the correct code for a given combination of argument types. As such,
it is not simply an overloaded Function Object, which would statically resolve
the types.

Note that nested type switches can be avoided with partial parameterization:
Upon receipt of an argument, a generic function object uses one type switch

4Named after CLOS’ [DeMichiel & Gabriel87] generic functions.
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statement to create a corresponding new generic function object that will han-
dle the rest of the arguments.

Unfortunately, the necessary switch statements on argument types are sensi-
tive to the introduction of new types5. Yet, in the case of single-dispatch sim-
ulation, new dispatching methods (e.g., addComplex) are necessary as well.

The goals of the Visitor pattern [Gamma et al.94] can be achieved with a com-
bination of generic Function Object and any iteration mechanism. A generic
function object chooses the appropriate code for each combination of opera-
tion and element type. Once the generic Function Object has done the dis-
patch, the exact element type is known and access to the full interface is pos-
sible. Between invocations, function objects can hold intermediate results,
e.g., variable environments for a type-checking algorithm on abstract syntax
nodes.

A generic function object may even be realized as a type dispatcher, parame-
terized with a set of function objects that actually perform an operation. This
allows reuse of the dispatching part for various operations.

Visiting data structures with Function Object is acyclic w.r.t. data dependen-
cies [Martin97] and does not force the visited classes to know about visi-
tors [Nordberg96].

Finally, a generic function object is not restricted to dispatch on types only.
It may also take the value of arguments into consideration. Consequently,
one may represent musical notes and quarter notes by the same class. The
corresponding objects will differ in a value, e.g., of attribute duration. Nev-
ertheless, it is still possible to use a generic function to dispatch on this note
representation.

7.11 Known Uses

Apart from the uncountable uses of Function Object in functional programming
and SCHEME [Abelson & Sussman87], there are many truly object-oriented uses:
SMALLTALK [Goldberg & Robson83] features blocks as true closures with implicit
binding of free variables. SATHER provides bound routines [Omohundro94]. AL-
GOL 68’s thunks for call-by-name parameter passing are also closures but bind free
variables dynamically in the calling environment. JAVA 1.1 features “inner classes”
which are essentially (anonymous) closures used, e.g., for callbacks [Sun97]. The
Eiffel Booch Components uses Function Object for searching, sorting, transforming
and filtering of containers [Hillegass93]. The Standard Template Library, which
was adopted as part of the standard C++ library, uses Function Object to inline
operations for arithmetic, logic, and comparison [Stepanov & Lee94].

5A more flexible approach is to use dynamically extendible dictionaries that associate types with
code.
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7.12 Related Patterns

7.12.1 Categorization

Objectifier: A function object, like Objectifier, does not represent a concrete object
from the real world [Zimmer94], though one can reasonably take business-
transactions for real. Function Object is very similar to Objectifier, in that it
objectifies behavior and takes parameters during initialization and call. Per
contra, clients “have-an” objectifier, while clients “take-a” function object.
The latter is a uses, not a has-a relationship.

Command: A procedure object which does not take any arguments after cre-
ation and produces side-effects only boils down to the Command pat-
tern [Gamma et al.94]. One key aspect of Command is to decouple an invoker
from a target object. Function objects typically do not delegate functionality.
Rather than delegating behavior to server objects they implement it them-
selves. So, function objects normally do not work with side-effects, but return
their computation as an argument-application result. Nevertheless, function
objects also can be used for client/server separation, i.e., as Call-back func-
tions. In addition to Command, invokers are then able to pass additional
information to function objects by supplying arguments.

State,
Strategy: Function Object, State, and Strategy [Gamma et al.94] are concerned with

encapsulating behavior. A decision between them can be based on concerns
such as:

• Who is responsible for changing the variable part of an algorithm?
The State pattern manages the change of variability autonomously.
Function objects are explicitly chosen by the client. Strategies are chosen
by the client also, but independently of operation requests. Requesting
an operation can rely on a Strategy choice made some time earlier.

• Is it feasible to impose the same interface on all variations?
If the available Strategies range from simple to complex, the
abstract Strategy must support the maximum parameter inter-
face [Gamma et al.94]. Function Object avoids this by partial param-
eterization.

• Does the combination of common and variable part constitute a useful
concept?
The State pattern conceptually represents a monolithic finite state ma-
chine, so the combination of standard- and state-dependent behavior
makes sense indeed. Strategies are a permanent part of general behav-
ior and thus provide default behavior. Here, the combination acts as a
built-in bookkeeping for the selection of the variable part. Function ob-
jects, however, take part in the “takes-a” relation. A function object and
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its receiver are only temporarily combined in order to accomplish a task.
Function objects, nevertheless, can have a long lifetime, such as being
memorized in attributes or representing unevaluated data.

Visitor: Data structures need to know about Visitors because they have to provide
an accept method [Gamma et al.94]. Sometimes this is undesirable because
of the so-introduced mutual dependency between data structures and Vis-
itors [Martin97]. When the data structure is not available as source code,
it is even impossible to add the accept method. A combination of Iterator
and generic Function Object (see also the Transfold pattern in chapter 10 on
page 163) avoids these drawbacks, while providing the same functionality as
Visitor:

• It frees the data structures from needing to provide the operations them-
selves.

• It differentiates between types in the data structure. The generic function
object chooses the appropriate code for each combination of operation
and element type.

• It allows heterogeneous interfaces on the data elements. Once the
generic function object has done the dispatch, the exact element type
is known and access to the full interface is possible.

• It concentrates operations at one place and provides a local state for
them. Between invocations, function objects can hold intermediate re-
sults, e.g., variable environments for a type-checking algorithm on ab-
stract syntax nodes.

Of course, the type switches are sensitive to the addition of new structure
objects. However, if the structure is unstable, Visitor is not recommended
either [Gamma et al.94].

Lazy Object: An unevaluated, i.e., still parameter awaiting function object is a lazy
object (see chapter 8 on page 115). It represents a suspended calculation and
may, therefore, be used for delaying calculations.

7.12.2 Collaboration

Iterator: Function objects allow the use of data from inside (elements) and outside
the collection (previous arguments). There is no collaboration between Com-
mand and Iterator, since Command does not take arguments.

Adapter: Function Object extends the use of Parameterized adapters as described in
the implementation section of the Adapter pattern [Gamma et al.94] from
SMALLTALK to any object-oriented language.
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Chain of Responsibility: Pairs of test- (check responsibility) and action function ob-
jects can be put into a Chain of Responsibility in order to separate responsibil-
ity checks from the execution of tasks. Function Object allows replacing the
inheritance relationship between Links and Handlers [Gamma et al.94] with
object-composition.

Observer: Instead of receiving a notification message from a subject an observer
may register call-back procedure objects at the subject that will perform neces-
sary updates. This scheme adds another variant to the push- and pull- models
of the Observer pattern.

Void Value: A void value (see chapter 11 on page 191) may define the default func-
tion to be used for initializing a parameterized structure.

Void Value,
Value Object: A function object does not have to copy void value (see chapter 11 on

page 191) or value object (see chapter 9 on page 149) arguments because they
ensure immutability anyway.

7.12.3 Implementation

Composite: Standard and composed function objects can be uniformly accessed
with the Composite pattern [Gamma et al.94]. A composite function forwards
arguments to its component functions. A tuple-Composite applies all func-
tions in parallel to the same argument and thus produces multiple results.
Several reduce functions (e.g., and of section 7.3.2 on page 96) may somehow
fold all results into one output.

A pipeline-Composite applies each function to the result of its predecessor
and thus forms a calculation pipeline.

Prototype: Often it is useful to distribute the accumulated state of a function object
to different clients. For instance, a command for deleting text can capture the
information whether to ask for confirmation or not. However, when placed
on a history list for undoing, different commands must maintain different
pointers to the deleted text. Consequently, Prototype can be used to clone
pre-configured function objects which should not share their state any fur-
ther. With this regard, any partially parameterized function object can be in-
terpreted as a prototype for further applications (see example about the costly
calculation in section 7.8 on page 102, Efficiency).

Chain of Responsibility: Generic Function Object can employ a Chain of Responsibil-
ity for argument type discrimination. Chain members check whether they can
handle the actual argument type. This enables a highly dynamic exchange of
the dispatch strategy.
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8 Lazy Object

Ungeduld hat häufig Schuld.
– Wilhelm Busch

8.1 Intent

Defer calculations to the latest possible point in time. This is useful for resolving
dependencies, calculation complexity reduction, increased modularity and infinite
data structures.

8.2 Also Known As

Stream [Ritchie84, Abelson & Sussman87, Edwards95], Pipes and Filters Architec-
ture [Meunier95b, Buschmann et al.96], Pipeline [Posnak et al.96, Shaw96].

8.3 Motivation

Typically, the specification of a solution to a problem inevitably also makes a state-
ment about the order of solution steps to be applied1. In this context, it does not
matter whether order is expressed as a sequence of events in time or as a chain of
data dependencies. The crucial point is that we welcome to be able to order sub-
solutions in order to decompose problems into easier sub-problems. But sometimes
overstating the order of events yields complex systems.

8.3.1 Problem

Listening to music at home usually amounts to the problem of converting a pit
structure on a flat disc to an alternation in air pressure. In this example we concen-
trate on the part to be accomplished by the compact disc player (see figure 8.1 on
the next page).

We may think of the surface-reading-unit (SRU) as some electronic circuit that
controls the spinning speed of the disc, tracks the laser, and produces a digital bit

1Note, however, that especially the logical paradigm allows being very unspecific about order.
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Figure 8.1: Schematic CD-player

stream. These bits are actively fed into the digital-analog-converter (DAC). Let us
assume the DAC has a small buffer which it permanently consumes and resorts to
during reading problems. Hence, the SRU has to watch the buffer for underflow
— causing speed up of reading — and for overflow — resulting in slowing down
reading. In this scenario, both SRU and DAC modules are closely coupled. The
SRU pushes bit per bit into the DAC but always requests the DAC for its buffer
condition. Any alternative SRU to be used in the future must know about the buffer
query interface of the DAC module. Vice versa, a future DAC replacement must
accept bits through a protocol as specified by the current SRU. This coupling limits
the freedom in designing future implementations.

Furthermore, it will not easily be possible to insert bit processing modules inbe-
tween SRU and DAC (see figure 8.2). Provided we still want to keep the bit buffer
in the DAC module, the error correction unit (EC) must fake a buffer protocol for
the surface reading unit and the DAC buffer condition must be fed back through
all components.

8.3.2 Solution

Instead of handshaking the bits through a “push and request” procedure call pro-
tocol, we better recognize the data flow architecture of the schematic compact disc
player. We should observe that a unit either produces (SRU), transforms (EC and
DF), or consumes (DAC) a stream of bits (see figure 8.2).

Reading
Surface

Unit
Analog

Converter

Digital/
Digital
FilterCorrection

Error

Figure 8.2: Plug-in modules in a bitstream architecture

With this view, it is most natural to let the DAC request further bits from its
preceding unit whenever its (self managed) buffer runs out of data. Driven by the
demand of the DAC each unit generates bits, possibly by pulling further data from
its preceding unit. In this scenario the modules are much less coupled since buffer
management is solely accomplished by the DAC itself. The interface between the
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modules consists of the stable notion of a bitstream. Ergo, alternate implementa-
tions or future extensions (like a digital deemphasize unit) can be easily exchanged,
shuffled, and inserted. Data sources and transformers are lazy in that they output
data only if required by a data sink. Compare this to the model before, where the
SRU pushed data to the DAC while managing the DAC’s buffer load.

A lazy data source does not need to know about the existence and nature of
a receiving unit at all. Moreover, the compact disc’s control panel now needs to
communicate with the DAC only. Instead of directing a press of the stop button to
the SRU it now informs the DAC. Control panel and DAC communicated before
also (e.g., for digital volume control), therefore, the cohesion between control panel
and DAC increased while the coupling of control panel to other units decreased.
With the data driven approach, the architecture can now be divided into layers that
depend on each other in one direction only.

We were able to decouple a data source and a data sink since we abandoned the
idea of explicitely handshaking each single piece of information and adopted the
notion of a stream, representing all information that is still to come at once. John
Hughes uses a similar example of separating an algorithm to compute approxima-
tions to numerical solutions from the controlling issues like relative or absolute pre-
cision reached [Hughes87]. By representing successing approximations as a stream
between generator and controlling module he was also able to achieve a higher
degree of modularization.

Without lazy evaluation we are often forced to either sacrifice modularity or
efficiency. Suppose, we want to feed a server object with an argument whose eval-
uation requires considerable effort:

server.update(costlyCalculation(a, b));

The server does not always need the argument to perform its update operation.
With a lazy calculation everything is fine. With a standard calculation that is al-
ways performed, however, we either accept unnecessary calculations or defer the
calculation to the server:

server.calculateAndUpdate(a, b);

While the efficency issue is apparently solved since the server can decide to do the
calculation or not, modularity was severely hurt.

1. The server now contains a calculation that is probably alien to the abstrac-
tion it previously represented.

2. The server now depends on two argument types that it did not need to
know before.

It is amazing that the initial version above manages to combine both modularity
(separation of concerns) and efficiency (avoiding unnecessary calculations).

A lazy attitude is of special importance when a (possibly infinite) stream is gen-
erated by referring to itself. A popular example are the so-called hamming num-
bers. They are defined as the sorted list of all numbers with prime factors two,
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three, and five [Bird & Wadler88]. A functional program to generate all hamming
numbers — as given by definition 8.1 — clearly shows that hamming numbers can
be generated by depending on themselves.

hamming = 1 : merge(map(∗ 2) hamming) (8.1)
(merge(map(∗ 3) hamming) (map(∗ 5) hamming))

merge(x : xs) (y : ys) = x : merge xs ys, x = y

merge(x : xs) (y : ys) = x : merge xs(y : ys), x< y

merge(x : xs) (y : ys) = y : merge(x : xs) ys), y< x

Figure 8.3 shows the unfolding of function calls into a sequence of numbers.

hamming = 1 : merge(map (* 2)    , merge((map (* 3)    , map (* 5)    ))

hamming = 21 : : merge(map (* 2)    , merge((map (* 3)    , map (* 5)    ))

hamming = 32 :1 : : merge(map (* 2)    , merge((map (* 3)    , map (* 5)    ))

hamming = 43 :2 :1 : : merge(map (* 2)    , merge((map (* 3)    , map (* 5)    ))

hamming = 4 :3 : 52 :1 : : merge(map (* 2)    , merge((map (* 3)    , map (* 5)    ))

: merge(map (* 2)    , merge((map (* 3)    , map (* 5)    ))6:5:4:3:2:1hamming = 

Figure 8.3: Generating hamming numbers

Each of the three prime factor multipliers (mapinvocations) maintains its own
access point to the already generated list of numbers. Note that the recursive calls



8.4 Applicability 119

of map to the remaining hamming numbers must be suspended until a sufficient
amount of numbers has been generated. If recursive calls referred to function calls
again, rather than access already generated concrete numbers, nothing at all would
be generated due to an infinite recursion on function calls. This observation also
emphasizes that in order to make evaluation really lazy — as opposed to just non-
strict — we also need to cache generated results. Any element should be calculated
only once, no matter how often accessed. In an object-oriented implementation this
memoization effect is achieved by maintaining caches and/or replacing suspension
objects with value objects.

While streams have extensively been used as an example for lazy objects, this
should not create the impression that Lazy Object is about streams only. Simply
put, streams are just lazy lists. All the same, we may have lazy trees or whatever
type of lazy structure. A lazy tree could be the result of a depth first search traversal
of a graph. Such a tree would traverse only as much of the graph as needed for
the tree part actually accessed [King & Launchbury93]. A lazy object is not even
required to represent a collection. Any operation that can reasonably be delayed is
a candidate to be become a method of a lazy object.

8.4 Applicability

• Unknown demands. Often, the amount of certain data needed is not known
before that data is actually accessed. We might, for instance, repeatedly ac-
cess fibonacci numbers in order to achieve an evenly workload distribution
for the parallel evaluation of polynomials. An upper bound is difficult to es-
timate and we do not want to waste time and space for providing fibonacci
numbers that will never be accessed. The solution is to generate them lazily,
i.e., calculate them on demand. Note that although we sometimes might be in
a position to provide enough space for some data to be calculated in advance,
nevertheless infinite data (like fibonacci numbers) would force us to fix an
artificial upper bound.

• Up-front declaration. The freedom of not needing to care about unnecessary
evaluations allows the adoption of a declarative style of programming. It is
possible to decompose a routine’s arguments or make recursive calls to parts
of them without concern whether the results will be needed [Jeschke95]. This
style is clearer if the routine needs to multiply access the results. Otherwise,
the repeated decomposition code might even require a distributed cache man-
agement, if it is not known which branch — of several — will cause the first
evaluation and calculations should be made at most once.

• Dependency specification. Execution of lazy functions follows dynamic data
dependencies. As a result, even statically circular definitions can be specified,
without regard for execution order. For instance, a machine code generator
needs to determine the destination address for a forward jump. At the time
the forward jump is generated, the destination address is not known. A lazy
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function does not care because it will not evaluate until the destination ad-
dress is actually inspected (e.g., by accessing the code after its generation). At
this time, however, the forward jump can be completed since code generation
either already proceeded beyond the destination address or it will be forced
to do so by the inspection of the forward address.

Similarly, one may use an implicit evaluation order for the generation of a
wavefront in a table. All that is needed are the constant values for the table
borders and the main equation, e.g., ai j = ai−1 j +ai−1 j−1 +ai j−1 [Hudak89].

• Partial evaluation. When a composed operation, such as retrieving all inter-
face information from a programming language library, is evaluated lazily,
this may amount to a partial execution of the operation only. When a compiler
— for a given source code — does not need to look at the whole library infor-
mation, because only a part of the library was used, then it will explore only
as much interface information as needed [Hudak & Sundaresh88]. Unneeded
information will not be retrieved from disc nor extracted from archives.

• Module decoupling. When modules should exhibit loose coupling but, never-
theless, an interleaved inter module execution is desirable, then use a stream
to connect the modules. For instance, a parser can be connected to a scanner
through a stream of tokens. Parser and scanner will alternate their execution,
driven by the parser’s demands.

• Co-routines. Co-routines basically represent suspended behavior. The same
effect can be achieved by using a stream generating all co-routine states in
succession. As with co-routines, clients do not need to care about state man-
agement and behavior scheduling which all happens behind the scenes.

Do not apply Lazy Object, in case of

• Strict ordering. If one needs to rely on a fixed evaluation order (e.g., involving
side-effects), a lazy evaluation strategy is inappropriate. Lazy evaluations are
data driven and may vary their execution order from application to applica-
tion.

• Limited memory. Suspensions of function calls may claim substantial amounts
of heap memory. In the unlikely case (since object-oriented programming
normally implies heap oriented memory use, anyway) you need an emphasis
on a stack based memory allocation, you will not be able to draw from the
benefits of Lazy Object.

• Time constraints. Lazy evaluation may cause unexpected and unevenly dis-
tributed claims of computing resources. If you need to depend on a calcula-
tion complexity that is easy to predict and fixed with regard to an algorithm
— rather than depending on an algorithm’s usage — you should prefer eager
evaluation.
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8.5 Structure

Value

request : LazyObject
access : T

Client

request : LazyObject
access : T

LazyObject

access : T
request : LazyObject

Suspension

Figure 8.4: Structure diagram

8.6 Participants

• Client

– issues a request to LazyObject (e.g., calling tail on a stream of hamming
numbers).

– accesses Suspension and later Value for a value (e.g., calling item on a
stream of hamming numbers).

• LazyObject

– provides an interface for requests and accesses.

– creates and returns a Suspension on request.

• Suspension (e.g., representing a stream’s tail)

– implements LazyObject ’s interface.

– represents a suspended calculation.

– calculates a result when accessed.

– creates a Value for further accesses.

• Value (e.g., a cached hamming number)

– implements LazyObject ’s interface.

– caches the result calculated by Suspension .
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request

aValue

Repeated Access

Lazy Call

Data Access

aClient

access

aSuspension

evaluate
make

aLazyObject

make

access

Figure 8.5: Interaction diagram

8.7 Collaborations

• A client issues a request to a lazy object.

• The lazy object creates a suspension and returns it to the client.

• Some time later the client accesses the suspension.

• The suspension calculates a result (possibly accessing the lazy object), returns
it to the client, and creates a value for future accesses2.

• Future client accesses are made to the value that caches the calculation result.

8.8 Consequences

• Initialization. The best place for initialization values (e.g., return 1 as the ra-
dius of a fresh circle) is the data abstraction they belong to [Auer94]. A
getter-routine can calculate an initial value whenever it is called the first time.
Hence, initial values will not be calculated unless they are actually needed.
Also, setter-routines may provide space for received arguments, only when
actually asked to do so.

2For instance, a stream element will convert its successor to a value when it is safe to do so.
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• Data generation. Lazy generation of data structures does not require artificial
upper bounds in order to restrict time and space investments. The calculate
by need approach allows specifying all as the upper bound even in the case
of infinite data structures.

• Data-flow architecture. Streams emphasize data flow rather than control flow.
A system based on streams is determined by the types of modules and the in-
terconnections (streams) between the modules [Manolescu97]. Delayed eval-
uation and streams nicely match because delayed evaluation inherently pro-
vides the intertwined processing of data, required for interconnected streams.
Note that connected streams do not necessarily operate in a synchronized
fashion. A pipeline with a Huffman encoding3 inbetween (e.g., to simulate a
distorted transmission via a serial connection), will do much more process-
ing at the two ends of the bitstream due to the distribution of one element
into several bit elements representing its Huffman encoding. Lazy evalua-
tion, however, will make this inner stream automatically run faster than the
outermost ends.

A chain of components, such as chain= double◦filter(< 81)◦square, can be as-
sembled without worrying about the size of lists to be processed or specifying
loops with exit conditions [Braine95]. One may also reason about such chains
and, for instance, simplify the above to chain= double◦square◦filter(< 9)4, in
order to save operations.

• Modularity. The ability to separate what is computed from how much of it is
computed is a powerful aid to writing modular programs [Hughes87]. The
control over data consumption can be separated from the issues involved with
data generation. A lazy stream allows separating iteration loops (deciding on
halting and possibly using other streams) and iterations (including element
generation and iteration strategy). See pattern Transfold on page 163.

Modules can be decoupled but not necessarily implying a loss of efficiency.
On the contrary, through partial evaluation, efficiency can actually be gained.
Lazily connected modules never cause each other to perform beyond the ab-
solute minimum to produce the results of the driving module.

• Partial evaluation. With respect to streams it is worthwhile noting that one
may evaluate the spine of stream without causing evaluation of the under-
lying stream elements. For instance, the call sieve @ (nats.tail) does
not evaluate the first natural, i.e., “1” since it directly proceeds beyond to the
second member “2”. This can be useful when advancing the state is easy but
the actual calculation of elements is costly and not all elements are required.

• Information hiding. A lazy object hides its delayed internals from clients. A
client is never requested to treat lazy object specially, e.g., by passing a

3A variable-length code, discovered by David Huffman.
4Provided processed numbers are positive only.
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dummy parameter for evaluation5. Not every lazy computation can be ex-
pressed like this, though. In certain cases it might be necessary to use lazy
function objects, e.g., as elements of a stream. For instance, laziness may be
achieved between a program and an operating system that interchange re-
quests and responses (see figure 1.4 on page 28), only if a response is struc-
tured. An atomic response, e.g., an integer, must be encapsulated in a function
since it can not be calculated until a request has been processed.

Streams also hide their element generation strategy from clients. They may

1. directly represent stream elements (e.g., a chain of StreamVal s).

2. precompute and buffer groups of elements.

3. compute elements on demand.

All these strategies can be mixed in stream combinations. This is pos-
sible since through their access restriction — one may only access the
head of a stream — two dual views on streams are possible without con-
flict [Edwards95]. On the one hand, a stream appears as a channel for trans-
mitting data. On the other hand, a stream can be regarded as the entirety of
all elements to come.

Summarizing, streams are an excellent example for interface reuse.

• Value semantics. Lazy results are actually lazy values. Repeated evaluation
will not yield different (state dependent) results. Hence, Lazy Object nicely
uses state (for memoizing results) in a referentially transparent manner. One
may use this kind of clean state to model efficient non-single-threaded amor-
tized data structures [Okasaki95c], without the need to resort to side-effects.

• Iteration. The close resemblance of a Stream interface (see section 8.10 on
page 130) to that of an Iterator [Gamma et al.94] suggests to use streams as
an intermediate language between collections and iterators. Then, streams
would provide a linear access to both finite and infinite data collections.
Clients, in general, do not have to care whether streams are finite or not with
the exception that operations on infinite streams — such as naı̈vely trying to
detect “42” in a list of primes — may not terminate.

• Inter-collection language. Actually, streams are a generalization of collection
iterators since they can be generated by far more alternatives. Moreover,
streams can be used to generate collections. Consequently, streams are an
intermediate language for the conversion of data structures into each other
(see pattern Transfold on page 163).

• Persistence. Streamable collections could also easily made persistent without
requiring additional mechanisms, such as Serializer [Riehle et al.97].

5As it is the case with the explicit delay styles using unit and delay of ML and SCHEME.



8.8 Consequences 125

• Stream configuration. The ease of exchanging stream components facilitates
end user programming [Manolescu97]. Instead of recoding an application by
a programmer, such a flexible system allows reconfiguration by the user.

• Parallel execution.

+ A pipeline of interconnected streams can be processed in parallel since it
represents a pure dataflow architecture [Buschmann et al.96].

− Eager processing can execute operations in parallel to make their results
available prior to their usage. Lazy evaluation is directed by data de-
pendencies and, thus, normally does not allow for exploiting peaks of
computing resources for future use.

• Workload distribution. The increased modularization achieved by streams
can be exploited to distribute development efforts nicely into autonomous
groups [Manolescu97].

• Execution profile. Lazy operations can lead to a peak in computation perfor-
mance. Insertions to a lazily sorted list nicely require constant time only.
Yet, the first reading access will have to resolve all necessary sorting (which
may or may not mean to sort the whole list). This behavior — akin to non-
incrementally garbage collected applications — should be kept in mind if a
more evenly distribution of work is aspired.

Sometimes, however, it can be desirable to postpone operations. For instance,
system start up time should be kept minimal while more elaborate system
initialization will happen as required [Wampler94].

• Time efficiency.

+ The computational complexity of a lazy algorithm is determined by its
usage rather than its intrinsic properties. It is possible to use an O(n2)
sorting algorithm (insertion-sort) to obtain the minimal element from a
collection in O(n) time. Access to the first element of the list will not
cause the costly sorting of the rest of the list.
A collection which is traversed with a predicate and a lazy and operator
will not be fully visited, if predicate application on one of the elements
yields false.

+ Speed is not only to be gained by avoiding unnecessary calculations
but also by avoiding to calculate values more than once. For instance,
a fibonacci number stream, modeled as the addition of two fibonacci
streams (fibs= 0 : 1 : streamadd fibs tl(fibs)), exhibits linear6 time com-
plexity through the inherent caching of stream values. With this respect,

6As opposed to standard exponential time behavior.
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Lazy Object is in close relationship to dynamic programming7. For ex-
ample, to calculate all squared natural numbers one can choose an incre-
mental approach by deriving each new value from its predecessor: With
pred= n2, it follows that (n+1)2 = pred+2n+1, avoiding the costly squar-
ing operation for each element. Speed penalties introduced by closure
creations [Allison92] can be more than compensated by this incremental
computation option.

+ It is efficient to pass lazy objects (like streams) around since only refer-
ences will be moved. There is no need to pass lazy objects with copy
semantics since they are immutable anyway.

+ It is often possible to avoid repeated traversals of a structure if results
are lazily constructed. In order to replace all values in a tree with the
minimum value one typically needs to traverse the tree twice. Once,
for determining the minimum value, and twice for replacing all values
with the minimum. With a lazily computed minimum value, however,
one can replace all tree values with a value yet to be computed [Bird84].
The same traversal which is used to replace the values is also used to
build a hierarchical function structure of min functions over the whole
tree. When the tree is accessed afterwards, the minimum function will
be evaluated once and the obtained value will be used for each tree value
accessed.

− When streams are designed to be interchangeable and therefore are re-
quired to share a common element format, this may impose conversion
overhead. For instance, UNIX commands need to parse ASCII8 repre-
sentations of numbers, calculate, and write out an ASCII representation
again [Buschmann et al.96]. Object-oriented streams, however, open up
the possibility to defer conversions to the elements themselves. Then,
special stream element subtypes could avoid any conversions at all.

− Access to lazy values is indirect. Typically, method dispatch redirects
calls to either existing values or function calls. Alternatively, flags have
to be checked whether cached values already exist.

• Space efficiency.

+ Streams can help to restrict the amount of memory needed. Consider a
data source that is transformed into another structure that requires ex-
ponential space. If this structure is to be processed by a function that
extracts a linearly sized result, it is beneficial to model the structure gen-
erating process as a stream. Then the extraction function is applied to
the stream, resulting in the same linearly sized result, without causing
a transient exponential space requirement. Thus, useful intermediate

7Also called memoing or tabulation [Abelson & Sussman87].
8American Standard Code for Information Interchange.
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structures [King & Launchbury93] do not imply infeasible space over-
head.

+ Since lazy objects are immutable they can be shared by multiple clients
without requiring duplication in order to avoid interferences.

− As can be seen in section 8.10 on page 130 (figures 8.12 on page 138, 8.13
on page 139, 8.14 on page 141 and 8.15 on page 142) the representation of
a stream with objects can be storage intensive (see section 8.9 for allevia-
tions). Also, the space required by stream suspensions might be overkill
(see next bullet Closure overhead). Care should be taken not to unneces-
sarily keep references to stream suspensions. This would prevent their
early removal by garbage collection.
Although object overhead encumbers garbage collection, clever mem-
ory management can make lazy languages outperform eager and even
imperative languages [Kozato & Otto93].

• Closure overhead. Sometimes, more overhead through closure management is
introduced, than is gained by computational savings. Accessing the second
element of two lazily added lists [1,2,3,4] + [5,6,7,8], results in, (1+ 5) : 8 :
([3,4] + [7,8]), creating two suspensions for one standard addition and a de-
ferred list addition respectively. Especially, when all elements of a structure
will eventually be evaluated anyway, it can be worthwhile to avoid the cre-
ation of space and time (through creation and management) consuming sus-
pensions.

• Event handling. A pull driven stream model as presented here cannot handle
prioritized or asynchronous events. It is, however, possible to either use push
driven streams [Buschmann et al.96] or to apply an Out-of-band and In-band
partition [Manolescu97]. The latter approach divides an interactive applica-
tion into user interaction (events) and data (stream) processing parts.

8.9 Implementation

On a first reading the reader might want to skip this section. After examination of
the sample code in section 8.10 the following implementations details are easier to
deal with.

• Stream functions. It is very interesting to note that the value, step, and eos in-
terface of ContFunc (see section 8.10 on page 130) is justified by a categori-
cal interpretation of streams as coinductive types [Jacobs & Rutten97]. Here,
streams over a type A are modeled as a state of type B (state of a ContFunc
object) and two functions: Function h : B→ A produces a new stream element
(value) and function t : B→ B produces a new state (step).

Then, an anamorphism on h and t (a stream generating function) is defined
to be the unique function f : B→ Str Asuch that diagram 8.6 on the next page
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Figure 8.6: Definition of an Anamorphism

commutes. A stream generator f , hence, needs to build a list cell (eventually
StreamValue ) from calling an element generator h (value) and itself composed
with a state transformer t (step): f = Cons◦ 〈h, f ◦ t〉 [Pardo98b].

This view concerns infinite streams only. Introducing finite streams involves
consideration of a function that determines the stream’s end (eos of ContFunc
and last of Stream, respectively). For a further discussion the reader is referred
to [Meijer et al.91].

• Avoiding tail suspensions. Some stream generating functions may create a suc-
cessing stream state without waiting for arguments to become available. For
example, it is not necessary to suspend a tail call to a StreamFunc which refers
to a NatFunc (see section 8.10 on page 130). One can save the creation of a
StreamTail and its later removal by introducing an optimized stream function
(StreamFuncOpt ) that redefines the tail method of StreamSuspension and the
forceTail method of StreamFunc :

class StreamFuncOpt[G]
inherit StreamFunc[G] redefine tail, forceTail end
creation make
feature

tail : Stream[G] is
do

if not tailIsValue then
if tailCache/=Void then

if tailCache.isNotSuspended then
tailCache:=tailCache.toValue;
tailIsValue:=True;

end;
elseif not last then

tailCache:=forcedTail;
end;

end;
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Result:=tailCache;
end;

feature {None}
forceTail : Stream[G] is
do

!StreamFuncOpt[G]!Result.make(contFunc.step);
end;

end

Instead of creating a stream tail suspension, tail directly creates a stream
function successor by calling forceTail .

A client can make advantage of this optimized scheme by declaring, e.g.,

nats : StreamFuncOpt[Integer];

Creation and usage of the optimized stream is exactly as before.

Clients can be made unaware of the existence of two different StreamFunc
by either going via an application syntax function like Pipe (see section 8.10
on the next page) or deferring creation of stream functions to continuation
functions.

• Class versus object adapter. In order to improve clarity of presentation I used
the object version of Adapter [Gamma et al.94] for class StreamFunc (see sec-
tion 8.10 on the following page). What it essentially does is to translate a
service from continuation functions (value, step, eos) to the requirements of
StreamSuspension (forceItem, forceTail, last).

Alternatively, one can use the class adaptor version for StreamFunc . There
would be several stream function heirs to StreamSuspension that would also
inherit from an individual continuation function respectively. On the one
hand this would less cleanly separate stream functionality (e.g., forcing) from
continuation functionality (e.g., argument processing). On the other hand, a
considerable amount of object creation and storage would be saved. In fig-
ure 8.15 on page 142 all pairs of StreamFunc and ContFunc objects would
collapse into single objects.

On may even think about dropping any adaption at all and make continua-
tion functions direct heirs to StreamSuspension . Yet, this would burden im-
plementors of new continuation functions to create objects of their respective
functions in the step routine. Either class or object adaption scheme nicely
takes care of this.

• Storage requirements. Also for reasons of presentation clarity I choose a direct
modeling of streams with objects. In cases where the space requirements of
the object model presented in section 8.10 on the following page are pro-
hibitive, one can evade to more compact representations. Streams can, for
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instance, maintain a shared generic array of elements and use an internal cur-
sor for their actual position. Access suspensions could then be much more ef-
ficiently be represented as an internal counter that increases with tail accesses
and has to be decreased — inducing function evaluation — before element
access.

8.10 Sample Code

We will now consider the implementation of lazy streams in detail. Again, note
that a stream is just an example for Lazy Object and that there are many other
applications for Lazy Object besides streams (see section 8.4 on page 119).

The most important issue to establish upfront is the stream interface9 to clients:

deferred class Stream[G]

feature
item : G is deferred end
tail : Stream[G] is deferred end
last : Boolean is deferred end

feature {Stream}
isNotSuspended : Boolean is deferred end
toValue : StreamVal[G] is deferred end

feature {StreamTail}
forcedTail : Stream[G] is deferred end

end

StreamFunc

NatFunc
arg = 1

contF
unc

Figure 8.7: Natural
number stream

Class Stream plays the role of LazyObject (see figure 8.4
on page 121) with the exception that it defers creation of sus-
pensions to its heirs. For now, we do not care about the non-
public features of Stream besides noting that toValue al-
lows converting a stream element, which no longer needs to
be suspended, into a value (see class Value in figure 8.4 on
page 121).

We start simple by trying to establish a stream of natu-
ral numbers. In this case our Suspension (see figure 8.4 on
page 121) will be a function (represented by class NatFunc )
that yields the next natural number. Heading for a general
scheme we introduce an indirection with StreamFunc that
uses any ContFunc to generate a stream element (see fig-
ure 8.7) and make NatFunc an heir to ContFunc (see figure 8.8
on the facing page).

9For brevity I omitted an out feature that is useful to display streams to the user.
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Client Stream

StreamSuspension

forceTail : Stream
forceItem : G

tail : Stream
item : G

last : Boolean
tail : Stream
item : G

StreamTailStreamFunc

StreamValstep : Current
value : G

ContFunc

eos : Boolean

NatFunc

Figure 8.8: Using streams

A client then creates a StreamFunc by passing a NatFunc for initialization. The
client can now access stream elements via the Stream interface. Requesting an item
from Stream is — in this case — handled by StreamFunc . StreamFunc inherits the
implementation of item from StreamSuspension :

deferred class StreamSuspension[G]
inherit Stream[G]

feature
item : G is
do

if itemCacheFlag=False then
itemCache:=forceItem;
itemCacheFlag:=True;

end;

Result:=itemCache;
end;
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tail : Stream[G] is
do

if not tailIsValue then
if tailCache/=Void then

if tailCache.isNotSuspended then
tailCache:=tailCache.toValue;
tailIsValue:=True;

end;
elseif not last then

!StreamTail[G]!tailCache.make(Current);
end;

end;

Result:=tailCache;
end;

last : Boolean is deferred end

feature {Stream}
isNotSuspended : Boolean;

toValue : StreamVal[G] is
do

If valueCache=Void then
!StreamVal[G]!valueCache.make(item, tail);

end;

Result:=valueCache;
end;

feature {StreamTail}
forcedTail : Stream[G] is
do

if not isNotSuspended then
tailCache:=forceTail;
isNotSuspended:=True;

end

Result:=tailCache;
end;
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feature {None}
itemCache : G;
itemCacheFlag : Boolean;

tailCache : Stream[G];
valueCache : StreamVal[G];
tailIsValue : Boolean;

forceItem : G is deferred end
forceTail : Stream[G] is deferred end

end

Method forceItem (called by item ) is implemented by StreamFunc :

class StreamFunc[G]
inherit StreamSuspension[G]
creation make

feature
make(f : like contFunc) is
do

contFunc:=f;
end;

feature {None}
contFunc : ContFunc[G];

forceItem : G is
do

Result:=contFunc.value;
end;

forceTail : Stream[G] is
do

!StreamFunc[G]!Result.make(contFunc.step);
end;

last : Boolean is
do

Result:=contFunc.eos;
end;

end
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In our example the invocation of value on contFunc (see implementation of
forceItem ) will return the current natural number:

class NatFunc
inherit ContFunc[Integer]
creation make

feature
arg : Integer;

make (a : like arg) is
do

arg:=a;
end;

value : like arg is
do

Result:=arg;
end;

step : like Current is
do

!!Result.make(arg+1);
end;

end

NatFunc
arg = 1

StreamTail
suspensiontail

StreamFunc

contF
unc

Figure 8.9: Suspension of a stream tail

Requesting the tail of a Stream usually results in the creation of a StreamTail (see
figure 8.8 on page 131 and figure 8.9). An item call on a StreamTail object forces
the generation of a tail from suspension and delegates the item request to the result
of this operation. Again, the implementation of item in StreamSuspension will be
called and — this time — will use forceItem from class StreamTail :
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class StreamTail[G]
inherit StreamSuspension[G]
creation make

feature
make(s : like suspension) is
do

suspension:=s;
end;

feature {None}
suspension : Stream[G];

forceItem : G is
do

Result:=suspension.forcedTail.item;
end;

forceTail : Stream[G] is
do

Result:=suspension.forcedTail.forcedTail
end;

last : Boolean is
do

Result:=suspension.forcedTail.last;
end;

end

StreamFunc
item = 2

StreamFunc
item = 1

tail

NatFunc
arg = 2

contF
unc

Figure 8.10: Streamfunction unfolding

Delaying the computation of stream
elements with StreamTail is crucial for
self referring streams such as the ham-
ming numbers stream. Not before the
hamming number represented by the
head of the suspension is accessed is
it safe to access any numbers immedi-
ately required by the tail of the suspen-
sion (see section 8.3.2 on page 116).

Yet, given a suitable stream genera-
tion function and the optimization pre-
sented in section 8.9 on page 127, a di-
rect “stepping” of the current NatFunc
object can be achieved. The optimized
forceTail method of StreamFuncOpt directly calls the step method of its continuation
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function and creates a new StreamFuncOpt with the obtained result. Hence, the
intermediate creation of a StreamTail object is avoided — in this case without loss
of generality.

Calling tail in the situation of figure 8.7 on page 130 creates the scenario in fig-
ure 8.10 on the preceding page. In this diagram — as well as in the following object
diagrams — creation lines are drawn were requests on objects (e.g., tail) induce the
creation of objects. Presenting the actual circumstances would unnecessarily com-
plicate the pictures.

Further tail calls will finally replace StreamFunc s with StreamVal s (see fig-
ure 8.11).

NatFunc
arg = 4

item = 2
StreamFunc

item = 1

tail
StreamVal

tail
StreamFunc

item = 4

tail
StreamVal

item = 3

contF
unc

Figure 8.11: Streamvalue insertion

StreamVal objects, i.e., stream values are not suspended stream elements and
allow discarding obsolete StreamFunc objects while representing their cached val-
ues.

Summarizing, we may observe that StreamTail s will be replaced by StreamFunc-
tion s, which in turn will be replaced by StreamVal s.

With our just established stream of natural numbers it is not very difficult to
generate a stream of prime numbers. We make use of the Sieve of Erathostenes
(see definition 1.5 on page 15) and obtain primes by filtering naturals. This time,
however, we do not explicitely create a StreamFunc object but obtain the stream of
prime numbers by applying a Sieve function on naturals:

nats : StreamFunc[Integer];
primes : Stream[Integer];
sieve : Sieve;
...
!!sieve.make;
primes:=sieve @ (nats.tail);

Class Sieve encapsulates the stream function creation process and provides a nice
application syntax. Its purpose is to create a StreamFunc instance that refers to
a SieveFunc (see figures 8.12 on page 138 and 8.16 on page 147). The resulting
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situation is exactly analogous to the NatFunc case. I deliberately did not use an
intermediate application syntax function for natural numbers in order to make the
presentation of the underlying mechanisms as clearly as possible. However, clients
are released from dealing with StreamFunc objects and are given a more natural
way to deal with streams when provided with such adapter classes like Sieve .

For this purpose, class Pipe provides the generation of StreamFunc objects:

class Pipe[G, H]
inherit Function[Stream[G], Stream[H]];
creation init

feature
pipeFunc : PipeFunc[G, H];

init(f : like pipeFunc) is
do

pipeFunc:=f;
end;

infix "@" (s : Stream[G]) : Stream[H] is
do

!StreamFunc[H]!Result.make(pipeFunc @ s);
end;

end

Class Sieve simply inherits Pipe and initializes pipeFunc to SieveFunc on creation
(see also figure 8.16 on page 147).

The client code from above (sieve @ (nats.tail) ) produces the situation
of figure 8.12 on the following page. Here, natural numbers are not using the op-
timized StreamFunc in order to show that caching of tail values achieves that both
the first natural number and the sieve function refer to the same stream suspension.

Figure 8.13 on page 139 shows the same structure after several item and tail calls.
It can clearly be seen that SieveFunc employs FilterFunc objects to filter the stream

of naturals:

class SieveFunc
inherit PipeFunc[Integer]
feature

value : Integer is
do

Result:=stream.item;
end;

step : like Current is
local filter : expanded Filter[Integer];

divides : expanded Divides;
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StreamTail
suspension

StreamFunc
tail

StreamFunc

SieveFunc
stream

NatFunc
arg = 1

contF
unc

contF
unc

Figure 8.12: Stream of primes

notf : expanded NotF[Integer];
do

Result:=Current @
(filter @ (notf @ (divides @ value)) @

stream.tail);
end;

end

A FilterFunc will be generated by the application of Filter . Note how the three func-
tion objects are declared to be of expanded type in order to safe explicit creation.

SieveFunc makes use of the PipeFunc abstraction that specializes a continuation
function to a function with one stream argument. Heirs to PipeFunc profit from a
predefined eos function and are immediately subject to the nice application syntax
provided by Pipe (see above). Providing application syntax and specializing the
continuation function interface, PipeFunc is an heir to both Function and ContFunc :

deferred class PipeFunc[G, H]
inherit inherit Function[Stream[G], PipeFunc[G, H]];

ContFunc[H] redefine eos
end
feature
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Figure 8.13: Unfolded primes

stream : Stream[G];

init (s: like stream) is
do

stream:=s;
end;
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infix "@" (s : like stream) : like Current is
do

Result:=clone(Current);
Result.init(s);

end;

eos : Boolean is
do

Result:=(stream.last);
end;

end

See also figure 8.16 on page 147 for all relations between Client , Pipe , ContFunc ,
and PipeFunc .

Requesting yet another prime from the structure of figure 8.13 on the page be-
fore results in figure 8.14 on the facing page. Starting from the bottom it can be
observed that the current natural amounts to seven rather than five. The interme-
diate six has been filtered out. Note that the StreamTail object between the factor
three and factor two filter has vanished and a new one was introduced right after a
newly inserted factor five filter.

The same stream in a normalized state — resulting from some more item re-
quests — is visible in figure 8.15 on page 142. Compared to figure 8.14 on the
facing page,

1. a StreamFunc object has been converted to a StreamVal object,

2. a chain of StreamFunc objects has been reduced to one StreamFunc object,

3. and the natural number source has been advanced to number eleven.

From the dynamics of stream implementation — which is well hidden from the
clients of streams — back to the static structure of the encountered participants:
Figure 8.16 on page 147 shows all classes involved in the presented prime numbers
example. Here, Client demonstrates the two ways to interact with stream functions.
On the one hand it creates both NatFunc and StreamFunc and on the other hand
just uses Sieve . The diagram also depicts that Pipe and PipeFunc support function
application syntax by inheriting from Function .

It is interesting to follow the creation chain from Sieve via SieveFunc to Filter ,
which takes a predicate argument in order to create Filter1 that in turn creates a
FilterFunc object and, finally on receipt of a stream argument, will create a Stream-
Func object (via class Pipe ).

Note that the Stream subtree at the right part of the diagram exactly corresponds
to the stream supporting classes of figure 8.8 on page 131. An abstracted version of
figure 8.16 on page 147 with a client that deals with streams via intermediate stream
functions only is presented in figure 8.17 on page 148. This diagram depicts the rich
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Figure 8.14: Expanding the sieve
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design of stream functionality that is available and ready to be used. Only the two
classes in the lower left corner of the diagram with the “Concrete ” prefix need to
be supplied in order to introduce a new stream function. A new ConcretePipeFunc
has to provide implementations for the value, step, and (only if deviating from the
standard behavior) eos methods. The new ConcretePipe simply initializes class
Pipe ’s pipeFunc attribute to the new ConcretePipeFunc .

Often, it is not even necessary to introduce a new stream function but a standard
function can be applied to a whole stream by using the stream function Map. Its
implementation is as simple as this:

class MapFunc[G, H]
inherit PipeFunc[G, H]
creation make
feature

mapFunc : Function[G, H];

make (f : like mapFunc) is
do

mapFunc:=f;
end;

value : H is
do

Result:=mapFunc @ (stream.item);
end;

step : like Current is
do

Result:=Current @ (stream.tail);
end;

end

8.11 Known Uses

The UNIX operating system owes much of its flexibility to stream based
commands that can be interconnected via pipes [Ritchie84]. The com-
mon format of line separated ASCII characters allows the free compo-
sition of services. For instance, to uncompress a bitmap, convert it to
POSTSCRIPT10 , and to finally view it, one can build a pipe of four commands:
cat bitmap.pbm.gz | unzip | pbmtolps | ghostview - .

SATHER [Omohundro94] supports a restricted form of coroutine called an
“iter” [Murer et al.93b]. Iters yield elements to be used in iterations. Their pri-

10PostScript is a registered trademark of Adobe Systems Incorporated.
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mary difference to streams is the bounded lifetime, which ends with the iteration
loop.

ALGOL 60 [Backus et al.63, Landin65] features call-by-name parameter passing.
This mechanism enables delayed evaluation, save the “evaluate only once” strategy
of call-by-need.

Programming languages with static array sizes (e.g., PASCAL [Rohlfing78]) force
us to specify an array size that is often not know at the time of array creation.
Programming languages that enable dynamic array sizes (e.g., EIFFEL) — in a way
— allow for a lazy size specification for arrays. A force operation enlarges an
array whenever necessary, so the initial size given does not restrict future array
uses.

Graph algorithms in general are a popular target for lazy evaluation. David
King and John Launchbury present algorithms with linear-time complexity that are
constructed from individual components, which communicate via lazily generated
intermediate structures [King & Launchbury93]. A lazy depth-first search tree of a
graph will not cause the whole graph to be visited, when only part of the tree is re-
quested. Even possible side-effects, such as marking nodes as visited, will only be
performed as necessary [Launchbury & Jones94, Launchbury & Jones95]. In func-
tional programming it is common to express, e.g., tree traversal problems first by
flattening the tree into a list, and then by processing the list. The intermediate list
can then provide a channel of communication between standard components. Lazy
evaluation successfully avoids the transient creation of a large intermediate list and
of large intermediate structures in general [Launchbury93].

Lazy graph algorithms also promise to be suited for multiprocessor architec-
tures. The absence of side-effects and the memory friendly behavior of data bind-
ings, as opposed to data structures, contributes to their suitability for parallel pro-
cessing [Kashiwagi & Wise91].

The Convex Application Visualization System (AVS) is a visualization packages
that organizes various modules, such as file readers and data processing, to a net-
work of interconnected components [Convex93].

The Lazy Propagator pattern [Feiler & Tichy97] uses updates on demand in a
network of distributed computations. A network node is updated only when re-
quested for one of its values. A single request thus may cause a wavefront of back-
ward updates until the system is just enough updated to answer the initial request.

Attribute grammars with lazy attributes can be specified without regard to the
nature of dependencies (e.g., left-right, or even circular). Attributes will automati-
cally be resolved in the order of their dependencies [Mogensen95].

For further examples the reader is referred to the literature given in section 8.2
on page 115.
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8.12 Related Patterns

8.12.1 Categorization

Iterator: The interface of Iterator from the Iterator pattern is very similar to that
of Stream . Both internal iterators and streams allow separating the iteration
loop and collection navigation from the iteration body. Streams, however, do
not provide a first method. As opposed to external iterators, streams are not
stateful objects. To re-iterate a stream, one has to keep a copy of the stream’s
start.

Stream, Pipeline,
Pipes and Filters: are architectural views on the stream concept which can

be provided by lazy evaluation [Ritchie84, Edwards95, Meunier95b,
Buschmann et al.96, Posnak et al.96, Shaw96].

Singleton: A Singleton is a Lazy Object since it is created at most once. If created at
all, every accessor will be given the same instance, which exactly corresponds
to call-by-need semantics.

Co-Routine: A stream can be regarded as a co-routine. Resuming happens through
tail calls and one can think of a series of subsequent continuation functions
as co-routine incarnations distributed over stream element functions. The co-
routining behavior of lazy objects is vital for their ability to avoid large in-
termediate structures. Calculation suspension allow building a pipeline that
processes elements one by one rather then causing whole transient structures
to be constructed in between.

8.12.2 Collaboration

Function Object: Function Object can be used for lazy evaluation as well. A func-
tion object represents a suspended calculation until requested to evaluate its
result.

Streams are connected to function objects through class Map. It allows apply-
ing standard function objects to streams. Ergo, it is easy to obtain a stream
function, if a corresponding a single element function already exists.

Translator: The result of a translation obtained using Translator can be a stream.

Transfold: Transfold processes lazy streams, that function as a lingua franca between
collections and iterators.

Serializer: Serializer could be used to flatten data in order to transfer it via a stan-
dard stream channel. Instead of using Serializer on may alternatively simply
use a specialized object stream.
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Composite: A stream append operation (appending f and g yields h = f ◦ g) can
be regarded as a stream composite [Gamma et al.94, Manolescu97]. One may
also use a Component to encapsulate the splitting of one stream into multiple
branches and their re-joining into one stream again. For instance, one may
filter various information types from a multi-media stream, compress them
individually, and re-compose them to a compressed multi-media stream.

8.12.3 Implementation

Memoization: Being a technique rather than a pattern, memoization nevertheless
is used by Lazy Object in order to perform calculations only once. Further
requests are served by accessing a cache [Keller & Sleep86].

Value Object: A lazy object may use Value Object (see chapter 9 on page 149) to
produce immutable cached values of calculated results, e.g., stream elements.

Command,
Function Object: StreamTail can be regarded as a function object with one argument

(suspension) and three entry points with no further arguments. Its task is to
separate the creation of an operation and its actual invocation in time, very
similar to the Command pattern.

Factory Method: If clients defer the creation of stream functions to continuation
functions — that know whether to choose a StreamFunc or StreamFuncOpt
— the corresponding method is a Factory Method [Gamma et al.94].

Void Value: The behavior of a stream’s end may be implemented with Void Value
(see chapter 11 on page 191).
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9 Value Object

Even in change, it stays the same.
– Heraklit

9.1 Intent

Use immutable objects with generator operations for protection against side-effects
and aliasing.

9.2 Also Known As

Immutable Object [Siegel95].

9.3 Motivation

Mutable objects are the bedrock of object-oriented design and programming. The
ability to dynamically instantiate objects, change their value, retrieve their state,
and share them among multiple users for communication allows the development
of efficient software with a close relationship to real word models (see chapter 2 on
page 29).

Yet, another bedrock of object-orientation is encapsulation (see section 2.2.2 on
page 32). Encapsulated objects provide us with the peace of mind that every change
to an object is controlled by the object itself. Obviously, an inconsistent or unex-
pected change of object state can be caused by the object itself only. Unfortunately,
this is not quite true.

9.3.1 Problem

Surprisingly many object-oriented languages do not provide complex numbers ei-
ther as primitive types or as a library component. Luckily, we can extend the exist-
ing library and provide a complex number class as if it has been part of the stan-
dard1. The straightforward approach is to write a class with a set of operations,

1As always the devil lurks in the details. See Matthew Austern’s account on the difficulties of
introducing a Complex class with EIFFEL.
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e.g., add, mult, etc., that modify their receiver. There are countless examples of this
approach in object-oriented libraries, especially for container classes. The change
to an internal state is done by the most competent instance — the object itself —
and it is the most efficient way to implement updates.

A partial implementation, therefore, could be:

class Complex
creation make
feature

re : Real;
im : Real;

make(r : Real; i : Real) is
do

re:=r;
im:=i;

end

plus(other : Const_Complex) is
do

re:=re + other.re;
im:=im + other.im;

end
end

Where is the problem? Let us have a look of a typical code fragment using the
new class:

...
local

a : Complex;
b : Complex;

do
!!a.make(1, 2);

b:=a;
a.plus(b);

io.putstring(b.out);
end;

Two variables of the new type Complex are declared and one is created with the
value 1+2i. It is only natural to move complex numbers between variables which
happens in b:=a . Then a is changed by adding the value of b, i.e., it is effectively
doubled. As the following print statement reveals, the value of b is not 1+ 2i any-
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more, but reflects the change that happened to a! Alas, what happened?2 One the
one hand nothing unusual took place: The value of a complex number variable
was changed. Since another reference (b) to the value of a was created before, any
change can be seen trough b as well.

On the other hand, our intuition about dealing with numbers has been severely
hurt. The keyword to resolve this disturbing confusion is reference. We imple-
mented complex numbers with reference semantics, i.e.,

1. variables are pointers to complex number objects,

2. operations change object state, and

3. assignment copies references only.

mutator_procedures

accessor_functions
make

NonMutatingAccessor ImmutableInterface

MutableInterface

Figure 9.1: Providing a “const” interface

As a result, aliasing
with unwanted effects
is the standard behav-
ior.

One way to con-
trol such introduced
side-effects is to disal-
low the application of
operations that mutate
object state. Hence, it
appears useful to in-
troduce an immutable
interface to complex
numbers [Wilson95].

For instance, with

class Complex
inherit Const_Complex
creation make
feature

plus(other : Const_Complex) is
do

re:=re+other.re;
im:=im+other.im;

end;
end

any caller of plus can be sure that the passed argument will still be unchanged after
the execution of plus. This scenario assumes a hierarchy as depicted in figure 9.1.
An attempt to assign other to a variable of type Complex , i.e., an mutable interface,
results in a type error.

2Anyone not feeling irritated about this behavior is probably spoiled by commonplace reference
semantics in object-oriented languages.
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An immutable interface (i.e., the Constant Object pattern) is a powerful means
to control side-effects and in

...
local

a : Complex;
b : Const_Complex;

do
!!a.make(1, 2);

b:=a;
a.plus(b);

io.putstring(b.out);
end;

one can be reasonably3 sure that the value of b cannot be altered by passing it to
plus. As already stated it is also not possible to modify the value of b by obtaining
a mutable interface to it, e.g., by a:=b .

Unfortunately, the above code (using b:=a ) will still compile and produce the
unwanted effect. One might be tempted to reverse the hierarchy of figure 9.1 on
the page before and make immutable interfaces inherit from mutable interfaces.
Apparently, statement b:=a; would be illegal then. But,

• reversing the hierarchy of figure 9.1 on the preceding page is not sound in
terms of subtyping. Class ImmutableInterface would have to hide operations
from MutableInterface destroying substitutability. Therefore,

• it is no longer possible to pass mutable objects to servers with read-only in-
terfaces. The const modifier property of immutable interfaces is lost.

• of course, it is still possible to create aliasing, e.g., with a:=b; .

In conclusion, immutable interfaces do not provide a suitable solution to refer-
ence semantics induced problems with complex numbers. After all, it should not
be necessary to declare variables to provide read-only access in order to avoid the
above aliasing effects. Moreover, we want to be able to modify complex numbers.
There is no point in installing a safety mechanism that inhibits modification of val-
ues to such an extent.

9.3.2 Solution

Complex numbers are values, i.e., they are timeless abstractions and therefore un-
changeable [MacLennan82]. They deserve to be implemented with value seman-
tics. Instead of modifying the receiver of operation add, the receiver should be left

3Of course, a server may use a reverse assignment attempt to gain a mutable interface to an
object passed through an immutable interface. Anyone doing so, is hopefully aware of the surprises
possibly introduced.
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untouched and a new instance of a complex number should be returned. In anal-
ogy, there are no operations that change integers. An expression like 41.inc does
not make sense, since 41 is a unique abstraction, rather than an object with iden-
tity [Khoshafian & Copeland86]. While it could be used to arrive at the abstraction
42 by adding 1 it is not possible to change it.

A version of Complex with value semantics is:

class Complex
creation make
feature

...
infix "+",
plus(other : Complex) : Complex is
do

!!Result.make(re + other.re, im + other.im);
end;

end

Note that now it is now possible to use the more natural infix "+" notation for
addition of complex numbers. It was added as a synonym for plus which we just
retained for better comparison with the previous version of plus. The client code
needs a bit of adaption to reflect the change —

...
local

a : Complex;
b : Complex;

do
!!a.make(1, 2);

b:=a;
a:=a + b;

io.putstring(b.out);
end;

— and will, finally, work as expected. When a:=a + b; is executed, a is reat-
tached to a new instance of a complex number. Variable b continues to point to the
old value of a. A change to a finally no longer affects the value of b.

It is worthwhile noting that immutable interfaces remain useful for classes with
reference semantics but are absolutely superfluous for classes with value seman-
tics (e.g., method plus above does not need a Const Complex argument interface
anymore). There is no way a server could change a complex number anyway. Any
modification results in a new complex number, leaving any passed instance intact.
In other words, values do not require immutable interfaces.
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9.4 Applicability

• Modeling. When clients are interested in values only and never care about
identity, use Value Object for the object in question. Types representing val-
ues, i.e., abstractions with no identity for which creation, change, and shar-
ing have no meaning, should be implemented with value semantics. Besides
numbers, strings are a typical example. Sharing of string contents easily oc-
curs with a straightforward implementation but is certainly unexpected4.

• Aliasing protection. When a type should be immune to aliasing effects,
replace its mutator operations with generator operations. For in-
stance, a matrix multiplication using destructive updating of the receiver
works fine until someone calls: aMatrix.mult(aMatrix); . This
may destroy parts of the matrix that are still needed for input. With
aMatrix:=aMatrix.mult(aMatrix); there is no such danger since
target and source matrix are different.

• Small objects. Use Value Object preferably for small data structures. The larger
the structure, the greater the overhead through duplication of unchanged
data when creating a new instance in response to an operation. Using Value
Object for larger structures can still be reasonable to avoid aliasing and does
not necessarily have to be inefficient (see 9.9 on page 158, Copy on demand),
but is most appropriate for objects with a small memory footprint.

• Efficient value passing. Creating new instances when changes occur is appro-
priate when the frequency of passing and assigning values is higher than
their update frequency. If updating values is the predominant operation
then consider to implement a copy-on-passing scheme (see 9.9 on page 158,
When to copy values) or use a language’s built-in support for value types (e.g.,
expanded types in EIFFEL or non-pointer variables in C++).

9.5 Structure

Client

make

generators
accessors

ValueObject

Figure 9.2: Structure diagram

4One of the few things the JAVA library got right: String objects are immutable and sharing can
be achieved with StringBuffer only.
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9.6 Participants

• Client

– calls an accessor or generator operation of ValueObject .

• ValueObject

– returns a value on access.

– creates and returns a new object when asked for a modified version of
itself.

9.7 Collaborations

aValue*aClient

generator

aValue

Figure 9.3: Interaction diagram

• A client performs an operation on a value object.

• The value object creates a new instance containing the information according
to the requested operation.

• The value object returns the freshly created instance.

9.8 Consequences

• Simplicity. Code using values can be much simpler than code using objects,
since there is no need to be cautious about side-effects and aliasing. All ad-
vantages of dealing with immutable values apply (e.g., validation of correct-
ness, understandability, transformability (see section 1.3.1 on page 17)). Value
objects do not offer mutator operations, but use generator operations to pro-
vide new instances. Note that object encapsulation is still preserved. Any
changes to the object are still under the regime of the object itself. Plainly the
target of the updated information is different to a conventional destructive
update.
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• Encapsulation. While direct aliasing (as presented in the example of section 9.3
on page 149) might be mastered with effort, indirect aliasing is a notoriously
hard issue [Hogg91, Almeida97]. For instance, even expanded types in EIF-
FEL use a shallow copy on assignment only. As a result, components are
shared and are subject to change while the owning object is not in control.
Value Object provides full state encapsulation even for groups of objects.

• Equality. Testing value objects for equality cannot be accomplished by using
a built-in equality operator such as “=”5. The standard operator will compare
pointer values, which can be different for otherwise equal values (but see
also 9.9 on page 158, Sharing of values).

The solution is to use a (usually already setup) equality method, like in

if equal(aComplex1, aComplex2) then
...

or using a custom infix operation:

if aComplex1 #= aComplex2 then
...

Often, as in EIFFEL, the setup equality method will perform as desired: It will
compare all value components for equality. Nonetheless, it can be useful to
override the equality method (is equal in EIFFEL) in the value class, in or-
der to achieve equality checking of abstract state rather than concrete state.
For instance, a custom equality method could appreciate the equality of two
complex numbers, even if one of them is represented with cartesian coordi-
nates while the other uses polar coordinates.

• Subtyping. Usually “is-a” or specialization inheritance is at odds with sub-
typing. Although a set of integers “is-a” set of numbers it is not possible to
pass it to a method expecting a set of numbers. This restriction is sound since
the method could legally insert any number, e.g., a real number, violating the
caller’s integer set constraint.

However, if the method’s parameter is declared to be a value set of numbers
then calling the method with a set of integer values is valid and safe. There
is no way in which the called method could corrupt the passed set, since it is
immutable.

Other examples of “is-a” relationships that usually must be avoided but work
in the context of value types are Ellipse being subclassed by Circle and Rect-
angle subclassed by Square . In both cases some mutations, e.g., stretching in
one direction only, would throw subclass objects into trouble6.

5Every JAVA programmer must discover that comparing strings with “=” does not work.
6Unless they can dynamically change their type, as with SMALLTALK’s become: method.
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Note that it is even save to pass a mutable square, i.e., one that offers destruc-
tive updates, to a method with a square value object interface (see figure 9.4
on the following page). Inside the method the mutator operations are not ac-
cessible and therefore subtyping is provided. Anyway, a generator method
might return a result whose type is different from that of the receiver. For
instance, stretching a Square yields a Rectangle .

Sadly, while subtyping with values actually works with the latter examples,
there is no way to pursue EIFFEL’s type system to believe that an integer in-
stantiation of a generic class can be passed to a number instantiation. The
type system rightfully assumes invalidness in the general case and cannot be
hinted to the value semantics constraints that make it safe in this particular
case (see section 14.5 on page 243).

• Heterogeneity. Reference types and value types cannot be used uniformly by
clients. Besides the need for a different equality check7, clients must either
use

aComplex.add(aNumber);
...
aComplex:=copy(aNumber);
aComplex.negate; -- keep aNumber intact

or

aComplex:=aComplex + aNumber;
...
aComplex:=aNumber.negate; -- keep aNumber intact

This may appear unfortunate at first sight but it should be pointed out that
value semantics — in this case for numbers — is not motivated historically
but deeply roots in the fundamental difference between abstract values and
changeable objects [Eckert & Kempe94]. Modeling of types and the corre-
sponding syntax should reflect this difference.

• Efficiency.

+ As value objects are immutable they can be shared safely, i.e., imple-
mented with pointer semantics. Parameter passing and assignment are,
therefore, cheap operations. Safe sharing of objects may also vastly sim-
plify concurrent and parallel designs [Siegel95].

+ Value objects can share subcomponents as long as these do not change.
This reduces the amount of memory needed and speeds up copying of
unchanged data to new instance created by generator operations.

− Creating a new object instead of modifying an existing one, increases
memory demand and adds strain to the garbage collector.

7C++ with an overloadable “=” operator being an exception.
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− Generator operations on large value object structure are expensive. Val-
ues with large components must recreate these even if only a tiny part
of them changes. Changing a small part of a large value object is, thus,
highly inefficient.
A mixed scheme — mixing generator and mutator operations — is pos-
sible (see figure 9.4), allowing mutator operations whenever safe. Unin-
tentionally passing a value object to a method with a mutable argument
interface, will be caught as an error by the type system.
If, on the other hand, the method uses an immutable argument
(ValueObject ) interface, callers are protected against changes to the ar-
gument, whereas code inside the method will be checked against unin-
tended mutation attempts.

Client

make

generators
accessors

ValueObject

MutableObject

mutators

Figure 9.4: Optional mutators for Value Object

9.9 Implementation

• When to copy values. Value Object creates new values when values are gener-
ated. Another choice would have been to create copies whenever the possi-
bility of aliasing is created, i.e., whenever a new access thread is created by
parameter passing or assignment.

In figure 9.5 on the next page an arrow pointing downwards denotes the cre-
ation of a new value by a generator operation. Indexes and shading indi-
cate the generation of a value, i.e., the count of copy operations in its history.
Note that the situation in figure 9.5 on the facing page is in favor of copy-on-
passing rather than copy-on-change, but with less updates and more passing
or assignments the score is reversed.

Most programming languages implement their basic types with copy-on-
passing. And in most languages we have no choice but implement Value Ob-
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ject with copy-on-change, because implementing copy-on-passing requires to
modify the semantics of assignment and parameter passing. However, copy-
on-change seems to be the better alternative in most cases, since assignment
and passing should be more frequent than updates and it is more intuitive to
expect a cost when operations are performed.

copy on passingcopy on change copy on demand

1v 1v

v2

v2

v2v2

v2

v4

v3

v3

v1

v

v

1

1

v

v1

v

1 1v v

1

1

Figure 9.5: Copy strategies

• Value Object versus language support. Some languages offer support for the ad-
dition of types with non-reference semantics. Typically, however, another
motivation was the driving factor, for instance, the ability to specify ob-
ject containment rather than object referencing [Madsen et al.93, Meyer92].
Consequently, value semantics is often, e.g., in EIFFEL, not sufficiently sup-
ported [Kent & Howse96]: Expanded types, for instance,

• do not allow polymorphism.

• cannot be specified with deferred classes.

• make shallow copies on assignment only.

• Abstract state. Value objects must preserve equality only modulo their respec-
tive equality operation. For instance, fraction numbers could decide to nor-
malize their representation after addition but not after multiplication. Hence,

15
6

+
15
6

=
15
3

while
15
6
∗2 =

30
6
,

but comparing the two results would yield that they are equal.
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• Deep copy. If a value object has subcomponents consisting of standard refer-
ence type objects, it has to create a deep copy of them in case it produces
an altered copy of itself. Otherwise unintended sharing of subcomponents is
inevitable.

• Copy on demand. A (deep) copy of a value subcomponent is not necessary if
that component does not change due to the requested operation. At least for
components a value object can implement the copy-on-demand strategy of
figure 9.5 on the page before. Only if a subcomponent changes, a copy has to
be created before any changes are made.

• Sharing of values. Ordinarily, values are generated without regard whether an
equal instance of the result already exists. If every result is first looked up in
a repository of already existing values, then

• memory can be saved by avoiding multiple value instances with the
same value.

• equality testing can be achieved by pointer comparison again. This is
much more efficient and allows to use standard syntax for comparison.

• a repository has to be kept8 and looking up equal values consumes time.

If values are more frequently compared than transformed than it pays off
to use the above — so-called Singular Object [Gamma95] or Identity Ob-
ject [Smith95] — strategy.

9.10 Known Uses

It is needless to emphasize that functional programming languages treat their com-
putational “objects” as values. Many object-oriented languages split their types
into basic types (with value semantics) and reference types. Even in SMALLTALK,
where everything is an object, numbers are correctly treated differently, i.e., they do
not provide mutator but generator operations.

Ian Poole et al. use a combination of Lazy Object and Value Object, i.e., im-
mutable lazy values to represent complex computation networks [Poole et al.98].
The benefits of their Lazy/RT9 pattern (e.g., modular reasoning, parallel evaluation
multiple level undo, exception recovery, etc.) is a combination of the consequences
of both Lazy Object (see section 8 on page 115) and Value Object.

8In SMALLTALK such a collection can readily be obtained by sending allInstances to an ob-
ject.

9Lazy and referentially transparent objects.
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9.11 Related Patterns

9.11.1 Categorization

Constant Object: A value object interface to a mutable object fulfills the same pur-
pose as an immutable interface (see section 9.3 on page 149). In addition to
accessor functions, a value object interface, furthermore, provides generator
operations, which can be used to create new values without altering the orig-
inal.

Identity Object,
Singular Object: This pattern emerges when Value Object or Constant Object is

implemented with unique value instances as described in section 9.9 on
page 158. For instance, the datatype Symbol in SMALLTALK is implemented
as an Identity Object.

Unshareable Object: Another way to prevent aliasing it to allow single references to
an object only [Minsky95, Minsky96]. While values can be motivated from
a modeling point of view, it is unclear what the real world equivalent of an
unshareable reference is. Unshareable references are not copied but moved,
i.e., the source of an assignment statement will be nil afterwards. A useful
analogy might be a physical object that can only be moved but not shared or
a unique item that is allowed to occur only once, e.g., a token in a network.

9.11.2 Collaboration

Function Object: If function objects accept arguments through a value object inter-
face, they do not need to copy arguments in order to be safe from future
changes. This, however, does not hold if there is also a mutating interface
available (see figure 9.4 on page 158) through which arguments could be cor-
rupted.

Strategy,
Function Object: The equality operation can be parameterized with a function ob-

ject predicate. Depending on the application, several “views” on equality
could be implemented (e.g., books which differ in publishers only could be
considered equal for a certain purpose).

Void Value: Default values (e.g., 0+0i for complex numbers) can be provided with
Void Value.

Transfold: Due to the absence of aliasing, it is less error prone to generate new val-
ues from a collection of values than dealing with shared objects. A value
aggregate can be iterated without concerns for changes occurring during iter-
ation.
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Lazy Object: Pattern Lazy Object (see chapter 8 on page 115) may be used to lazily
initialize value object components.

Decorator: A decorator could be used to provide a value semantics interface to stan-
dard reference types. A decorator must first copy the receiver to a new in-
stance, then update that instance according to the operation, and finally re-
turn the new instance.

9.11.3 Implementation

Lazy Object: A value object may return a lazy result. Especially, if the calculation of
a new value is costly and frequently only parts of the result are actually used
then it is worthwhile to defer the calculation until the result is accessed.

Transfold: A value object may implement equality by using Transfold to compare
reference type collections in subcomponents.

Translator: Extremely complex values may implement sophisticated operations —
such as providing a certain view or an interpretation of a value — by translat-
ing their subcomponents.
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10 Transfold

I can’t understand why a person will take a year or two to write a novel
when he can easily buy one for a few dollars.

– Fred Allen

10.1 Intent

Process the elements of one or more aggregate objects without exposing their rep-
resentation and without writing explicit loops.

10.2 Motivation

Collections play a very important role in software design. They allow us regarding
a bunch of objects as a single abstraction. Clients pass and store collections as sin-
gle entities and defer the responsibility of reacting to a message to the collections.
A single request to a collection may mean to forward the request to all collection
members (e.g., most Composite services in the Composite pattern), find a member
best suited to deal with the request (e.g., Chain of Responsibility pattern), extract
one member with particular properties (e.g., a detect method), etc. Hence, with
the exception of a few Dispenser types like Stack and Queue , that restrict access to
one end, it is common to access collection members one by one until a condition
is met or full coverage has been achieved. In other words, a frequent operation on
collections is iteration.

10.2.1 Problem

It is clearly not an option to let clients iterate over collections — or more generally,
aggregates — using knowledge about an aggregate’s internals. In

...
list : List[Integer]
l : Link[Integer];

do
from l:=list.first;
until l=void
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loop
io.putint(l.item);
l:=l.next;

end;
...

the client is committed to a linked list implementation of List . If the implementation
of List changes to a balanced tree representation, e.g., to make searching a faster
operation, each client iteration as above is subject to change. Even C++ code as
commonplace and innocent looking as

...
for (i=0; i<count; i++)

cout << a[i];
...

is almost certainly more specific than necessary. Instead of relying on a to be an
array or indexable, the above code should assume no more than the properties of
an ordered collection in order to protect itself from future changes.

Evidently, an iterator abstraction is necessary that allows accessing the elements
of a collection or the components of aggregates independently of their respective in-
ternal representation. With the decision for a dedicated iteration abstraction, how-
ever, the following issues must be resolved:

• How to combine iterator and action? How do we combine an iteration algo-
rithm (e.g., a simple loop) with a particular function or action (e.g., print an
element)? The iterator client may do it by calling both, the iterator could be
subclassed for each function, or the iterator “takes-a” function.

• Who knows how to iterate an aggregate? Where is the best place to put the itera-
tion logic? Shall the aggregate explore itself or is it better to externalize such
functionality?

• Who controls the iteration? Who is in control of advancing the iteration and
who may decide to stop prematurely, i.e., avoid a full exploration?

• How to support several iteration strategies? Non-linear aggregates (e.g., trees or
graphs) support different traversal strategies like breadth-first-search and
depth-first-search with variations such as pre-order, in-order, and post-order
traversal. How do we allow a choice between alternatives without bloating
the aggregate’s interface?

• How to allow several iterations in parallel? In which way can we support mul-
tiple iterators using a shared aggregate? Two or more clients may want to
process the same aggregate with interleaving execution. It may even be the
case that a read-iterator follows the results of a write iterator.
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• How to deal with alterations during iteration? What means are available to
make iteration over aggregates which are changed during iteration a safe
and unambiguous operation? The further discussion will not deepen the
question of how to make iterators robust [Kofler93], since it is orthogonal to
the issues of higher interest here.

Some proposed solutions can be easily dismissed:

• Combining iterator and iteration function with inheritance [Madsen et al.93,
Meyer94b, Martin94] does not scale with respect to the number of traver-
sal alternatives, iteration functions and implies other problematic is-
sues [Kühne95b] (see also section 7.3 on page 93).

• Equipping aggregates with a cursor that allows iterating the whole aggregate
(e.g., lists [Meyer88, Omohundro & Lim92]) is problematic in the presence of
multiple iterations. Even if interference is prevented by providing a cursor
stack, which clients use to push and pop cursors, the resulting scheme is in-
elegant and error prone [Kofler93]. This suggests that the state of iteration
should be kept outside the iterated aggregate.

• Schemes relying on language support such as co-routines or specializations
thereof [Liskov & Guttag86, Murer et al.93b], are not easily applicable in lan-
guages without these mechanisms.

We are left with two fundamentally different approaches:

1. External iterators place the iteration logic outside of aggregates and provide
clients with an interface to start, advance, and inquire the actual element of
an iteration.

2. Internal iterators are typically a part of the aggregate’s interface. When given
an iteration function they autonomously perform the traversal, thus, releasing
the client to provide a control structure.

External and internal iterators are also referred to as active and passive [Booch94],
with respect to the client’s role. Internal iteration corresponds to functional map-
ping, i.e., the parameterization of higher-order iterators with iteration functions.

There are a number of arguments in favor of internal iteration:

“The code for initializing, updating, and testing iteration variables is often
complex and error prone. Errors having to do with initialization or termina-
tion of iteration are sometimes called “fencepost1” errors and they are very
common[Murer et al.93b].” – Sather Group

This suggests to “Write a Loop Once” [Martin94], i.e., code the traversal control
once inside the aggregate and let all clients rely on it. Hence, the duplication of
virtually identical code in clients for stepping through a structure is avoided. A
particular expensive incident was caused when the Mariner space-probe was lost
due to an error in a loop [Neumann86].

1While genuine fencepost errors are avoided with external iteration as well, it is nevertheless
easy, e.g., to forget to advance the iteration or doing it at the wrong place.
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DO 3 I = 1.3
Code to be executed with I=1, 2, 3.

and if it had been C++, maybe . . .

for (i=1; i<3, i++);
Code2to be executed with I=1, 2, 3.

Figure 10.1: Code example “Goodbye Mariner”

In the FORTRAN code of figure 10.1 the dot should have been a comma. As it
happened, just the value 1.3 was assigned to I without causing any iteration at all.
An internal iteration might not have been applicable, but at least the above example
demonstrates that (fatal!) errors can be introduced in even the most simple loops.

Traversal strategies often rely on internal aggregate details for stepping through
aggregates [Murer et al.93b] and it is easier to use a recursive method for descend-
ing a structure than to memorize an access path externally [Gamma et al.94].

All the above observations argue in favor of making iteration an autonomous
operation of the aggregate, but

“External iterators are more flexible than internal iterators. It’s easy to
compare two collections for equality with an external iterator, for example, but
it’s practically impossible with internal iterators. Internal iterators are espe-
cially weak in a language like C++ that does not provide anonymous functions,
closures, or continuations like SMALLTALK and CLOS. But on the other hand,
internal iterators are easier to use, because they define the iteration logic for
you. [Gamma et al.94].” – GOF Group

A number of other authors agree that either built-in closure support is needed
to use internal iterators [Baker93, Kofler93, Gamma et al.94] or that internal iter-
ators are inflexible to the extent of disallowing the comparison of two data struc-
tures [Murer et al.93b, Kofler93, Gamma et al.94, Budd95, Norvig96].

Also, it seems that clients know best when an iteration can be stopped, e.g.,
when an element has been found, and internal iterators do not account for this3.

The Iterator pattern [Gamma et al.94] implements external iteration and re-
solves a number of issues. The combination of iterator and iterator function is triv-
ial, since the client calls both in a dedicated loop. Pattern Iterator gives the client
full control of iteration advancement and termination. It, furthermore, allows mul-
tiple traversal strategies and multiple iterators on the same aggregate. It is weak on
requiring clients to duplicate control structures, time and again. It also may force
aggregates to provide a (possibly protected) interface to allow their efficient scruti-
nization for traversal. Finally, an external iterator has to keep track of the iteration

2Can you spot all three C++ errors?
3This is not true for SMALLTALK where blocks returning a value cause control to be passed back

to the iteration client.
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state — which may involve record keeping of paths into tree-like structures — in-
stead of allowing a self managed exploration which, in case of a recursive method,
uses the method calling stack for storing the access path.

Diametrically, an internal iterator is strong on concentrating the control to one
loop, information hiding of aggregate internals, and competence of aggregate ex-
ploration. Unfortunately, it requires closures for combining iterator and iteration
function, takes termination control out of the client’s hands, and allows only one
iteration at a time. Furthermore, multiple traversal strategies cause the aggregates
interface to be bloated with iteration methods. Table 10.1 summarizes the compari-
son of external with internal iteration again. The last point in table 10.1 refers to the

Iterator kind

external internal

combination of iteration and action is trivial ✓ (✓)∗

record keeping of iteration state is straightforward ✓

no special access interface to aggregate is required ✓

no explicit loop needed for client iteration ✓

client may stop iteration early ✓ ✓†

iterating multiple aggregates in lock-step is easy ✓

traversal alternatives do not bloat aggregate’s interface ✓

multiple iterations sharing one aggregate ✓

no parallel hierarchy of iterators and data structures ✓

∗Support for closures required.
†By inelegantly passing a continue? -flag from function to iterator.

Table 10.1: External versus internal iteration

fact that external iterators typically depend on the properties of the data structures
they traverse (e.g., trees call for different iterators than linear structures). There-
fore, it is common to observe a class hierarchy of iterators paralleling that of the
data structures [Gamma et al.94, Meyer94b].

While internal iterators seem to be more faithful to software engineering mat-
ters they apparently let clients down in terms of straightforward (active) use and
flexibility.

10.2.2 Solution

An elegant way to resolve the forces is to

• provide a way to flatten aggregates to a stream of data and

• iterate passively over (multiple) streams.
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Data
Aggregate

Main Traversal
Strategy

Traversal
Commitment

Streamed Data

Iteration Continuation

Transfold

Figure 10.2: Iteration topology with lazy streams and Transfold

For instance, a tree is first tranformed into a linear stream and then this stream
is consumed by an internal iterator. An element of the intermediate stream might
contain a lazy exploration of further parts of the aggregate, i.e., an iteration contin-
uation (see figure 10.2). The stream consumer, hence, can decide which parts are to
be explored next. Therefore,

• the client does not need to provide a control structure.

• the aggregate keeps the record of its exploration by being responsible for
stream generation.

• a client may stop iteration early, since it is in control of stream consumption.
As streams are generated lazily, no unnecessary exploration will take place
(Figure 10.2 shows some eagerly produced data elements for illustration pur-
poses only).

• traversal (consumption) alternatives are defined outside the aggregate and do
not bloat it’s interface.

• it is possible to share an aggregate for multiple iterations by the independent
consumption of a shared stream.

• no parallel class hierarchies evolve since stream consumption is invariant and
stream generation is defined in data structures.

Two crucial points remain unresolved: How to circumvent the need for closure
support and how to avoid the criticism of inflexibility towards internal4 iterators?

Of course, the first problem is immediately solved by referring to the Function
Object pattern [Kühne97] (see chapter 7 on page 93).

The second problem — the inability of internal iterators, e.g., to compare two
aggregates with simultaneous iterations — requires a small but very effective idea.
Indeed, it is practically impossible to consider a second iteration while an internal
iteration focuses on its sole aggregate iteration. One possible solution consists of
using a function object, curried with the second stream, that compares the element

4Note that “internal” now only characterizes the passive iteration style rather than the location
of the iteration interface with regard to the aggregate.
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passed from the iteration with the corresponding second stream element. Yet, the
use of a stateful function object that consumes one of its arguments on application,
is at most an escape route, but cannot be considered to be a solid software engi-
neering answer to the original problem.

=
?

..., 7,  4,  3, 1 

...,  7,  5,  3, 1 

Figure 10.3: Iteration of two aggre-
gates in lock-step

The problem, however, is easily re-
solved by generalizing internal iteration
from one to many aggregates (see fig-
ure 10.3). An internal iterator, consuming
two number streams, for instance, takes a
function with two parameters and applies
it to the two foremost numbers. Then, both
streams are advanced simultaneously and
the next application will be to the two fol-
lowing numbers (Chapter 13 on page 221
demonstrates the application of Transfold
to a well-known problem of simultaneous iteration, the samefringe problem).

A functional programmer would probably first transform two list of numbers
to one list containing 2-tuples of numbers, and then iterate over the resulting list.
For instance, producing a list of sums of the respective elements of two argument
lists can be expressed as:

sumlists xs ys = map f (zip(xs,ys)5) (10.1)
where f(x,y)6 = x+y.

Instead of defining f in sumit would be better to make it an argument of sumlists.
Passing a different function then allows calculating the list of products, etc.

While two iteration arguments are sufficient for comparing and the above sum-
mation example, in general, it would be desirable to iterate over an arbitrary num-
ber of iteration arguments. The problem with tuples, however, is that it is not possi-
ble, for instance, to pass sumlistsa function that will sum up the all the components
of its argument tuple, regardless of the component number. In order to be able to
pass functions that work independently of the number of iteration arguments, the
argument type of the iteration function has to be changed from tuple to list.

Of course, a generalization of zip is now required, i.e., a function that takes n in-
put lists and transforms them to a list containing sublists of length n (see figure 10.4
on the following page). The length of the result list is determined by the shortest
length of the n argument lists. Since the type of transposeand accordingly any other
variable iteration argument function, should not change with the number of itera-
tion arguments, we pass the n iteration arguments as elements of one argument list
to transpose. Given this function — whose definition shall be

trans[ ] = [ ]
trans xss = if fold ((||)◦ ([ ] ==)) False xss then[ ]

else(map head xss) : trans(map tail xss) (10.2)
6Tuple construction.
6Tuple pattern matching.
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1 3 5

4 6 8

transpose
=⇒

1 4

3 6

5 8

Figure 10.4: Transposing lists

— it is now possible to generalize sumlists to a variable number of iteration argu-
ments. Let us first re-implement sumlistswith transpose,

sumlists xs ys = (map f) (transpose[xs ys])
where f zs= fold (+) 0 zs

and then — while making the iteration function f an argument — change its num-
ber of input lists, from two to an arbitrary number in one input list:

sumlists7 f = (map f) ◦ transpose

It is now appropriate to call sumlists with a more general name. Let us use
transmap, because it maps a function to a transposed argument list. Passing a func-
tion that computes the product of its argument list, i.e.,

transmap(fold (∗) 1) [[1 3 5] [4 6 8]] = [4 18 40]

creates a list of products (compare with figure 10.5) Now, it would be only a matter

1 3 5

4 6 8

transmap(fold (∗) 1)
=⇒

4

18

40

Figure 10.5: Computing a list of products

of summing up the values in the result list (vector) to obtain the inner product of
the two argument lists (vectors). To further motivate the extension of transmapto
transfoldlet us investigate how far we get, using transmapto perform the equality
operation of figure 10.3 on the preceding page (see figure 10.6 on the next page).
Note that a lazy transposition allows terminating the exploration of the (possibly
infinite) argument lists when a non-equal argument pair has been found.

7No argument list is explicitely mentioned, because it would be just passed on to transpose, i.e.,
we made an η-reduction.
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1 3 4 . . .

1 3 5 . . .

transmap all equal
=⇒

True

True

False
...

Figure 10.6: Transmapping equality

Obviously, we need to reduce the result list with the logical And (&& ) operator
to obtain a single equality result. Likewise, the result list of figure 10.5 on the facing
page requires reduction with “+” to obtain the final inner product.

Therefore, transfoldis defined to be

transfold f a g = (fold f a) ◦ (transmap g)
or

transfold f a g = (fold f a) ◦ (map g) ◦ transpose (10.3)
with type transfold :: (b→ c→ c)→ c→ ([a]→ b)→ [[a]]→ c (10.4)

See table 10.2 for type and meaning of transfold’s parameters.

Para-
meter type purpose

f b→ c→ c function that finally reduces the intermediate result
of element type b to a result of type c, using the ini-
tial element.

a c the initial element for producing the final result,
used as the induction base for an empty list.

g [a]→ b the function that is applied (mapped) to each row of
the transposed argument, transforming a row [a] to
an element of the intermediate result of type b.

[[a]]→ c resulting type of transfoldafter all arguments but the
last are supplied. Transforms a matrix (list of lists)
with element type a into a result of type c.

Table 10.2: Transfold’s arguments

For instance, with all equal xs= fold ((&& )◦ ((head xs) ==)) True(tail xs)8:

transfold(+) 0 (fold (∗) 1) [[1 3 5] [4 6 8]] = 62, and (10.5)
transfold(&& ) True all equal[[1 3 4 . . .] [1 3 5 . . .]] = False. (10.6)

8This function appears to be overly complicated but a moment of thought reveals that one cannot
just reduce with ==, since the latter has a boolean result type, unsuitable for further comparisons.
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Note that we achieve reduction with fold which can be thought of being com-
posed of a mapand a reducefunction, i.e.,

fold (⊕ ◦ f ) a xs ≡ reduce⊕ ((map f xs) ++ [a]) (10.7)

Here, reduceplaces its binary operator ⊕ between the elements of a list. This opera-
tion is also referred to as fold1, whereas fold uses an additional element9 to account
for lists with less then two elements. Anyway, fold is clearly more versatile than a
simple reduce(see also section 10.3 on the facing page, Versatility).

To illustrate the flexibility of transfold, which is reflected in the intermediate type
b (see table 10.2 on the page before), let us calculate the sum of all row products
from a magic square (see figure 10.7). We use

transfold(+) 0.00(fold (∗) 1.0) (10.8)

where the input matrix contains integer elements, 1.0 denotes a real, and 0.00 de-
notes a double. Hence we establish the mapping

[a 7→ integer, b 7→ real, c 7→ double].

8 1 6

3 5 7

4 9 2

≡
8

1

6

3

5

7

4

9

2

transpose
=⇒

8 3 4

1 5 9

6 7 2

map(fold times1.0)
=⇒

8∗3∗4∗1.0

1∗5∗9∗1.0

6∗7∗2∗1.0

≡
96.0

45.0

84.0

fold plus0.00
=⇒ 96.0+45.0+84.0+0.00 ≡ 225.00

Figure 10.7: Transfolding the inner product of a matrix

Folding does not have to imply reduction, though. Using functions reverseand
add back, that establish the mapping [a 7→ integer, b 7→ [integer], c 7→ [[integer]] ], we
may transpose a matrix along its minor axis (see figure 10.8 on the next page).

Quite similar to the situation in definition 10.7, it is possible to get rid of
transfold’s parameter g by passing a different function to parameter f , i.e.,

transfold∗ ( f ◦ g) a ≡ transfold f a g.

9Typically the right-identity value for ⊕.



10.3 Applicability 173

8 1 6

3 5 7

4 9 2

transpose
=⇒

8 3 4

1 5 9

6 7 2

map reverse
=⇒

4 3 8

9 5 1

2 7 6

fold add back[ ]
=⇒

2 7 6

9 5 1

4 3 8

Figure 10.8: Minor axis matrix transposition

I felt, however, that it is clearer to separate the imaginative horizontal and
subsequent vertical processing functions explicitely. First, the combined function
f ◦ g can become hard to read, e.g., see definition 10.5 on page 171 repeated with
transfold∗:

transfold∗ ((+) ◦ (fold (∗) 1)) 0 [[1 3 5] [4 6 8]] = 62.

Data
Aggregate

Data
Aggregate

Transfold

Transfold

Figure 10.9:
Transformation
chain

Second, special cases can be pre-defined with default param-
eters (e.g., the net effect of either function is often just the identity
function; see section 10.7 on page 176, Separation). Furthermore,
frequently occurring functions (e.g., reversal) can be reused and
intermixed without performing function composition first.

10.3 Applicability

• Abstraction. Transfold allows accessing the elements of a
collection or the components of an aggregate without ex-
posing its internal representation.

• Concentration. Use Transfold if you want to release clients
from the duty of providing a control structure.

• Multiple traversals. When a structure is to be iterated by
multiple clients in alternation, Transfold allows sharing the
structure’s stream for independent consumption by multi-
ple clients.

• Connectivity. If you want to cascade transformations
and/or want to convert collections into each other, possibly
with intermediate processing, use stream producing trans-
folds and collection constructors with stream arguments
for a flexible interconnection scheme (see figure 10.9).
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• Separation. If, on the one hand, you want to assign the responsibility of explo-
ration to the data structure itself, but on the other hand, do not want to bloat
the structure’s interface with iteration methods, use Transfold’s intermediate
stream interface.

• Polymorphic iteration. The same transfold object can be used for a number of
alternative traversal strategies (e.g., diverse tree exploration orders). By using
an abstract Function interface for the passed stream processing functions, it is
possible to dynamically dispatch on the traversal alternatives.

• Versatility. Use Transfold to implement a wealth of operations, for instance
for lists: sum, product, length, average, max, min, map, filter, reduce, reverse, copy,
append, exists, all, variance, horner10. According to [Waters79], 60% of the code
in the Fortran Scientific Subroutine Package fits neatly into the maps, filters,
and accumulations (i.e., transfold) paradigm.

Do not apply Transfold in case of tight memory and time constraints, where the
overhead of an intermediate stream and emulation of lazy evaluation is not tolera-
ble (see also the counter indications to Lazy Object in section 8.4 on page 119): Man-
agement of stream elements consumes time. Stream suspensions and lazy function
closures represent a memory overhead. In most but a few cases, however, system
performance should be absolutely no problem.

10.4 Structure

Aggregate

asStream : Stream

ConcreteFunction

Client

Transfold

Stream

Function

ConcreteStream

Figure 10.10: Structure diagram

10For a list representing a polynomial.
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10.5 Participants

• Client

– requests an Aggregate to provide a Stream of itself.

– passes two Function s and a value as parameters to Transfold .

• Aggregate

– provides a ConcreteStream , containing a flattened version of itself.

– uses a lazy Function to produce a ConcreteStream .

• Function

– provides an application interface for all functions including the stream
building function, the Transfold parameters, and Transfold .

• Stream

– provides an interface to access any concrete streams.

– implements a lazy, infinite list semantics.

• Transfold

– takes two Function s and a value as processing parameters.

– transforms its input (a Stream of Stream s) to an arbitrary result type.

10.6 Collaborations

• A client requests an aggregate to flatten itself to a stream.

• The aggregate’s asStream method and a lazy function mutually call each other
to explore the aggregate lazily, while producing a stream.

• The client uses or creates two function objects, which it passes — along with
an initial value — to a transfold object.

• The transfold object lazily accesses the aggregate stream, applying the passed
functions accordingly.
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asStream
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Figure 10.11: Interaction diagram

10.7 Consequences

• Inverted control. Clients do not repeatedly call iterator operations, but a trans-
fold repeatedly calls functions supplied by the client. Therefore, a client does
not have to provide a control structure to drive the iteration (see section 10.8
on page 180 for a comparison of transfold implemented with external and in-
ternal iteration). For the reason that there is only one iteration loop, used by
all clients, loop-related errors are much easier to avoid and to discover. If the
Mariner-loop (see figure 10.1 on page 166) had been used by another client,
tests of that client might have revealed the problem. More time can be spent
on the validation of a single loop11 and any errors are removed for all clients.

• Traversal alternatives. Since iteration (stream consumption) is external to
structures it is easy to support a variety of traversal strategies and to dynam-
ically dispatch on these. The stream consuming process (a transfold object)
is in command of the exploration order, because the stream contains iteration
continuations, which may be invoked in any order (see bullet Separation).

• Multiple traversals. Each transfold manages its own stream consumption
progress and, therefore, enables multiple pending iterations on a shared struc-

11By referring to “loop” we also include the stream generation processes.
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ture. All transfolds share the same exploration stream. Hence, any explo-
ration effort by the structure is beneficial to all consumers. A once explored
subpart, does not need to be traversed again due to the call-by-need semantics
of streams (see chapter 8 on page 115).

• Flexibility. The combination of function object passing, (variable) stream gen-
eration, and possibly parallel consumption of multiple streams makes Trans-
fold a truly flexible tool:

+ A particular operation can be performed by just passing function ob-
jects, without requiring inheritance or client control structures. See sec-
tion 10.3 on page 173, Versatility, for an impression of operations express-
ible with folding.

+ Both stream consumption (traversal) and generation strategies (see sec-
tion 10.8 on page 180, Stream creation) are easy to vary.

+ By supporting the parallel processing of multiple structures, the for-
merly observed big inflexibility problem becomes a small equation: A
general operator to compare n structures for equality is

eq = transfold(&& ) True all equal.

Note that the definition of eq does not make any assumption about its
argument, except requiring elements to be comparable. All functions
obtained by purely combining other functions, expose this desirable
generic property.

• Separation. The Transfold pattern successfully separates a number of con-
cerns:

• Termination control. Both transfold and most importantly the client are
in control of iteration advancement and termination. Through the use of
lazy stream processing functions, the structure exploration is completely
demand driven (see section 10.9 on page 182). When a stream processing
function does not evaluate its second argument — e.g., an And does not
need to examine the second argument, if the first is already False— the
whole transfold process stops. The same happens, if a stream returned
by transfold is not fully consumed. This scheme is far more elegant than
letting an iteration function return a continue? -flag, as designed in the
internal version of the Iterator-pattern [Gamma et al.94].

• Exploration & Consumption. The Transfold pattern is able to to combine
the best of both external and internal iteration worlds, by separating the
exploration of a structure and the subsequent consumption of the explo-
ration result.

+ Since iteration (consumption) is defined outside aggregates, their in-
terfaces can be kept small. The only trace of an iteration is a asStream
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method, which is of general interest anyway (see bullet Streamable
collections).

+ The responsibility to explore a structure is assigned to the most com-
petent instance, the structure itself. The structure may use all its
internal knowledge and recursive calls — thereby memorizing an
exploration stack — to perform its exploration.
It is possible to separate consumption and exploration without hav-
ing the overhead of a full exploration, because the intermediate
stream has lazy semantics, and is lazily produced. Note, that with-
out such an intermediate structure any iteration type, like transfold,
would have been defined for each structure separately.

+ Streams work as a lingua franca, between aggregates and iterators.
As a result, iteration schemes, such as transfold, must be defined
only once, for all streamable structures.
While different stream processing functions are required for differ-
ing stream types (e.g., varying in the number of iteration contin-
uations), there is no parallel hierarchy of iterators and data struc-
tures. This is achieved by letting structures explore themselves and
using streams to uniformly communicate to iteration schemes. Spe-
cial traversal orders may depend on stream organizations but not on
data structures, which is a useful indirection to decrease coupling.

• Functions. As mentioned in section 10.2.2 on page 167, a transfold object
takes two function objects. This corresponds to a separation of horizontal
and vertical processing of the “stream matrix” argument. Again, thanks
to laziness, there is no drawback in execution overhead, compared to a
single function transfold, since no horizontal processing will take place
without being demanded by vertical processing.
The horizontal processing function was deliberately not constrained to a
fold, in order to allow the passing of already existing stream processing
functions without a need to cast them into the form of a fold first. The first
function, however, is predefined to be a fold to avoid tediously passing
a fold every time it is needed anyway, to make the user of transfold pass
(and think of) a function operating on a stream rather than a stream of
a stream, and to increase the utility of transfolding, by making it more
specific.

• Reuse.

+ Instead of providing an iteration function in a self provided loop body
(external iteration), the user of transfold is forced to write a function ob-
ject, thus, making it available to other clients as well.

+ The developer of a data structure simply provides a way to stream the
structure and immediately gets a bunch of iterators (and especially their
instantiations to operations (see section 10.3 on page 173, Versatility) for
free.
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• Streamable Collections. The asStream method of data structures can also be
used for many other purposes, such as a persistence or net-transfer protocol
mechanisms.

Collections may be transfered into each other — streaming a Bag to a Set is
an elegant way to remove duplicates — by means of an intermediate stream.
No special mechanisms, e.g., the Serializer pattern [Riehle et al.97], will be
needed anymore.

That also implies that there is a uniform way to construct collections, e.g.,
from constants. Any collection type, that allows manifest constants in the
syntax of a language (e.g., arrays), could be used to be transformed to the
desired collection type.

• High-level mind-set. A capable, high-level operation like transfold enables to
approach problems with a much more powerful decomposition strategy, com-
pared to a procedural paradigm, restricted to e.g., array indexing.

Timothy Budd tells an anecdote of a FORTRAN programmer, designing a
three-level nested loop to find a pattern repetition in a DNA sequence. The
competing version of an APL programmer ran much faster, although APL
is interpreted, whereas FORTRAN is compiled. This was caused by a differ-
ence in algorithm complexity, being O(M ∗N2)12 for the FORTRAN program
and O(M ∗N log N) for the APL program [Budd95]. The difference can be
explained by differing programmer mind-sets. The FORTRAN programmer is
predetermined to think in terms of loops and array access. The APL program-
mer used high-level operations like vector to matrix conversion, sorting, and
matrix reduction (all akin to and expressible with Transfold). As the anecdote
suggests, high-level operations allow approaching problems from a different,
valuable perspective. Another supporting example is the task to swap two
areas A (ranging from 0 to i) and B (ranging from i + 1 to n) of different size
in a sequence without using any extra storage. A programmer who thinks
of sequence reversal as a single operation is more likely to arrive at the very
elegant solution BA= reverse(reverse A) (reverse B). An implementation will
best use a procedural swap-elements reverse approach, but the initial spark
to the solution is most likely to be initiated by a high-level mind-set.

• Choice of style. In cases where no predefined iteration scheme, like transfold,
seems appropriate, it is possible to consume a structure’s stream with an ex-
ternal iterator, i.e., to write a control loop which consumes the stream.

• Robust Iteration. Transfold does not in particular contribute to the notion of
robust iterators. Yet, a so-called iterator adjustment scheme [Kofler93], is par-
ticular well implementable, since the structure controls its own exploration
and, thus, may adjust an exploration process according to element removal

12M = pattern length; N = sequence length.
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or insertion. Consequently, no registering of active iterators [Kofler93] is nec-
essary.

In cases where updates should have no effect on the iteration process, it is
possible to simply iterate on a copy of the structure.

• Lazy Functions. A pre-requisite to achieve a demand driven semantics of
transfolding is to use lazy, i.e., non-strict, stream processing functions as ar-
gument to transfold. For instance, a non-strict Andwith a first argument value
of False, will cause termination of an exploration process, since the latter is in-
voked only if And evaluates its second argument (see the definition of fold in
section 10.8). Unfortunately, stream processing functions have to treat their
lazy arguments differently. If, for instance, the argument is made lazy by
packaging it into a function object, it is necessary to apply the function ob-
ject to a dummy argument (see section 8.8 on page 122, Information hiding).
Hence, a standard Times function object can not be used, because it assumes
its second argument to be a number, rather than a delayed number.

10.8 Implementation

The remarkable separation of iteration and demand driven structure exploration re-
lies on lazy intermediate stream semantics. It is, therefore, vital to use lazy streams
(see chapter 8 on page 115) and both lazy generation and consumption functions.

• Stream consumption. Whenever we referred to fold, we meant foldr [Bird86]
and not its counterpart foldl. The foldr function —

foldr f a [ ] = a

foldr f a (x : xs) = f x (foldr f a xs) (10.9)

— has the nice property that the passed function f controls the recursive call
of foldr, i.e., determines the extent of structure exploration. An implementa-
tion aiming at true laziness must, consequently, wrap the recursive call (the
expression in parentheses) into a lazy object, e.g., a function object with a
dummy parameter. For the reason that fold may produce any result type from
a stream, it is unfortunately not possible to design it as a stream pipe like map.
This underlines the importance of language supported laziness, which would
make the difference between strict and non-strict values transparent to clients
(see section 14.6 on page 246).

• Stream creation. Streams may be created eagerly but typically the structure
will return a stream containing iteration continuations. In other words, the
structure exploration method will create values but also stream elements, that
when accessed invoke further exploration of the structure. As explained in
chapter 8 on page 115, this is transparent to the consumer who only sees a
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sequence of values. Yet, it means that by skipping a stream element, a sub-
part exploration will not be executed until and only if the skipped element
is accessed later. The structure exploration method and the exploration func-
tion it uses for stream generation will, therefore, call themselves in a mutual
recursion scheme.

By steering the evaluation order of stream elements the client may implement
a variety of traversal orders but if, for instance, a stream of a list starts with the
first element and provides only forward continuations, then a backward iter-
ation can not be achieved (see figure 10.2 on page 168, defining the locations
of main traversal strategy and subsequent order commitment). As a result,
the structure should provided a parameterized asStreamWithFunction method.
With the passed function any exploration order may be achieved. The stan-
dard asStream method should satisfy the most frequent needs, though.

• Keyword parameters. Two important settings for transfold’s arguments are
cons and the empty list for the vertical processing and the identity function
for the horizontal processing respectively, since their net effect is the identity
function (leaving transfold to simply transpose its argument). Using these as
defaults, keyword parameters allow passing just one and do not bother about
supplying the default case for the other. For instance,

Result:=transfold.foldWith(count, 0) @ yss

(counting rows without row processing) or

transfold.mapWith(innerProduct @ xs) @ yss.

(transforming rows into inner product results without subsequent reduction).

• Iterator usage. The purpose of this pattern description was to present the me-
chanics of Transfold. This is why the client had the burden to ask the aggre-
gate for a stream and feed it into a transfold. It would be more convenient to
call a client method that automatically sets up an appropriate transfold object
and returns the result. Using a C++ template method this is a feasible ap-
proach. With EIFFEL, however, there is a problem how to specify the type of
the return value. The type depends on the functions passed passed to trans-
fold and it is unfortunately not possible13 to express that dependency in the
method’s signature. The usual way out is to use the same generic variable for
constraint values. However, this implies to add such generics to the aggregate
class, since it contains the method that must enforce the constraint. Without
debate, this presents a true kludge and the best one can achieve with EIFFEL is
a convenience function, that takes transfold’s parameters (except the stream
matrix) plus an aggregate, and then applies transfold to a streamed version
of the aggregate.

13Not even with anchored types.
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10.9 Sample Code

To calculate the inner product of a matrix (see figure 10.7 on page 172) we code the
inner product product operation (see definition 10.8 on page 172) in EIFFEL as:

...
local

ip : Function [Stream [Stream [Integer]], Double]
...

ip:=transfold @ plus @ 0.00 @ (fold @ times @ 1.0);
...

We use the same type progression (integer, real, double) for the intermediate results
as in figure 10.7 on page 172. Hence, times and plus must promote from integer
to real and real to double respectively, but — apart from that — are standard func-
tion objects. In case of a fully lazy treatment — which we omit here for the sake of
clarity — times and plus must respect the laziness of their second argument.

The new function ip can be applied to a matrix, so presuming

vec1, vec2, vec3 : Stream [Integer];
vecs : Stream [Stream [Integer]];
...
vec1:=cons @ 8 @ (cons @ 1 @ fromconst (6));
vec2:=cons @ 3 @ (cons @ 5 @ fromconst (7));
vec3:=cons @ 4 @ (cons @ 9 @ fromconst (2));

vecs:=conss @ vec1 @ (conss @
vec2 @ (conss @ vec3 @ void));

— note that cons produces an integer stream, while conss produces a stream of
an integer streams — the examples

io.putdouble (ip @ vecs);

io.putdouble (ip @ vecs.tail);

will produce the output as given in figure 10.12.

225 = IP @vecs


8 1 6

3 5 7

4 9 2

}
IP @vecs.tail = 71

Figure 10.12: Inner product application

The horizontal processing function is a fold declared as
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fold : expanded Fold[Integer, Real].

The use of expanded is an idiom to save the otherwise necessary explicit attach-
ment of an object to fold (see section 7.9 on page 105, Creation). Apart from the
argument-collection classes, Fold is implemented with

class Fold2[E, A]
inherit Function[Stream[E], A];

creation make

feature
func : Function[E, Function[A,A]];
init : A;

make(i : like init; f : like func) is
do

init:=i;
func:=f;

end;

infix "@" (stream : Stream[E]) : A is
local fold : expanded Fold[E, A];
do

if stream=void then
Result:=init;

else
Result:=func @ stream.item @

(fold @ func @ init @ stream.tail);
end;

end;

end

and, thus, shares a striking similarity to its functional counterpart (see defini-
tion 10.9 on page 180).

With the help of fold and map (which was established in chapter 8 8.10 on
page 143), the class implementing the body of transfold is quite straightforward:

class TransFold3[E, I, A]
inherit Function[Stream[Stream[E]], A]

StreamUtility[E]
creation make

feature
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foldFunc : Function[I, Function[A, A]];
init : A;
mapFunc : Function[Stream[E], I];

make(f : like foldFunc; i : like init;
m : like mapFunc) is

do
foldFunc:=f;
init:=i;
mapFunc:=m;

end;

infix "@" (streams : Stream[Stream[E]]) : A is
local

map : expanded Map[Stream[E], I];
fold : expanded Fold[I, A];

do
Result:=fold @ foldFunc @ init @

((map @ mapFunc) @ transpose(streams));
end

...

The application method directly corresponds to the functional transfold (see def-
inition 10.3 on page 171). I intentionally left out the transpose method of class
TransFold3 , because it nicely demonstrates the difference between a high-level,
functional, internal iteration style —

transpose(streams : Stream[Stream[E]]) : like streams is
...
do

newRow:=mapToHeads @ head @ streams;
tails:=mapToTails @ tail @ streams;

if (fold @ oneEmpty @ False @ tails) then
tails:=void;

else
tails:=transpose(tails);

end;

Result:=consS @ newRow @ (tails);
end

— and its “von Neuman14”, procedural, external iteration style:

14Referring to the critique of John Backus towards a “von Neumann [programming]
Style” [Backus78].
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transpose(streams : Stream[Stream[E]]) : like streams is
...
do

from
rows:=streams;
!!rowArray.make(1, 7);

until rows=void
loop

rowCount:=rowCount+1;
rowArray.force(rows.item, rowCount);

rows:=rows.tail;
end;

from
until shortestEnds
loop

from
row:=rowCount;
newRow:=void;

until row=0
loop

newRow:=cons @ (rowArray @ row).item @ newRow;
rowArray.put((rowArray @ row).tail, row);
shortestEnds:=shortestEnds or

((rowArray @ row) = void);
row:=row-1;

end;

Result:=consS @ newRow @ Result;
end;

end

The latter version uses nested loops to construct new rows by repeatedly collecting
heads and checking for the shortest row. The functional version (implementing def-
inition 10.2 on page 169) replaces this nesting with normal mapping and a recursive
call.

The procedural version uses an array to memorize the respective positions of
the partially consumed rows. The functional version avoids this by transforming
the argument matrix into the desired residual matrix.

It is noteworthy to observe that the procedural version features one loop count-
ing downward, rather than upwards to get the element order right. No such detail
must be respected in the functional version15.

15Admittedly, on other occasions one has to think about whether to add to the front or to the back
of a stream.
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Also, although both versions do not transpose matrices with an infinite number
of rows (infinite rows are handled), the functional version is easier to extend to-
wards this property. First, because it is simpler and easier to understand. Second,
because the recursive call to transpose exactly defines the extension hot spot:
The strict recursive call must be replaced by a lazy stream generation, using the
framework of StreamFunc s, presented in chapter 8 on page 115.

A final example, hinting at the expressiveness of transfold (see section 10.10 on
the next page for a comparison with APL), shall be the implementation of matrix
multiplication with transfold. To show the result of the multiplication of a magic
square with another matrix, as depicted in figure 10.13,

8 1 6

3 5 7

4 9 2

⊗
1 1 0

1 0 1

0 1 1

 =

 9 14 7

8 10 12

13 6 11


Figure 10.13: Matrix multiplication with a magic square

one simply calls

showMatrix(matMult(vecs, rows));

using

matMul(xss, yss : Stream[Stream[Integer]]) : like xss is
local

transMapInner : expanded TransMapInner[Integer];
map : expanded Map[Stream[Integer], Stream[Integer]];

do
Result:=map @ (transMapInner @ yss) @ xss;

end;

We exploit the fact that the elements of the result matrix are defined by

zi j = inner product xi yt
j ,

i.e., the inner products of all rows of the left matrix x with all columns of the right
matrix y determine the result matrix.

To implement this, we process each row of the left matrix with a func-
tion transMapInner , that applies the inner product operation to its argument
row of the left matrix with each column in the right matrix, i.e., the body of
transMapInner is:

Result:=transFold.mapWith(applyInner @ xs) @ yss;
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Each row (xs ) of the left matrix is transfolded with the right matrix, i.e., combined
with each column of the right matrix, and the inner product operation is applied to
each such pair.

The applyInner function simply constructs a two row matrix out of its two
stream arguments and applies the inner product operation to it:

...
ip:=transFoldInner @ plus @ number.zero @

(fold @ times @ number.one);
Result:=ip @ (cons @ xs @ (cons @ ys @ void));

The use of number.zero 16 achieves that the function is generic, since either 0, or
0.0 would create a type-mismatch with the wrong generic instantiation of matrix
multiplication17.

Summarizing, matrix implementation was implemented by mapping, and two
transfolds, one realizing the inner product operation.

10.10 Known Uses

Although C++ usually promotes external iteration, there is an example of an in-
ternal iterator (foreach ) interface in the Borland C++ libraries [Borland94]. Since
it builds on passing function pointers, it must use an extra, unsafe void type for
passing parameters, though.

Folding is commonplace in functional programming [Bird & Wadler88], but
also used in SCHEME [Abelson & Sussman87] and available in the SMALLTALK li-
brary [LaLonde94]. It is not a frequently used operation in SMALLTALK [Smith95],
which can be attributed to the peculiar name (inject: into:), but also to the unfamil-
iarity of most SMALLTALK users with the nature of that operation. The SMALLTALK
collection library even contains a with: do: method, allowing to iterate two struc-
tures in parallel, which represents a special case of transfolding. SMALLTALK also
uses streams to efficiently implement concatenation of collections. The caching ef-
fect of streams avoids to repeatedly generate the prefix of sequenced concatenations
like coll1 + coll2 + coll3 + coll4 + ... .

APL [Harms & Zabinski77] is well-known for its high-level operations on vec-
tors, matrices, and structures of even higher dimension. Three of its four primitive
extension operators18, reduction (f/ A), scan (f\ A), and innerProduct (Af.g B), can
directly be expressed with transfold. The fourth, outerProduct (A◦.f B), is express-
ible with a combination of transfoldand map. The matrix multiplication example
from section 10.9 on page 182, builds an outer product of the matrices’ rows and
columns, and then reduces it with an inner product.

16number is a variable declared to be of the generic matrix element type.
17Although an escape was possible, one would wish that simply 0 has had sufficed.
18Extend an operation to a collection.
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10.11 Related Patterns

10.11.1 Categorization

Function Object: Transfold’s interface to clients is that of a Function Object.

Iterator: Transfold realizes internal iteration, whereas the Iterator pattern uses ex-
ternal iteration [Gamma et al.94]. There is also an internal variant of the Iter-
ator pattern [Gamma et al.94], but it uses inheritance for iterator and action
combination and exhibits the normal one-structure-iteration inflexibility.

Bridge: The stream between structure and iterator is like a Bridge [Gamma et al.94],
separating a consumption interface from the implementation of a structure
(including the exploration implementation).

Serializer: The use of an intermediate stream resulting from structure exploration
is akin to the Serializer pattern [Riehle et al.97], whose purpose is to flatten
structures for persistence.

10.11.2 Collaboration

Lazy Object: Transfold is very well suited to transform one lazy structure into an-
other.

Value Object,
Composite: Iterators are often applied to recursive (possibly value) structures like

Composite . Furthermore, Composite [Gamma et al.94] may be implemented
with Transfold to enumerate its children.

Translator,
Visitor: Structure consuming patterns may defer their structure exploration to

Transfold.

Chain of Responsibility: An event may be transfolded over a collection of handlers
to find the most appropriate handler.

Observer: An Observer [Gamma et al.94] may use Transfold to iterate over its
dependents-collection.

Keyword Parameter: Transfold may use the keyword parameter variant of Function
Object (see section 7.10 on page 107) to ease supplement of its parameters.

10.11.3 Implementation

Lazy Object: Transfold uses a lazy stream as well as lazy generation and consump-
tion functions.
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Void Value: A void value may be used to define the base case of the exploration
process.

Function Object,
Strategy: A structure may use a Strategy [Gamma et al.94] or a Function Object to

allow variation of its exploration process. Function Object is used to provide
closures for function parameter passing and is also employed to implement
Transfold’s functionality.
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11 Void Value

I’m not completely worthless! I can still serve as a bad example.
– Mark Twain

11.1 Intent

Raise Nil to a first-class value. This allows to treat void and non-void data uni-
formly, is a way to provide default behavior, facilitates the definition of recursive
methods, and enables to deal with error situations more gracefully.

11.2 Motivation

Classes are often regarded as representing abstract data types (ADTs). Typically,
the empty constructor of an ADT is translated to Nil. For instance, an empty Bina-
ryTree is represented by Nil and a tree leaf is represented by setting both child at-
tributes to Nil. It is tempting to identify empty constructors with the special pointer
content Nil, since there are some reasons in favor of it:

• Operations are often partial due to empty, well accounted for by Nil.

• Nil does not waste any storage.

• Most languages initialize references to Nil, i.e., provide the empty case by
default.

It is, for instance, suggested to represent an unknown book author with a void
reference [Meyer97].

11.2.1 Problem

However, such a design decision puts a great burden on the clients of the ADT.
Before the client can apply operations on a tree, it must check whether it is void
or not. Otherwise, invoking a method through a Nil reference would produce a
runtime-exception or even -error. Typical (EIFFEL) code1 is depicted at the upper
part of figure 11.1 on the next page.

1All code examples in this chapter have been extracted from a commercially available library;
identifiers have been adapted for presentation, though.
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Result:=(tree /= Void) if tree /= Void then
and then io.putstring(tree.out);
tree.has(v);

Result:=tree.has(v); io.putstring(tree.out);

Figure 11.1: Code example: Robust behavior

11.2.2 Solution

The code in the upper part of figure 11.1 can be replaced with the code at the
lower part of figure 11.1, if we abandon Nil (Void) and replace it with an extra
class (VoidTree ) (see figure 11.2).

VoidTree MutableTree

has(v : Any) ...
out

has(v : Any) = false
out
... ...

Client Tree

has(v : Any), out, ...

Figure 11.2: Empty tree as void value

Now we can define VoidTree to return false on a has message and to produce
no output on out. In fact, we applied the general pattern to replace case analysis
(testing for Nil) with dynamic binding (provision of an extra type constructor Void-
Value ). As a result, many such if statements as above can be removed from client
code.

An important special case of robust behavior is a Null iterator (also see Itera-
tor [Gamma et al.94]). Instead of external iteration (upper part of figure 11.3 on the
next page) one should use internal iteration, e.g., and let void sets do nothing on
iteration (lower part of figure 11.3 on the facing page).

Answering queries to void values with default values again allows replacing
the upper part of figure 11.4 on the next page with its lower part. This obviously
improves the treatment of trees from a client’s perspective, but there is more to
gain. Let us count the number of nodes in a tree.
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if set /= Void then

loop over all set elements

setIterator.do_all

Figure 11.3: Code example: Null iterator

if tree /= Void then
maxPlane:=tree.maxPlane

else
maxPlane:=DefaultMaxPlane

end

maxPlane:=tree.maxPlane

Figure 11.4: Code example: Default Behavior

The recursive calls in the upper part of figure 11.5 must be guarded with if state-
ments when tree leafs are represented with Nil. If void tree values return 0 as their
count, then the code becomes much more readable and better expresses the func-
tion’s spirit (see lower part of figure 11.5).

Result:=1;
if left /= void then

Result:=Result+left.count;
end
if right /= void then

Result:=Result+right.count;
end

Result:=1+left.count+right.count;

Figure 11.5: Code example: Base case definition

The provision of base cases by void values is a special case of the general scheme
to distribute cases. Complicated nesting, like depicted in the upper part of fig-
ure 11.6 on the following page becomes much clearer code when distributed to
VoidAny and AnyObject class definitions. Note that the use of obj.is void is
different to obj = Void . The former tests for voidness as well, but allows the rep-
resentations for void objects to be changed. This is useful for multiple void values
as well as for standard objects which just happen to be in an empty or void state.
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equal(me: ANY; you: ANY): ...
Result:=(me=Void and you=Void)
or else ((me/=Void and you/=Void)

and then me.is_equal(you))

Result:=you.is_void (in class VoidAny )
Result:=is_equal(you) (in class AnyObject )

Figure 11.6: Code example: Case distribution

It is worth mentioning, that we may provide void trees, -nodes, and -leafs in-
dependently with possibly differing behavior. See section 11.10 on page 199 for an
analogous example when this is useful. Also note that while void values are a nat-
ural concept for container classes their applicability extends to all types of classes.
For instance, the subordinates method of a VoidEmployee can return an empty list.
Its salary method may create a no-valid-employee exception, return 0, or a VoidSalary
instance, depending on the desired semantics. All three possibilities may coexist
in separate void values. Application parts can individually choose to inject the
appropriate void value into server calculations.

11.3 Applicability

• Uniformity. Clients benefit from Void Value by uniformly treating void and
non-void data. Inquiring information and invoking behavior can be done
independently of the data’s void state, without the eventual need for creating
initial instances first.

• Default behavior. Void values allow the specification of default behavior. In
contrast to Nil, a void value may specify results and behavior for any of its
interface methods. This is useful for providing reasonable behavior for unini-
tialized data and void result values.

• Error handling. A void value can be used just like an exceptional
value [Cunningham94] when most of the code should not deal with er-
ror situations. An exceptional value may either behave properly indicating
an error situation (e.g., by describing the error when by default displayed
to the user) or can be caught with error checking code by the application’s
top-level code.

• Termination. Use Void Value to relieve recursive definitions from testing the
base case. A recursive call can then be made regardless of possibly void argu-
ments. Accordingly, the definition for the base case can be given at the base
values (i.e., void values) instead of one step before. Here, Void Value plays
the role of a first-class terminator.
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11.4 Structure

Client ObjectInterface

is_void
operation

MutableObject

is_void = false

VoidValue*

is_void = true

VoidValue

is_void = true
operationoperationoperation

Figure 11.7: Void Value structure diagram

11.5 Participants

• Client

– accesses both MutableObject and VoidValue through ObjectInterface .

• ObjectInterface

– provides the common interface for MutableObject and VoidValue .

– may provide common abstract2 behavior to MutableObject and Void-
Value .

• MutableObject

– defines the standard object behavior.

– introduces attributes for object state.

– does not care for recursion base cases, default- and error behavior.

• VoidValue

– replaces Nil.

– defines base cases for recursion, default- and error behavior.

2Concrete methods do not rely on state (attributes), but on an abstract interface, only.
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11.6 Collaborations

• Clients use the ObjectInterface to manipulate void, non-void, default, and er-
ror objects. If MutableObject extends the interface of ObjectInterface , clients
may maintain specialized references to MutableObject , provided they are
guaranteed to receive objects of type MutableObject only.

11.7 Consequences

• Abstraction. Void Value abstracts from the implementation detail to represent
void or uninitialized data with Nil. Clients, therefore, are relieved of the need
to treat data with Nil differently from data which does not use Nil for its
representation.

• Object-Orientation. Checking for Nil, i.e., case analysis, is replaced with dy-
namic binding. This moves all case analysis from the program to a single
distinction between normal object and void value. Object behavior must be
defined at two places (object and void value). One the one hand, this allows
combining several void values with a single object. On the other hand, chang-
ing a single method might mean to change two class definitions (object and
value class).

• Efficiency. It is more storage friendly to use void values, instead of full blown
objects that simply have the state of being empty or uninitialized, but carry
the overhead of unused attributes. Note, however, that void values are not as
easily turned into objects again without support for “Implicit creation” (see
sections 11.8 on the facing page & 14.7 on page 248).

Depending on the implementation of dynamic binding a calling overhead
may be incurred, compared to if statements. Note, however, that the tradi-
tional solution at the upper part of figure 11.5 on page 193, unnecessarily
checks aritydepth−1

arity−1 nodes for being void, in addition to the following count
call.

• Immutability. If void values should not need more storage than Nil, they have
to be immutable. Mutable objects without attributes just claim code space
for their methods once, and possibly a little storage for housekeeping mecha-
nisms such as RTTI (Run Time Type Identification) and object identification.

• Separation. Program code relying on Void Value describes the standard case
only. In analogy to language support for exception handling, framework code
or algorithm descriptions thus become easier to write and read (see code ex-
amples). Handling of errors, denoted by void values, can be done in a few
places at the application’s top level. Lower level code can be designed to
smoothly pass error values around, until they are identified by the top level.
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• Implicit initialization. In order to avoid any occurrences of Nil, one must tie
the creation of objects to the declaration of references. See section 11.8 for
suggestions how to automatically achieve initialization to void values.

• Initialization errors. Exceptions, caused by the application of operations on
Nil, are dealt with more gracefully. Instead of triggering an exception or halt-
ing the system a possibly inappropriate behavior is executed, but users are
still able to continue the application. The downside of this is that a missing
initialization might go unnoticed, only to be discovered as unexpected appli-
cation behavior very much later in the execution. According to the experi-
ences of the UFO project [Sargeant93], however, unnoticed missing initializa-
tion has not been found to be a problem in practice. Additionally, it is almost
as easy to pass Nil around undetected. Error messages simply become more
meaningful with void values [Sargeant96b]. If the void value is one among
several alternatives for a type, its identity allows tracing back its origin.

Yet, care should be taken to never allow the misinterpretation of an erroneous
value to be a valid result. Calculations must preserve the exceptional status
of void values to prevent the masking of errors.

11.8 Implementation

• Interface extension. In analogy to the Composite pattern [Gamma et al.94], Mu-
tableObject might provide more operations than ObjectInterface , in order to
provide operations that make no sense to VoidValue . Each such extension,
however, will minimize the applicability of VoidValue to play the role of an
error value. Clients using the extended MutableObject interface, will not be
able to transparently work on void values too. In this context, it is better to
have the full interface at ObjectInterface and to define exception (e.g., error
reporting) methods in VoidValue respectively.

• Storage requirements. Any behavior that goes to ObjectInterface should rely
on abstract state only, i.e. “Implement behavior with abstract state” [Auer94].
Any attributes will incur a space penalty on VoidValue .

• Value initialization. If representation of a complex constant (requiring creation
effort) is more important than preserving minimal space requirements, then
a void value may calculate the constant information (possibly taking creation
arguments) and store it in attributes. Accordingly, VoidValue is best imple-
mented as a Singleton [Gamma et al.94] in order to allow sharing of the con-
stant data.

• Multiple inheritance. In statically typed languages VoidValue needs to multiply
inherit from its interface class and another void value class, if code reuse is
desired between void value classes. One of the inheritance paths is used only
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for interface inheritance though, unless the interface classes implement com-
mon behavior for VoidValue and MutableObject . In the latter case the language
should properly support repeated inheritance of code (e.g., as in EIFFEL).

• Reference initialization. The value to be gained from Void Value partly de-
pends on how thoroughly we can eliminate any Nil values from program
execution. To this end, one may replace standard references with default-
references, akin to smart references [Edelson92].

Client ObjectInterface

VoidValue DefaultReference

make
value constructor

MutableObject

Figure 11.8: Automatic reference initialization

A DefaultReference (see figure 11.8) is a value (e.g., non-reference type in C++,
expanded type in EIFFEL, part-object in Beta, etc.). Consequently, it is initial-
ized by declaration, i.e., cannot take the value Nil. After initialization it dele-
gates any message to VoidValue by default. Hence, any usage of DefaultRefer-
ence without prior initialization results in applications to VoidValue , instead
of Nil. Ultimately, DefaultReference will be initialized (e.g., using a method
called make) to reference a MutableObject . In the structure of figure 11.8 De-
faultReference plays the role of an ObjectProxy . Implementation issues, such
as using overloading of the member access operator (-> ) in C++, are dis-
cussed in the implementation section of Proxy [Gamma et al.94]. Note that
using a DefaultReference involves a delegation overhead for each access to
either VoidValue or MutableObject . This might be a price too high to pay just
for gaining automatic initialization of references.

Of course, we can achieve automatic initialization of MutableObject by di-
rectly declaring it to be a value, resulting in a much simpler structure and
no delegation overhead. Yet, this is possible only if value semantics (e.g., no
sharing, no efficient updates) is intended [MacLennan82].

• Implicit creation. SMALLTALK allows changing the type of an object without
affecting its identity. Ergo, a void value may change to an object and vice
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versa. If a void value cannot deal with a message it may delegate it to its as-
sociated object and then become:3 the object itself. Hence, there is no need for
explicitly creating objects anymore, since void values can be made responsi-
ble for this. In the absence of a become mechanism, implicit creation can still
be achieved by “Reference Initialization” (see above).

11.9 Known Uses

NoController , NullDragMode , NullInputManager , NullScope are classes in the class
hierarchy of VISUALWORKS SMALLTALK that are used as void values [Smith95].

11.10 Related Patterns

11.10.1 Categorization

Composite: Both Composite and Void Value provide uniform access to components
(value & object) of a structure (type). A VoidValue plays the role of a spe-
cial immutable component leaf. As a difference, Void Value does not involve
issues of child management.

Value Object,
Constant Object: A void value “is-a” value object, in that it does not offer mutator

operations. As value objects, void values lend themselves to be implemented
with Identity Object (see next bullet and section 9.11.1 on page 161).

Singleton: A void value is a Singleton [Gamma et al.94], in that it can be shared by
all objects of a type. As it is immutable, there is no need to have multiple
instances.

Flyweight: VoidValue can be regarded as a ConcreteFlyweight , as it holds intrinsic
data and is shared among all clients that use it.

State: When used as described in Implicit creation at section 11.8 on page 197, Void-
Value and MutableObject play the role of ConcreteStates , representing the
void and non-void states of data.

11.10.2 Collaboration

Lazy Object: Pattern Lazy Object (see chapter 8 on page 115) may be used to lazily
initialize void value components.

Command: Void Command may stand for default or idle behavior.

3SMALLTALK’s method name to replace objects.
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Template Method: While subclass responsibility [Goldberg & Robson83] normally re-
quires at least one concrete subclass, Void Value can be used as a default sub-
class, allowing the execution of abstract methods. Of course, Void Value is
just a special concrete subclass, so this collaboration is a lot more dramatic
with language support for void values (see section 14.7 on page 248).

Memento: A Void Memento can be used as a default and reset state.

Factory Method,
Abstract Factory: A void value can be used as a return value for not available prod-

ucts, e.g., unsupported widget types with regard to a specific window factory.

Iterator, Visitor,
Chain of Responsibility: All these patterns are based on iteration and Void Value can

help to define their termination behavior, analogous to a base case in recur-
sion.

State,
Strategy: Void State may represent the initial or an error state. While used like Void

State, Void Strategy would allow StrategyContext creation without a Strategy
selection.

11.10.3 Implementation

Proxy: DefaultReference (see figure 11.8 on page 198) works as a Proxy since it
keeps a reference to an object whose interface it shares.

Bridge: DefaultReference behaves like a bridge, in that it shields the clients from the
two “implementations” VoidValue and MutableObject .
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12 Translator

The art of programming is the art of organizing complexity.
– Edsger W. Dijkstra

12.1 Intent

Add semantics to structures with heterogeneous elements without changing the
elements. Separate interpretations from each other and use local interpretations
that allow for incremental reevaluation.

12.2 Motivation

Many operations on data structures can be viewed as homomorphisms, that is, as
structure preserving mappings from one domain into another. For instance, com-
pilers typically map the abstract syntax of the source language into a specific ma-
chine code language1. Other kinds of abstract interpretations (e.g., pretty-printing
and type-checking) should be expressed as homomorphisms between source and
target domain as well. The reason for this recommendation can be explained by
means of an equation that holds, if a homomorphic relationship between two struc-
tures exists:

φ(op(a,b)) = op′(φ(a),φ(b)) (12.1)

An interpretation φ on an operation op (from a source domain) with subcompo-
nents a and b is defined as a new operation op′ (from a target domain) whose
subcomponents are determined by again applying φ to a and b [Wechler92]. An
instance of this general equation for a compiler is, e.g.:

compile (assign (lhs , rhs )) =
store (compile (lhs ), compile (rhs ))

Note how in the above equations an interpretation is shifted down from operators
down to operands. Also, the right hand side of the equations has a structure that
allows us to account for incremental modifications to the source structure. In case
of changing the left-hand-side (lhs ) of assign , there is no need to rebuild the

1Historically, homomorphisms are closely connected to syntax-directed transla-
tions [Aho et al.86] and correspond to compositional definitions [Nielson & Nielson93].
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whole result term. One simply has to apply compile to the changed lhs and plug
the result into the first operand of store .

12.2.1 Problem

Consider a programming environment that represents programs as abstract syntax
trees. It will need to perform various interpretations on the abstract syntax tree
like type-checking, code generation, and pretty-printing. Figure 12.1 depicts two
sample transformations.

"B"

IfThen

MOVE W(vars), R  MOVE V(vars), R  

Assign

"V" "W"

Pretty Print

TEST

BEQ <LABEL>

<LABEL> NOP

"V" "W"

":=""B"

"THEN"

"IF"

MOVE B(vars), R  

n

n n

mMOVE R  , R  

n

"END"

abstract Syntax Tree

Assembler Code

Figure 12.1: Homomorphic translations of trees

The result of a mapping (dashed arrows in figure 12.1) depends on the inter-
pretation (e.g., compilation) and concrete node type (e.g., assign) involved. One
may put all various interpretations (type-check, pretty-print, etc.) into the node
interface in order to rely on dynamic binding. However, this is often not a good
idea:

• It leads to a system that is hard to understand, maintain, and change.

• Adding a new interpretation means changing and recompiling all node types.
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• An interpretation cannot be added without changing the node interface.

• The interface of nodes will grow until it becomes bloated.

The first two arguments are also addressed by the Visitor pattern [Gamma et al.94]).
Visitor also addresses the problem of adding functionality to each node-type (rep-
resented by a class) in a conceptual hierarchy (e.g., abstract syntax, construction
data, etc.) but does not aim at incrementality and demands node-types to know
about external interpretations (see section 12.10 on page 217).

The last two arguments of the above list especially apply to data structures other
than abstract syntax trees. Consider a data structure that represent the logical struc-
ture of a building. It is probably only well after designing the interface to that
structure that one wishes to perform some interpretation like computing the total
rent income. In this context, it is useful to differentiate between intrinsic properties
(e.g., nodes have descendents) and extrinsic properties (e.g., pretty-print). There is
no end to extrinsic properties and it does not make sense to lump all of them into
one interface.

Now, if we provide interpretations as external features we are facing a problem
with an implementation language that provides single-dispatch only2. As already
mentioned, the code to be executed for each node when we traverse an abstract
syntax tree depends on two variabilities:

find-implementation(node-type, interpretation)

Note that we already rejected node-type.interpretation with the argu-
mentation above. The reverse, interpretation.node-type , does not make
sense, since unlike the interpretation type the node type always changes during
tree traversal; that is, dispatch isn’t required for the receiver but for the argument.

12.2.2 Solution

What we need is double-dispatch on both node-type and interpretation .
Fortunately, there are ways to emulate double-dispatch and its generalization
multi-dispatch, with a single-dispatch language. We opt for a solution which can be
characterized as external polymorphism (see section 12.10 on page 217 for Visitor
type double-dispatch). Unlike Cleeland et al., however, we do not use a combina-
tion of C++templates, Adapter, and Decorator [Cleeland et al.96]. We simply use
the natural notion of a generic function [Kühne97].

When a generic function object is applied to a node, it determines the node’s
type (by using runtime type information), creates the corresponding specialized
function object, and returns the result of applying the specialized function object to
the node.

Figure 12.2 on the next page depicts how concrete element types (e.g., IfThen ) in-
duce the creation of their corresponding specialized functions. A specialized func-
tion knows the exact type of its argument and, therefore, can appropriately exploit
the argument’s full interface.

2Languages with multi-dispatch, e.g., CLOS, Cecil, or Dylan are not in widespread use.
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interpret Identifier

interpret Assign

interpret IfThen

generic Function

"B"

"W""V"

Interpretation

IfThen

Assign

abstract Syntax Tree

Figure 12.2: Generic interpretation on an abstract syntax tree

Note that it is not only natural to deal with generic functions to achieve double-
dispatch, but also very natural to employ functions for translations. The approach
of formally defining the semantics of a programming language called denotational
semantics is entirely based on semantic functions, i.e., functions that transform
phrases into denotations [Schmidt86].

Figure 12.3 on the facing page shows the structure diagram that corresponds to
the domains used in figure 12.1 on page 202. Only relationships relevant to Transla-
tor have been included. For instance, language nodes like ToyIf will typically have
an aggregation relation with ToyLang which is not shown here. Exclamation marks
denote places of possible extension (see section 12.7 on page 209, Extensibility).

Class Language in figure 12.3 on the next page is not required in general (see
figure 12.4 on page 206). Also, it is not required that ToyIf , ToyAss , etc. have a com-
mon ancestor (like ToyLang ). Hence, one can define semantics on heterogeneous
collections where element types may come from different libraries.

12.3 Applicability

Use the Translator pattern for

• Adding semantics. When you want to add an interpretation (even without
having planned for it) to a number of classes that have different interfaces,
Translator allows accessing the heterogeneous interfaces individually. The
classes need not belong to same hierarchy or library.

• External functionality. Adding interpretations outside of elements avoids
bloating the elements’ interfaces with extrinsic concepts. Also, if interpreta-



12.3 Applicability 205

!

!

!

Client

Function

Language

ToyAssToyIf ToyVar PpIf PpAss PpVar

GenFunc PfIf PfAss PfVar

PpFunctions

Functions

ToyLang PpLang

print(indent : Integer)

Figure 12.3: Sample structure

tions require additional servers (e.g., environment lookup for type-checking)
the interpretations, as opposed to the elements, will depend on the servers, i.e.,
require recompilation in case one server changes.

• Incrementality. When small changes to big structures should not cause reeval-
uation of the whole structure, exploit the homomorphic properties of Transla-
tor and use the intermediate structure (see figure 12.6 on page 209) for storing
computed results.

Do not use the Translator pattern in case of

• Unstable elements. When new elements are frequently added to the source
structure it is probably better to define the interpretations in the elements.
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Otherwise, one has to constantly change all associated function packages (see
figure 12.4 and also section 12.7 on page 209).

• Space constraints. Unless you can make use of the benefits of a target struc-
ture (see section 12.7 on page 209, Separation.), avoid the space overhead by
directly translating to results.

12.4 Structure
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SourceElement

SourceElement

TargetElement TargetElement

GenFunc SpecialFunction SpecialFunctionFunctionPackage

TargetLang

evaluate

A
pp

lic
at

io
n 

re
la

te
d

Pa
tte

rn
 r

el
at

ed

21

1

2

21

Figure 12.4: Structure diagram



12.5 Participants 207

12.5 Participants

• Function (Function )

– declares an interface for function application. Its two type parameters
specify argument and result type respectively3.

– is used as the interface specification for both generic and specialized
functions.

• Generic function (GenFunc )

– corresponds to a denotational function definition.

– uses function package Functions and runtime type information to choose
and then delegate to a specialized function.

• Specialized function (e.g., PfIf)

– corresponds to one pattern matching branch of a denotational function
definition.

– defines a local transformation for a source element (e.g., ToyIf ) to a cor-
responding target element (e.g., PpIf).

– recursively transforms subcomponents of its argument as well.

• Function package (e.g., Functions )

– conceptually bundles related specialized functions.

– declares a generic package type for specialized functions to be refined by
concrete function packages.

• Concrete Function package (e.g., PpFunctions )

– defines a mapping from source elements to their corresponding special-
ized functions.

– creates prototypes of — and then aggregates — specialized functions.

• Client

– creates or uses a source structure (e.g., ToyLang ).

– initializes or uses a function package (e.g., PpFunctions ).

– creates or uses a generic function (GenFunc ).

– applies a generic function to a source structure.

3As is the case with all generic functions of figure 12.4 on the preceding page.
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12.6 Collaborations

Figure 12.5 shows important object interactions. It refers to “@” for an infix func-
tion application syntax (see sample code in section 12.9 on page 214 or design pat-
tern Function Object at chapter 7 on page 93).

client ty_if pp_functions pf_var pf_ass pf_if pf_if* prettyPrint pp_if

make

init

make(pp_functions)

@(ty_if)

make

make

make

item("ToyIf")

clone

@(ty_if)

@(ty_ass)

@(ty_var)

make(pp_var, pp_ass)

Figure 12.5: Interaction diagram

• A client initializes a function package in order to create a generic function
from it. The client applies the generic function to the source structure in order
to obtain the translation result.

• The generic function consults the function package for a specialized function
that matches the type of the argument. Then it applies a cloned exemplar of
the specialized function to the argument.

• A specialized function recursively calls its associated generic function to the
subcomponents of its argument. Then it creates the target element while pro-
viding it with the results of the subcomponent evaluation.
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Note that the time line gaps in figure 12.5 on the preceding page denote poten-
tial recursive mappings of subcomponents.

12.7 Consequences

Tradeoffs of Translator are:

• External functionality. Translator makes it easy to add interpretations
to data structures with heterogeneous elements. In contrast to Visi-
tor [Gamma et al.94] there is no need to impose an Accept method on
the elements. Spreading interpretations over all elements (corresponding to
object-oriented design) would demand changing all elements when intro-
ducing a new interpretation. Gathering all related behavior into one generic
function (corresponding to functional design) — thus separating unrelated
behavior (e.g., compilation from pretty-printing) — results in a clean partition
and allows to hide interpretation specific details (like interpretation specific
data structures and accumulated state) in generic functions.

v := w;

"THEN"

"END"

"IF"

Pretty-Print

END

IF b THEN

abstract Syntax Tree Pretty-Print Structure

"B"

"V" "W"

":="

EvaluationTranslation

IfThen

"B"

Assign

"V" "W"

Figure 12.6: Distinct interpretation phases

• Instability. When using Translator, adding new elements (e.g., changing the
abstract syntax of a language) becomes difficult. Unlike Visitor, Translator
does not demand that one extend all interpretations with a meaning for a new
element (e.g., compilation is not affected by adding a new type-declaration
node). However, updating of concrete function packages and creation of spe-
cific functions is required. Note that the latter point must be done anyway,
but if interpretations are element methods then their completeness can be en-
forced by the compiler. Using Translator, runtime errors caused by an unde-
fined mapping to a specialized function may occur.
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• Extensibility. It is easy to add new translations and/or target structures. A
new interpretation simply requires

1. defining a new target structure (top exclamation mark in figure 12.3 on
page 205),

2. defining specialized functions (rightmost exclamation mark), and

3. providing a function package that maps the source elements to their spe-
cialized functions (leftmost exclamation mark).

The last action is a tribute to the emulation of generic functions.

• Flexibility. Elements to be translated need not be from one class hierarchy.
In any case, the full individual interface can be accessed by the associated
specialized functions.

• Broken encapsulation. Since specialized functions can access the public inter-
face of elements only, the interface may be forced to be wider than neces-
sary for other clients. A remedy is to use selective export or another kind of
“friend” mechanism.

• Separation. The semantics of an interpretation is defined in terms of a target
structure semantics (see figure 12.6 on the page before). Thus, a clear separa-
tion between translation (mapping to a target) and target semantics (meaning
of target) is achieved. Figure 12.7 depicts how an interpretation is split into a

Source
translate- Target

Result
?

evaluation
interpretation -

Figure 12.7: Splitting the interpretation

translation to a new Target structure and an evaluation function that produces
the final result. During the translation several simplifications are possible (see
table 12.1 on the next page).

A pretty-print, therefore, is not a sequence of side effects but, at first, a hier-
archical structure of print-elements, combinators, and possibly layout func-
tions. In a second step the, e.g., string representation of a pretty-print is pro-
duced from this structure. Note that now it is perfectly alright to implement
the semantics of the target structure as member methods of the target struc-
ture. Since that structure is meant for only one purpose, as opposed to the
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Notation Meaning Example

φ(op1) = op′,
φ(op2) = op′.

Map distinct source ele-
ments onto one destination
element.

Translate both assign and
initialize to store .

φ(op(a,b)) =
op′(φ(a)).

Drop source operands. Do not consider type decla-
rations for compilation.

φ(op(a,b)) = φ(a). Prune source operators. Compile procedure bod-
ies only and forget about
headers.

φ(op(a,b,c)) = φ(b),
if pred(a).

Perform static analysis to
select operands.

Compile if-then-else
to its then branch, if
the boolean condition is
always true.

Table 12.1: Simplifications possible while translating

abstract syntax tree which has many interpretations, there is no drawback in-
volved. Figure 12.8 shows the separation between interpretations and their

Tc

compile

compile- Rc

S
transc-

Tp

pretty

pretty-

transp
-

Rp

Figure 12.8: Non-interfering semantics

associated target structures (Tc and Tp). The operation names inside the tar-
get structure boxes denote their definition as member methods. There will be
no new interpretations on target structures that would require to open and
change the whole set of their classes. The interpretation can be defined lo-
cally for each element, exploiting inheritance and redefinition, without the
disadvantages mentioned in section 12.2 on page 201.

Besides the nice partition between translation- and semantic related code, the
target structure also may serve as a logical structure for the final representa-
tion. For instance, a mouse click onto a keyword could cause highlighting the
whole corresponding statement and its subcomponents. While this could be
achieved by back-pointers into the original abstract syntax tree as well, it is
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cleaner and more appropriate (as no reinterpretation is necessary) to refer to
the pretty-print structure. This argument becomes more obvious in case of
interpretations whose logical structure bear less resemblance to the abstract
syntax tree (e.g., type-checking information).

Also, assuming multiple users are working simultaneously on one abstract
syntax tree, multiple intermediate structures allow them to, e.g., use different
compilation options to achieve various code results. If semantic results were
stored directly in the source structure, this would be a cause for interference.

Furthermore, an intermediate structure is also helpful when aiming for incre-
mental updates.

• Incrementality. Naturally, target structures are subject to fast incremental re-
computation since they are produced by homomorphic mappings from their
source structure (see section 12.2 on page 201). Assuming N to be the number
of elements in the source structure, the asymptotic amount of recalculation
needed to update the result of an abstract interpretation is reduced from O(N)
down to O(logN). However, it is necessary to store previously computed re-
sults somewhere. Our approach of non-intrusive addition of interpretations
forbids storing these at the source elements. The target structure, however,
(see figure 12.6 on page 209; the small flash signs denote places of change)
can serve as a store for incremental results. The target structure can play the
role of an Observer [Gamma et al.94] that becomes notified by changes in the
source structure and starts the necessary recomputations. The target struc-
ture, in turn, is observed by the final result.

Note that though a local source structure change will only cause a local tar-
get structure change, the reinterpretation in general has to be done globally.
Sometimes local changes to the interpretation result suffice (e.g., pretty-print
of identifier), sometimes the path from changed location up to the root has
to be followed (e.g., context-relations [Snelting86]), and sometimes the whole
target structure must be revisited (e.g., dynamic semantics). Also with regard
to this aspect, the target structure serves as a physical anchor to distinguish
between the two phases of translation and incremental reevaluation.

• Space overhead. If incremental evaluation is not an issue and space efficiency
is a priority, then the intermediate structure should be avoided in favor of a
direct translation to the final semantics. In a distributed setting, however, we
may purposely want to trade space for speed. The intermediate structures
can be made local to their users, while the single source structure is accessed
only when needed. Ergo, frequent evaluations of target structures do not add
to net traffic.
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12.8 Implementation

Here are two issues to consider when implementing Translator (also see sec-
tion 12.10 on page 217, Collaboration & Implementation):

• Mapping elements to functions. Translator uses runtime type information
(RTTI) to determine the concrete type of a generic function argument. This
mechanism is very language dependent and may also vary with different
compilers for one language. Usually, it is possible to obtain a string of the
class name or test for successful downcasting to a specific type. If no such
mechanism is available, one is left with explicitly programming a type in-
quiry interface. This is, however, incompatible to the otherwise non-intrusive
nature of Translator.

In any case, a generic function may also dispatch on values of objects as op-
posed to their type. Consequently, you may represent musical notes and quar-
ter notes by the same class. The corresponding objects will differ in a value,
e.g., of attribute duration. Nevertheless, it is still possible to use a generic func-
tion to dispatch on this note representation.

• Hiding function packages. It is easy to shield the client from the existence
of particular function packages, by providing a tailored generic function
that creates a standard generic function with a fixed function package (e.g.,
prettyFunctions ). The client code, i.e., using a generic function is simpli-
fied to

source: ToyLang;
prettyPrint: PrettyPrint;
...
!!prettyPrint.init;
(prettyPrint @ source).display;

(compare to the version on page 215 of section 12.9). In order to achieve this
code shortening and client encapsulation from function packages one simply
needs to provide a tailored generic function like the one below.

class PrettyPrint
inherit Switch[ToyLang, PpLang]
redefine functions end
creation init
feature

functions : PpFunctions;

init is do
!!functions.init;

end;
end
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12.9 Sample Code

The following use of EIFFEL code should not conceal the fact that you may
use Translator with any language featuring runtime type information such as
SMALLTALK, C++, and JAVA.

Assume a toy source language with an if-statement (see figure 12.3 on page 205):

class ToyIfthen
inherit ToyLang
creation make
feature

exp, stat: ToyLang;
...

end

The corresponding pretty-print element could be:

class PpIfthen
inherit PpLang
creation make
feature

pexp, pstat: PpLang;

make (e, s : PpLang) is
do

pexp:=e;
pstat:=s;

end

display is
do

io.putstring ("IF ");
pexp.display
io.putstring (" THEN ");
pstat.display;
io.putstring (" END")
io.new_line;

end;
end

Now we need the specialized function that maps an if-statement to its pretty-
print element.

class PrettyFunctionIfthen
inherit Function[ToyIfthen, PpIfthen]
creation make
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feature
genFunc: GenFunc[ToyLang, PpLang];

make(s: like genFunc) is
do

genFunc:=s
end;

infix "@" (ift: ToyIfthen) : PpIfthen is
do

!PpIfthen!Result.make(
genFunc @ ift.exp,
genFunc @ ift.stat)

end;
end

The creation argument of type GenFunc specifies the generic function to be used
for evaluation of subcomponents (exp and stat ). Its generic4 parameters denote
the function type to be going from ToyLang to PpLang .

The method for function application (@) simply creates the pretty-print element
while supplying the results of recursively evaluating the subcomponents (exp and
stat ).

The client code for performing a full interpretation is:

source: ToyLang;
prettyFunctions: PpFunctions;
prettyPrint: GenFunc[ToyLang, PpLang];
...
!!prettyFunctions.init;
!!prettyPrint.make (prettyFunctions);

(prettyPrint @ source).display;
...

Prior to its usage, a function package must be initialized by calling init . Then,
a generic function (prettyPrint ) is created by suppling a pretty-print function
package (prettyFunctions ). Next, the generic function is applied to the source
structure, yielding a target structure. The semantics are finally produced by invok-
ing display on the target structure.

A concrete function package appears as follows:

class PpFunctions
inherit Functions[ToyLang, PpLang]

4This time generic means (static) parametric polymorphism, whereas we imply (dynamic) inclu-
sion polymorphism in case of generic functions.
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creation init
feature

init is
local

pfVar: PfVar;
pfAssign: PfAssign;
pfIfthen: PfIfthen;
prettyPrint: GenFunc[ToyLang, PpLang]

do
make(3);
!!prettyPrint.make(Current);
!!pfVar;
!!pfAssign.make(prettyPrint);
!!pfIfthen.make(prettyPrint);
put(pfVar, "ToyVar");
put(pfAssign, "ToyAssign");
put(pfIfthen, "ToyIfthen")

end;
end

Each concrete package inherits from an abstract function package class which, in
turn, inherits from Hash Table :

deferred
class Functions[Source, Target]
inherit Hash_Table[Function[Source, Target], String]
feature

init is deferred end;
end

So, make(3) initializes the function package to a hash table with three entries.
Next, a generic function is created in order to serve as the creation argument for
the three specialized function prototypes. Note that the Current argument in the
creation of the generic function causes the very function package that is currently
being initialized to become the argument for the generic function that is supplied
to the specialized functions. The function to print variables (pfVar ) does not need
to recursively evaluate subcomponents, ergo it does not require a generic function
for its creation. Finally, the specialized function prototypes are put into the hash
table using their corresponding source element class names as keys.

Therefore, the application method of the generic function definition —

class GenFunc[Source, Target]
inherit Function[Source, Target];

Internal;
creation make
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feature
functions: Functions [Source, Target];

make (fs: like functions) is
do

functions:=fs
end;

infix "@" (source: Source): Target is
do

Result:=clone(functions.item(class_name(source)))
@ source

end;
end

— can simply access the class name of the source element (method class name
is inherited from the system class Internal ), use it to retrieve the correct specialized
function prototype (call item on the function package)5, and then apply a cloned
exemplar to its own argument. Instead of a hash table we also could have used a
dictionary or even a type case switching statement in order to achieve dispatching
on the type of arguments.

12.10 Related Patterns

12.10.1 Categorization

Function Object: Translator’s interface to clients is that of a function object.

Interpreter: Interpreter suggests inventing and representing small languages for re-
occurring problems [Gamma et al.94]. Translator and Interpreter do not ad-
dress parsing, i.e., already presume the existence of an abstract syntax rep-
resentation. Translator is well-suited defining the interpretation part of In-
terpreter which defines interpretations in member methods of elements (see
discussion in section 12.2 on page 201) or by using Visitor.

Visitor: Visitor [Gamma et al.94] has similar motivations as Translator. Yet, besides
the fact that Visitor does not cover homomorphic and incremental transla-
tions, it also uses a different means of achieving double-dispatch. Visitor re-
lies on the straightforward technique of encoding an argument’s type into
method names [Ingalls86]. However, several disadvantages are aligned with
this approach:

5At this point a runtime error may occur due to a missing specialized function. Some exception
handling or other kinds of gracefully dealing with such a situation would be appropriate.
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• A mutual dependency cycle is introduced between elements (abstract
syntax tree) and visitors (interpretations) [Martin97]. This has implica-
tions on recompilation and regression tests.

• The elements are forced to know about interpretations because of the
need to provide an Accept method.

• One has to provide code for interpreting all elements of a hierarchy, al-
though only a subset will actually be considered by certain interpreta-
tions [Martin97].

Facet: Like Translator this pattern aims at supporting the addition of new and un-
foreseen interfaces to existing classes without impacting clients that do not re-
quire the new interfaces [Gamma97]. Thus, both patterns preserve the initial
key abstraction, i.e., allow element interfaces with intrinsic properties only.
Also, both patterns allow for dynamic extensions of classes. Facet differs in
that it mainly aims at role modeling and does not take translations or incre-
mentality into account.

External polymorphism: This pattern provides an alternative way (cleverly exploit-
ing C++ templates) to achieve polymorphism with classes which have no
common ancestor [Cleeland et al.96].

Acyclic Visitor: The dependency cycle in the original Visitor [Gamma et al.94] de-
sign caused many suggestions for improvements such as Acyclic Visi-
tor [Martin97] and Dynamic Visitor [Nordberg96]. Both alternatives also ad-
dress the issue of partial visitations, i.e., when a particular interpretation does
not need to be defined on all elements. Translator may deal with such a situ-
ation as well, since there is no obligation to provide a complete set of special-
ized functions.

Serializer: Because Serializer [Riehle et al.97] is a specialization of Visitor, it is also
related to Translator. One can think of Serializer as translating objects to a
flattened form (e.g., for persistence). In fact, Translator might be more ap-
propriate in some cases since it does not require objects to know about their
ability to be serializable.

12.10.2 Collaboration

Transfold: The exploration of the source structure may be deferred to Transfold.

Composite: Translator can be used for interpretations on Composite struc-
tures [Gamma et al.94].

Observer: On may use Translator to create a view presented with the Ob-
server [Gamma et al.94] pattern.

Flyweight: Leaves of abstract syntax trees can be represented as Fly-
weights [Gamma et al.94].
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Void Value: A void function, i.e., a void value defining a default function, may be
used to define the behavior in case a generic function can not determine an
appropriate special function.

12.10.3 Implementation

Function Object: The specialized functions that map source elements to target ele-
ments are function objects [Kühne97].

The result produced by Translator may be a hierarchy of function objects, i.e.,
a parameterized result. For instance, a pretty print result could be a func-
tion (itself calling other functions) awaiting the indentation level of the cur-
rent subtree. Such a structure corresponds to translucent procedures [Rozas93].
Such a function structure is able to evaluate, but also subject to examination
and decomposition into individual functions again. Consequently, a transla-
tor may also interpret such a translucent function structure.

Generic Function Object: The generic functions capable of realizing double- and
multi-dispatching interpretations on heterogeneous data structures are
generic function objects [Kühne97].

Lazy Object: Translator may employ Lazy Object to implement lazy interpretations,
i.e., both intermediate structure and result may be lazy objects.

Prototype: Function packages contain function prototypes [Gamma et al.94]. Fur-
ther instances are created by cloning and the associated generic function is a
preset attribute value.

Singleton: Instead of using an attribute genFunc (see section 12.9 on page 214)
in specialized functions, these may alternatively access a Singleton
class [Gamma et al.94] in order to retrieve their corresponding generic func-
tion. EIFFEL allows for a particularly easy Singleton implementation, using
the “once” mechanism.

Observer: A chain of Observers [Gamma et al.94] can be employed to account for
the data dependency between source structure, target structure, and target
semantics.
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13 Collaboration

Learn the patterns, and then forget ’em.
– Charlie Parker

The previous chapters introduced six functional patterns. Each is of value on its
own. A language, design toolkit, pattern system, or paradigm is of special value,
however, if the elements are orthogonal to each other and allow mutual combina-
tion to the extent of being a generative1 system.

“A pattern system for software architecture is a collection of patterns for
software architecture, together with guidelines for their implementation, com-
bination and practical use in software development [Buschmann et al.96].”

– PoSA Group

The presented functional pattern system exhibits a remarkable amount of in-
terconnection and collaborations (e.g., compared against the 23 GOF pat-
terns [Gamma et al.94]). Figure 13.4 on page 226 shows the full relationship
graph for the pattern system, but it is more instructive to view partial diagrams
first. According to our separation of the Related Patterns section, we organize
pattern relationships into three2 items:

• Categorization. Which pattern “is-a” kind of another pattern?
This relationship reveals what other pattern roles a pattern may adopt in a
particular use.

• Implementation. Which patterns do implement other patterns?
Which patterns are useful to realize the inner mechanics of another pattern?

• Collaboration. Which patterns can collaborate with each other?
This is a symmetric relationship where individual pattern strengths are con-
nected like pieces in a jigsaw puzzle.

The following diagrams and explanations collects and concentrates pattern re-
lationships to create new perspectives. For a full understanding and more example
relationships, it may be required to (re-) consult the individual Related Patterns sec-
tions.

1Pattern languages are also called “generative”. They allow generating a product by following
course patterns to finer grained patters through the language. Here, we mean bottom-up generation
from composable components.

2Usually, the term “collaboration” subsumes both Implementation and Collaboration items.
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Value Object

Lazy Object

Void ValueFunction Object

Transfold Translator

InterfaceInterface

Prototype Identiy Object

Lazy ResultSuspension

Figure 13.1: Pattern categorization

Figure 13.1 illustrates
the pattern “is-a” hier-
archy in OMT notation.
Transfold and Translator
are both used through a
Function Object interface
by clients. Clients apply
transfolds and generic
functions to structures
respectively. A Function
Object, which still awaits
arguments, represents a
suspended calculation
and, therefore, “is-a”
Lazy Object. A Function
Object also behaves like
a Value Object, in that
it never alters its state
(except Procedure Ob-
ject, see section 7.10 on
page 107), but returns a
freshly created instance,
akin to a Prototype [Gamma et al.94].

Pattern Void Value is a Value Object, because it has an immutable interface,
might provide generator methods (see chapter 9 on page 149), and shares the
unique instance (Identity Object) property with Value Object.

Finally, the result of a Value Object generator method can be a lazy Value Object.
Note that figure 13.1 does not include — to provide a clearer presentation — that
every pattern except Lazy Object “is-a” Void Value: Function Object and its descen-
dents may be default functions for a parameterizable component, hence, playing
the role of a Void Value. Even Value Object may be a Void Value, by defining a
default value for a value type. Note, that this does not introduce a cycle into the
hierarchy, since a new Default Value “class/role” would inherit from both Value
Object and Void Value3.

The “is-a” hierarchy of figure 13.1 is helpful in understanding the individual
patterns and also allows keeping individual pattern descriptions shorter. For in-
stance, pattern Void Value “is-a” Value Object, hence, the discussion about Singu-
lar Object and Identity Object in pattern Value Object may also be applied to Void
Value. Or, using transitivity of the “is-a” relationship, a Transfold could be used as
a Lazy Object calculation in a Function Object callback situation.

Figure 13.2 on the facing page depicts how patterns support each other in terms
of implementing a pattern’s functionality. Transfold uses Function Object for struc-

3It is interesting, though, how multiple inheritance can establish a symmetric “is-a” relationship
between two inherited classes.
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Figure 13.2: Pattern implementation relations

ture exploration, stream transposition, and folding. Note that the association labels
in figure 13.2 are role names [Rumbaugh91]. They denote the service a pattern
provides for the one that originates the association.

Also note that the responsibilities of Transfold could have been implemented
by using other techniques, but Function Object exactly provides the properties and
services needed for the tasks. Function Object, furthermore, provides the local
transformation functions and the concept of a generic function to Translator, and
implements stream suspensions for Lazy Object.

Void Value can help both Transfold and Lazy Object to define the end of an ex-
ploration or a stream respectively. Transfold, in turn, may support Value Object in
defining copy and equality operations by iterating over value components. A com-
plex Value Object may use a Translator to implement sophisticated interpretations
on it. Value Object again, is used by Lazy Object to cache stream values. Lazy Ob-
ject itself, provides lazy intermediate streams for Transfold and enables Translator
to implement lazy interpretations.

The diagram in figure 13.2 is useful for designers who want to apply a pattern
and look for supporting patterns to ease its realization (see the individual Related
Patterns sections for possible non-functional pattern support). It should be clear
that even if a pattern is supported by the language, it may still use another imple-
mentation pattern. For instance, even built-in lazy streams could still rely on Void
Value to define the behavior of a stream at its end. We do not count it as an collabo-
ration, though, since making Lazy Object’s realization easier with Void Value does
not benefit any client.
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It is the desirable property of a collaboration — in the the sense as we use the
term here — that it combines the strengths of two patterns to the benefit of clients,
using the resulting product.
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Figure 13.3: Pattern collaborations

Figure 13.3 illustrates possible pattern collaborations. This time, the labels are
placed in the center of an association because they name a symmetric relationship.
The arrows indicate the direction of reading the association, e.g., Function Object
may collaborate with Value Object in order to avoid parameters changing their
values, after having been passed to a Function Object.

Value Object, in turn, may offer clients to change its equality checking function
with a Function Object (see the hierarchy in figure 13.1 on page 222 to realize that
the passed function could be a Transfold). Value Object and Void Value can both
help to define structures that are interpreted by Translator.

Translator itself, may employ Transfold to defer the structure exploration pro-
cess and both interprets and produces Lazy Objects. As a special case of that, Trans-
lator may interpret Function Object structures and produce parameterized Func-
tion Object results. Pattern Transfold also consumes and produces Lazy Objects,
while Lazy Object may collaborate with Function Object to offer clients functional
parameterization of stream functions. Clients similarly benefit from Transfold’s pa-
rameterization with Function Object, and in particular also from Keyword Param-
eter Function Object that facilitates managing Transfold’s parameters. As Transla-
tor does, Transfold also iterates over structure containing Value Objects and Void
Values. Finally, both Value Object and Void Value may use Lazy Object to lazily
initialize components.
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Again, it might be worthwhile to consult the hierarchy of figure 13.1 on
page 222, e.g., to see that both Void Value and Function Object are also safe pa-
rameters to Function Object, since they are a kind of Value Object.

A collaboration diagram, like figure 13.3 on the facing page is a useful map for
creating a design with interacting and each other mutually enhancing patterns.

The high cohesion of the presented functional pattern system can be best seen
in a diagram including all three covered types of relationships.

Figure 13.4 on the next page features three arrow types, corresponding to the
associations of the three former diagrams. An arrow pointing from pattern X to
pattern Y should be interpreted — in the order of the arrows in the legend of fig-
ure 13.4 on the following page — as

1. X uses Y in its implementation.

2. X uses Y in a collaboration.

3. X plays the role and/or has the properties of Y.

Admittedly, the diagram is quite complex, but apart from providing a single-
diagram overview, it also allows some interesting observations:

• All patterns have about the same number of edges, indicating high overall
cohesion, but

• Function Object has the highest number of in-going edges, i.e., is heavily
used. It is a kind of three other patterns, demonstrating its versatility. The
remaining patterns are kinds of Function Object. All but Void Value use Func-
tion Object, giving evidence to the ubiquitous presence of this key pattern.

• Void Value has almost only in-going edges (except one classification edge to
Value Object and a collaboration with Lazy Object). This underlines its na-
ture as a base case definition and suggests its realization as a basic, atomic
language feature.

• Although, Value Object could be suspected to be as primitive support as Void
Value, it is interesting how balanced its in and outgoing count is, that is, how
well it also benefits from other patterns.

• Lazy Object shares the highest number of collaboration uses with Function
Object, i.e., composes well with other patterns to yield improved client ser-
vices.

• Transfold exhibits more usage of other patterns than it is used itself. This
is consistent with its higher-level conception and intended usage in libraries
and client code.

• Translator has only one ingoing edge (denoting usage by Value Object for
interpretations). This confirms its characterization of a high-level, client ori-
ented service.
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Figure 13.4: Pattern system relations

As a result, it comes to no surprise that Function Object and Lazy Object vividly
claim language support due to their importance to other patterns. Pattern Trans-
fold seems to be reasonably implementable as a principle of library and iteration
organization (see section 14.4 on page 240 for arguments to not just leave it to that).
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However, it is interesting to see to how well Value Object — being of good use
to other patterns — can benefit from the existence of other patterns. Hence, the
respective patterns, maybe surprisingly, contribute to a “low-level” property like
value semantics.

Figure 13.4 on the facing page does not claim completeness. First, some rela-
tionships, e.g., Function Object “takes-a” Lazy Object, have been left out since they
seem not important enough. Second, there might be yet unexplored interactions
that still wait to be discovered.

13.1 Example collaboration

This section demonstrates all patterns in a single example. A well-known, non-
trivial problem consists of determining whether two trees contain the same ele-
ments with respect to an in-order traversal. The challenge is to stop searching when
a difference is found, i.e., to avoid unnecessary exploration of subtrees. This task is
known as the samefringe problem [Hewitt77] and has been used to both, argue in fa-
vor of lazy lists [Friedman & Wise76], and also to demonstrate the inferior iteration
mechanisms available with C++ [Baker93]4.

In this example (see figure 13.5 on page 229) we are comparing machine code
consisting of instructions like load-data (LD data), load-address (LA address), etc.
The machine code is generated by interpreting an abstract syntax tree, whose nodes
are represented in conformity with the Void Value pattern. The interpretation
to machine code is defined with the Translator pattern. Translator employs the
Generic Function Object pattern for its local transformations. The result of the ab-
stract syntax tree interpretation is a tree of machine code instruction nodes, which
is flattened5 to a lazy stream of instructions using the Lazy Object pattern. Lazy
Object generates a lazy stream of instructions using the Value Object pattern to
cache already generated results. Finally, two differently generated streams are com-
pared using the Transfold pattern. Transfold itself, is parameterized according to
the Function Object pattern.

In addition to be a readily accessible design, the configuration depicted in fig-
ure 13.5 on page 229 has several benefits listed in table 13.1 on the next page.

Note that Function Object alone would have sufficed to solve the samefringe
problem [Baker93, Läufer95], by defining two lazy functions to generate and com-
pare two streams. Still, pattern Lazy Object helps to better understand the delay-
ing aspect of Function Object and makes the stream concept explicit. Transfold
generalizes the parallel consumption of two streams to an iteration framework and
Translator allows the two tree arguments to be the result of complex interpreta-
tions. Void Value and Value Object help to simplify and optimize the underlying
data structures.

Ergo, by no means all patterns are required to solve the problem, but each con-
tributes to the accessibility and extendibility of the presented design.

4This article did not consider the use of Function Object and, hence, did not tell the whole story.
5Using a post-order traversal rather than the usual in-order traversal.
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Property Description Contributor

Case-less
programming

There is no need for a case analysis of tree
leaves. Any related behavior, especially that
of non-existent children, is distributed to the
leaves.

Void Value

Non-intrusive
traversal

Abstract syntax trees do not need to pro-
vide support for their interpretation. Multi-
dispatching operations can be implemented
without affecting the source structure.

Generic
Function

Object

Hierarchical,
incremental
interpretations

Interpretations can be defined in terms of lo-
cal transformations and support incremental
updating.

Translator

Demand-
driven
computations

Flattening a tree causes its traversal only to a
certain extend, depending on the amount of
flattened data consumed. Tree contents can
be accessed through a defined and efficient
interface.

Lazy Object

Safe caching Stream elements are eventually represented
as immutable values who can be safely used
for caching computed results.

Value Object

Internal
iteration

Multiple streams can be processed in paral-
lel without the need to explicitely code con-
trol structures. A powerful, general scheme
can be parameterized to implement numer-
ous useful operations.

Transfold

Parameterized
functionality

True closures allow parameterizing general
mechanisms in a black-box, plug-in fashion.
Functions may be composed and exchanged
at runtime.

Function
Object

Table 13.1: Benefits of the functional pattern design example
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Part III

Language design
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14 Pattern Driven Language Design

Die Grenzen meiner Sprache sind die Grenzen meiner Welt.
– Ludwig Wittgenstein

14.1 Introduction

T
he functional pattern system presented in the previous part makes a
twofold contribution to language design. First, implementing patterns
that represent flexibility and reuse promoting designs, puts an imple-

mentation language to the test. Any encountered problems are likely to occur in
other attempts to produce flexible designs as well. Second, most patterns claim to
be supported by the implementation language directly instead of being coding con-
ventions. How are the suggested language concepts interrelated and what type of
individual support should be provided? As the emphasis of this book is the func-
tional pattern system itself, the intent of the following observations is to provide
an outlook to further developments, i.e., the aim is to identify impulses rather than
complete solutions.

This part is organized as sections of patterns, each commenting on both above
mentioned aspects. It concludes with an overall reflection and suggests to reevalu-
ate the roles of languages and their associated environments.

14.2 Function Object

Undeniably, function objects enrich object-oriented programming with many use-
ful properties. Function objects hide the number of both parameters and results to
clients. This can be viewed as an aid to modularization, just like classes in object-
oriented design [Parnas72] or higher-order functions and lazy evaluation in func-
tional programming [Hughes87]. Accordingly, aggregation (“has-a”), inheritance
(“is-a”), and behavior parameterization (“takes-a”) should be equally well-known
to designers. “Takes-a” realizes object-composition, as opposed to breaking encap-
sulation with inheritance [Snyder86]. It is therefore a means of reaching the goal
of component oriented software [Jazayeri95, Nierstrasz & Meijler95]. In combina-
tion, inheritance and Function Object allow for flexible prototyping as well as safe
black-box composition. Indeed, function objects reintroduce some flavor of struc-
tured analysis and design to object-orientation. This is definitely useful. While
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adding new objects to a system is caught by an object-oriented decomposition,
adding functionality often is better handled by extending functional abstractions.
The control-objects in Jacobson’s “use-case driven approach” [Jacobson et al.94] rep-
resent such points of functional extendibility.

Obviously it is a tedious and superfluous activity to code a set of classes to
support partial parameterization for function objects (see section 7.4 on page 98).
While it is straightforward to support partial parameterization by a tool that —
given just the final function object definition and a specification of all parameter
types — generates all necessary classes, it is quite clear that language support is
desirable. Language support, in general, should take care of

• a short syntax for function application and composition,

• implicit function object creation,

• garbage collection,

• support for partial parameterization,

• a means to define anonymous function objects, and

• a type system that allows specifying type constraints.

The following paragraphs expand on the above items. Clearly, a short syntax for
function application dramatically increases code readability. There is no doubt that

(streamAdd @ hammings @ primes).show(9); -- Eiffel
(streamAdd(hammings)(primes)).show(9); // C++

is superior to

streamAdd.apply(hammings).apply(primes).show(9); // Java

Neither should it be possible to forget the creation of functions objects nor
should it be necessary to make an idiomatic use of a language feature, which was
meant for a different purpose (see section 7.9 on page 105). Implicit creation of
function objects is a natural consequence with language support for Void Value
(see section 14.7 on page 248).

Many arguments against closures are made on the grounds of their unprede-
termined lifetime which requires heap rather than stack allocation. The usefulness
of closures partly stems from this property (e.g., making it possible to use them
for decoupling implementation from invocation and suspending calculations) and
object-oriented languages heavily use heap allocation for objects anyway. With-
out a garbage collection support, implementation of the function object pattern
is still possible but more involved [Läufer95]. The SELF programming language
features two different types of blocks (closures) with a different scope of life-
time [Chambers92a]. This allows avoiding overhead for stack allocatable closures
(downward-funargs). Certainly, one closure type only in a language is preferable
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and the task to replace appropriate occurrences with a stack allocation based ver-
sion should be left to the compiler.

Although PIZZA supports higher-order functions, partial parameterization is
not automatically supported [Odersky & Wadler97]. Chapter 7 on page 93, how-
ever, clearly demonstrated the benefits of partial parameterization support for
function objects. This decoupling and reusability promoting feature should be
available for free without hand coding classes or resorting to curry-functionals.
In an investigation about the impact of language features on reusability, one of
the criteria used for evaluation was support for adapting components to their
use-contexts [Biddle & Tempero96]. The ability to supply arguments to a function
(component) in advance makes it possible to adapt it to its calling environment
(context). Especially the useful combination of keyword parameters and partial
parameterization should receive language support.

Often, for instance, for iteration purposes, only a short function needs to be
passed which is more conveniently done by passing an anonymous function rather
than defining a class and then passing an instance of that class. SMALLTALK’s
blocks are used for such purposes and also BETA allows passing pattern defini-
tions, which are implicitly instantiated [Madsen et al.93]. Surprisingly, support for
implicit binding of free variables [Breuel88] is not the driving force for language
support. On the contrary, it has been shown that explicit passing of parameters
better supports reuse of function objects (see section 7.9 on page 105). Even with
anonymous function objects, changing a free variable name in the function object
context will imply only one change in parameter passing, as supposed to a possi-
bly more involved change to all occurrences of the free variable in the anonymous
function definition.

The possibility of using function objects for method simplifications, or for im-
perative commands that support undoing (see section 7.4), or the idea to exploit in-
heritance between functions [Schmitz92] all suggest language support in the spirit
of patterns in the BETA language [Madsen et al.93]. A pattern can be used as a func-
tion or a class definition and, thus, nicely combines both concepts. Although this
holistic approach is very useful and aesthetically pleasing, it does not help to re-
solve the fundamental dichotomy between a functional and an object-oriented de-
composition approach (see chapters 4 on page 55 and 12 on page 201). Like physi-
cians have to eventually settle on a particle or wave interpretation of elementary
particles in a given experiment, the software designer has to use a BETA pattern as
an object or a function. If choosing objects one looses functional extendibility and
if choosing functions one looses data extendibility. Research has been carried out
for finding guidelines as to which from a multitude of patterns is appropriate in
specific design situations [Coplien95]. Ideally however, no commitment would be
necessary and either viewpoint would be possible in order to draw from object and
function benefits while never be forced to suffer drawbacks. Fortunately, research
stimulated by pattern Void Value [Kühne96b] leads to an approach based on so-
called tiles, which can be assembled to represent functions or objects depending on
the most beneficial interpretation (see section 14.8 on page 252).

Language support for Function Object links to Void Value, Lazy Object and
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Value Object. First, automatic initialization of function objects could be elegantly
achieved by defining void function objects which return the desired result, i.e., typ-
ically a function object instance awaiting further arguments.

Second, a lazily evaluated function could be passed as an argument without
demanding clients that they pass a dummy argument in order to evaluate the func-
tion when in need of the result. For functions returning a structure that has to be
accessed (e.g., a stream) the difference does not matter (because access will trig-
ger the evaluation only) but functions returning unstructured values like integers
require language support for lazy evaluation to calculate their values lazily (see
section 8.8 on page 122).

Third, a type system supporting the notion of value objects would allow pass-
ing a function object producing an integer to a client that expects a function object
producing a numeric value. An EIFFEL compiler has to reject such a scenario since
there is no way to tell it that, although generally invalid, in this case the use of a
more specific actual generic argument is safe. If it were possible to specify that the
result type of the passed function can not be written to (i.e., is a value), the com-
piler would be able to accept the more specific argument (see also sections 9.8 on
page 155 and 14.5 on page 243). In other words, covariant output types are sound
with regard to subtyping and there should be a means to tell the compiler when a
generic parameter occurs in an output position.

Any language aiming at supporting function objects must be equipped with a
sufficiently mature type system. That is why, the JAVA language fails to support
function objects properly [Kühne97]. Although the EIFFEL languages provides the
necessary support for genericity, its type system is not completely satisfactory with
regard to function objects. For instance the identity function type-wise transforms
any type into exactly the same type, i.e., inherits from the abstract Function class,
constraining both input and output type to be the same. With EIFFEL we, neverthe-
less, have to equip class Identity with a type parameter, since there is no other way
to constrain the input and output type of class Function to be the same.

Indeed, the lack to internally introduce universally quantified type variables
has practical consequences: The natural place for a function composition method
would be class Function since two functions are combined to produce a new func-
tion. The function composition operator ◦,

f ◦ g = λx→ f (g x), has type
◦ :: (b→ c)→ (a→ b)→ a→ c,

i.e., the second function’s result type (b) matches the first function’s argument type,
and the resulting composition function goes from the argument type of the second
function (a) to the result type of the first function (c). Hence, we would like to code
the method using EIFFEL in class Function as follows:

class Function[B, C]
...
infix "|o|" (f : Function[A, B]) :

ComposeFunction[A, B, C] is ...
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Unfortunately, this is not possible since the generic type A is not known within
Function and there is no other way to introduce it than by adding it to the generic
class parameters. This, however, is not feasible because it would create the neces-
sity to declare all functions with three types, regardless whether they are used for
function composition or not. Inevitably, this means that function composition can
not be implemented as a method but must be modeled as a function object itself.

One approach to solve the above problem would be to allow the declaration
of universally quantified type variables for individual methods, akin to C++’s tem-
plate methods. Indeed, C++ does allow function composition to be implemented as
a method and functional programming languages also successfully use parametric
polymorphism to statically type function composition and similar cases. Similarly,
in contrast to EIFFEL’s explicit treatment of genericity, a C++ template implemen-
tation for Fold would not force the user to multiply declare a fold function object
for each different type instantiation as in

fold1 : Fold[Book, Integer]; -- count books
fold2 : Fold[Book, List[String]]; -- produce titlelist

The result type of a fold function varies with the type of the initial argument for
folding — effectively a new function type is created by each fold usage — but the
type could be inferred from the initial argument without requiring the user to ex-
plicitly declare it up-front. Thus, a single fold declaration (just stating to fold over
books) could be used for both applications above.

Another approach for greater expressiveness in the type system is to interpret
the result type of function composition to be dependent on the argument type of
function composition. In fact, by means of its covariant method redefinition sup-
porting type system, EIFFEL from the start enabled to express the dependency of
argument types on receiver types. For instance,

is_equal (other: like Current): Boolean is ...

specifies that the argument type (of other ) varies with the receiver type. Among
the innovations of EIFFEL, version three, was the possibility to express result types
in terms of argument types. For instance,

clone (other: General): like other is ...

anchors the result type of clone to its argument type. This feature, called “expres-
sion conformance” [Meyer92], allows the declaration of clone in class Any1 once
and for all, while allowing statements like

local a, b : Book;
...

a:=clone(b);

1Class General to be precise.
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In the above code the compiler can type-check the assignment since it does not rely
on a static anchor to General but can assume the result type of clone to be same as
the type of expression b. Unfortunately, it is not possible to use “component types”
for expression conformance, e.g.,

apply(a : Any; f : Function[like a, R]) : like R is ...

does not work although anchoring the argument type of function argument f
works, anchoring the result type of apply to the result type of the function argu-
ment (R) does not. Again, the generic variable R is not known, although, by means
of expression conformance, could be taken from the actual argument to apply .

The next logical evolutionary step in enhancing EIFFEL’s type system, hence,
would be to support the specification of dependent types including access to
“component types” such as generic arguments or even attributes. The latter
option would lead to a powerful type system which coincidentally would pro-
vide a satisfying solution for the covariant method redefinition problem in EIF-
FEL [Shang94, Shang95a]2.

14.3 Translator

The most pressing issue with regard to language support for Translator is the pos-
sibility of generic functions failing to find an appropriate specialized function at
runtime. Since multi-dispatch is only emulated by using the Generic Function
Object pattern, without further support there is no way that type safe application
of generic functions can be ensured statically. Although the implementation pre-
sented (see section 12.9 on page 214) avoids type-switch statements which require
maintenence and even allows the addition of specialized functions at runtime, the
introduction of a new type in the generic function domain will cause a runtime
error if a generic function encounters an instance of it.

In fact, historically multi-dispatch supporting languages have not been
statically typed either [Bobrow et al.86b, Shalit et al.92, Chambers92b] al-
though early work on combining multi-dispatch with static typing ex-
ists [Agrawal et al.91, Mugridge et al.91]. Nevertheless, static type checking of
multi-methods is highly desirable and possible solutions have been presented in
the meantime [Chambers & Leavens95].

Another common counterargument towards multi-methods is that they break
encapsulation by accessing internals of multiple abstractions. Especially the in-
carnation of multi-methods in CLOS with its unprotected data abstractions3 and
freely addable functions exemplifies the softening of an object-centered, encapsu-
lation promoting, single-dispatch approach. The CECIL language tries to maintain
encapsulation by conceptually assigning one multi-method to all abstractions that

2Unfortunately, the creator of EIFFEL, Bertrand Meyer, can not imagine EIFFEL’s type system
to develop into that direction [Meyer95] and proposed an alternative that simply and, therefore,
restrictively bans the coincidental presence of covariance and polymorphism [Meyer96].

3Their is a package mechanism, though.
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it dispatches on. In other words, encapsulated abstractions are retained and share
multi-dispatching methods with other abstractions. In addition, however, it seems
only natural to separate implementation detail access from method lookup. The
fact that the dynamic type of an argument is used for method lookup should not
imply opening the encapsulation barrier of the formal argument type. It should
be possible, to specify arguments to be contributing to dispatch and/or opening
encapsulation, independently from each other. Note that while it might be some-
times useful to declare a method in a single-dispatch language to refrain from us-
ing any implementation details of its abstraction, i.e., to use public features only,
the need for such a change protection is much less needed in single-dispatch lan-
guages. Therefore, these, reasonably unify the two aspects.

Language support for generic functions, i.e., functions that dispatch on the
dynamic type of their argument(s), would make language support for algebraic
datatypes superfluous. The PIZZA language allows the convenient definition of al-
gebraic datatypes and introduces a switch statement for constructor case analysis in
functions [Odersky & Wadler97]. Instead of introducing constructor switch state-
ments it seems much more reasonable to code the switch statement as a generic
function. Datatype constructors can be represented as concrete subclasses to the
abstract datatype interface class and generic functions would automatically do the
necessary case analysis. The advantage of this proposed approach over the PIZZA
solution shows, when a new constructor is added to a datatype. The PIZZA so-
lutions requires us to change existing code, e.g., the algebraic datatype definition
class, to add a further constructor and any function containing a switch statement.
With the generic function approach we just add another concrete class to the system
and add the corresponding specialized functions for each function on the extended
datatype. Since code is added only, without the need to change existing code, the
generic function approach to algebraic data types perfectly supports the open-closed
principle of software engineering [Meyer88].

The initial motivation for algebraic types in PIZZA was to make operation ex-
tension as easy as constructor extension. The latter is supported by object-oriented
design and, for instance, allows easy addition of language constructs to a language
interpreter prototype. Distributing interpreter operations (e.g., print and evaluate)
over the constructors makes it easy to add constructs but relies on the fact that the
operations do not change and are not extended. If, alternatively, the language is al-
ready mature but the aim is to experiment with new and/or alternative operations
(e.g., various type checkers), it is more beneficial to regard language constructs as
constructors and define functions on them. As already explained above, generic
functions cover the second case even better than support for algebraic types. Still,
what if the language is immature and the environment experimental? Unequiv-
ocally, both above mentioned decomposition strategies are desirable then. When
changing an operation one should be able to adopt a functional view and when
changing a language construct the object-oriented interpretation is more beneficial.
Again, a solution to that dilemma is offered by the tiles approach, presented in
section 14.8 on page 252.
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14.4 Transfold

The Transfold approach to iteration holds a number of implications for client soft-
ware and library organization. Viewing data structures as maps (with internal iter-
ation) rather than indexable structures (with external iteration) increases the level
of abstraction [Pepper92]. If ordered iteration is necessary at all, it is deferred to the
internal iterator. Copy semantics for structures (including iteration results) may
help to avoid aliasing. For instance, implementing matrix multiplication with ex-
ternal iteration and side effects may not work anymore if the target of the operation
happens to be one of the arguments.

The discussion in chapter 10 on page 163 actually developed a general frame-
work for data interpretation, construction, and transformation. The concept of
structural interpretations producing streams that are consumed by internal iter-
ators, was found to extend to issues like creating data from manifest constants,
transforming structures into each other, and data persistence.

In fact, assuming language support for all other functional patterns, no further
support for Transfold is required. This is not a reason, though, to exclude Trans-
fold issues from a language design discussion. The borderline between languages
and library organization and frameworks respectively, has become more and more
fuzzy. Especially SMALLTALK makes this evidentially clear. While it takes only a
short time to learn the language, it is a major achievement to aquire expertise on its
rich library. Learning the operations available on collections, for instance, is compa-
rable to learning various loop constructs in other, less library oriented, languages.
In the future, more extendible languages will further the trend to shift organization
principles from languages to libraries.

The uniformity by which Transfold lets us flexibly interpret data structures sug-
gests to facilitate the “folding” of structures by a suitable library organization. From
this point of view, it seems natural to have an Inductive class very high in the hierar-
chy. Data structures of various branching arity (such as linear structures, trees, and
graphs) but also abstractions like grammars, could be accessible via this interface.

The general nature of folding allows expressing many operations (see sec-
tion 10.3 on page 173, Versatility) with just one iteration primitive. This is in contrast
to EIFFEL’s plethora of iteration features (do all, do if, do while, do until, etc.) in its
iteration classes [Meyer94b] that still can not cover all cases. Although EIFFEL sup-
ports only one language loop construct, its library approach to iteration apparently
does not allow such a minimalistic solution. While folding is not a computationally
complete function4 it is sufficiently general to rely on it as the basic iteration prin-
ciple. In fact, the combination of creating a structure from a source (unfold) and
subsequent processing (fold) — a so-called hylomorphism — is computationally
complete [Pardo98b].

Unfold operations are needed when the computation is not driven by the
structure of the argument but by the structure of the expected result. For in-
stance, parsing is a tree structured process although the consumed structure is

4Not every computable function is expressible as folding [Kieburtz & Lewis95].
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linear only [Kieburtz & Lewis95]. The Translator pattern lends itself to imple-
ment unfold operations. Indeed, structure explorations can be represented by un-
folds [Pardo98a]. If the resulting streams are processed by folds — as realized in
the Transfold pattern — the resulting operation is a hylomorphism. Automatic
program transformations even allow elimination of the intermediate list between
unfold and fold to be constructed at all [Gill et al.93]. Eliminations like this, how-
ever, critically rely on regular operations to be used to build and consume lists. In
summary, the above observations suggest to organize libraries according to the al-
gebraic properties of their structures and to employ unfold and fold operations for
their interpretation.

There are a number of reasons as to why it is beneficial to use a fixed set of
prefabricated functional forms rather than encouraging user defined recursion for
interpreting structures. This view emerged from the squiggolist school that aims at a
formalism that allows banning user defined recursion in favor of functional forms
that are well controlled and amenable to program transformations5.

Relying on a set of functional forms (e.g., fold) is advantageous in many ways:

• Algorithms using the forms have a concise, readily understandable structure
as well as a determined complexity in time and space. Any programmer fa-
miliar with the functional forms will understand the algorithm by just looking
at the essential parameterized parts.

• Well-known laws for the functional forms may be exploited to transform pro-
grams. For instance,

Result:=fold @ sum @ 0 @ (map @ (times @ 2) @ list);

can be transformed to

Result:=2*(fold @ sum @ 0 @ list);

using a free “fold-fusion” theorem that is derivable from the signature of
fold [Wadler89]. More laws can be found in [Meijer et al.91].

• The predetermination by the available forms may lead programmers to con-
cise, elegant solutions (see section 10.7 on page 176, High-level mind-set).

• Using proven recursion schemes frees the programmer from caring about
termination, memory demand issues, etc. Many small, albeit disastrous er-
rors can be avoided this way (see section 10.2.1 on page 163, mentioning the
Mariner space-probe accident). The decreased number of structure explo-
rations may even make their formal verification feasible. This would improve
the overall reliability of a program considerably, when compared to a scenario
of multiple, distributed external iterators.

5An idea rooted in John Backus’ FP system [Backus78].
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• Algorithms written as a combination of parameterized combinators can
be easily varied. For instance a tournament-sort combinator taking two re-
duction strategies as parameters can express InsertSort [Bird & Wadler88],
TreeSort [Floyd64], and ParallelTournamentSort [Stepanov & Kershenbaum86],
just by using different combinations of the two reductions opera-
tors [Kershenbaum et al.88]. ParallelTournamentSort, actually, has very de-
sirably properties, which demonstrates that using standard combinators
does not necessarily imply inefficient solutions but, on the contrary, may
help to discover better solutions. Another example supporting this claim is
MergeSort. The naı̈ve custom implementation, which divides a list into a left
and a right part, is far inferior to the solution with combinators based on
parallel-reduce [Kershenbaum et al.88].

• Since functional forms can be defined on an inductive interface, the addition
of a new datatype automatically equips it with the available functional forms.

Fortunately, the iteration framework suggested by Transfold easily allows intro-
ducing new iteration schemes or utilize a customized scheme in case, e.g., primitive
recursion may achieve better efficiency than folding.

In general, internal iteration is better suited for parallel execution since, un-
like a custom external iteration, the iteration process is guaranteed to be encap-
sulated [Baker93]. In particularly, functional forms such as map or parallel-reduce
allow parallel evaluation. In fact, there is a tradition in the area of parallel com-
putations to employ fixed evaluation forms called algorithmic skeletons [Cole88,
Cole89, Darlington et al.91, Boiten et al.93, Grant-Duff94, Darlington et al.95]. In-
terestingly, an object-oriented language, enhanced with the functional pattern sys-
tem, fulfills all requirements towards a skeleton supporting host language such as
imperative, hence, efficient statements, higher-order functions, partial parameter-
ization, and polymorphism [Botorog96]. Provided the library implements func-
tional forms by exploiting parallel hardware, the algorithms using the forms auto-
matically make good use of available parallelism.

An interesting, competitive iteration approach is set out by the SATHER pro-
gramming language. Language support for iterators — in the form of a restricted
kind of coroutines — allows defining structure exploration within structures but
still allows flexible, external iteration style, consumption [Murer et al.93b]. The
open questions are which style (passing functions or coroutine-loops) is more
expressive and understandable, and whether possible code optimizations by the
SATHER compiler justify the requirement for an additional language concept.

With regard to EIFFEL’s merit to support the functional pattern system, again
the need for dependent types or universally quantified type variables occurred.
Whereas Transfold in EIFFEL has three generic parameters (see section 10.9 on
page 182), only one is actually required. The other two could be inferred from
transfold’s arguments.

The highly generic nature of transfold also revealed the lack of a subtyping rela-
tionship between the numeric types (e.g., integers should be subtypes of reals) and
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the need for a class that specifies that all its descendents conform to class Numeric
and class Comparable . Using EIFFEL it is not possible to retrofit such a class into the
library. Already defined classes like Integer qualify as descendants of that class but
can not (and should not) be modified to inherit from the new class. This experience
provides an argument for SATHER’s superclass concept that allows specifying which
old classes qualify as descendents for a new class.

In the attempt to write functions that operate polymorphically on numeric val-
ues, EIFFEL’s special treatment of arithmetic types was encountered. Specifying the
constant 0 does not work for generic functions that can also be instantiated to be
Double functions because 0 is always interpreted as an integer and is never pro-
moted to a real or double value. Anyone trying to integrate complex numbers into
the library also notices that EIFFEL’s balancing rule [Meyer92] gives more privileges
to the language designer than to its user. In the mentioned case I could actually de-
fine the function generically by referring to number.zero and declaring number
to be of the generic type. Nevertheless, such experiences question the maturity of
arithmetic type treatment in EIFFEL.

Pattern Transfold strengthens the case for Lazy Object language support. Lazy
streams are a prerequisite for efficient data exploration. If methods, in contrast to
explicit function objects, actually perform lazily, the need for a parallel hierarchy
of iterators (or explorers to be precise) will be made redundant. With lazy meth-
ods, structure exploration can be defined at the best possible location, inside and
internal to structures. Furthermore, functions passed to transfolds should not no-
tice any difference when stream contents are lazy. There should not be the need
to wrap unstructured values with argumentless functions in order to achieve their
lazy calculation (see 10.7 on page 176, Lazy Functions).

14.5 Value Object

The problems induced by reference semantics are well known. In SMALLTALK the
sometimes unwanted and especially unexpected effects of aliasing are said to be a
bigger source of problems than the lack of a static type system. For instance, the
code

aPoint := button getTopLeft. "get reference location"
aPoint y: (aPoint y - 3). "move three pixels up"
aToolTip setTopLeft: aPoint. "set toolbar above button"

does not only place aToolTip three pixels above a button , but also, unintention-
ally, moves the button [Harris97]. Of course, a more functional version would have
been in order:

aPoint := button getTopLeft.
aToolTip setTopLeft: (aPoint - 0@3).

The latter version works as expected since the minus operator produces a new
value.
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Surprisingly, the prevention of aliasing, or advice how to manage system
state does not seem to be an issue in the major software engineering methodolo-
gies. Whenever state is (inadvertently) encapsulated, e.g., by subsystem refactor-
izations [Wirfs-Brock et al.90], it is for the sake of decoupling interfaces, rather
than controlling side effects. The Facade pattern [Gamma et al.94] may also
help to control subsystem state but is not advertised as such. Other state pat-
terns [Gamma et al.94, Ran95, Dyson & Anderson96] discuss how to implement
state dependent behavior but do not touch the issue of controlling state in object-
oriented software.

Several points make aliasing more severe in object-oriented languages:

• A method with two parameters of different types A and B may still suffer
aliasing if B is a subtype of A or vice versa.

• The state of an object is not only determined by its internal parts but also by
the state of all objects it references. Object state, hence, is defined by the tran-
sitive closure over object connectivity. Therefore, two objects are effectively
aliased if their transitive state closures have a non-empty intersection.

• Object state, which is permanent as opposed to temporarily allocated proce-
dure parameters, allows aliasing to become static rather than dynamic. Stan-
dard procedure calls create only temporary aliasing that vanishes after call
completion. With objects, references can be captured and interference may
happen much later, with no direct indication of the problem source. Attempts
to control aliasing, in fact, address static aliasing only because its effects are
more severe [Hogg91, Almeida97].

• Ironically, object encapsulation may make it impossible to check for possible
aliasing between a variable and an object component. If the object does not
allow access to the component of interest, even the aliasing aware client can
not prevent it [Hogg et al.92].

Clearly, the type system should support the notion of values. This would in-
crease the opportunity for polymorphism since there are more subtype relation-
ships between values than between mutable objects (see sections 9.8 on page 155,
Subtyping, and 14.2 on page 233). Pattern Lazy Object could benefit, for instance,
by letting an integer stream qualify as a numeric stream. An integer stream can
not play the role of a mutable numeric stream since non-integer additions are pos-
sible. With a value interface to the numeric stream, however, the integer stream
is perfectly suitable. Definitely, the type system should allow treating objects and
values uniformly. JAVA “excels” in demonstrating the worst possible case, where
basic types must be manually converted to objects and back to values for storing
and retrieving them in reference containers, etc. Surely, if basic (value) types are
treated with special care for efficiency considerations then this should take place
without letting users of the language notice.
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Apart from value types other means to control aliasing are available
(e.g., “const” declarations) or have been proposed (e.g., unshareable refer-
ences [Minsky96]). Value types — as consciously used for modeling in the
BETA language [Madsen et al.93] — however, seem to be the most natural con-
cept. The difference between values and objects can be argued for philosophi-
cally [Eckert & Kempe94] and seems much more natural than, e.g., approaches
using the type system to restrict multiple references [Wadler90]. Efficiency is
not necessarily endangered by the need to copy values occasionally6 as compiler
optimizations are possible [Hudak & Bloss85, Schmidt85, Hudak92].

Programming languages should eventually overcome the notion of pointers,
even when they disguise as object references [Kühne96b]. Obviously, the intuitive
semantics for assignment is usually copying and the intention to achieve sharing
should be explicitely expressed as such. By the same token, the default semantics
for “=” should be value, rather than pointer comparison. Choosing pointer com-
parison, EIFFEL, JAVA, etc., force their users to bother about the difference between
strings and their references when the only reason why references come into play is
the language designer’s aim to achieve efficient assignment semantics.

The natural consequence for a language featuring immutable values and mu-
table objects that aims at safe handling of objects, while allowing sharing when
necessary, seems to be the support of two different assignment statements. The
default statement preserves copy semantics and a less often used reference assign-
ment achieves sharing. The view that should be adopted on the latter is less refer-
ence sharing oriented but rather portrays the notion of establishing a broadcasting
relationship between an (publishing) object and all its (subscribing) references. In
fact, SIMULA featured two different assignment statements for values and refer-
ences to signal the difference in semantics [Dahl & Nygaard81]. However, since
both were applicable to their own domains only, the value of that concept was very
limited. Only the single type Text allowed both statements and, therefore, enabled
a choice of semantics. For all other types, a syntactic documentation of the seman-
tics was achieved but — since redundant — was conceived rather a curse than a
blessing. If both operators are applicable to both domains, however, it would be
possible to choose the appropriate semantics and the choice would be clearly docu-
mented in program code. Contrast this to, e.g., EIFFEL’s solution of one assignment
statement whose meaning changes for expanded types. First, the default (sharing)
is often non-intuitive and second, the declaration revealing the actual semantics is
most likely not displayed in conjuction with the code in question.

C++ does make a syntactical difference between value and reference semantics
through the use of pointers. Unfortunately, values are not polymorphic, i.e., late
binding for method calls is not enabled. This renders the world of C++ values
pretty useless in an object-oriented context. The EIFFEL approach to value types in
the form of expanded types, has been criticized for not providing constructors and
also prohibiting subtyping [Kent & Howse96].

6The most economic scheme seems to be copy by demand, i.e., copy when a shared value is
modified (see figure 9.5 on page 159).
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14.6 Lazy Object

Theoreticians value lazy semantics for the property of yielding at least the same
results as eager semantics but possibly more, and for the ability to apply “back-
wards” substitutions — e.g., replacement of a constant 1 with if true then1 else f—
which is not possible with eager semantics (see section 1.2.4 on page 14). Chapter 8
on page 115, furthermore, showed a number of practical benefits resulting from
lazy semantics:

• The reputation of functional programming languages to enable a declarative
programming style, may deceptively explained by pointing out the pattern
matching style of function definitions. Yet, the latter is, in effect, syntactic
sugar only and true declarative programming style is enabled by

– not being forced to be explicit about artificial upper bounds,

– allowing up-front declarations, and

– being able to specify data dependencies only, without worrying for their
resolution (see section 8.4 on page 119).

Even statically circular definitions are possible as long as a dynamic resolu-
tion is possible. Specifying dependencies, rather than implementing aggrega-
tion relationships, may also help in achieving memory friendly behavior for
parallel programming [Kashiwagi & Wise91].

• Data consumption can be separated from data generation. Still, termination
control is available for both producers and consumers. Hence, traditionally
opposing design goals, efficiency and modularity, are effectively reconciled
since partial evaluation is enabled across module boundaries. Moreover,
space efficient, interleaved execution of producer-consumer pipelines is au-
tomatic.

• Lazy evaluation allows initialization code to be placed at the best possible
position; the corresponding data abstractions [Auer94]. Additionally, lazy
attribute evaluation opens up the possibility of overcoming current limita-
tions in dealing with value types. EIFFEL does not allow recursive refer-
ences in expanded classes, e.g., a Person referring to another Person as its
spouse, since that implies an infinite initialization sequence and space re-
quirement [Meyer92]. Lazy initialization would unfold such potentially in-
finite structures only as much as necessary. This is particular interesting
for Value Object and Void Value language support because of potential self-
references.

• A system based on streams is determined by the types of modules and the
interconnections (streams) between the modules. Stream processes, such
as filters, may be executed in a threaded fashion thanks to the value se-
mantics of streams. The increased modularization achieved by streams



14.6 Lazy Object 247

can be exploited to distribute development efforts nicely into autonomous
groups [Manolescu97].

Lazy evaluation plays one of the key roles in the Transfold pattern. It enables the
separation between structure exploration and consuming iterators. Most intrigu-
ingly, the combination of two functional concepts (higher-order functions and lazy
evaluation) solves an as yet unsuccessfully tackled object-oriented design problem:
How to have an iteration cake (safety by internal iteration) and eat it too (flexibil-
ity through external iteration)? The answer is given by the Transfold pattern. This
pattern shows how lazy exploration streams, actually, use continuations7, without
explicitely involving any peculiar continuation passing style.

Typical objections against lazy evaluation are

• memory management overhead, caused by suspensions and

• aggravated debugging, caused by unexpected evaluation orders.

Both arguments seem to have less weight in an object-oriented context, though.
First, garbage collection is needed for objects anyway (see section 14.2 on page 233).
Second, the complexity of message sends along a typical network of interacting
objects is presumably not any simpler than a lazy resolution of dependencies.

The restriction of laziness to values and functions (see section 4.2.1.1 on page 57)
nicely resolves the conflict between destructive updates and lazy evaluation. As a
consequence, value semantics for function parameters has been postulated, though.
Otherwise, updates to objects after they have been passed as function arguments
would affect function results (see section 7.9 on page 105, Call-by-value). Research
in the area of functional programming, furthermore, shows the way to even aim at
lazy effects (see section 4.2.2.1 on page 59).

Especially extensible languages require some means to defer expression evalu-
ation. Lazy semantics would allow programmers, extending the language, defin-
ing the evaluation strategy and order for their new language abstractions them-
selves. This approach seems more aesthetically pleasing than the usual facilities
like macros [Winston & Horn84] or meta architectures [Chiba & Masuda93].

With regard to language support for lazy values it was already mentioned that
an emulation with a dummy parameter for pattern Function Object, unit parame-
ters in ML, and explicit delay s in SCHEME make the client of such functions aware
of their laziness and forces different versions to be written for non-lazy arguments.
Moreover, it is not possible to produce unstructured lazy results since these can
not defer their evaluation with access methods, as structured values may do (see
section 14.2 on page 233).

Returning to theoretical considerations made at the beginning of this
section, it is interesting to observe that both objects [Jacobs98] and lazy
streams [Jacobs & Rutten97] can be formally explained by coalgebras. Both ob-
jects and streams hide inner details and specify destructors only. To the best of my
knowledge, however, objects and lazy semantics, as yet, have never been united in
a single language.

7Stream elements are continuations to further structure explorations.
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14.7 Void Value

Following the virtue of making programs robust, i.e., let them react sensibly in
case of unusual circumstances, previously simple code may become cluttered with
safety checks (e.g., see code examples 11.1– 11.6 starting on page 192). For this rea-
son, the concept of exception handling was introduced. Interestingly, the reasons
that may cause an exception to be raised in EIFFEL are:

(a) Hardware

1. Hardware signal for user requests, such as hitting a “break” key.

2. Memory exhausted, integer overflow, etc.

(b) Software

1. Programmer generated exception.

2. Assertion violation.

3. Applying an operation to an unattached reference [Meyer92].

Taking into consideration that the first item in category “Hardware” and the first
two items in category “Software” represent welcome aids, and that there is effec-
tively nothing that can be done against hardware limitations, one is left with just
one exception cause: Trying to call a feature on a void reference.

For certain, chapter 11 on page 191 demonstrated a better way to deal with such
situations by avoiding them in the first place. A remaining discussion is how to
avoid void references. There are two dual alternatives:

Void Value Provide a void class for each8 class in the system [Kühne96b].

Nullcase Provide a nullcase for each function in the system [Sargeant93].

An example of using a nullcase in an UFO [Sargeant93] function definition is:

length: Int is
nullcase: 0
otherwise: 1 + self.tail.length

How do nullcases compare to pattern Void Value? As a consequence of the en-
capsulation breaking properties of pattern matching, function definitions in UFO

are sensitive to the introduction and change of null values. For instance, if a set of
functions is designed to always operate on non-null lists and later it is discovered
that indeed null lists may also occur, then all function definitions must be changed
to include the nullcase branch. In contrast, methods of an object do not need to
be changed, since they operate on a non-void object per definition. The necessary
addition here consists of adding one VoidClass .

8In analogy to an object root class, there should be a void value root class which is inherited by
all void classes. Hence, only deviations actually need to be specified.
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Similarly, it may occur that a former null value should be transformed into
a proper object, just as enumeration types are sometimes transformed into class
types [Sargeant et al.95]. Consider a tree representing terminal leafs as void val-
ues. Now, we want to enhance the tree with a display method and therefore add
attributes to the leafs, which store the display position9. In fact, the example de-
scribes the conversion of Void Value to Composite. A void class is easily converted
into a standard class, but nullcases will not match object instances and must be
repackaged into a class definition.

On the other hand, the introduction of a new function or the change of an ex-
isting one is more local with the UFO approach. Nullcase and the regular case are
edited at one place (the function definition) whereas one may need to visit both
void value and object class, in order to do the change. With both cases at one place
it is also easier to see what the function does as a whole.

Nevertheless, the extraction of the nullcases into one class description produces
an entity of its own right:

• The void value class acts as a compact documentation of base case-, default-,
and error-properties of a particular type.

• When trying to understand a type, looking at the void class immediately com-
municates the set of methods that create exceptions or implement implicit
creation or delegate to other definitions, etc.

• With all null properties concentrated at one place it is easier to check for con-
sistency, e.g., to make sure that a terminal node does not answer count with
zero, but leaf with true.

• The void value class provides a place for (private) initialization functions
needed and possibly shared by void behavior methods.

• Changing the void-behavior of a set of functions is regarded as providing new
or changed void data, without changing function definitions.

• It is possible to have multiple void values and to dynamically choose between
them. With the nullcase approach, each time a new set of functions (that must
repeat the regular case) must be provided.

An example for the utility of separately defining null- and regular cases is the
addition of numbers (assuming a void number shall behave like zero). The void
value method simply returns the argument (the number to be added), regardless
whether the regular case would have used integer, or complex arithmetics. Void
complex values, thus may inherit this method from void integer values.

In turn, one may want to keep the regular behavior of a type, but vary the ex-
ception or termination behavior. Folding an empty list may result in an error- or
default value object, depending on which was given as the initial argument for
folding.

9If we do not want to treat leafs as Flyweights.
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UFO’s lacking ability to redefine null- and regular cases independently, is likely
to be removed [Sargeant96b]. However, inheriting null- and regular cases sepa-
rately, implies the loss of locality of a function definition. As in the case of void
values, it will not be possible anymore to look at the full definition at once. Finding
the actual definition becomes harder if redefinition in a hierarchy of definitions is
allowed10.

Even if inheriting and overriding of null- and otherwise clauses is possible, still
the problem of consistently changing the behavior of null values remains. Consider
a list of books found during a library retrieval. An empty result at the end of a
non-empty list displays nothing and provides no actions. If we want to change
that behavior into printing a help message (e.g., suggesting to broaden the scope
of search) we can provide the corresponding action (invoking the help system on
clicking) in the same void value class definition. In other words, changes to void
behavior that affect more than one function are still local.

Note that void values are not restricted to procedural abstraction only. Either
by providing an is void method or by using RTTI it is possible to check arguments
or attributes for being void. That is, as in UFO, it is possible to use the “voidness”
of arguments (i.e., inspect their constructor) in order to do optimizations, such as
returning the receiver of an append message if the argument to be appended is
void11.

An argument in favor of nullcases is that they do not produce inheritance rela-
tionships. In fact, there are good reasons for both approaches. Assuming anything
else equal, there is also the motivation to use just one instead of two concepts for
dynamically looking up definitions. A void value is simply a hierarchy sibling of
standard objects and other base-, default-, and error values.

We have seen that trying to achieve automatic initialization of references to void
values involves some additional complexity (see Figure 11.8 on page 198) and intro-
duces both storage (for DefaultReference ) and computation (for delegation) over-
head (see section 11.8 on page 197, Reference Initialization). Consequently, language
semantics should not initialize references to Nil, but to their associated void val-
ues. As a result, it would become easier to force program execution to “stay in
the game”, i.e., stay within the domain of language semantics without creation of
runtime aborts or implementation dependent effects [Appel93]. With regard to the
caveat of unnoticed errors, introduced by not stopping on not explicitly initialized
data (see section 11.7 on page 196, Initialization Errors), one may still provide no, or
exception generating behavior, for void values, in order to force a brute but early
detection of unintended void values.

Applications for Void Value that go beyond what most languages allow to emu-
late are “Initialization by declaration” and “Implicit creation”. Even if it is possible
to tie initialization (assigning useful default values) to creation (attaching an object
to a reference), Nil values still exist “between” declaration and initialization. Void

10EIFFEL, in particular, provides the flat format for classes that could be used to resolve all inher-
ited and redefined methods of void value classes.

11With procedural abstraction only, one is forced to add each element of the receiver to the argu-
ment in any case.
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Value allows transferring the concept of automatic initialization known for value
types to reference variables, since even variables of abstract type can be attached to
a proper void value. An abstract class definition thus not only provides an interface
and template methods, but optionally also a void value description.

Beyond the implicit creation of void values, one may extend the concept to al-
low automatic initialization to any object, i.e., implicit object creation. In analogy
to the creation clause for methods in EIFFEL, one may select a creation subclass to
be used for implicit reference initialization. In contrast to void values, the thus
created instances, could be used to capture and hold state right away. Instead of
forcing the programmer to guarantee the creation of an object instance in advance,
it appears very useful to allow implicit creation of object instances. Note that “Ini-
tialization by declaration” refers to the automatic attachment of references to void
values, while “Implicit creation” refers to the automatic conversion of void values
to objects. Whenever, a void value can not handle a message (e.g., state has to be ac-
cepted), it replaces itself with an appropriate object. Such an automatic conversion
would make explicit creation calls superfluous (see code example 14.1).

if array.item(key) = Void then
!!set.make;
input_array.put(set, key);

end

array.item(key).put(data);

Figure 14.1: Code example: Initialization.

“Initialization by declaration” and “Implicit creation” can work together to im-
plement Lazy Initialization, which avoids exposing concrete state and initializa-
tion overhead, allows easy resetting, and provides a proper place for initialization
code [Auer94]. Ken Auer’s solution requires to test variables for Nil values, i.e.,
for being not yet initialized. Automatic initialization of references, however, allows
applying messages to void values (instead of Nil), whereas automatic conversion
to objects allows the implicit creation of results on demand. The latter step, may
not even be necessary if the required results do not need to hold state. As long
as no object functionality is needed, void values suffice and do not create storage
overhead for “empty” objects.

Summarizing, Void Value replaces void reference handling through type ab-
straction with providing default cases through procedural abstraction. The former
is related to functional programming, while the latter is related to object-oriented
programming [Reynolds75, Cook90]. While void values are seemingly superior
to nullcases, the latter concept has its merits as well. As previous sections in this
chapter already observed, in general, both views are equally useful and should be
available on request. The solution to this goal is presented in the next, final section.
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14.8 Conclusion

A language that doesn’t affect
the way you think about programming,

is not worth knowing.
– Alan J. Perlis

The impact of the functional pattern system on language design, as detailed in the
previous sections, is summarized in table 14.1.

Name
language concept

Motivation / Effect

Function Object
higher-order functions

user defined control structures, component
programming, functional extensibility.

Translator
multi-dispatch

heterogeneity problem non-intrusively
solved, datatype extensibility in the presence
of functional extensibility.

Lazy Object
lazy evaluation

modularization, declarative programming
style, iteration framework, recursive value
initialization, user defined control structures.

Transfold
algebraic library

organization

library organization with inductive and coin-
ductive types, emphasis on hylomorphisms
(fold ◦ unfold operations), operation imple-
mentation with parallel hardware.

Value Object
value semantics

default value assignment, additional broad-
casting assignment, value subtyping.

Void Value
void behavior

void behavior instead of exceptions, reference
initialization.

Table 14.1: Pattern implications on language design

Pattern Function Object adds functional decomposition (i.e., functional exten-
sibility) to object-oriented design (see section 14.2 on page 233). It is an essen-
tial means for the construction of components [Jazayeri95] and black-box frame-
works [Johnson & Foote88]. Translator makes datatype extensions feasible in the
presence of a functional decomposition by means of extensible multi-dispatching
functions. Heterogenous data (in a structure or coming from, e.g., a database or net-
work) can be dealt with, without imposing an interface on the respective datatypes
(see section 14.3 on page 238).
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Pattern Lazy Object fosters a declarative programming style, enables the itera-
tion framework described by Transfold, allows value objects to have recursive ref-
erences, and gives designers control over the evaluation strategies for new control
abstractions (see section 14.6 on page 246).

Pattern Transfold builds upon the above concepts and provides good arguments
for an algebraic library organization (see section 14.4 on page 240).

Value Object and Void Value collaboratively argue to abandon the traditional
notion of a reference. The default semantics for assignment should be value se-
mantics while sharing must be explicitly achieved with a broadcasting assignment
(see section 14.5 on page 243). An ubiquitous Nil value is abandoned in favor of
type specific void behavior. References are automatically initialized with their cor-
responding void values. Hence the asymmetry between values, which have useful
initialization values, and references that do not, is removed (see section 14.7 on
page 248).

As a general observation, there is a demand for a type system that meets the flex-
ibility which is expressible with the functional pattern system. In particular, sup-
port for expressing type constraints and extended subtyping opportunities were
found to be necessary in addition to EIFFEL’s capabilities.

Furthermore, EIFFEL complicates a functional style by achieving object creation
by a statement, rather than creation expressions. Consequently, a single line like

nonsense x y≡ (real ((x,y)∗ (y,x)), real ((x,−y)∗ (y,−x)))

expands to a small program:

nonsense (x : Number; y : Number) : Complex is
local z1, z2, r1, r2 : Complex;
do

!!z1.make(x,y); !!z2.make(y,x);
!!z3.make(x,-y); !!z4.make(y,-x);

!!r1.make(z1*z2);
!!r2.make(z3*z4);

!!Result.make(r1.real, r2.real);
end;

The rational for having a creation statement is to accommodate the fact that object
creation is a side effect and an expression should not create side effects [Meyer95].
I certainly second this argument but one should note that the “side effect” of a
creation expression does not violate any existing invariant in the system. In other
words, unlike typical side effects, object creation can do no harm to other clients.

The only unwanted effect could be an exception raised due to insufficient mem-
ory. It does not seem convincing to reject creation expression on the basis that such
an exception should rather be raised by a statement.
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Of course, the above code examples do not only compare creation statements
to creation expressions. The notational economy of the functional definition also
largely draws from the fact that values can be created with manifest constants. A
(tuple representation of a) complex value in the functional definition is created with
just five characters, whereas the corresponding EIFFEL creation statement is much
more verbose.

This suggests to provide at least one way to express constant values (e.g., syn-
tax for manifest array constants) whose type can be converted into other datatypes
(e.g., collections), that is, to adopt the SMALLTALK philosophy [LaLonde94]. While
this issue may appear insignificant, it extends to the before mentioned library or-
ganization. Linear manifest constants could be used to create any other datatype,
even branching ones, like trees. The already mentioned notion of an “unfold” can
be used as a creation method in datatypes. It would work as a stream reader that
constructs any particular datatype by consuming input from a manifest constant,
output of a different datatype, etc. For instance,

t := Tree[Integer].unfold({Node:
{Node: {Leaf: 1} {Leaf: 2}}
{Leaf: 3}

}).

With this point of view, “unfolds” are parsers, while “folds” are interpreters.
Several of the previous sections in this chapter arrived at the conclusion that

neither datatype extensibility (object-orientation) nor functional extensibility (func-
tional programming) are sufficient on their own (see sections 14.2 on page 233, 14.3
on page 238, 14.7 on page 248). The number of attempts on the Visitor pat-
tern [Gamma et al.94, Nordberg96, Martin97, Krishnamurthi et al.98] indicate the
importance and difficulty of adding functional extensibility to object-oriented de-
sign. However, from the above versions only the last achieves to reconcile datatype
extensions with functional extensibility. All other versions require changes to func-
tion code when new datatypes are added. This, however, means that one is left with
an “either-or” choice. Without Visitor, functional extension is awkward, whereas
with Visitor, datatype extension is awkward.

The Extensible Visitor pattern [Krishnamurthi et al.98] avoids this by enabling
late binding on function creation. Thus, function creation in existing function
code can be adapted to new requirements — i.e., to the new functions needed
for the datatype extensions. Using inheritance to override function creation, ex-
isting functions can be extended. There is a need to create functions within visitors,
and therefore the problem of prematurely fixing the function version, because it
is sometimes necessary to pass different arguments to visitors for sub-traversals
or one even needs to change the visitor type (e.g., using identifier analysis dur-
ing type checking). Unfortunately, Extensible Visitor suffers from problems with
the original Visitor version [Gamma et al.94], i.e., it implies the pollution of the
datatype interface, introduces a dependency cycle, and does not support partial
visitations [Nordberg96, Martin97].
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I argue that the notion of a multi-dispatching function, used by Translator, is
much more natural then the explicit binding of data and functions via a visitor-style
Accept method. Translator does not require datatypes to feature an Accept method
and, hence, even allows functionally extending datatypes without source code ac-
cess. Translator-style functional extensions do also cope with datatype extensibil-
ity, since the (generic) functions used for traversals never change. New functions
are simply introduced by extending the set of specialized functions available to a
generic function (see chapter 12 on page 201), that is, the state of the traversal func-
tion is changed, not its type. Ergo, no code needs to be updated in case of datatype
extensions.

Revising the above scenario, we have datatypes — i.e., an abstract interface
plus concrete subclasses for each datatype constructor — which are interpreted by
multi-dispatching functions, i.e., generic functions with associated function pack-
ages (see chapter 12 on page 201). While this achieves extensibility in both dimen-
sions, (external) functions and datatypes exist in isolation. One can not look at a
datatype and see what external functions it supports. Obviously, that implies that
external functions can not be changed in an object context, i.e., as pattern match-
ing branches distributed over constructor objects. Conversely, it is also not pos-
sible to alter object methods (internal functions) in a functional context, i.e., as a
monolithic algorithm. In other words, functions implemented according to the In-
terpreter pattern (i.e., internally) can not be treated as functions, whereas functions
implemented according to the Translator pattern (i.e., externally), can not be treated
as being distributed over objects.

So, although we overcame the dichotomy between functional and object-
oriented view for extensibility, we still suffer from the same dichotomy in terms
of external (type abstraction) versus internal (procedural abstraction) function def-
inition. An internally implemented function should be changeable as a single func-
tion without the need to visit all constructor parts. Conversely, the change or even
introduction of a datatype should not require to update many existing external
functions. One “object view” should gather all relevant pattern matching branches
from external functions. Ideally, no commitment to either view, i.e., paradigm,
would be necessary and either viewpoint could be adopted when appropriate. In
other words, retooling (changing the paradigm) should not be expensive, although
it usually is [Kuhn70].

The logical conclusion from the above is to adopt a more general decomposi-
tion strategy that allows the dynamic generation of an object-oriented or functional
perspective. We already encountered this general view on decomposition in the
form of table 4.2 on page 65. We simply construct a matrix (see table 14.2 on the
next page) with columns for datatype constructors (ci) and rows for functions on
the datatype ( fi).

Each tile within the matrix defines the result of applying one function to one
constructor. Taking a vertical stripe from the table, gives us the object-oriented
view (a constructor subclass with functions). A horizontal stripe, gives us the func-
tional view (a function defined on constructors) [Cook90]. Using an analogy from
physics, we represent elementary particles with a matrix and let observers take a
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Datatype︷ ︸︸ ︷
c1 c2

f1 f1 c1 f1 c2

f2 f2 c1 f2 c2

In
te

rf
ac

e
︷

︸︸
︷

f3 f3 c1 f3 c2

Table 14.2: Tiles with object-oriented and functional dimensions

wave or particle view on the matrix.
The collection of constructors (topmost row) is a datatype, whereas the collec-

tion of functions (leftmost column) is an interface. A datatype defines constructors
and an interface defines a set of functions.

Given just a datatype, we may add any interface, that is defined on a super-
type12 of it, e.g., provide different function sets (e.g., stack or queue interfaces) on
lists. This is a functional view, where we add functions to passive data.

Given just an interface, we may supply any datatype, that is a subtype to that as-
sumed by the interface, e.g., implement a list interface with alternative constructor
sets. This is an object-oriented view, were we supply implementations to abstract
interfaces.

In the envisioned — tile based — programming language, a programmer could
declare datatypes and interfaces independently and rely on late binding of the
missing respective part. Hence, both paradigms would be available. The combina-
tion of datatype and interface can be viewed from a functional perspective — there
is one datatype with an associated set of functions — or from an object-oriented
perspective — there is one abstract class with with several, constructor implement-
ing, subclasses. In any way, it seems to be appropriate to speak of a concrete type.

Extensions are now simply a matter of adding a horizontal or vertical stripe to
the table. That is, it does not matter whether we filled the table with horizontal
strips (functions) or vertical stripes (constructors) before, we simply add a function
or constructor. Maybe even more importantly, if we build the table column-wise
(e.g., adding language constructs to a language), we can still alter an existing func-
tion (e.g., operation on the language, such as compilation or type checking) with
a functional view, by locally altering a row. Conversely, if we build the table row-
wise (e.g., extending language operations), we may still concentrate on individual
language constructs, i.e., alter all functions for one constructor in an object context.

Again, using more conventional terms: The tiles approach makes it feasible to
implement an interpretation on an abstract syntax tree as tree member methods
since one interpretation could be edited as a single function, created by a func-

12The notions of supertype and subtype shall include the type itself.
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tional view on a definition distributed over many types. In turn, pattern Translator
could be applied even if the visited structure is unstable since a change to one tree
member object could be done simultaneously to all interpretations, gathered by an
object-oriented view on all interpretations.

All this, of course, depends on a supporting environment. A browser (tiler)
must be able to provide each view on demand. Working on actual functions or ob-
jects, then, is just an illusion since only a virtual view is manipulated, with changes
being appropriately distributed to the corresponding tiles. Functions and objects,
however, actually exist in software as declared entities.

I conclude this outline of an approach that uses environment support to gen-
erated most appropriate views, with considerations about repeating the tiles con-
cept on datatypes and interfaces respectively (i.e., the row and column types of
table 14.2 on the facing page). Previously, tiles defined one function behavior for
one constructor. Now, each inner square in table 14.3 defines one interface behavior
on one datatype.

Domain︷ ︸︸ ︷
D1 D2

I1 I1 D1 I1 D2

I2 I2 D1 I2 D2

In
te

rp
re

ta
ti

on
︷

︸︸
︷

I3 I3 D1 I3 D2

Table 14.3: Concrete types with implementation and interface views

Alternative interfaces on one datatype (leftmost column) are different views on
a datatype (e.g., a person or library member view on a student). In object-oriented
terms they can be regarded as multiple abstract superclasses.

Alternative datatypes to one interface (topmost row) are implementation
choices for that interface. An interface, therefore, is like an abstract class in object-
oriented programming that defines an interface for several concrete implementa-
tions. Sets of implementers and views give rise to two concepts: Domains and
interpretations. A domain is a collection of datatypes that can implement an in-
terface. An interpretation is a set of views on a datatype. Note, that a square
in table 14.3 corresponds to table 14.2 on the preceding page, i.e., is defined by
editing and possibly adapting a tiles matrix. Table 14.3, hence, organizes concrete
datatypes into combinations of interfaces with their implementations. The same
approach that was useful to relate functions to data is now used to add implemen-
tations, define new views or roles, find implementations for an interface, change
one implementation for several interfaces, etc. If we assume that one of the inter-
faces is a State interface to several ConcreteState implementations (see the State
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pattern in [Gamma et al.94]) then a browser (tiler) invoked on table 14.3 on the
page before is an editor for the State pattern. Organizing interfaces and imple-
mentations this way may also extend into the area of subject-oriented program-
ming [Harrison & Ossher93], where client-specific interfaces (views) play an im-
portant role.

Datatypes

Interf
aces

Constructors

Functio
ns

Domains

Interp
reta

tions

Figure 14.2: Hierarchical tiles editing

If we further progress on the ab-
straction level, i.e., again fold the
whole matrix to one square in a
new matrix, we are in the posi-
tion to define interpretations on do-
mains (e.g., type-checking or com-
pilation on a programming lan-
guage). With just one sort of in-
teraction (using a tiler) we, there-
fore, may ascent or descent ab-
straction levels and edit individual
tiles (see figure 14.2). Note that
a functions-constructors matrix on
the lowest level corresponds to a
class in object-orinted languages.
A typical class browser does not
even support the organization on
the second level. Though travers-
ing inheritance relationships is pos-
sible, these may or may not corre-
spond to interface-implementation
relationships. It is intriguing how useful the abstraction matrix on the top is addi-
tionally. Together, the three levels organize software into a three abstraction level
hierarchy, which is amenable by one user interaction paradigm, that is, tile brows-
ing. Note that nothing really prevents us from going further up the hierarchy. A set
of interpretations could be called a tool and a set of domains might be a field, and
so on. The further we proceed upwards from the bottom, the sparser the matrixes
will be filled. All axis labels lend themselves to be used as types for the declaration
of software entities in programs.

The usefulness of the above notions, their details, and the approach in gen-
eral remains to be researched. Since the main emphasis of this dissertation is the
functional pattern system — with a view to its implications on language design —
this relatively advanced outline of an envisioned language and environment model
must necessarily be incomplete. Though many important details have been left out,
I nevertheless hope to have drawn a convincing proposal for future language and
environment research.

The idea to lever languages by the use of tools has, of course, been exploited
before. For instance, type inference can be added to languages with much sim-
pler type system by means of context relations [Snelting86]. Monomorphic lan-
guages (e.g., PASCAL) can be used polymorphically with the help of an additional
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fragment system [Snelting et al.91, Grosch & Snelting93]. SMALLTALK does not re-
quire any syntax to separate class methods from each other since they are edited
with a browser only one at a time. SMALLTALK’s highly interactive environment is
also highly intertwined with its dynamic type system and interpretation approach.
Only in conjuction, language and environment provide a paramountly productive
development tool13. Since SMALLTALK is a single-dispatch language only, a tool
has been build to support the maintainance of multi-dispatching arithmetic oper-
ations [Hebel & Johnson90]. Industrially supported programming environments,
though, merely scratch the surface (e.g., with syntax-highlighting) and do not ex-
ploit the available potential at all.

In conclusion, I showed that a well designed language, such as EIFFEL, makes
the subsumption of functional programming feasible and partially offers good im-
plementation support. However, I also demonstrated that functional patterns add
real value and that there is plenty of room for improving support for functional
patterns.

Ultimately, the functional pattern system induces a vision for a very ad-
vanced programming language with features such as higher-order functions,
multi-dispatch, lazy evaluation, value semantics with broadcasting, and void be-
havior. The language uses an algebraically organized library and is based on the
notion of tiles. Software organization principles are deferred to an associated envi-
ronment, therefore, allowing dynamic paradigm changes.

13Curiously, SMALLTALK — being the first object-oriented language after SIMULA — has many
functional characteristics, such as blocks, streams, internal iterations, and value (not reference) com-
parison for objects being the default.
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Epilogue

Not only will men of science have to grapple with the sciences that deal with man,
but — and this is a far more difficult matter — they will have to persuade

the world to listen to what they have discovered. If they cannot succeed
in this difficult enterprise, man will destroy himself

by his halfway cleverness.
– Bertrand Russel

A
functional pattern system is valuable in many aspects. The following
sections conclude about the many facets involved by the successful at-
tempt to capture the functional programming paradigm with patterns

for object-oriented design.

Software design

Each of the six presented patterns is capable of improving today’s software de-
signs. Even those patterns that do not represent completely novel approaches, for
the first time explicitely describe the applicability and resulting consequences of
each technique in a functional pattern system context. To my knowledge, my work
represents the first comprehensive attempt to examine functionally inspired tech-
niques in terms of software engineering concepts.

Understanding object-oriented practice

In the context of the functional pattern system, many object-oriented practices ap-
pear as special cases of more general functional patterns. For instance, call-back
functions according to the Command pattern are function objects14 that do not take
arguments after their creation. The acceptance of arguments after creation opens up
a wealth of useful applications (see pattern Function Object on page 93). So-called
iterator objects, coming into existence through the need to separate iteration action
refinement inheritance from data structures [Meyer94b], may also be regarded as
function objects with a non-standard application interface. Likewise, a visitor ca-
pable of visiting several node types, is a function object with several entry points.

14Procedure objects, to be precise (see section 7.10 on page 107).
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Pattern Lazy Object describes what other benefits, apart from exchangeability,
may be obtained from a pipes and filters architecture [Buschmann et al.96] (e.g.,
decoupling). Moreover, knowledge of Lazy Object immediately provides insight
into the justification of the presence of streams in the SMALLTALK library. They help
to avoid repetition of computations, e.g., when copying structures. In addition,
Lazy Object suggests to also use them for partial structure exploration.

The patterns Interpreter [Gamma et al.94] and Translator could be regarded as
object-oriented and functional incarnations respectively of the same idea: Abstract
syntax is used to reify meaning. Pattern Translator adds a framework for incre-
mental evaluation additionally and — by its non-intrusive way to add meaning to
structures — is suitable for more interpretation applications, such as a persistence
mechanism.

The Transfold pattern uses a very general scheme (folding) that allows express-
ing all the usual iteration operations (e.g., mapping, filtering, finding, etc.) in
terms of it. Furthermore, it generalizes internal iteration to multiple data struc-
tures, thereby providing a remedy for the inflexibility previously associated with
internal iteration.

Pattern Void Value widens the scope of using a default implementa-
tion [Smith95] to library design and to a safe mechanism of reference initialization.

In sum, the functional pattern system can help to understand existing object-
oriented solutions in a broader sense and, hence, enable their generalization and
also application to other areas. More fundamentally, it is hoped to make formerly
“ingenious” designs understandable as relatively straightforward applications of
well-known functional patterns. Patterns in general are, thus, a means to move
design from an art towards engineering15.

Object-oriented fertilization

Although techniques similar to function objects and lazy object have been de-
scribed before, they gave a partial view only.

Function Object

For instance, descriptions of techniques similar to function objects concentrated
on the locality of function definition [Breuel88], discussed a weakly typed way of
achieving dynamic dispatch on functions [Coplien92], or used a non-uniform appli-
cation syntax for algorithm parameterization [Hillegass93]. Apart from discussing
the software engineering consequences of first class functions, pattern Function
Object introduces innovations such as returning functions as a result, type safe cur-
rying of functions, keyword parameters, and generic function objects [Kühne97].

15There is no doubt, however, that engineering itself is not a mechanical activity and genius will
still shine through exceptional masterpieces of engineering.
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Lazy Object

Precursors of Lazy Object descriptions described a “trick” only to avoid unneces-
sary and repetitive evaluations [Smith95] or concentrated on the architectural as-
pects of pipes and filters [Buschmann et al.96]. John Hughes’ investigation in the
benefits of higher-order functions and lazy evaluation [Hughes87] is the only work
I know of, which is similar in spirit to the research performed for this thesis. Of
course, combined in a functional pattern system context, Function Object and Lazy
Object go far beyond the issues discussed by John Hughes.

Transfold

Neither external iterators [Gamma et al.94], nor internal iterators operating on a
single structure only [Goldberg & Robson83] provide a satisfactory general itera-
tion framework. The availability of Function Object, however, makes internal it-
eration feasible even for object-oriented languages without support for closures.
The availability of Lazy Object makes the separation of structure exploration and
data consumption feasible. Combined with the idea of simultaneously processing
multiple structures during one internal iteration, the result called Transfold pro-
vides the safety and economic notation of internal iteration while maintaining the
flexibility and control of external iteration.

Translator

Without having been designed for this purpose, pattern Translator resolves
some problematic issues associated with Visitor [Gamma et al.94]. Other pro-
posals have been made to avoid interface pollution and a dependency cy-
cle [Martin97], to allow partial visitations [Nordberg96], or to provide extensi-
ble visitors [Krishnamurthi et al.98]. But none of them introduces the elegant no-
tion of an iteration with a generic function and coincidentally opens up the pos-
sibility of incremental evaluation with the concept of homomorphic interpreta-
tions [Kühne98].

In sum, patterns Transfold and Translator yield remarkable solutions for previ-
ously — with a pure object-oriented mind-set — unsuccessfully tackled problems.

Void Value

While there have been examples of default objects in the spirit of Void Value (e.g.,
NoController in VISUALWORKS), the idea to completely abandon nil and provide
void values as a general principle is without precedent. The nullcases of UFO
represent a corresponding idea in a functional programming framework. A com-
parison between the two diametrical approaches found Void Value to be supe-
rior [Kühne96b].
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Value Object

Finally, pattern Value Object touches upon a much neglected topic in object-
orientation: The taming of state. Software methodologies typically ignore this
topic generously and focus on interfaces. Other approaches take reference se-
mantics for granted and try to establish restrictions in order to prevent alias-
ing [Hogg91, Minsky96, Almeida97]. Value Object is a small, but maybe not that
unimportant, reminder of the fact that reference semantics is a natural solution for
efficient execution but not for intuitive programming.

In conclusion, functional patterns have been shown to be superior to a number
of purely object-oriented solutions, e.g., using (multiple) inheritance and double-
dispatch emulation.

The human side of patterns

One part of the pattern community believes that “patterns are not so much about form
and technology as they are about aesthetics and decency, about improving quality of life,
about human dignity and decency” [Coplien96a]. While the effect is indirect, I see a
good chance that the presented pattern system will bring more comfort and qual-
ity to software users. Pattern Function Object promotes software with dynamically
exchangeable strategies. This may induce a change in human computer interface
design and the way software can be updated. A user of a word processor might
be able to select between formating strategies and combine them with hyphenation
algorithms. Software updates might consist of single components only that, e.g.,
add a formatting strategy to allow text to float around figures. This perspective
provides an interesting alternative to the current buy-all-or-nothing choice, where
fat software includes many unwanted features but almost certainly misses individ-
ually interesting ones. With function-object-like components, users would be em-
powered to configurate their own systems by buying components from the shelf.

The stream concept described in Lazy Object may help to work towards the
same goal. Streams are the foundation of a pipes and filters architecture that allows
configuration by the user. As a UNIX user creates new commands by combining ex-
isting commands with pipes, an application user may freely combine and arrange
components that communicate with streams. This also would allow deferring de-
cisions about application design to the user, creating more tailored and, thus, more
useful and comfort providing software.

Transfold provides the most comfort to the programmer using it, but also users
benefit from increased safety. However small the risk of introducing errors with
external control structures is, it is there (see the Mariner incident in section 10.2.1
on page 163) and internal iteration minimizes that risk to absolutely zero.

The contribution of Value Object to end user comfort is quite indirect, but it
may help to produce software containing less bugs (caused by aliasing) and allows
programmers investing more time in improving software quality, because they are
freed from tracking down tricky, state induced problems.
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Pattern Translator offers users the benefit of incremental computations and,
therefore, faster system response. An incremental approach may make the differ-
ence between annoying latencies and fluid interaction.

Last not least, Void Value can not prevent system malfunctions but allows han-
dling such situations much more gracefully. Instead of frustrating users with un-
nerving program — or even operating system crashes — Void Value causes initial-
ization induced system malfunctions to emerge as a non-performing system. Users
are not delighted by not getting the answers they hoped for but at least they will
save the trouble of losing data due to crashes or spending frustrating hours with
reboots.

None of the patterns in the functional pattern system are a prerequisite to
achieve user friendly software but their inherent software engineering qualities
facilitates the creation of such software. Almost inevitably their contributions to
flexibility and safety will shine through to improved human computer interactions.

Given a toolkit with such properties, a designer is less urged to emulate
flexibility. For instance, user defined macros in a word processor are diffi-
cult to provide with an implementation language that does not facilitate dy-
namic extensions. As a result, inefficient interpretation techniques might be used.

Lazy
Object

Translator

Transfold

Function
Object

Void
Value

Value
Object

Figure E.1: Pattern Cathedral

Hence, the functional pattern sys-
tem may help to reduce the phe-
nomenon of fat and slow applica-
tion software resulting from ineffi-
cient emergency routes taken to ac-
count for an inflexible implementa-
tion language.

Pattern system

Within the functional pattern sys-
tem, patterns reinforce each other
due to their manifold interactions
and collaborations. The analysis of
pattern relationships revealed the
nature of individual patterns and
allowed them to be placed in a con-
ceptual space. Pattern Translator
was identified as a high-level, client
oriented service. Transfold lends
itself to be implemented as a li-
brary organization principle. Pat-
terns Lazy Object and Value Object vividly claim language support due to their
supporting potential, but are also very well able to benefit from other patterns.

The Void Value pattern is clearly the foundation stone for the functional pattern
system (see figure E.1) and any language designed according to it. Complementary,
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Function Object is also fundamental in nature but shapes the pattern system or
language from above, as a crucial framework element. As such, it can be regarded
as the keystone16 of the functional pattern system.

I do not claim completeness with the presented six patterns. Especially many
functional programming practices wait to be documented. With regard to object-
oriented software construction it seems worthwhile to further explore patterns
helping to control state in the spirit of so-called Islands [Hogg91]. Nevertheless,
the most crucial language concepts have been captured and described by the pre-
sented functional pattern system.

Drawbacks

The most obvious drawback with respect to the functional ideal is the overhead
in description complexity. Some services, such as lazy streams, can be coded once
and for all but, for instance, the tedious coding of dedicated classes for function
currying must be repeated for every new function object definition. Although the
benefits outweigh the required effort, the sometimes apparent need to code an em-
ulation of fundamental mechanisms ultimately calls for language support.

Furthermore, object-oriented emulations of built-in functional concepts may in-
cur efficiency penalties. While most systems will not be as time critical as to dis-
allow functional patterns — and may in fact experience a speed up due to lazy
evaluation, for instance — language support could significantly speed up execu-
tion and would allow compiler optimizations.

Tool support

Tools could aid in using functional patterns in conventional object-oriented lan-
guages from simple support such as automatically generating all necessary classes
for a function object, till sophisticated type checking to discover possible failure to
find an appropriate special function when a generic function is applied to a poly-
morphic variable.

The most intriguing impulse for tool support, however, is initiated by pattern
Void Value. Research, comparing nullcases to Void Value [Kühne96b], led to the
idea of moving responsibilities away from languages towards their associated en-
vironments.

Tool support as described in section 14.8 on page 252, frees a language from
committing itself to either paradigm. The language just provides the notation for
filling in the tiles of figure 4.2 on page 65 (the implementation corresponding to
a function and an argument type) while a browser generates either a functional
(rows), an object-oriented (columns), or a global (full table) view. This approach
opens up the way to a (tile based) language supporting both procedural and type

16Or “boss”, i.e., the last structural stone in the dome of a cathedral that imparts its grandeur the
necessary stability.
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abstraction extensions. The dichotomy between procedural and type abstraction
is akin to the dual wave and particle interpretations of elementary particles in
physics. Wave and particle interpretation are two incompatible views on the same
entity. In a sense, hence, tiles are the elementary particles of an integrated func-
tional and object-oriented programming language. The programmer, therefore, is
an observer of a software “experiment”. The programmer may choose the one in-
terpretation that suits the currently required adjustments most. A programming
environment, thus, is not anymore just a facilitator of editing, debugging, project
management and class browsing, but actively provides optimal, and in particular,
updateable views on a software system’s organization (see figure 14.2 on page 258).

While object-oriented successors to LISP [Bobrow et al.86b] also use atomic
pieces of constructor behavior (methods) to extend (generic) functions and objects,
to my knowledge, the “tiles” approach represents the first attempt to retain an
object-centered, encapsulation providing view [Chambers92b], while coincidentally
allowing a functional perspective. Furthermore, it seems to be the first time that
the organization principle or decomposition strategy — in short paradigm — of
a language has been made dynamic by deferring it to its associated environment.
Although much research into the tiles approach is still necessary, it seems fair to
claim that William Cook’s conjecture, about multi-dispatch languages being a pos-
sible escape from the procedural and type abstraction dichotomy [Cook90], has
been validated.

Paradigm integration

When inquired for his opinion about object technology Timothy Budd felt positive
about it but, referring to multi-paradigm programming, added:

“. . . the real revolution would arrive when we finally understood how to
bring these diverse points of view together into one framework. [Budd95]”

– Timothy Budd

Without doubt the functional pattern system is a contribution to multi-paradigm
software and language design. Its basic idea, to express functional concepts with
patterns for object-oriented design with a view to holistic language design was
acknowledged to be a contribution against a proliferation of concepts and termi-
nology which would leave everyone with an incomplete picture [Reynolds96]. The
functional pattern system advances the integration of the functional and object-
oriented paradigms since

• an analysis on calculus level was performed to ensure the adequateness of
embedding functions into objects,

• an investigation into the conflicts and cohabitance of the paradigms yielded a
new integration approach and provided the stimulus for a selection of func-
tional concepts to be expressed as patterns,
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• functional and object-oriented solutions complemented each other leading to
synergistic effects (see section 4.2.3 on page 59), and

• each functional pattern integrates smoothly into object-oriented designs.

As a result, I demonstrated the reduction of functional programming to object-
oriented programming, at least in John Hughes’ sense in that you can not add
power to a language by removing concepts (e.g., state). All the virtues of functional
programming enabled by adding powerful concepts like higher-order functions or
lazy evaluation are feasible with an object-oriented language as well. However, rea-
soning about programs, e.g., as necessary for functional program transformations,
is not possible for object-oriented software, unless one relies on design discipline
(self imposed renunciation of state) for parts of the system. Yet, there is no way to
define state away anyway. For instance, using monads in functional programming
implies that the order of mapping a list suddenly does matter [Meijer & Jeuring95].
A monad used for stateful programming introduces order in calculations and it, in
that sense, therefore, does not matter whether state is expressed in a language or
supported by a language (see section 1.3.2.2 on page 21).

The object-oriented paradigm on its own was already shown to defeat many
critical arguments made by John Backus [Backus78] towards imperative, so-called
“von Neumann” languages [Kühne96a]. Supplemented with the presented func-
tional pattern system the object-oriented paradigm truly liberates designers from
the von Neumann style without any concession.

Patterns and Paradigms

Patterns and paradigms have an interesting relationship. Just like patterns depend
on the level of abstraction, e.g., one could consider subroutines to be a pattern in
assembler languages but not for higher level languages, they also depend on the
context’s paradigm. For instance, in a CLOS like setting based on generic functions,
the Visitor pattern makes much less sense, since it mainly shows a technique to
achieve double dispatch in single-dispatch languages. Also, most arguments of the
Iterator pattern are obsolete for SMALLTALK with its rich iteration interface for col-
lections. Therefore, the occurrence of certain patterns typically denotes weaknesses
of their context paradigms, since they provide functionality which is not available
at a primitive level. As has been carried out in this thesis, patterns may also be
used to describe and characterize a paradigm by capturing its foundations in well
documented mini-architectures. So, as a third relationship aspect between patterns
and paradigms, patterns may be used to embed one paradigm into another. The

• signaling (what is wrong with a paradigm),

• descriptive (what are the constituents of a paradigm), and

• integrative (paradigm benefit transfer)
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escher-paradigms.ps

Figure E.2: Paradigm integration with patterns

aspects of patterns with regard to paradigms tie these two terms into a close
relationship. I expect to see more evidence of this fruitful combination in the
future since multi paradigm programming will become more and more impor-
tant [Budd95] and patterns will surely continue their success. Patterns may be
used to import paradigms, but ultimately will be used as lego pieces for language
design.

Summarizing, this thesis created an original approach for paradigm integration.
The mechanisms of object-orientation and functional programming have been com-
bined and examined for their suitability to build reusable designs. Coincidentally,
an imperative paradigm has been joined with a declarative paradigm (see figure 4.1
on page 56). A designer now has to choose between several competing mechanisms
from two paradigms (e.g., inheritance and function objects). While this may appear
to be an extra complication to a novice, it is an essential enrichment to the expert.
Since the functional concepts are not only documented but formulated as patterns
containing applicabilities and consequences, even novices will have guidance as to
which tool-set to choose for a task.

Language design

As patterns are hoped to form the engineering handbooks of software development
— and, therefore, contribute to make software engineering a science — language
concept patterns, as presented here, may as well contribute to make language de-
sign a science. A dissection of programming languages into software engineering
principles supporting concepts would allow the design of new languages from a
known set of pieces. The functional pattern system captures the essence of soft-
ware engineering properties supported by functional concepts. Along with an
analysis of an effective paradigm integration approach (see chapter 4 on page 55)
it enables a language designer to take a shopping list approach for the design of
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a new language. The documentation of the added benefit of a feature (e.g., for
multi-dispatching methods see Translator on page on page 201) can be used for
a solid justification for integrating it into a language. If the incorporation of fea-
tures is based on single examples of their usefulness (e.g., support of binary meth-
ods through multi-dispatch), the decision may look arbitrary since there are often
competing mechanisms that solve the same problem (e.g., a type system based on
subsumption [Abadi & Cardelli95]).

Furthermore, an analysis of relationships between patterns in a system (see
chapter 13 on page 221) gives rise to an overall language architecture. As indicated
in section 14.8 on page 265, patterns Function Object and Void Value autonomously
defined their position as two poles in a language design framework. Other patterns
like Lazy Object and Value Object indicate a supporting as well as a service-using
role and, thus, demand a language designer to facilitate all the rich possible in-
teractions. It is also a welcome effect if a pattern, such as Transfold or Translator,
recommends itself to be kept out of the design of a language. Hence, by analyzing
pattern relationships, a designer gets hints which patterns are relevant to language
design and what their role in a language framework might be.

Related work also recognized the relationship between patterns and lan-
guages. Gamma et al. acknowledge that patterns depend on the language con-
text and, e.g., remark on Visitor that it is less needed in multi-dispatch lan-
guages [Gamma et al.94]. Peter Norvig investigates into the significance of well-
known patterns in the context of dynamic languages [Norvig96]. Seiter et al. pro-
pose a new language construct (context relations) to facilitate the expression of a
number of known patterns [Seiter et al.96]. Jan Bosch also introduces language
support (a layered object model) to ease the implementation of design patterns
and retain them as entities in the software [Bosch98]. Baumgartner et al. argue for
an orthogonal combination of several well-known language concepts (interfaces,
closures, and multi-dispatch) by demonstrating the reduction of effort needed to
realize a number of design patterns [Baumgartner et al.96].

The latter work and mine are similar in that they regard particular patterns as
symptoms of language deficiencies. Both approaches choose a specific set of pat-
terns to induce a number of language constructs, whereas the above approaches
aim at supporting patterns in general by one general language mechanism. My
approach is different, though, in that Baumgartner et al. use typical patterns rep-
resenting common coding practice, whereas my pattern base consists of language
concepts from another paradigm. Hence, the discussions take place on different
levels and the ultimate consequences of my paradigm integration for language de-
sign are much more radical (see section 14.8 on page 252).

Krishnamurthi et al. also aim at synthesizing object-oriented and func-
tional design to allow extensions of both types and processors (func-
tions) [Krishnamurthi et al.98]. They propose the Extensible Visitor pattern, a
composite pattern [Riehle97], that uses a combination of Visitor and Factory
Method [Gamma et al.94], to allow visitors to cope with extensions to the datatypes
they operate on. The relation to language design is a proposed meta-linguistic
abstraction to facilitate the implementation of Visitor and Extensible Visitor. How-
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ever, Extensible Visitor does not overcome the problems of the original Visitor
design, i.e., it also implies the pollution of the datatype interface, introduces a de-
pendency cycle, and does not support partial visitations [Martin97]. Most severely,
the requirement of a process17 method in datatypes aggravates or even prohibits
the definition of processes on already existing datatypes. In comparison to the tiles
approach presented in section 14.8 on page 252, their resulting software structure
leaves processor (function) definitions distributed over an inheritance hierarchy.
Hence, in case of a required change to a processor, the programmer has to con-
sult multiple classes since processor changes are likely to cross processor variant
boundaries. The tile approach avoids this by the notion of multi-dispatching
functions that do not rely on inheritance for extensions.

Apart from being a generative set of language design pieces, the functional pat-
tern system was also used as a test case for an already designed language (see chap-
ter 14 on page 233). The obstacles found while trying to implement functional pat-
terns in EIFFEL revealed shortcomings of the language that also will emerge in other
attempts to design reusable software. Since the functional pattern system supports
flexible designs, it evaluates an implementation language for its ability to support
these. Any difficulties encountered with the implementation of the functional pat-
tern system are valuable hints on improving the implementation language.

Previous integration attempts

The functional and object-oriented paradigms have been the target for many inte-
gration attempts. However, often only a partial attempt (e.g., just providing func-
tions) has been made [van Rossum91, Klagges93, Dami94, Watt et al.94], or state is
completely rejected [Braine94, Rémy & Vouillon97].

Object-oriented extensions to functional languages typical concentrate on typ-
ing issues and do not provide dynamic binding [Rémy & Vouillon97]. One dialect
of HASKELL uses existential types to enable dynamic binding [Läufer96] but state
has to be modeled in programs, i.e., is not supported as a primitive.

CLOS [Bobrow et al.86b], OAKLISP [Lang & Pearlmutter86] and DY-
LAN [Shalit et al.92] can be regarded as object-oriented extensions to
LISP [Winston & Horn84] but they have no strong notion of encapsulation. Classes
are modeled with records with no access restrictions. Their generic functions are a
very powerful approach but when viewed from a paradigm integration perspective
the languages appear unpolished. The frequent use of macros and the meta-level
facilities make them suitable for explorative programming but questionable for
being software engineering languages18.

Two languages, UFO [Sargeant93] and LEDA [Budd95], attempt a full integra-
tion including state. A comparison between the nullcases of UFO and Void Value
has been given in [Kühne96b] (see also section 14.7 on page 248). Timothy Budd

17The analog method used for Visitor is called Accept.
18Indeed, the perceived lack of determinism in CLOS led to the development of SATHER.
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shows many examples when a particular paradigm is useful but does not extract
applicabilities nor consequences. So, even with a given multi-paradigm language
like LEDA the functional pattern system is useful for guidance as to when to use
which technique.

A functional pattern system is a promising approach to familiarize object-
oriented designers with functional concepts. Another attempt is to take a popu-
lar object-oriented language and conservatively extend it with functional features.
The PIZZA language adds parametric polymorphism, first-class functions, and al-
gebraic types to JAVA [Odersky & Wadler97]. Any JAVA program is also a correct
PIZZA program. Parametric polymorphism is a standard feature in modern lan-
guages and should have been available in JAVA already. One nice point about the
PIZZA approach though, is that it allows polymorphic methods, i.e., universally
quantified variable types for methods that, hence, do not demand their class to fea-
ture extra type parameters. First-class functions in PIZZA implement function ob-
jects (without keyword parameters and multi-dispatch) and can even be specified
anonymously, but fail to support partial parameterization directly. The discussion
in chapter 7 on page 93, however, made it very clear that partial parameterization
is one of the most beneficial aspects of function objects. While support for algebraic
data types in PIZZA introduces a nice, short syntax for constructors (subclasses im-
plementing constructors of a sum type), I prefer Void Value or dynamically extensi-
ble multi-dispatch functions over pattern matching. The PIZZA switch statements
over type constructors are sensitive to the addition of new constructors. Void Value
avoids this issue by promoting procedural abstraction [Kühne96b] (see also sec-
tion 4.2.1.2 on page 58). Multi-dispatching functions avoid the same problem by
allowing the extension of the specialized function set without requiring changes to
old code. Conclusively, PIZZA is a vast improvement over JAVA but is not entirely
satisfactory with regard to a paradigm integrating language. The design of JAVA
and its virtual machine forced the designers of PIZZA several times to compro-
mises [Odersky & Wadler97], and left a number of rough edges. Most prominently,
built-in JAVA types do not mix well with user defined classes, for example when try-
ing to define a general container class. Ironically, JAVA’s solution to polymorphic
arrays, prohibits to adopt the best model of arrays in PIZZA [Odersky & Wadler97].

Although BETA [Madsen et al.93] and TRANSFRAME [Shang95b] have not been
designed to integrate paradigms, their unification of classes and functions are the
closest approach to a holistic paradigm integrating language, as suggested by the
functional pattern system. However, the discussion about tool support in sec-
tion 14.8 on page 252 seems to indicate that a reductionistic approach appears to
be more promising. With a holistic concept like BETA’s pattern, that can be used
as an object or as a function, one, nevertheless, has to decide for either view and
is left with the benefits and drawbacks of this decision. Hence, the approach to
have a language that allows defining tiles that are dynamically arranged to repre-
sent a function or an object by a tool, seems to be the better approach. Also, none
of the above mentioned languages attempts to integrate state with lazy evaluation.
Interesting research to make effects lazy has been carried out for functional lan-
guages [Launchbury93, Launchbury & Jones94], but a language supporting state-
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ful objects with dynamic binding and lazy evaluation remains to be designed. The
investigation into paradigm conflicts and possible cohabitance, the impulses from
the functional pattern system, and the proposed directions in language design, are
hoped to be supporting contributions towards this goal.

“If I have not seen as far as others, then that’s because giants were standing
on my shoulders.” – Hal Abelson
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[Läufer96] K. Läufer. Type classes with existential types. Jour-
nal of Functional Programming, 6(3):485–517, May
1996.

[Launchbury & Jones94] John Launchbury and Simon L. Peyton Jones. Lazy
functional state threads. SIGPLAN Notices, 29(6):24–
35, June 1994.

[Launchbury & Jones95] John Launchbury and Simon L. Peyton Jones. State
in Haskell. Lisp and Symbolic Computation, 8(4):293–
341, December 1995.

[Launchbury93] John Launchbury. Lazy imperative programming.
In ACM SIGPLAN Workshop on State in Prog. Langs.
University of Copenhagen, June 1993.

[Leavens94] Gary T. Leavens. Fields in physics are like curried
functions or Physics for functional programmers.
Technical Report TR #94-06b, Department of Com-
puter Science, Iowa State University, 229 Atanasoff
Hall, May 1994.

[Limberghen & Mens94] Marc Van Limberghen and Tom Mens. Encapsu-
lation and composition as orthogonal operators on
mixins: A solution to multiple inheritance prob-
lems. Technical Report vub-prog-tr-94-10, Depart-
ment of Computer Science, Vrije Universiteit Brus-
sel, Belgium, September 1994.

[Liskov & Guttag86] Barbara Liskov and John Guttag. Abstraction and
Specification in Programm Development. MIT Press,
1986.



Bibliography 293

[Liskov & Wing93] Barbara Liskov and Jeannette M. Wing. A new def-
inition of the subtype relation. In O. Nierstrasz, ed-
itor, Proceedings ECOOP ’93, LNCS 707, pages 118–
141, Kaiserslautern, Germany, Springer-Verlag, July
1993.

[MacLennan82] B. J. MacLennan. Values and objects in program-
ming languages. SIGPLAN Notices, 17(12):70–79,
December 1982.

[Madsen et al.93] Ole L. Madsen, Kristen Nygaard, and Birger
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Hochschultaschenbücher 756. B.I. Wis-
senschaftsverlag, Mannheim, Wien, Zürich,
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