Acting and Learning with
Goal and Task

Decomposition

Maciej Wojnar

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Doctor of Philosophy

in Computer Science.

Victoria University of Wellington
2011



Abstract

Two central problems of creating artificial intelligent agents that can operate
in the human world are learning the necessary knowledge to achieve routine
tasks, and using that knowledge effectively in a complex and unpredictable do-
main.

The thesis argues that an important part of this domain knowledge should be
represented in the form of decomposition rules that decompose tasks into sub-
goals.

The thesis presents HOPPER, an implemented planning system that uses de-
composition rules and a least-commitment decomposition strategy that strikes
a balance between reactive and deliberative planning. Like reactive planners,
HOPPER is able to robustly handle and recover from unexpected events with
minimal disruption to its plan. Like deliberative planners, it is also able to plan
ahead to take advantage of opportunities to interleave and shorten its sub-plans.

The thesis also presents TADPOLE, an implemented learning system that
learns both the structure and preconditions of new decomposition rules from
a small number of lessons demonstrated by a teacher. It learns by parsing and
interpreting the teacher’s behaviour in terms of decomposition rules it already
knows. It extends its rule set by filling in the holes in its parses of the teacher’s
lessons.

Both HOPPER and TADPOLE have been evaluated together in two different
domains: a kitchen domain that emphasizes complexity, and a logistics domain
that emphasizes plan efficiency. Every rule used by HOPPER was learned by
TADPOLE and every rule learned by TADPOLE was successfully used by HOP-
PER to achieve various tasks, showing that TADPOLE is able to learn effective
decomposition rules from minimal lessons from a teacher, and that HOPPER is

able to robustly make use of them even in the face of unexpected events.
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Chapter 1
Introduction

This thesis describes the problem of learning the knowledge needed to ef-
fectively achieve routine tasks in a complex, unpredictable domain. The
thesis presents two implemented algorithms that address this problem:
HOPPER, a system that uses decomposition rules to robustly achieve tasks,
recovering from unexpected events and exploiting unexpected opportuni-
ties; and TADPOLE, a system that interprets and learns decomposition
rules from the demonstrated behaviour of a teacher.

Organization of the chapter

This chapter first discusses what makes designing intelligent agents that
are effective in a general, human environment an interesting and impor-
tant field of research. It then highlights the characteristics of the human
planning domain that make this such a challenging task. The chapter goes
on to broadly cover the previous approaches that have been taken and
then presents the contributions of this thesis.

e Section 1.1 explains why the problem of making an intelligent agent
that learns and acts effectively in the human domain is interesting
and important. It highlights both the practical and theoretical bene-

fits such an intelligent agent would bring.

1



CHAPTER 1. INTRODUCTION 2

e Section 1.2 describes the characteristics of the human domain that
make creating an intelligent agent that can act effectively in this do-

main a particularly challenging problem.

e Section 1.3 presents the two classical approaches to the planning

problem: classical planners and reactive systems.

e Classical planners and reactive systems ignore important aspects of
the human domain. Section 1.4 describes the problem of scaling

these systems to the human domain.

e Section 1.5 describes hierarchical decomposing systems which are
more appropriate to achieving tasks in the human domain. The sec-
tion then discusses the problem of learning the necessary domain
knowledge for them to be effective.

e Section 1.6 outlines the key contributions of the thesis.

e Section 1.7 concludes the chapter by presenting an outline of the rest
of the thesis.



CHAPTER 1. INTRODUCTION 3

1.1 Intelligent Agents

Creating an intelligent agent that can learn, plan and act effectively in do-
mains that humans excel at (which I will refer to as the Human Planning
Domain, or HPD) has been one of the central problems in Artificial Intel-

ligence since the field’s beginning.

1.1.1 Developing an intelligent agent would be practically

useful

Intelligent agents that could duplicate the versatility and adaptability of
human intelligence would allow robotics to move from the restricted and
specialized domains it is applied in now, such as manufacturing assembly
lines, and into the human world. Such intelligent agents could be used
as robotic assistants to help people with their daily tasks including doing
the shopping, preparing meals, and cleaning the house. Robotic assistants
would be particularly helpful for people of limited capabilities, such as the
elderly and disabled.

As well as helping with mundane tasks, intelligent agents could also
be used for tasks that are too dangerous for humans but that nevertheless
require creativity and autonomy to be successfully accomplished. For ex-
ample, remote probes for exploring extra-terrestrial environments would
have to be able to make autonomous decisions in potentially novel envi-
ronments (what the atmosphere of Jupiter turns out to be like beneath the

surface may turn out to be a complete surprise).

1.1.2 Developing an intelligent agent would help us un-
derstand intelligence
An important way of learning about a system is building something that

duplicates its abilities. In the same way that the invention of the airplane

helped us to understand how birds fly and the nature of aerodynamics in
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general, intelligent agents could help us to understand how people think
and the nature of intelligence in general.

1.2 The Human Planning Domain

The HPD spans the range of environments and domains that humans ex-
cel at, and this section describes the properties and characteristics of this
domain that constrain the design of an intelligent agent.

1.2.1 The HPD includes a large number of different tasks

Being successful in the HPD means being able to accomplish an indef-
initely wide variety of tasks (as many and as varied as people are able
to achieve) in indefinitely varied situations. This means that an effec-
tive intelligent agent needs a mechanism for acquiring new knowledge for

achieving novel tasks and it needs to be able to apply it in novel situations.

1.2.2 The HPD is complex

The HPD is very complicated with a vast number of objects each with
many properties and many rich relationships with the objects around them.
A single room in a household, such as a kitchen, can contain hundreds or
thousands of objects. Although most of these objects and their properties
and relationships are irrelevant to any given task, what aspects of the state
are relevant or irrelevant depends on what task is being achieved. For
example, the sink is important for washing the dishes, but completely ir-
relevant to vacuuming the house. Any algorithms used by the intelligent
agent must be able to scale to domains with many objects, properties, and
relationships. The intelligent agent also needs to have a way of distin-
guishing the relevant and irrelevant features of the world depending on

the task it is trying to achieve or learning how to achieve.
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1.2.3 The HPD is unpredictable

An intelligent agent can only observe a small part of the state in the HPD,
and of the objects that its sensors can observe it may not be able to observe
all of their relevant properties and relationships (e.g. whether or not a
container is locked). Therefore the agent can never be certain what the
true state of the world actually is. Furthermore, even if the agent knew
what the current state is, it would need to fully understand the physical
processes governing the domain to be able to accurately determine how
the state will change over time. In domains as complex and rich as the
HPD, this is not feasible. However, even this would not be enough if there
are other agents in the domain affecting world, because other agents are
never completely predictable.

Because the agent does not have complete information about the state
of the world and it does not have complete information about how the
state will change over time, it must be able to deal with and adapt to un-
expected and unpredictable events that may be disruptive to the tasks it is

achieving.

1.3 Planning and Reacting

Classical planners and reactive systems take diametrically opposed ap-
proaches to the planning problem. Classical planners attempt to predict
all of the atomic actions that are needed to achieve a task. Reactive sys-
tems look only at the current state to find the appropriate action to execute

next. Neither of these two extremes is appropriate for the HPD.
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1.3.1 Classical planners search for sequences of atomic ac-

tions

Classical planners construe the planning problem as the problem of gener-
ating a sequence of atomic actions that, when executed in order, transform
an initial state to a final state that satisfies some goal constraint(s). The
archetypal example of such a classical planner is STRIPS [16].

Classical planners are characterized by having a limited amount of
fixed domain knowledge in the form of action rules that specify the ef-
fects and preconditions of atomic actions. This knowledge is hand-coded
and the agent does not need to do any learning.

Classical planners search for a sequence of actions that will transform
an initial state into a goal state, using only the knowledge expressed in
the action rules. The depth of the search tree depends on the number of
atomic actions in the sequence, and the branching factor is determined by
the number of ways that one state can be transformed into another with

an atomic action.

1.3.2 Reactive systems use a policy mapping states to ac-

tions

Instead of trying to plan out every atomic action from the current state all
the way to the goal state (and possibly plan out contingency plans for ev-
ery way that the state could unexpectedly change while the plan is being
executed), reactive systems instead approach the planning problem from
the opposite extreme and do no look ahead at all. Reactive systems use a
policy that maps states to atomic actions to determine what action to exe-
cute in any given state. Because reactive systems have no look ahead, they
make no predictions about future states, and so have no problem deal-
ing with unexpected states (indeed they do not even make the distinction
between expected and unexpected states). A classical example of such a

reactive system is Pengi [1].
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Reactive systems are characterized by having an unlimited amount of
domain knowledge (encoded in their policies). They do not do any search
for the appropriate atomic action to execute. Instead they only have to
match the current state to their policy to determine what the appropriate
action is.

Because the policies of reactive systems are extensive and unlimited,
they cannot be specified or hand-coded for any domain of even moderate
complexity. Instead the agent has to learn its policy by interacting with
its environment. The agent can learn by trial and error, experimenting
with various actions in different states and seeing which bring it closer to
its goal. The agent’s learning can also be sped up with guidance from a

teacher.

1.4 Scaling to the HPD

Classical planners and reactive systems do not take account of one or more
of the characteristics of the HPD described in Section 1.2, and so have dif-
ficulty scaling to the real world.

1.4.1 Classical planners do not take the HPD’s complexity

into account

The problem with applying classical planners to the HPD is that they do
not take the HPD’s complexity and unpredictability into account.

Anintelligent agent may need to achieve a very wide range of different
tasks in the HPD. In order for a classical planners to be that versatile with a
limited number of action rules, the action rules that the agent knows have
to be very general and low-level. Because of this, complex tasks require a
long sequence of atomic actions to be achieved.

The HPD has hundreds or thousands of objects that the agent can ma-
nipulate (apply atomic actions to) in any given state. Each atomic action
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applied to each object in the state generally results in a different state trans-
formation.

The length of the sequence of atomic actions and the large number of
possible state transformations possible in each state means that the search
tree to find the appropriate sequence is very deep and its branching factor
is very wide, making classical planning completely intractable for all but
the simplest problems [15].

Domain knowledge is necessary to guide the search, but no limited set

of hand-crafted rules is versatile enough to apply to every task in the HPD.

1.4.2 Classical planners do not take the HPD’s unpredictabil-

ity into account

When producing a sequence of atomic actions, a classical planner implic-
itly makes predictions about what the state will be when each of the ac-
tions will be executed. If an unexpected event causes any of these predic-
tions to fail, then the entire plan is invalidated and the agent must re-plan
from the new state. The longer the plan, the higher the chance that one of
its predictions will fail making it more brittle and unreliable.

Contingency planning helps to ameliorate this problem by trying to
predict in advance where the plan may fail and generating backup plans
that will still achieve the goal. This approach is fundamentally limited by
the need to know all the ways in which a plan could fail; in the HPD this
is an impossible requirement to satisfy.

During execution, the unexpected invalidity of a plan is normally de-
tected at the moment of plan failure: when the precondition of one of the
atomic actions fails. However the event invalidating the plan may have
occurred much earlier in the execution of the plan. The later the failure is
detected, the greater the disruptive effect on the plan, because the actions
after the invalidating event are no longer guaranteed to lead the agent

closer to the goal. These actions will, at best, be an inefficient waste of
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time, and at worst, can lead to a state that the agent cannot recover from.
For example, if during the execution of a plan to fly to another country the
agent discovers that its flight will leave an hour earlier, but the agent does
not identify the invalidity of its plan until it tries to board the non-existent
plane at the airport, then there will be no easy way for it to re-plan to
achieve the original goal because by that time the plane will have already
left.

In a dynamic domain where unexpected, usually innocuous, events are
constantly occurring, it is difficult to determine whether a given event will
invalidate the plan, and so the agent is forced to constantly simulate exe-
cuting the rest of its plan to make sure that it is still viable. Furthermore,
because each atomic action in the sequence depends on the state in which
it will be executed, which in turn depends on all of the previous actions,
altering an action will usually invalidate the rest of the plan. In general,
when a plan is invalidated, then the agent has to re-plan from scratch as
there is no real way to re-use the remaining invalidated action sequence.

A more insidious problem that classical planners face in an unpre-
dictable domain is that of unexpected opportunities. These events change
the state in a way that makes it possible for the goal to be achieved more
efficiently (e.g. with a fewer number of atomic actions). However, because
these actions do not invalidate the original plan, they are very hard for a
classical planner to detect, let alone exploit. For example, if during the ex-
ecution of a plan to fly to another country the agent discovers that a friend
is driving to the airport at the same time, then the agent should somehow
detect and exploit this opportunity even though its original plan of calling

a taxi has not been invalidated.
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1.4.3 Reactive systems do not take the large number of tasks

in the HPD into account

Because a reactive policy is a mapping from states to actions, it is only
useful for achieving a single task. The appropriate atomic action to execute
in a particular state may be completely different depending on what the
agent wants to achieve. For example, if the agent is in a kitchen and wants
a pizza, then an appropriate atomic action is for it to pick up a phone (to
order the pizza); in the same state if the agent wants to clean the kitchen,
then an appropriate action is for it to pick up a broom (to sweep the floor).
A single policy is inappropriate for a domain with multiple tasks for the
agent to achieve.

A possible way to address multiple tasks is to extend the agent’s do-
main knowledge to multiple policies, one for each task (or equivalently
extend the agent’s policy to be a mapping from states and tasks to actions).
However this approach does not scale to domains with a large number of
complex tasks.

The first problem is that many plans for achieving different tasks have
much in common with each other. For example, most tasks an agent may
have to achieve in a kitchen (e.g. baking a cake, washing the dishes) will
involve opening and closing containers, and picking up and putting down
objects. If the knowledge of how to achieve different tasks is stored in
separate policies, then the agent has to redundantly re-learn such shared
knowledge every time it learns how to achieve a new task.

The second problem is that the agent has to have a way to determine
which task it should be trying to achieve at any given moment. Tradition-
ally, tasks are simply assigned to a reactive agent. If this approach is to
be at all applicable to the HPD, the agent can only be assigned high-level
tasks such as “prepare a meal” or “pack for a trip”. The lower the level of
the tasks assigned to the agent, the more work is done for the agent, and
the less versatile it is. An agent that has to be told in explicit detail which
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low-level tasks to achieve (e.g. “open that cupboard”, “pick up that cup”,
and so on) is of little use.

However, high-level tasks in the HPD are complex; different atomic
actions are appropriate for achieving different parts of the task, and the
current state of the world often does not contain enough information to
disambiguate between the different cases. For example, the state of hav-
ing a half-packed suitcase will occur for both packing and unpacking a
suitcase, but the appropriate actions for these two cases are diametrically
opposed: adding another item to the suitcase or removing one, respec-
tively. Both packing and unpacking a suitcase may be necessary when
achieving the task of “packing for a trip” (if the agent accidentally packed
some belongings into a suitcase that was too small, then it would need to
unpack that suitcase and move the items to a bigger suitcase), and so even
if the domain knowledge for the task were encoded in a separate policy,
the agent would still be unable to determine what to do in a state with a
half-packed suitcase.

The fundamental problem is that packing and unpacking a suitcase
are tasks themselves and the domain knowledge of how to achieve them
ought to be encoded in a separate policy. However, because these tasks
are too low-level to be directly assigned, a reactive agent has no way of
learning appropriate policies for them, and it has no way of knowing when
it should apply such policies even if it could learn them.

1.5 Hierarchical Decomposing Systems

Hierarchical decomposing systems encode their domain knowledge in de-
composition rules. They encode richer domain knowledge, particularly
knowledge of how to achieve goals rather than just the effects of actions,
making them much more efficient than classical planners. They also deal
with goals and not just states, so they can be flexibly applied to a wide
variety of tasks, unlike policy-based systems.
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With an extensive enough rule set, a hierarchical decomposing system
can handle the complexity and the large number of tasks in the HPD. If
it applies its rules reactively or semi-reactively, then it can deal with the
unpredictability of the HPD as well. Because an extensive rule set is nec-
essary for an agent to be effective in the HPD, learning decomposition
rules is of fundamental importance to hierarchical decomposing systems;
however, most research has been on applying decomposition rules, and

not on learning them.

1.5.1 Decomposition rules break a problem down into a hi-

erarchy of sub-problems

Decomposition rules are a powerful way of encoding domain knowledge.
Each rule specifies how to solve a problem by solving a number of sub-
problems. Given the appropriate rules, an agent can solve problems of
arbitrary complexity by matching a problem with an appropriate rule, de-
termining the corresponding sub-problems that need to be solved, and
then recursively matching the sub-problems with its rules to get their cor-
responding sub-sub-problems. The agent continually does this, building
up a hierarchy of problems and sub-problems, until it reaches atomic prob-
lems that it can solve directly (with an atomic action or by some other

means).

1.5.2 Decomposition rules can be applied reactively or de-

liberatively

Hierarchical decomposing systems have applied their rules either com-
pletely reactively or completely deliberatively, but neither extreme is ap-
propriate to the HPD.

Hierarchical decomposing systems that apply their rules deliberatively
produce a complete plan of atomic actions from an initial state to a final
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state similar to the plans that classical planners generate. This results in
the same difficulties that classical planners face in unpredictable domains.

Systems that apply their rules completely reactively tend to generate
sub-optimal behaviour. This is because a system without foresight that
does not consider the future aspects of a plan will tend to produce ineffi-

cient plans with needless, redundant steps.

1.5.3 Decomposition rules need to be learned

Each decomposition rule specifies how to achieve a task. In the HPD an
agent may need to achieve an indefinite number of tasks, and it cannot
know ahead of time what those tasks may be. It is not feasible to hand-
code all of the necessary decomposition rules that the agent may need, so
it has to have a way of learning new decomposition rules and extending

its rule set.

1.5.4 Decomposition rules are appropriate for achieving rou-

tine tasks

An agent can use decomposition rules to achieve routine tasks — tasks that
it has experience solving (whether through its own efforts or by observ-
ing another). Although good decomposition rules can be used to achieve
routine tasks in novel situations, by themselves they are insufficient for
achieving truly novel tasks.

In the HPD, an agent can expect to be faced with problems and tasks
that it has never seen before and has no experience of. In such cases, a
hierarchical decomposing system will not be enough by itself. However,
routine tasks make up the majority of the tasks an agent has to achieve
in the HPD, and the algorithms used to achieve such tasks in a complex
and unpredictable domain can serve as a foundation for reasoning that is

necessary for solving novel tasks.
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This thesis focuses on the problem of learning how to achieve rou-
tine tasks, and future work will focus on extending it to allow an agent

to search for ways of achieving completely novel tasks.

1.6 Contributions

This thesis presents three core contributions:

e a rule framework that decouples tasks and goals, resulting in rules
that are less constrained and more re-usable than previous rule frame-

works.

e a decomposition planner called HOPPER that overcomes the short-
comings that other decomposition planners face in unpredictable do-

mains.

e alearner called TADPOLE that places a much smaller burden on the
teacher than previous learners, requiring only unannotated, demon-

strated lessons to learn complete decomposition rules.

1.6.1 De-coupled rules are more flexible and re-usable

Previous decomposing systems have used rules that decompose goals into
sub-goals, coupling goals with the way to achieve them. The consequence
of this approach is that each goal and sub-goal requires a separate rule,
and each rule can only ever be used to achieve a single goal.

The rules learned by TADPOLE and applied by HOPPER decompose
tasks into sub-goals. Each rule specifies how to achieve a state change
rather than any particular goal. Because the rules do not specify what goal
they are applicable to, the agent can determine this dynamically and re-
use the same rule to achieve different goals. Although decoupling tasks
from goals complicates both the learning and planning algorithms that

make use of such rules, it results in more powerful and more flexible rules,
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and ultimately requires fewer lessons for the agent to become capable in a

given domain.

1.6.2 HOPPER uses a least-commitment decomposition strat-

egy to react to unexpected events

Previous decomposition planners have insisted on generating the entire
atomic plan and proving its correctness before beginning to execute it.
However, this approach is not appropriate in an unpredictable domain.
Previous decomposition planners have had difficulty detecting let alone
responding to unexpected disruptions, and exploiting unexpected oppor-
tunities. Though decomposition planners have previously interleaved de-
compositions to make more efficient plans, they have relied on hand-crafted
rules annotated with interleaving points.

HOPPER improves upon these previous algorithms by using a least-
commitment decomposition strategy — generating the details of the plan
only when necessary. It fully decomposes the current part of the plan be-
ing executed, with future parts of the plan being increasingly less decom-
posed, more abstract, and less specified. HOPPER constantly makes and
verifies its predictions of future states. This allows it to detect unexpected
events, recover from disruptions, and to exploit opportunities by making
minimal changes to its plan. HOPPER takes advantage of opportunities
to shorten its plan by employing a novel algorithm that can interleave the
decompositions of completely unannotated decomposition rules.

HOPPERSs least-commitment decomposition strategy does not allow it
to prove plan correctness, but in an unpredictable domain it is not possible

to guarantee that a plan will be executed successfully anyway.
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1.6.3 TADPOLE learns complete rules and places a mini-

mal burden on the teacher

Previous attempts to learn decomposition rules have focused on learn-
ing and refining the preconditions of rules the agent was already familiar
with. The remaining algorithms for learning the structure of decompo-
sition rules have placed an unreasonable burden on the teacher, requiring
an inordinate amount of information such as plan traces and the complete,
annotated decomposition hierarchies used to generate them.

TADPOLE improves upon these previous algorithms by using its pre-
viously learned decomposition rules to parse and interpret a teachers demon-
strated lesson. TADPOLE reconstructs the decomposition hierarchy used
by the teacher from their unannotated plan, and then uses that decompo-
sition hierarchy to learn new decomposition rules. TADPOLE is able to
learn complete decomposition rules (including their tasks, goals, and pre-
conditions) from demonstrations consisting of nothing more than unan-
notated, atomic, sequences of states; greatly easing the burden placed on
the teacher.

1.7 Outline of the thesis

The rest of the thesis is organized as follows:

e Chapter 2 covers the related work that has been done on hierarchical
decomposing systems. Most previous systems have focused on ap-
plying decomposition rules and not on learning them. The chapter
focuses on Icarus and HTNs which exemplify the two extremes of
applying decomposition rules reactively and deliberatively.

e Chapter 3 describes the rule framework used by HOPPER and TAD-
POLE, and explains how decomposing tasks into sub-goals results

in more re-usable decomposition rules.
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e Chapter 4 describes HOPPER in detail. HOPPER applies decomposi-
tion rules to generate a partial goal-decomposition hierarchy. It mod-
ifies and adapts its plan to any unexpected events that arise, and it

interleaves parallel sub-plans to make its overall plan more efficient.

e Chapter 5 describes TADPOLE in detail. TADPOLE parses the demon-
strated lessons of a teacher, reconstructing a decomposition hierar-
chy that corresponds to the lesson. It uses the parsed lessons to refine

its rules and to learn new ones.

e Chapter 6 demonstrates HOPPER and TADPOLE in a kitchen and
a logistics domain. It gives examples of TADPOLE parsing com-
plex lessons and learning novel rules. It also shows HOPPER apply-
ing learned rules to achieve tasks despite unexpected and disruptive

events, and optimizing its plan by interleaving its sub-plans.

e Chapter 7 concludes the thesis and discusses avenues of future re-
search.



Chapter 2

Related Work on Decomposition
Systems

This chapter describes previous research on systems that use decompo-
sition rules (rules that specify how to break a problem down into sub-
problems) to achieve tasks in the HPD, and it discusses their limitations
and their relation to HOPPER and TADPOLE. The research on these sys-
tems is generally seen as (eventually) leading towards a Human-Level In-
telligence (HLI) system, an artificial intelligent agent that can duplicate the
competence and versatility that humans show in the same wide range of
domains.

There have been two approaches to creating an HLI system (or at least
one that is effective in the HPD): using humans as an explicit benchmark
in an attempt to model and predict human behaviour directly, and using
humans as an inspiration in an attempt to create a system that exhibits the
same range of cognitive abilities (this is the approach taken in the devel-
opment of HOPPER and TADPOLE).

The resulting systems fall into two further sub-types depending on
how they interact with the environment: completely reactive systems that
determine how to act without predicting future states at all, and com-

pletely deliberative systems that generate a complete plan of atomic ac-
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tions before executing it. Both of these extremes are problematic in the
HPD.

The performance of hierarchical decomposing systems critically de-
pends on the quality and quantity of the domain skill knowledge encoded
in their decomposition rules. The research done on such systems has fo-
cused on execution: how best to use already present (hand-crafted) rules
to achieve a variety of tasks. Research on learning the decomposition rules

has been limited.

Organization of the chapter

e Section 2.1 describes the ACT-R cognitive architecture. ACT-R uses
production rules to model human cognition, predicting the time, ac-
curacy, errors, and even the activity of different parts of the brain
during task execution.

e Section 2.2 describes HTNSs, a family of planning algorithms that use
decomposition rules as domain knowledge to constrain the search
for a classical plan (a sequence of atomic actions).

e Section 2.3 describes Icarus, a cognitive architecture that uses a re-
active decomposition strategy to achieve tasks in dynamic domains
using decomposition rules.

e Section 2.4 concludes the chapter by describing a number of miscel-
laneous systems related to HOPPER and TADPOLE.
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ACT-R (Adaptive control of thought-rational) is a cognitive architecture
used to model human cognition [2][5]. ACT-R makes neurally plausible
assumptions about how it (or something similar) could be implemented
in the human brain, and psychologically plausible assumptions about how
the model could be acquired.

The core of the ACT-R architecture are hierarchical production rules
similar to those used by HOPPER and TADPOLE. I developed the rules
used by HOPPER and TADPOLE independently of the rules used by ACT-
R, so it is noteworthy that the rules used by HOPPER and TADPOLE to
learn how to solve tasks in the human domain bear such a striking resem-

blance to the rules used by ACT-R to model human cognition.

2.1.1 ACT-R divides cognition into separate modules

The ACT-R architecture is divided into a number of independent modules
responsible for processing different kinds of information. These are the
perceptual module, the motor module, declarative memory module, and
goal module. Based on fMRI experiments, some of these modules have
been mapped to particular regions of the human brain.

The perceptual module is responsible for parsing raw input data into a
structured representation of the world, and the motor module is responsi-
ble for converting atomic actions to raw signals to the agent’s mechanical
effectors. The declarative memory module is responsible for storing and
retrieving the agent’s factual knowledge about the world, such as “2 + 3 =
5”7 and “France is a country”. The goal module is responsible for keeping
track of the agent’s goals and sub-goals throughout the execution of the
agent’s tasks.

These modules do most of the processing of their respective informa-
tion independently of each other, and deposit the result of their computa-
tion into their buffers. For example, the declarative memory module could
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store the currently most pertinent fact in its buffer, and the goal module
could store the most relevant and important goal that the agent is currently
working on achieving, and so on.

The entire system is integrated by a central repository of production
rules. Different production rules activate depending on the state of the
different buffers, and the active rules change the state of the modules de-
pending on what their effect is, which results in the buffers of the modified

modules being updated and activating new rules.

2.1.2 Production rules form the core of the ACT-R architec-

ture

An ACT-R production rule has a precondition that specifies what the con-
tents of the different buffers has to be for the rule to activate, and a pro-
duction that specifies how the different buffers will be modified when
the rule is activated. Although these rules are more general than those
used by HOPPER and TADPOLE, the rules that deal with how to achieve
goals have almost the same form: they decompose goals into sub-goals
and atomic actions (atomic actions modify the buffer of the motor module
and result in the agent generating effects in the world). In comparison, the
rules used by HOPPER and TADPOLE decompose tasks into sub-goals
and atomic actions. Chapter 3 explains why rules that decompose tasks
are more appropriate to the HPD than rules that decompose goals.

2.1.3 ACT-R predicts the results of human cognition

The ACT-R architecture has been used in a wide range of experiments to
model human cognition in solving different tasks. Both people and ACT-R
were given the same tasks to complete, and ACT-R was able to success-
fully predict the time it took humans to achieve the tasks, the speed-up
that occurred after people had practice solving the tasks and became more

proficient at them, the errors committed, and the accuracy with which the



CHAPTER 2. RELATED WORK ON DECOMPOSITION SYSTEMS 22

tasks were solved. These tasks included: solving the Tower of Hanoi prob-
lem [4], managing aircraft during wartime as an Anti-Air Warfare Coordi-
nator [5], solving algebra equations [3], reasoning about the spatial orien-
tation of blocks [9], reasoning about diagrams and maps [13], playing the
Rock-Paper-Scissors game [50], and reasoning about taxiing planes on a
runway [10].

Recently, ACT-R has been used in conjunction with fMRI scans of brain
activity to identify which parts of the brain correspond to ACT-R modules.
ACT-R was then able to predict which parts of the brain would activate
and for how long during the completion of the various tasks.

Although this research is promising it has only been applied to ex-
tremely limited and simplistic problem domains where the task to be achieved
is clearly defined and only the relevant information is presented to the
subject. It will be important to model human cognition with the ACT-R
architecture in more complex and realistic domains to ensure that it can

explain how humans can solve real-world tasks.

214 ACT-R achieves tasks reactively

ACT-R applies its production rules reactively — it chooses an applica-
ble rule and applies the production immediately with no look-ahead and
without predicting future states. This can be problematic because often
the way to achieve a goal is to achieve a number of sub-goals in a particu-
lar order. If a production rule for achieving such a goal posts its sub-goals
to the goal buffer and more than one of the sub-goals is achievable in the
current state, then ACT-R could end up achieving the sub-goals out of or-
der by simply selecting the first applicable production rule. For example,
when mixing with a blender one should first open the blender, pour in the
ingredients, close the blender, and only then turn it on. The sub-goal for
turning on the blender is achievable throughout this process but it is im-

portant that it is not achieved until all the rest of the sub-goals have been.
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ACT-R’s production rules need to be crafted carefully with the appropriate
preconditions to ensure that sub-goals are achieved in the correct order.

A more significant problem with reactively applying production rules
is the inability to interleave the execution of tasks. Section 2.3.3 describes
Icarus’ reactive rule application strategy, and it discusses this limitation in
more detail.

2.1.5 ACT-R estimates the utility of production rules

If multiple production rules are applicable at the same time, then ACT-R
selects the one with the highest utility to execute. The utility of a produc-
tion rule is its probability of successfully achieving its goal multiplied by
the importance of the goal minus the cost of the rule. Although this is a
useful way of selecting which rule to execute, it is not clear how to accu-
rately estimate the probability that a rule will successfully achieve its goal
nor the cost of the plan to achieve it.

ACT-R estimates the probability of success and the cost of a rule by
simply tallying up the number of times the rule successfully achieved its
goal and the number of time steps it took in the past. However, this mech-
anism does not take into account that the likelihood of the rule succeeding
and the cost of its execution heavily depends on the nature of the current
state. For example, making dinner may usually be very easy (high success
rate and low cost), but if critical ingredients are missing, forcing the agent
to go to the store to buy them, then both the likelihood of success and the
cost of the rule will change drastically.

The preconditions of the rules used by HOPPER are learned by TAD-
POLE (this is described in detail in Chapter 5). The preconditions are gen-
eralizations of the states in which their corresponding rules were success-
fully executed. The descriptions of the states in the domains that TAD-
POLE learns rules are very rich (Chapter 6 describes the domains that
HOPPER and TADPOLE have been evaluated in), and the preconditions
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themselves have rich descriptions. TADPOLE learns the preconditions for
different rules from different sets of demonstrated states, and the odds
that two preconditions will have rich descriptions that will match equally
well to the current state is remote. This means that HOPPER never has
to choose between equally applicable rules; one will always match better
than the others. However, estimating the utility of closely matching rules
would be an interesting extension of HOPPER that would be of particular
use with well-learned rules whose preconditions have been simplified and

trimmed of irrelevant details.

2.1.6 ACT-R learns how to speed up task achievement

As well as learning the utilities of different production rules through ex-
perience and reinforcement learning [19], ACT-R also compiles multiple
rules that it used to achieve a task into a single new production rule. This is
analogous to Soar’s chunking mechanism (section 2.4 covers this in more
detail), and it allows ACT-R to directly achieve the task with less cogni-
tive effort in the future [34]. However, this is a very limited method for
learning new production rules because it depends on the agent already
being able to solve the task in question. ACT-R has no way of learning

completely novel skills to solve completely novel tasks.

2.2 Hierarchical Task Networks

Hierarchical Task Networks (HTNs) [38] are a family of practical planning
systems that use decomposition rules to generate classical plans. HTNs
were first developed more than twenty years ago [51] with UMCP [14] be-
ing the first provably sound and complete HTN algorithm. Since then,
HTNs have been successfully applied to a wide range of practical do-
mains, and a number of variants of the basic HIN algorithm have been
developed to deal with the requirements of the various domains.
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2.2.1 HTNs store domain knowledge as decomposition rules

The domain knowledge of an HTN planner consists of a number of decom-
position rules, where each rule specifies how a procedure can be achieved
by achieving a sequence of sub-procedures. Usually a decomposition also
has a precondition specifying in what states it is applicable. For example,

a rule for delivering a package in a logistics domain could look like:

deliver-package(P, L1)
PRE: isPackage(P), atLocation(P, LO),
isLocation(L1), isTruck(T) —
move-truck(T,LO),
load-package(P,T),
move-truck(T,L1),
unload-package(P,T)

As well as decomposing into a sequence of sub-procedures, a procedure
can also be decomposed into a sequence of atomic actions (or into a se-

quence of both sub-procedures and atomic actions).

2.2.2 HTNsrecursively decompose procedures into sub-procedures

down to atomic actions

Rather than searching through atomic actions that achieve states like a
classical planner, the HTN planning algorithm searches for decomposi-
tions that achieve the main task and are applicable in the current state. It
then replaces the main task with the specified sequence of sub-procedures.
The algorithm continues to recursively find applicable decompositions for
achieving each sub-procedure, replacing it with the specified sequence of
sub-sub-procedures and so on until only atomic procedures are left that
are achievable with a single action. The algorithm stops decomposing
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when there are no more non-atomic procedures to achieve and the se-
quence of atomic goals can be converted directly into a sequence of atomic
actions. Depending on the specific kind of HTN, the algorithm may also
process the final sequence of atomic actions to resolve any conflicts, bind
variables, and so on.

A procedure can often be decomposed in several different ways by sev-
eral different decomposition rules, and it may be able to bind its variables
in different ways for each rule. Whether or not a decomposition rule is
applicable depends on whether or not its precondition is satisfied (or sat-
isfiable). If there are no applicable rules, then the algorithm backtracks to
an earlier choice point. If there are multiple applicable rules, then the algo-
rithm selects one and continues. If every choice ends up failing, then the

algorithm backtracks and selects another applicable decomposition rule.

2.2.3 A deliberative decomposition strategy requires pre-

dictable domains

It is important to note that a decomposition rule used by HTNs does not
specify the goal that will be satisfied nor the effects that will occur when
the rule is executed. The only thing that distinguishes one procedure or
sub-procedure from another is its label. An important consequence of such
decomposition rules is that the agent has to generate its entire plan before
executing it. This is because the agent does not even know what it is try-
ing to accomplish until the plan is complete. Because of this, HTNs have
to use a deliberative decomposition strategy and generate the entire plan
of atomic actions before executing them in the same way that a classical
planner does. This results in the same difficulties that classical planners

face in unpredictable domains described in Section 1.4.2.
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2.24 Ordered HTNs allow for more powerful preconditions

The SHOP algorithm [39] found that constraining the HTN search to de-
compose sub-procedures in the same order that they will later be executed
allows the use of more expressive preconditions — if procedures are de-
composed in the order they are executed, then all of their variables are al-
ready bound, and all of the variables of the sub-procedures are also bound.
In particular, this means that the atomic actions at the bottom of the de-
composition hierarchy also have all of their variables bound and so their
effects can be directly determined (the effects of atomic actions in HTNs
are specified in the same way as in classical planners), and the intermedi-
ate state corresponding to that stage of the planning process can be deter-
mined.

If the intermediate states are completely known, then sophisticated
preconditions and reasoning can be applied to those states. For example,
the procedure to get to some destination (e.g. to be at the airport as part
of the plan of going on a trip) can be achieved with decompositions for
walking there, calling a taxi, catching a bus and so on. Which of these de-
compositions is appropriate or even possible depends crucially on where
the agent will be at that stage of the plan. For example, if the agent will be
within walking distance of the airport, then it should walk; if it will have
enough money for a taxi, then it should call a taxi; otherwise if it will have

enough money for a bus, then it should take a bus to the airport:

getToDestination(X)

PRE: at(Y), walkingDistance(Y,X) —
Action: Walk(X)

PRE: at(Y), enoughMoneyForTaxi(Y,X) —
getToDestination(taxiStand), hailTaxi(T), getinVehicle(T),
giveDirections, exitVehicle(T)

PRE: at(Y), enoughMoneyForBus(Y,X) —
getToDestination(busStop), getinVehicle(B), exitVehicle(B)
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To determine which precondition and hence which decomposition rule is
applicable depends crucially on where the agent will be (location Y) and
how much money it will have at the time that it will execute this part of
the plan. This depends on both the initial state and on all the actions the
agent will have executed between then and the time the decomposition is
executed. The only way to determine all of the previous actions is to fully
decompose and bind all of the previous sub-procedures.

Though decomposing sub-procedures in order allows for powerful, ex-
pressive preconditions, the M-SHOP algorithm [40] found that the algo-
rithm was limited by not being able to interleave sub-procedures prop-
erly. For example, when achieving the task of getting two packages to
the same location in a logistics domain, the planner would return a sub-
optimal plan of picking up each package and dropping it off separately
rather than combining both activities into one shorter, more efficient plan
(pick up the first package, pick up the second package, go to the destina-
tion, and unload both packages at the same time).

M-SHOP and the later SHOP2 [41] are extensions of the in-order HTN
algorithm that resolve this problem. The sub-procedures of a decompo-
sition can be arranged in a partial-order, and the decompositions of co-
ordered sub-procedures could be interleaved to produce a more efficient
plan. To ensure that the interleaved sub-plans do not interfere with each
other, the preconditions of the sub-procedures of a decomposition can
be labeled as “protected” and “immediate”. Protected conditions cannot
be undone by subsequent sub-procedures until an operator explicitly re-
moves the protection (e.g. when picking up a package, the location of the
truck could be protected until the package has been loaded into the truck).
Immediate sub-procedures are executed immediately without doing any
interleaving (e.g. when picking up a package, the load sub-procedure
could be made immediate so that the package is loaded into the truck as

soon as the truck arrives).
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Although this approach does allow the planner to interleave the exe-
cution of sub-procedures, it depends on each decomposition being hand-

coded to specify how its sub-procedures can be interleaved.

2.2.5 HTNs have been successfully applied to a wide range

of practical domains

Because decomposition rules offer a powerful and intuitive framework
for encoding domain knowledge, Hierarchical Task Networks have seen
extensive real-world use. HTN systems have performed well in interna-
tional planning competitions [38] as well as being applied to a wide range
of practical domains. This includes planning the electronic and mechani-
cal design of microwave modules [21], planning the declarer play of con-
tract bridge [48], planning noncombatant evacuation operations (although
the goal decomposition had to be human-supervised) [36], the automated
composition of web services [52], evaluating terrorist threats, fighting for-

est fires, and controlling multiple UAVs (unmanned aerial vehicles) [37].

2.2.6 HTNs have been extended to non-deterministic do-

mains

Though most HTN applications have been in deterministic, fully observ-
able, and fully-controlled domains, there have been a number of exten-
sions where some of these constraints have been relaxed. The YoYo algo-
rithm [26][25] extended the classical planning model so that the result of
atomic actions could not be deterministically predicted (whether due to
random environmental influences or the actions of other agents). How-
ever, while the result of an atomic action was extended from a single pos-
sibility to a set, the set of possibilities was constrained to be a finite and
known set. HTNs have also been extended to partially observable domains
[27], but, again, the unknown variables in those states and their possible
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values had to be known in advance. Although these extensions made to
the HTN algorithm can handle this limited form of non-determinism, it
does not scale to a truly unpredictable domain where the set of possible
states following the execution of an action is unlimited and unknown.
The deliberative HTN decomposition strategy does not address the
wider issue that states predicted in a plan become more and more uncer-
tain the further they are in the future in any domain that is not completely
deterministic. This means that atomic actions planned for states in the dis-

tant future will almost certainly be invalidated before they are executed.

2.2.7 HOTRIDE repairs failed plans

HOTRIDE is another HTN planning system that addresses some of the
limitations of classical planners in non-deterministic domains. It uses SHOP
to generate plans, but is then able to respond to unexpected disruptive
events during the execution of a plan [7]. If an atomic action fails (because
of an unexpected event), then HOTRIDE is able to repair the existing plan
without the need of replanning completely from scratch.

When generating the initial plan, HOTRiDE keeps track of not only the
sequence of atomic actions to be executed, but also the task decomposition
hierarchy used to derive the plan. It also keeps track of the causal links be-
tween nodes in the graph. An atomic node in the decomposition hierarchy
may be causally linked with a node in future parts of the hierarchy if the
effects of the operator are not disjoint from the precondition of the task
of the other node. These causal links are useful for determining which
parts of the plan are affected by the failure of an atomic operator, allowing
HOTRIDE to repair only the affected parts of the plan and preserving the
rest.

When an atomic action fails, HOTRiDE searches for the actions mini-
mal failed parent task (the task is marked as failed — its precondition is

not satisfied — but its parent task is not marked as failed) and uses SHOP
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to replan to achieve this failed task. HOTRIiDE then considers the causal
links of the plan. If any no longer hold, then HOTRiDE uses SHOP to re-
plan the future nodes of the decomposition hierarchy until all the causal
links of the plan are valid. If this is not possible, then HOTRiDE recur-
sively tries to replan the next highest node above the failed task. After the
plan is repaired, HOTRiDE the continues executing it.

HOTRIiDE’s most significant limitation is caused by HOTRiDE’s insis-
tence on generating the entire plan before executing it. This forces HOTRiDE
to consider all of the causal connections between earlier parts of the plan
with later parts. This becomes particularly problematic when for exten-
sive plans such as planning a trip overseas which can involve many thou-
sands of atomic actions. The atomic actions generated (and re-generated
for plan failures) in the future parts of the plan constitute wasted effort
because most of them are unlikely to hold when it actually comes time to
execute them. For example, when planning an overseas trip, its a waste
of time planning to get on a bus after getting off a plane at your overseas
destination, because you may end up being forced to take a taxi instead.

Because HTNs do not keep track of goals at a lower level than the top
goal and they do not keep track of tasks at a higher level than the atomic
operators, HOTRiDE has no way of knowing what it is trying to achieve in
any part of the plan nor what the likely effects will be of achieving it. This
forces it to deal with unexpected events at the atomic level of the plan.
However, it may be too late to effectively deal with an unexpected dis-
ruption when a particular atomic action fails. For example, if your plane
has been canceled, then you should immediately alter your travel plans,
rather than waiting for the non-existent plane and then having the atomic
action of boarding the plane fail.

Finally, HOTRiDE only addresses the issue of unexpected atomic dis-
ruptions to a plan. It does not handle the more subtle problem of detecting
and exploiting unexpected opportunities — opportunities to significantly
reduce the length of a plan.
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HOPPER addresses these shortcomings by not decomposing the entire
plan before beginning to execute it (chapter 4). This strategy of decompo-
sition by least-commitment is more appropriate for long-term plans whose
future parts are difficult to determine precisely in advance. HOPPER de-
tects unexpected events by failed predictions rather than failed operators.
This combined with keeping track of the sub-goals it is trying to achieve
and the effects of sub-tasks it is executing, allows HOPPER to redecom-
pose the affected parts of the plan and handle unexpected disruptions
before they become operator failures. This also allows it to exploit un-
expected opportunities.

2.2.8 There has been relatively little research into learning

HTN decomposition rules

In the majority of HTN systems, the decomposition rules that were used
were handcrafted to suit the problem domain. Though the decomposition
rules proved to be a powerful and intuitive method for encoding useful
and versatile domain knowledge, there has been a lot less research focused
on the problem of learning the decomposition rules autonomously. The re-
search on learning HTN decomposition rules has focused only on learning
the preconditions of HTN decomposition rules, while still relying on their
structure to be hand-crafted.

CaMeL [24] and CaMeL++ [23] are HTN systems that have been de-
veloped to learn parts of decomposition rules. However, both of these
systems are quite limited in scope. They require substantial input and
prior knowledge and only learn and refine the preconditions of decompo-
sition rules and not the rules themselves. Specifically the input includes
knowledge of all tasks and decomposition rules and complete demonstra-
tion traces of various problems being solved (by an expert). Each decom-
position trace specifies how and in what state each procedure and sub-

procedure was decomposed. This is an unreasonable amount of informa-
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tion to expect from a teacher. The algorithms were also tested in domains
with states that had a limited number of objects. It is unclear whether the
candidate elimination algorithm they use would scale to rich and complex

domains with a large number of objects.

2.3 Icarus

Icarus [31] is a cognitive architecture that uses decomposition rules to
achieve tasks in dynamic domains. It has successfully been applied to
a range of domains including blocks world, in-city driving, multi-column

subtraction, and the towers of Hanoi [32].

2.3.1 Icarus uses a concept hierarchy

Icarus organizes concepts into a hierarchy with primitive concepts defined
in terms of perceptual information and more complex concepts defined
in terms of simpler concepts. Every time that Icarus receives low level
perceptual information it constructs a representation of the current state
of the world from this input. The current state representation includes
higher level concepts that it infers from the primitive perceptual input.
Icarus then uses this more abstract state representation to check whether
or not its goals have been satisfied, to verify that preconditions hold for
its rules, and so on. Icarus’ concept hierarchy does some of the work that
HOPPER and TADPOLE assume is done by the vision system.

2.3.2 Icarus achieves goals with hierarchical skills

As well as having a concept hierarchy, Icarus” domain knowledge includes
a hierarchy of decomposition rules it calls “skills”. A skill is a method
for achieving a goal given a precondition, and it can be either primitive

or compound. A primitive skill specifies one or more actions that, when
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executed in order, will achieve the specified goal (given that the precondi-
tion holds before execution). A compound skill specifies one or more sub-
goals or primitive skills that, when satisfied, will achieve its main goal
(given that the precondition holds before execution). A compound skill
may be decomposed into an ordered or unordered set of sub-goals, which
Icarus treats differently during execution (see below). Skills may also have
an expected value function that represents the utility expected if the skill
is executed, and Icarus can learn this expected utility with reinforcement
learning [46].

An example of a compound skill for achieving the goal of having a
block be clear (not have any block stacked on top of it) in the Blocks World

domain could be:

(clear (A)
PRE: isBlock(A), isBlock(B), on(B,A), hand-empty —
achieve unstackable(B),
unstack(B)

The skill is applicable if there’s a block (B) on top of the block that is to be
clear (block A). To execute the skill, the agent should first achieve the sub-
goal of having block B be unstackable. This means that block B is clear and
the agent’s hand is empty. Then the agent should execute the primitive
skill of unstacking block B from A. If there are multiple blocks on top of
block B, then achieving the sub-goal of having block B be unstackable will
involve a recursive use of the clear skill to clear block B (by unstacking the
block above it), and so on for every block above B. In this way, Icarus can
use a single rule to unstack an indefinite number of blocks above block A.
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2.3.3 Icarus uses its skill set reactively

As well as having long term domain knowledge that includes all of its de-
composition rules, Icarus also maintains a short-term memory for more
temporary knowledge. Included in this short-term memory is a set of
skills currently under consideration for the task(s) at hand. If this set is
empty, then Icarus goes through its entire set of skill knowledge, finds a
skill that solves a goal it has and whose precondition is satisfied, and then
adds this skill to the set of skills to be considered.

Icarus operates in cycles. It receives perceptual information, processes
it and infers which higher level concepts hold, selects an appropriate skill
to execute to achieve its goal(s), and returns the appropriate action. In each
cycle Icarus finds an applicable skill (one whose precondition is satisfied
and whose effect is not) from the set of skills to be considered and if it is
primitive then it executes the corresponding primitive action(s), otherwise
it decomposes the skill into sub-skills, adds them to the short-term mem-
ory of skills to be considered, and then considers each of these sub-skills.
If the sub-skills are unordered, then out of the applicable ones Icarus se-
lects the one whose expected value function gives the highest result; if the
sub-skills are ordered, then Icarus selects the last applicable sub-skill (the
rationale being that later sub-skills are closer to the parent skill’s effects
and should be preferred to earlier sub-skills). After selecting a sub-skill,
Icarus decomposes it and recursively continues selecting sub-sub-skills

until reaching a primitive skill and returning the appropriate action(s).

2.3.4 A reactive decomposition strategy has difficulty fo-

cusing on a single goal

A reactive decomposition strategy has the problem that if multiple goals
(or sub-goals) are equally achievable in the current state, then there is no
guarantee that the same goal (or sub-goal) will be focused on from one cy-
cle to the next. An extreme example of this problem is when there are two
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goals (or sub-goals) the agent is trying to achieve and it tries to achieve one
goal for several cycles (by decomposing the appropriate skill and return-
ing the appropriate action), and then it reactively switches to achieving the
other goal for the next couple of cycles (possibly undoing any progress it
had made with the first goal). It could then continue flipping between the
two goals every couple of cycles and, like Buridan’s donkey!, not make
any progress with either goal.

To get around this problem, Icarus uses a persistence parameter that
can be used to bias its decomposition strategy [12]. When it is zero the
decomposition strategy is completely reactive. The higher the persistence
factor the more likely Icarus is to select the same skills and sub-skills it did
in the previous cycle.

2.3.5 A reactive decomposition strategy depends on accu-

rate rule preconditions

A reactive decomposition strategy decomposes sub-skills whose precon-
ditions are satisfied in the current state. For many tasks, it is important
that their sub-goals are satisfied in a particular order. To ensure this, the
preconditions of the sub-skills have to specify when each sub-skill is inap-
plicable.

Requiring accurate preconditions for ordered decompositions makes
the decomposition rules very difficult to learn. The agent has to know the
exact rationale why each sub-goal should be achieved and in what order.
If the agent learns incorrect preconditions for the rules, then it will execute
the sub-goals in the wrong order and likely not achieve the main goal at
all.

This problem is exacerbated if the task involves hidden properties —
properties of the world that are not directly observable, that are important

The hypothetical donkey that starved to death by not being able to decide between
two equally sized stacks of hay.
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to the successful completion of the task, and that are altered throughout
the execution of the task’s sub-skills. An example of such a property is
whether or not a door is locked. In domains with hidden properties, the
agent has to have comprehensive knowledge of the current state of the
world and also of the physics of the world — what the important proper-
ties of the state are and what effects changing them will have.

In order for a reactive decomposition strategy to execute a task’s sub-
skills in the appropriate order, the agent has to know the reason for the
ordering, why some sub-skills should be executed only after earlier sub-
goals have been achieved. These reasons have to be encoded in the appro-
priate preconditions.

It is also clear that humans do not behave in this way. Humans will
often learn sub-optimal, ritualistic behaviour, achieving a task in a partic-
ular, specified order for no rationale other than it has always been done
that way.

2.3.6 A reactive decomposition strategy has difficulty opti-

mizing plans through interleaving

An important way that a hierarchical decomposing system can optimize
its plans is by interleaving the execution of one skill with the execution
of another. If the agent can achieve the sub-goals of two (or more) differ-
ent skills at the same time in parallel, then the agent will save time and
effort, sometimes a great deal of time and effort depending on how high
the shared sub-goal is in the decomposition hierarchy. For example, in a
logistics domain, if the agent is tasked with delivering two packages from
the same location to the same destination, then it should interleave the ex-
ecution of the skills used to achieve these two goals and load and unload
both packages into the same truck at the same time, rather than making a
separate trip for each package.

However, interleaving the execution of separate skills is not trivial. The
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sub-skills for achieving the sub-goals of different skills will often interfere
with each other and undo their effects. Only when they are executed in a
particular order will the interleaving successfully achieve all of the requi-
site goals. A persistence factor that causes the agent to switch with some
random probability from the execution of one skill to another is too crude
a mechanism to ensure that the appropriate sub-skills are executed in the

correct order.

2.3.7 Icarus can achieve goals without applicable skills

In cases where there is no applicable skill to achieve a goal, Icarus uses
means end analysis to achieve it [33]. During each cycle, when Icarus de-
composes skills into sub-skills, it treats the heads of the skills as goals,
sub-goals, sub-sub-goals, and so on, finally bottoming out at the atomic
action that Icarus returns. This decomposition path from the top goal to
atomic actions forms a goal stack. If a goal has no applicable skill then

Icarus attempts to satisfy it in several different ways:

e Icarus selects any skill that achieves the goal and that does not clob-
ber any of the goals achieved earlier in the goal stack.

e Icarus uses a default decomposition rule that decomposes the goal
into a number of sub-goals for achieving the sub-concepts (see sec-
tion 2.3.1) of the goal.

e Icarus looks for a primitive skill that achieves the goal but whose
precondition (a single start condition) is unsatisfied. It then posts

the precondition as a new goal to be achieved.

As soon as this process finds an appropriate action, Icarus immediately
executes it. This means that Icarus” means end analysis does not backtrack
which can be problematic because it can lead the agent into difficulties,
especially if the agent can do un-undoable actions. However, if the agent
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successfully achieves the goal, then Icarus can learn new decomposition
rules from its plan.

2.3.8 Icarus learns new decomposition rules from success-

ful plans

If Icarus manages to successfully achieve a goal using means end analysis,
then it records the plan in a new skill decomposition rule:

e If Icarus achieved the goal by first achieving the precondition of a
primitive skill, then Icarus learns a new skill whose head is the orig-
inal goal and whose ordered sub-skills are the precondition and the
primitive skill used to achieve the original goal. The precondition of
this skill is the same as the precondition of the skill used to achieve
the precondition.

o IfIcarus decomposed the goal into a sequence of sub-goals for achiev-
ing the sub-concepts of the goal, then Icarus learns a new skill whose
head is the original goal and whose sub-skills are an ordered list of
the skills used to achieve the sub-concepts of the goal (the ordered
sub-skills have a number of cumbersome guard conditions associ-
ated with them to try to make sure that they are achieved in the right
order and not in reverse order as described in Section 2.3.3). The pre-
condition of this skill is simply the sub-concepts of the goal that were
true when Icarus first tried to achieve it.

Clearly, this skill learning is very limited. The first method for extending
Icarus’ skill set does make the skill for achieving the goal more general and
makes it applicable in a new situation, but it depends on the precondition
having only a single condition that is unsatisfied and the skill that achieves
it has to be primitive.

The second method critically depends on the goal being achievable
simply by achieving all of the sub-concepts of the goal. However, most
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goals cannot be achieved in this way. For example, when making a cup of
tea you have to boil water in a kettle, but the sub-goal of having a kettle of
boiling water is in no way a sub-concept of the concept of a cup of tea.
Because Icarus’ goals and skills and HTNs' tasks and methods are very
similar, this method for learning skill decompositions has also been ap-

plied to learning HTN procedures [42].

2.3.9 Icarus can learn skills from flat reactive rules

There has also been some research into learning Icarus decomposition
rules from the observation of the behaviour of other agents [22]. The input
consists of sequences of states and the actions that the other agent took in
those states. The algorithm ignores the order of the demonstrated states
and generates a set of state-action pairs. From this set of state-action pairs,
the CN2 algorithm is used to induce a set of flat, reactive rules.

Given a set of reactive rules of the form (sy, s2, ...s,,) — a1 where s, rep-
resents a state condition and a,, represents an atomic action, the algorithm
induces several decision trees by promoting shared preconditions. For ex-
ample, given the rules (s1,s2) — a1 and (s2, S3) — ag, this method would
promote the shared precondition s, into a parent node. Icarus decompo-
sition rules were then handcrafted from these decision trees (though this
could have been automated).

There are a number of limitations of this method of learning decom-
position rules. The most significant one is that it ignores the order that
the actions were executed in. However, in the HPD, the order that ac-
tions are executed in is almost always critically important. Furthermore,
if one already has a complete set of reactive rules that effectively achieve
the agent’s tasks, then there is no point in learning equivalent hierarchical
rules. If the rules are incomplete or ineffective, then the learned hierarchi-
cal rules will be as well.
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2.4 Miscellaneous systems

The systems discussed in this section are less relevant but they have some
notable features either in the planning or learning aspects of their algo-
rithms that are related to HOPPER and TADPOLE.

2.4.1 Teleo-reactive agents use production rules to execute

continuous actions

Teleo-reactive agents [43] are noteworthy because they are based on con-
cepts from control theory and they use decomposition rules to generate
and maintain the execution of continuous actions.

Later teleo-reactive agents were extended to be able to form teleo-reactive
plans with STRIPS-like action-effect rules to achieve tasks for which they
did not have appropriate rules [8]. These plans could be hierarchical by
making use of macro-operators for achieving sub-goals. However, a hu-
man designer had to identify which sub-goals the planner should try to
solve and store as macro-operators for use in the higher-level plan.

Another extension was the ability to learn the STRIPS-like action-effect
rules from observations of the effects various atomic actions had on the
environment. Using positive examples of a continuous action resulting in
some effect and negative examples of the same action not producing the
effect, the agent learned a disjunctive normal form of the predicates that
form the precondition of the action-effect rule. Although the agent was
able to learn action-effect rules in this way in very simple and limited do-
mains, it is unlikely that this method would scale to a rich domain with
many objects, properties, and relationships. This method is also not ap-
propriate for learning higher-level decomposition rules for more complex
tasks.
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2.4.2 Soar is a cognitive architecture whose inherent learn-

ing mechanism is limited

Soar is a cognitive architecture that has been in development for a long
time [29] and which has seen extensive use in modeling human cognition.
Soar achieves tasks by making use of its central knowledge base which
consists of production rules. When applicable production rules fire, they
propose operators that either modify Soar’s internal state or cause the sys-
tem to execute an external action. If there are multiple possible proposed
operators, an impasse occurs. This causes Soar to post a new sub-goal
of resolving the impasse. It achieves this sub-goal in the normal way by
finding and firing applicable production rules.

After resolving an impasse, Soar learns a new production rule whose
precondition consists of what was true when the impasse occurred and
whose effect is the resolution of the impasse. This process of storing the
solution to an impasse in a production rule is known as “chunking”. The
next time Soar finds itself in a similar situation, no impasse will occur
because the new rule will automatically fire and resolve it immediately.
Although chunking will speed up the rate at which Soar achieves goals
over time, it depends on Soar being able to achieve the impasse sub-goal
in the first place. The chunking learning mechanism does not allow Soar
to learn how to solve completely novel tasks.

Since its inception, Soar has undergone a number of extensions [28]
including a mechanism for reinforcement learning. Although this mech-
anism allows Soar to tune the numerical preferences of operator selection
rules from experience and so to learn to select the appropriate operator
when multiple are applicable, it does not allow it to learn how to achieve
novel tasks.

Properly hand-crafted production rules can allow Soar to solve a wide
variety of tasks in a range of different domains. However, the issue of

learning how to achieve novel tasks has not been unaddressed.



CHAPTER 2. RELATED WORK ON DECOMPOSITION SYSTEMS 43

2.4.3 NOAH is a decomposition system that uses critics to

resolve sub-task interactions

NOAH [45] is a very early decomposition system that, similarly to HTNS,
decomposes completely and generates the whole plan before it begins exe-
cution. It repeatedly applies its hand-crafted decomposition rules to grad-
ually deepen its hierarchy and produce the next (lower) level of abstrac-
tion.

At each level of abstraction, NOAH makes use of critics to identify
and resolve conflicts between the sub-tasks in the plan. An example of
a conflict is if the effect of one sub-task negates the precondition of an-
other, and NOAH would resolve this conflict by enforcing an ordering
constraint on these sub-tasks to ensure that the precondition-negating sub-
task was executed later. As well as general critics, NOAH also makes
use of hand-crafted critics to resolve additional, domain-specific problems
with its plans as they become apparent. For example, plans that instruct
a human apprentice how to perform hardware maintenance have to take
into account the fact that a human only has two hands and can only be in
one place at a time.

A noteworthy aspect of NOAH is that it was designed to interact with
people as a Computer-Based Consultant and provide assistance to hu-
mans doing hardware maintenance. It was useful not only in generating
a plan for complex cases, but it could also present parts of the plan at dif-
ferent levels of abstraction depending on how confident the user was in
achieving a given sub-task. Even more interestingly, if the user was curi-
ous, NOAH could provide the reason and motivation for achieving a par-
ticular sub-task. This highlights the fact that hierarchical decomposition
rules are very comprehensible to people.
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244 PRODIGY experiments to determine why its opera-

tors failed

PRODIGY is planning system that uses declarative operators to encodes
its domain knowledge. It uses an operator refinement method to acquire
new preconditions and postconditions for an operator when it observes
unexpected effects after applying the operator [11].

If all the preconditions of an operator were satisfied but a postcondi-
tion of the operator does not apply after the operator was executed, then
one of the properties of the current state that differs from the last time the
operator was successfully executed must be an additional precondition of
the operator. Similarly, if a precondition of an operator is unexpectedly un-
done since the last time the consistency of the plan was checked, then one
of the previous operators must have an additional postcondition negating
the precondition.

The system hypothesizes which state property or operator is responsi-
ble for the failure and devises experiments to verify its hypothesis. If its
hypothesis is correct, then the system refines its operators and re-plans as
needed.

This approach is useful for identifying hidden relationships between
atomic operators, but it fundamentally depends on a deterministic model
of the world. It cannot distinguish between unexpected events that occur
because the domain knowledge was wrong or incomplete and those that
occurred because of an unpredictable, random event. It would be inter-
esting to extend this approach to verifying and refining the preconditions
and effects of high-level decomposition rules. However, identifying which
sub-task(s) or sub-sub-task(s) in a decomposition’s sub-hierarchy have in-
correct pre- or post-conditions is a much more challenging problem than

refining completely atomic operators.
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2.4.5 X-Learn extends its knowledge by solving increasingly

difficult problems

X-Learn encodes its domain knowledge in the form of d-rules — rules
that decompose goals into sub-goals [44]. This is similar to HOPPER and
TADPOLE whose rules decompose tasks into sub-goals (this rule repre-
sentation is described in chapter 3). X-Learn extends its rule set by solving
increasingly difficult problems presented by the teacher.

The teacher begins with simple problems that can be solved by a short
sequence of atomic actions. X-Learn searches for a solution to these prob-
lems by an iterative-deepening, depth-first search. After finding a se-
quence of operators that solves the problem, X-Learn learns a new d-rule
whose goal is the problem to be solved, whose sub-goals are the opera-
tors it applied, and whose precondition is the initial state the problem was
presented in. Because the newly learned d-rule has a precondition and it
can be executed (by achieving its sub-goals) to produce an effect, X-Learn
can make use of it in its forward-chaining, iterative-deepening, depth-first
search to solve other, more complex problems. After solving this more
complex problem, X-Learn again learns a new d-rule whose sub-goals are
the operators it used. These operators may include previously learned
d-rules. In this way, X-Learn gradually learns increasingly more abstract
d-rules by using simpler d-rules to solve more complex problems.

This approach to extending X-Learns domain knowledge balances the
burden of learning between the learner and the teacher. Requiring com-
plete solutions to problems including a full plan trace places too high a
burden on the teacher. On the other hand, giving no feedback to the
learner and expecting it to learn everything by itself makes the learning
problem too hard and unreasonable (even humans do much of their learn-
ing from teachers).

The fundamental limitation of X-Learns learning algorithm is that it

can only learn search-control heuristics. Because the teacher only presents
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problems to solve, the only information that can be gleaned from this is
how operators can be grouped together to achieve sub-goals of higher-
level goals. This is very useful for improving the efficiency of the planner,
but it is insufficient for solving previously unsolvable problems. Every
problem that X-Learn learns to solve can be solved (at least in principle)
by searching for a sequence of atomic operators. This means that all of
the domain knowledge for solving every kind of problem in every kind
of state has to be encoded in the atomic operators that X-Learn takes for
granted. If it lacks the domain knowledge to solve a given problem, there
is no way for it to learn that knowledge; it can only learn to solve problems
faster. This is akin to Soars chunking mechanism.

Because all of the side-effects of X-Learns d-rules are not specified,
while planning, it has to decompose down to the atomic operators to de-
termine what the effect of achieving the goal of a d-rule would be. This
leads to the same brittle plans of atomic actions that plague classical plan-
ners in non-deterministic domains as described in chapter 1.

TADPOLE also learns from a structured lesson plan presented by a
teacher; however, it receives complementary information: a sequence of
states demonstrated by the teacher. TADPOLE has to infer what the prob-
lem being solved is. Because of this, it can learn useful rules for mimicking
the teacher without always knowing the rationale for every atomic action
(for example, it can learn that it should plug in a kettle to boil water with-
out understanding how electricity works). TADPOLE also refines its oper-
ators and decomposition rules from experience, starting with incomplete
and incorrect domain knowledge and gradually improving it over time
(chapter 5 describes TADPOLE in more detail).
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2.4.6 OBSERVER interleaves planning and learning of op-

erators

OBSERVER learns the preconditions and effects of atomic operators from
positive and negative examples. It can make use of these learned atomic
operators when they are still imperfectly learned, being able to repair
plans that fail due to incorrect operators [49].

OBSERVER uses a variant of the version space algorithm [35] to learn
the preconditions of its operators. It maintains a most-specialized repre-
sentation of the preconditions and a most-generalized representation that
is consistent with the positive and negative examples it has seen for that
operator. OBSERVER generalizes its most-specialized representation from
positive examples of the operator being applied and it specializes its most-
generalized representation from near-miss negative examples (the exam-
ple differs by only one literal). The most-specialized and most-generalized
representations eventually converge on the correct precondition.

However, it can take a lot of examples for the most-specialized and
most-generalized representations to converge. Nevertheless, OBSERVER
makes use of operators as soon as it has begun to learn about them. It uses
the radical strategy of planning using the most-general precondition of
the operator. Although this makes it likely that the plan will fail because
of missing preconditions for various operators, it also gives OBSERVER
opportunities to refine its domain knowledge.

When an operator fails to apply, OBSERVER tries to repair its plan. It
repeatedly selects literals in the most-specialized precondition of the oper-
ator that are not in the most-generalized precondition and tries to achieve
them to make the operator applicable again. If this fails to make the oper-
ator applicable, OBSERVER then hypothesizes negated preconditions that
need to be achieved, and if this also fails, it tries a different operator for
achieving the effects the original operator was trying to achieve.

Although this algorithm has been applied to atomic actions only, it
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would be interesting to extend it to learning the preconditions of TAD-
POLE’s decomposition rules. Each rule would maintain both a most-specialized
and most-generalized precondition, and when planning, HOPPER would
use the most-generalized precondition to select applicable rules.

However applying this algorithm to learning preconditions for high-
level decomposition rules introduces a number of challenges. When an
atomic operator fails, it has little to no effect on the world. When a high-
level decomposition rule is applied in an inappropriate state, then many
actions may be executed by the agent before the failure becomes evident.
Repairing a plan after many inappropriate actions have been executed
may be difficult or even impossible. Another, problem is that the pre-
condition of a rule may indicate not only whether a rule is applicable but
also whether it is appropriate. It may be possible to execute a rule in a
different state, but it may be so inefficient as to be impractical. General-
izing a precondition just because the rule is applicable in a different state
without considering how efficient the decomposition is is too simplistic an
approach when dealing with high-level decomposition rules.

2.4.7 LIVE learns operators from state changes

LIVE is a system that learns the preconditions and effects of prediction
rules from examples of the operator being applied [47]. A prediction rule
is effectively an operator or atomic action that LIVE uses to find plans to
achieve goals. However, because the prediction rules are learned, they can
be incomplete, leading to plan failure. In such cases, LIVE uses its explo-
ration and experimentation modules to refine its operator knowledge.

If LIVE is unable to find a plan, then it activates its exploration mod-
ule so that it can try various atomic actions to learn about their effects. It
focuses on actions that it knows have some effects related to the goal in
some way and on anomalous actions that apparently have no effect. If

planning produces errors such as regression loop (the same sub-goal is re-
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peatedly proposed) or regression deadlock (the proposed atomic actions
conflict with each other resulting in no feasible plan) then this is an indica-
tion that some of the specific operators are incorrect. In such cases, LIVE
uses its experimentation module to generate experiments for refining the
faulty operators.

When learning a new operator, LIVE takes the difference between two
states — one before the operator was applied and the one immediately
following and notes what has changed. It gives more weight and attention
to changes that it deems relevant — those that are closely related to the
learner and to the goal objects. The additions and deletions become the
operators effects, and their negation becomes the operators precondition.
Clearly such a rule is overly general, but LIVE subsequently refines it after
subsequent examples using complementary discrimination learning.

LIVE is also capable of learning new concepts using predefined rela-
tions between percepts. If an operator has different effects in two states
that seem to be the same, then LIVE searches for relationships between
predicates in the percept that can explain the difference. For example, it
can learn the concept of bigger than using its > relation and the predicates
size(x, 3), size(y, 2).

LIVE has two main limitations. The first is that it assumes a purely
deterministic world. The rule refining mechanism assumes that any unex-
pected events or noisy observations are caused by the operator being ex-
ecuted. The second limitation is that LIVE does not learn any search con-
trol knowledge or heuristics to make difficult planning problems tractable.
This has kept LIVE restricted to simple, toy domains.

TADPOLE takes a similar approach to learning the tasks of its de-
composition rules in that it uses the difference between earlier and later
states to determine object relevance (chapter 5). However, it also main-
tains a count of how many times each property and relationship in its ob-
ject graph occurred in the examples it observed. This makes the learned
rules robust against non-determinism and noisy observations. TADPOLE
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is also focused on learning hierarchical goal-decomposition rules as well
as atomic operators. This greatly improves the efficiency of HOPPERs
planning (chapter 4).

2.4.8 ARMS uses a weighted MAX-SAT solver to learn ac-

tion models from observed plans

ARMS is another system that learns atomic action models from observed
example plans [53]. It reinterprets the plans as a disjunctive set of conjunc-
tive boolean constraints weighted by their importance. ARMS then uses
a weighted MAX-SAT solver to find the maximum weighted number of
clauses that can be satisfied. It derives the action models from the solution
of this weighted propositional satisfiability problem.

The system first converts the instantiated actions observed in the plans
into actions parameterized by variables of the same type. It then builds
the action and plan constraints, converts them into clauses and associates
them with weights depending on how important they are.

The generated constraints are: the intersection of the precondition and
add lists of all actions must be empty, the deletions of all actions must be
in their precondition, observed intermediate predicates in the plan must
be in the add list of one of the preceding actions and it must not be in
the deletions of the action immediately preceding it, every precondition
of every action must be in the add list of a previous action and not in the
delete list of any action in-between, and at least one predicate in the effect
of every action must be in the precondition of a subsequent action. The
final constraint defines possible preconditions for predicates that tend to
occur frequently before a particular action. The weight of this constraint is
determined by how frequently the predicate occurs in the state just before
the action is executed.

Although a system like ARMS could be used to learn the preconditions
and effects of tasks learned by TADPOLE, in practice this would be diffi-



CHAPTER 2. RELATED WORK ON DECOMPOSITION SYSTEMS 51

cult because ARMS approach is antithetical to TADPOLEs.

The ARMS system requires a large number of examples, while TAD-
POLE is designed to learn useable decomposition rules immediately from
a bare minimum of examples. This problem is exacerbated for tasks of
higher-level decomposition rules because the more abstract a decomposi-
tion rule is, the fewer examples of it being executed will be presented to
the agent.

Furthermore, ARMS constraints are too strong for an agent without a
complete understanding of the domain. For example, one constraint re-
quires that at least one effect of an action be in the precondition of a sub-
sequent action (to ensure that the action is actually useful for something).
However, for an agent with no understanding of electricity, this constraint
would be violated by a plan involving flipping an electrical switch which
has no visible effect other than changing the position of the switch itself.
TADPOLE is designed to elucidate what the teacher was trying to achieve
at each part of the plan without requiring the agent to understand exactly
how the teacher achieved it.

249 Gap Solver

Gap Solver is an algorithm that is most closely related to TADPOLE and
was developed concurrently with it [20]. It is a learning algorithm for
learning new HTN methods and extending the domain coverage of HTN
planners.

Standard HTN planners do not include preconditions of atomic opera-
tors and do not have goals describing what each method tries to achieve.
This means that an HTN planner has no way of determining plan cor-
rectness, and it must rely on its decomposition rules to ensure that the
generated plans are correct. However, this stringent requirement makes
the rules prohibitively difficult to learn. To get around this difficulty, Gap
Solver extends the standard HTN representation to include preconditions
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on atomic operators and goals on methods. Because of these extensions to
the standard HTN representation, a modified HTN planner can determine
whether the plan it generated is correct and, if it is not, backtrack and try
alternative methods or bindings. This flexibility in planning means that
the planner no longer relies on perfectly crafted method rules, and Gap
Solver can get away with learning minimal method preconditions (just
enough to bind all of the variables in the method decomposition).

Gap Solver learns new method rules from demonstrated lessons of a
teacher where each lesson consists of a goal the teacher achieved and the
sequence of atomic actions that achieved it. Gap Solver does a top-down
and a bottom-up parse simultaneously, and then fills any gaps between
the top-down and bottom-up parses with newly learned methods. The
top-down parse is just the resulting decomposition hierarchies of a back-
tracking HTN planner (as much as it is able to generate with its current
rule set). The bottom-up parse results from applying inverted methods —
rules for composing sub-tasks into a super-task which inherit the precon-
dition of the inverted method. It is unclear whether this kind of search
scales well (Gap Solver has only been partially implemented so this ques-
tion remains unresolved). The top-down planner backtracks resulting in
multiple top-down decomposition hierarchies. The bottom-up parser also
results in multiple bottom-up hierarchies. Potentially, this may result in a
large number of candidate combined hierarchies. Selecting the best can-
didate (the one which will result in the most reusable learned methods)
is an important part of the algorithm, but this has only been partially ad-
dressed. Gap Solver currently uses only one heuristic: preferring candi-
dates whose newly learned methods have more primitive tasks included
in their method decompositions. After selecting a candidate decomposi-
tion hierarchy, Gap Solver uses explanation based generalization to learn
the minimal preconditions of the new methods. Finally, it normalizes the
learned methods, changing the common constants into variables.

It is not clear whether a backtracking HTN planner using minimalist
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rules will scale. One of the driving motivations behind HTNs was to im-
prove upon the inefficiency of classical planners by using domain-specific
decomposition rules encoding search control knowledge. Using only min-
imal decomposition rules results in a loss of much of the search control
knowledge. For any goal or sub-goal there may be multiple methods for
achieving it most of which are not appropriate in the current state. Mini-
malist rules that do not guide the planner in the selection of appropriate
methods force the planner to backtrack to try alternate methods and bind-
ings. It remains to be seen whether this is tractable in rich domains.

Another important limitation of Gap Solver is that it relies on com-
plete knowledge of how operators affect the domain. Gap Solvers mod-
ified HTN planner relies on complete operator knowledge to determine
whether a generated plan is correct so that it knows when to backtrack,
and Gap Solver relies on the planners ability to backtrack to get away
with learning only minimal rules. However, complete operator knowl-
edge is an unreasonable demand on a learner in rich, complex domains.
For example, to completely understand the atomic action of turning on
an electric kettle, the agent needs to have an understanding of electronic
circuits.

TADPOLE avoids the limitations of Gap Solver by relaxing the require-
ment of ensuring plan correctness (a requirement that is impossible to
satisfy in an unpredictable domain anyway). It does only a bottom-up
parse, and it learns rich preconditions for both atomic and non-atomic
rules based on what the teacher usually does. This results in sensible,

useful rules, without requiring complete understanding of the domain.



Chapter 3
Representation

This chapter describes the way that HOPPER (Chapter 4) and TADPOLE
(Chapter 5) represent states, goals, tasks, and why decoupling tasks and
goals results in more re-usable decomposition rules.

Previous systems that have used decomposition rules, such as Icarus
and HTNs (described in Chapter 2), have used a wide range of terms such
as goals, tasks, skills, and methods to describe their decomposition rules
and the components the rules are made up of. To add to the confusion,
different systems use semantically different decomposition rules made up
of different components. This has a marked impact on the algorithms that
make use of the different decomposition rules.

The purpose of this chapter is to clearly define the terms that will be
used in subsequent chapters of the thesis. The chapter also describes the
task to sub-goal decomposition rules used by HOPPER and learned by
TADPOLE, contrasts them with the decomposition rules used by other
systems, and argues that task to sub-goal decomposition rules are most
appropriate for the HPD.

Because TADPOLE learns in a rich domain, the states and decompo-
sition rules it learns are extensive. For the sake of clarity, this chapter
presents only very simplified examples of states, goals, tasks, and decom-
position rules. A fully detailed exampled of a state and a decomposition

54
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rule (including its head-task and sub-goals) can be found in the appendix.

Organization of the chapter

Section 3.1 defines the terms goal and task and clarifies the distinction
between the two.

Section 3.2 explores the various ways that decomposition rules can
be constructed using goals and tasks, what effect the types of decom-
position rules have on algorithms that make use of them, and what
kind of decomposition rule is most appropriate in the human plan-

ning domain.

Section 3.3 describes how HOPPER and TADPOLE represent states,
the passage of time, and state differences.

Section 3.4 describes how HOPPER and TADPOLE represent goals,
tasks, and goal-state differences; as well as describing their internal

structure.

Section 3.5 describes the representation of the decomposition rules
used by HOPPER and learned by TADPOLE in terms of the task and
sub-goals that comprise it.

Section 3.6 concludes the chapter by describing limitations of the rep-
resentation scheme used by TADPOLE and HOPPER and ways in
which it will need to be extended if it is to scale to the Human Plan-

ning Domain.
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3.1 Distinction between goals and tasks

Goals and tasks are similar to each other and it is easy to confuse the two.
However, they are semantically distinct and they play different roles in
decomposition rules and in the algorithms that make use of them. This
section distinguishes the two terms.

3.1.1 A goal is a constraint on states

A goal represents an objective that the agent wants to achieve. It is a con-
straint on states, specifying the requirements that have to be met in a state
for the goal to be satisfied. In particular, it specifies the properties and rela-
tionships in the state that must be true and the properties and relationships
in the state that must not be true in order for the goal to be satisfied. Note
that a goal may be the main objective that the agent is trying to achieve, or
it could be a sub-goal, a means to an end. Achieving such a sub-goal helps
to achieve the main objective of the agent.

For example, the goal of having a cup of tea is satisfied in any state
where an object of type “cup” is related to an object of type “tea” by the
“contains” relationship and the tea object has the property of being “hot”.
A possible sub-goal that, if achieved, would help to achieve this main ob-

jective would be having a kettle of boiling water.

3.1.2 A task is a description of a state change

A task represents a change in the state of the world. It is a constraint
on pairs of states, an earlier state and a later state, specifying how the
later state should differ from the earlier state. In particular, it specifies
properties and relationships that are not true in the earlier state and must
become true in the later state, and it specifies properties and relationships
that are true in the earlier state and must become false in the later state in

order for the task to be achieved.
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For example, the task of moving a cup from a cupboard on to a table is
achieved if the cup was in a cupboard in some initial state and then moves
to the table in a later state. Buying a cup and then moving it from the shop
to the table would satisfy the goal of having the cup on the table, but it
would not achieve the same task.

In order to be useful, a task also needs to incorporate a precondition
to constrain the state changes it specifies. In the example given above,
the only aspect of the state that changes is that the cup stops being re-
lated with the cupboard via the “in” relationship and it becomes related
with the table via the “on” relationship. However, these two state changes
by themselves are not enough to specify a meaningful task. All the state
changes express is that something will no longer be in something and that
something will become on something.

To fully express the task in the example, the task must also have a pre-
condition that: constrains the objects taking part in the deleted “in” rela-
tionship to have the types “cup” and “cupboard”, constrains the objects
taking part in the added “on” relationship to have the types “cup” and
“cupboard”, and constrains the two “cup” objects that take part in both

state changes to refer to the same state object.

3.2 Decomposition rules are composed of goals

and tasks

A decomposition rule encodes a way of breaking down a complex problem
into a number of simpler sub-problems in such a way that solving all of the
sub-problems will solve the complex problem. This section describes how

decomposition rules use sub-goals or sub-tasks to solve goals or tasks.
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3.2.1 Decomposition rules can encode how to decompose

goals or tasks

The complex problem that a decomposition usually breaks down is either
a goal or a task. Both kinds of decomposition rules are useful to an agent.
A rule that decomposes a goal is directly useful to an agent that wants to
satisfy that goal because it provides a way of simplifying the problem. A
rule that decomposes a task is also useful, although less directly. It pro-
vides the agent with a way of achieving a particular state change which it
can in turn use to transform the current state into one that satisfies the goal
it is trying to achieve. A rule that decomposes tasks will tend to be more
specific than one that decomposes goals. This is because a task will always
include a precondition that will not only describe the state change but also
constrain the state in which the task, and by extension the rule, is appli-
cable; a rule that decomposes goals does not need to have a precondition
and can be more general.

For any given goal or task that the agent knows how to achieve, the
agent usually knows multiple different decomposition rules for achiev-
ing it. This is because the best way to achieve a goal or task changes in
different states, and a different decomposition rule is most appropriate.
To allow the agent to select the most appropriate decomposition rule for
achieving a goal or task in a given state, each decomposition rule has a

precondition specifying what states it is applicable in.

3.2.2 Goal decomposition rules are too constrained

A goal decomposition rule specifies a way of achieving a particular goal in
a particular state. However, goals are very rarely completely unachieved.
Usually, some aspects of the goal are already satisfied in the current state.
For example, if the agent’s goal is a hot cup of milk, then it most likely
will not need to make a cup or create any milk because those objects will

already exist; instead, it will only need to combine them and alter their
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properties. Decomposition rules describe how to satisfy the unachieved
parts of goals.

A goal decomposition rule describes how to achieve a particular goal,
and so its precondition must specify not only the unachieved parts of the
goal, but also all of the achieved parts that will remain unchanged. For
example, the rule for heating a cup of coffee in the microwave would in-
clude in its precondition the constraints that the agent is trying to satisty
the goal of having a hot cup of coffee, and that the coffee is cold in the
current state. This would make the rule inapplicable for any other goal.
However, the change achieved by the decomposition rule could also be
useful for satisfying other goals that are unachieved in the same way. For
example, the method for heating wet laundry in the microwave is the same
as for heating a cup of coffee.

Because goal decomposition rules are constrained to apply to particu-
lar goals, the agent would need to learn separate, redundant decomposi-
tion rules for each kind of object it would want to heat. Rules that decom-
pose tasks specify only the change that occurs, and so they can be re-used
for different goals that are unachieved in the same way.

3.2.3 Decomposition rules decompose complex problems

into actions, sub-tasks, or sub-goals

The standard way that a rule decomposes a goal or a task is by breaking
it down into a sequence (that is usually ordered) of actions, sub-tasks, or
sub-goals.

The simplest kind of decomposition rule decomposes the problem of
satisfying a goal or achieving a task into a sequence of directly executable
atomic actions. In effect, they are almost identical to macro actions, with
the only difference being that their sequence of atomic actions does not
have to be completely ordered. Clearly, these rules by themselves do not

scale very well to more complex problems. It is not feasible to store a
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separate directly executable plan of atomic actions for every goal or task
that the agent could be interested in and for every possible state the agent
could find itself in.

A more sophisticated decomposition rule decomposes a goal or task
into a sequence of sub-tasks. Rather than committing to a particular se-
quence of atomic actions to execute, the rule specifies the sequence of state
changes (and their order) that the agent needs to achieve to achieve the
main task or to satisfy the main goal. Because the decomposition rule only
specifies what the required state changes are and not how to achieve them,
the agent can make use of any other rules it may have that specify how to
decompose tasks to achieve the necessary state changes. The agent can
use further decomposition rules to achieve sub-tasks and sub-sub-tasks,
breaking the original problem down into increasingly smaller and simpler
parts.

A final kind of decomposition rule is one that decomposes a goal or
task into a sequence of sub-goals. Such a decomposition rule makes even
fewer commitments than one that decomposes into sub-tasks. Not only
does it not specify particular atomic actions to execute, it also does not
specify state changes. Instead, it merely specifies what the agent should
make sure is true (or make sure is false) in intermediate states without

assuming what sequence of changes would actually be performed.

3.2.4 Rules that decompose into sub-tasks over-commit to

future states

Decomposition rules that break a problem down into a sequence of sub-
tasks or state changes make more commitments to future states than rules
that break a problem down into a sequence of sub-goals. Because tasks
specify a state change, they inherently make assumptions about the state
they will be achieved in. A rule that decomposes into sub-tasks will, in

essence, make predictions about the states the sub-tasks will be achieved
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in. However, the Human Planning Domain is fundamentally unpredictable:
at any moment in time an unexpected and potentially disruptive event can
occur. Furthermore, depending on the complexity of the problem being
decomposed, the time between the decomposition of the parent rule and
the beginning of the execution of its last sub-task can be arbitrarily long.
This makes predictions about future states particularly unreliable.

If an agent strives to achieve a state change in a state that is different
than the one it predicted when it generated the sub-task, then the state
change will often no longer be the best way (or even a possible way) of
achieving what the agent wants. For example, if the agent planned to
achieve the sub-task of boiling some water with a kettle in order to make a
cup of tea, but when it got to the kitchen it noticed that there was already
a pot of boiling water on the stove, then to achieve the necessary state-
change specified in the sub-task, it would needlessly boil water with a

kettle rather than making use of the water in the pot.

3.2.5 Rules that decompose tasks into sub-goals are most

appropriate to the Human Planning Domain

In the HPD the agent often needs to achieve rich, complex goals that may
be partially unsatisfied in many different ways. This makes decomposi-
tion rules that decompose tasks preferable because they need to encode
only a single non-redundant method for achieving one particular state
change making them much easier to learn.

The HPD is also unpredictable and unexpected events can occur at any
time. This makes decomposition rules that decompose into sub-tasks un-
reliable because they depend on the predictions of future states of their
sub-tasks. Decomposition rules that decompose into sub-goals are prefer-
able because they do not over-commit to the future and so are less likely to
be derailed by unexpected events. It is better to compare a sub-goal to the

current state when it comes time to satisfy it rather than trying to perfectly
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predict the appropriate state change an arbitrary time in the future.

When an agent tries to satisfy a goal, it can use the difference between
the current state and the goal to determine the desired state change. The
agent can then search through all of its decomposition rules to find the
most appropriate rule that will achieve this state change, and it is not lim-
ited to searching only through the decomposition associated with the goal
it is trying to satisfy. The decomposition, in turn, does not make unneces-
sary assumption about the uncertain future states, and only specifies the
sub-goals the agent should strive to satisfy. Both HOPPER and TADPOLE
use rules of this form. Section 3.5 describes how these rules are repre-
sented in more detail.

3.2.6 Previous systems have decomposed goals and proce-

dures

Previous systems that have used decomposition rules for planning have
not made a clear distinction between tasks and goals.

HTNs [38] use rules that decompose procedures' into sub-procedures
to generate plans. A procedure is a task decomposition rule that does not
explicitly specify the task’s effects. These rules are most appropriate for
deterministic domains and are not suitable for TADPOLE and HOPPER.

As explained above, decomposing into sub-tasks and, by extension,
into sub-procedures is not appropriate in an unpredictable domain be-
cause such rules over-commit to future states. However, this has not been
an issue for HTNS because they have mostly been applied to deterministic
and predictable domains where future states can be predicted perfectly.

The critical problem with decomposing procedures in a nondetermin-
istic domain is that they do not specify their effects. This means that when
it is achieving a sub-procedure, the agent has no way of knowing what

'HTNs refer to procedures as tasks, but I use the term procedures to distinguish them
from my own definition of tasks described in Section 3.1.2
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sub-effect it is trying to achieve. If an unexpected event were to derail the
agent’s plan, it would have no way of adjusting the plan to deal with the
disruption. Not specifying what the effects of procedures are also means
the agent cannot use such rules in novel situations to achieve a particu-
lar effect. Furthermore, these rules are very difficult to learn. The agent
has no way of knowing whether a new decomposition it learns is a new
method for achieving the same procedure, or whether the new decompo-
sition corresponds to a completely new procedure.

Because TADPOLE learns its decomposition rules by observing a teacher
and HOPPER executes them in an unpredictable domain, HTN rules are
not the appropriate representation for them.

Icarus [31] has been applied in very reactive domains and the repre-
sentation of its decomposition rules more closely matches that of the rules
used by TADPOLE and HOPPER. However, although Icarus uses task de-
composition rules to specify the effects of atomic actions, it decomposes
goals into sub-goals at higher levels of abstraction. As explained above,
goal decomposition rules are difficult to learn and contain redundant in-
formation making them an inappropriate representation for the decompo-
sition rules used by TADPOLE and HOPPER.

3.3 Representation of states and time

Both HOPPER and TADPOLE interact with a simulated environment and
they both periodically receive information about the current state of this
environment. These states are represented symbolically in first order pred-
icate logic. This is a standard approach for systems using decomposition
rules, and it strikes a balance between expressiveness of the representation

language and ease of learning.
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3.3.1 The description of the state is qualitative

The state of the world is described by a qualitative representation of the
objects, their properties, and the relationships that hold between them.
The state representation does not describe any quantities or continuous
variables. Although such a representation cannot completely capture the
richness of the Human Planning Domain, humans can solve many prob-
lems without being aware of the values of exact quantities. Qualitative
physics [18] is a branch of Artificial Intelligence that strives to duplicate
humans’ ability to reason about physical effects without knowing the ex-
act quantities involved. Although a purely qualitative representation of
the state is unlikely to be sufficient to express every problem in the HPD,

it is likely to be expressive enough for many if not most of them.

3.3.2 States are represented by graphs of objects

HOPPER and TADPOLE represent a state as a graph whose nodes repre-
sent objects and whose links represent relationships between the objects.
Each node has a set of properties, where each property consists of a pair
of atoms: the property type and its value (e.g. [Colour blue]). Each link
between two nodes in the object graph has a list of atoms that represent all
of the relationships that hold between the two objects represented by the
nodes.

For example, the state of a cup lying on a table would be represented
by the following (simplified) graph of objects:

obj1([Type cup], [MadeOf ceramics], [Clean no], ...)
obj1 — (On) — obj2

obj2([Type table], [MadeOf wood], [Colour black], ...)
obj2 — (Supports) — obj1
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Some property types can have multiple values. For example, an object
can have multiple types, but only one weight: [Type cup, dish, container],
[Weight light].

3.3.3 The agent receives limited sensory information about
the world

It is important to note that the sensory information that HOPPER and
TADPOLE receive about the world is limited. This means that they are
unable to directly observe “hidden” aspects of the state. What aspects of
the state are directly observable and which are hidden depends on the par-
ticular domain. For example, in a kitchen domain, whether or not a door is
locked might be a hidden property of the door, and the contents of a closed
drawer may not be included in the sensory information of HOPPER and
TADPOLE.

3.3.4 Time is represented by a sequence of event-driven

state changes

The state information that HOPPER and TADPOLE receive is a static “snap
shot” of the state of the environment at a particular time. Whenever the
state changes (for example, because of the result of an action being exe-
cuted) HOPPER and TADPOLE receive updated state information repre-
senting the current state of the world as described above. A sequence of
static states represent the state of the world changing over time. How fine-
grained the atomic actions and therefore the time-slices are is completely
dependent on the particular domain. In a kitchen domain, a time slice may
be as long as the time it takes for the agent to lift up a cup. In a logistics
domain, on the other hand, a time slice may be as long as the time it takes

for a truck to drive from one location to another.
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3.3.5 State-differences are represented by labelled graphs

of objects

HOPPER and TADPOLE both need descriptions of the change that oc-
curred between an earlier and a later state. A state-difference represents
these changes using a graph of object nodes and relationship links in the
same way that a state does, but some of the properties and relationships
of the state-difference may be labelled as either added or deleted. The
object graph of a state-difference is a combination of the object graphs rep-
resenting the earlier and later states. Properties of objects or relationships
between objects that are present in the earlier state but not in the later state
are labelled as deleted, and those that are present in the later state but not
in the earlier state are labelled as added. The unlabelled properties and
relationships of the object graph are those that remained unchanged be-
tween the earlier state and the later state.

For example, if a cup was in a closed cupboard in an earlier state and
then the cup was on a bench and the cupboard was open in a later state,
then this state-difference would be represented by the following (simpli-
fied) graph of objects (where the additions are coloured green and the dele-
tions are coloured red):

obj1([Type cup, container], [Clean yes], ...)
obj1 — (In) — obj2
obj1 — — 0bj3

obj2([Type cupboard], [Open no, yes], ...)
obj2 — (Contains) — obj1

obj3([Type table, surface], [MadeOf wood], ...)
obj3 — — obj1
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3.4 Representation of goals, tasks, and goal-state

differences

Goals and tasks are represented as graphs of objects similar to the graphs
of objects that represents a state-difference. However, the properties and
relationships of goals and tasks have counts associated with them indicat-
ing the importance and relevance of each property and relationship. Goals
and tasks also have additional internal structure: their object graphs are
divided into semantically distinct parts.

3.4.1 A goal specifies what must and must not be true

A goal specifies a state constraint by labelling some of its properties and
relationships in its object graph as must or must not. A goal is satisfied
in a state only if the goal is matched with the state in such a way that
all of its must properties and relationships are matched successfully and
all of its must not properties and relationships are not. This means that
in order for the goal to be satisfied, the goal objects with must properties
must be matched with state objects that have those properties, goal objects
with must not properties must be matched with state objects that do not
have those properties, the goal objects that are related by must relation-
ships must be matched with state objects that are related by the same re-
lationships, and the goal objects that span the must not relationships must
be matched with state objects that are not related by those relationships.
The sub-goals of decomposition rules are learned by TADPOLE from
lessons given by a teacher. In the HPD, the states and state-differences
that make up the teacher’s lessons contain a large number of irrelevant
objects, properties, and relationships, and TADPOLE learns which prop-
erties and relationships are relevant based on experience from examples.
To keep track of the properties and relationships that the agent is unsure
are relevant to the goal, the goal representation includes unlabelled prop-
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erties and relationships in the object graph. Because of the way goals are
learned, these properties and relationships are candidate must properties
and relationships — the agent is unsure whether or not they are important
to the goal.

Because TADPOLE determines which properties and relationships are
relevant based on experience from examples it sees, it will believe some
candidate properties and relationships in the learned sub-goals to be more
or less relevant depending on the examples they were learned from. To
keep track of the agent’s confidence in the different properties and re-
lationships, the candidate properties and relationships that make up the
sub-goals of a decomposition rule each have counts indicating their im-
portance. The agent updates these counts as it refines its rules with subse-
quent examples.

The candidate properties and relationships do not directly determine
whether or not a goal is satisfied in a state. Instead, they do so indirectly,
by determining how the goal is matched with a state (this is covered in
more detail in Chapter 4).

For example, the following (simplified) graph of objects would repre-
sent a goal that will be satisfied in a state where there is a hot cup of coffee
(the must properties and relationships are coloured green and there are no
must not properties and relationships):

Total: 10

obj1([Type cup(8), glass(2), container(10)], [Colour black(4), white(4),
clear(2)], ...)

obj1 — — 0obj2

obj2([Type ], [Taste ], [Temperature hot], ...)

obj2 — — obj1

The goal in the example specifies that in order to be satisfied, an object in
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the state must contain hot, liquid coffee. It also specifies that it is important
that the containing object be at least a container, if not a cup, but that its

colour is not as important.

3.4.2 A task specifies a state change and a precondition

Tasks form the head of decomposition rules learned by TADPOLE and
used by HOPPER. They specify what state change will occur if the decom-
position rule is executed successfully. Because these rules are usually only
applicable in certain states, they have also have a precondition which is
also encoded in the task.

A task specifies a state change by labelling some of the properties and
relationships in its object graph as additions or deletions indicating what
aspects of the state will change if the task is achieved. The remaining
unlabelled properties and relationships form the precondition of the task
constraining the labelled state changes. In other words, the labelled parts
of the object graph specify how the state will change and the unlabelled
parts specify what will change.

The preconditions of the decomposition rules used by HOPPER are
learned by TADPOLE from lessons given by a teacher. Because TADPOLE
determines which properties and relationships are relevant based on ex-
perience from examples it sees, it will believe some properties and rela-
tionships in the learned preconditions to be more or less relevant to their
decomposition rules depending on the examples they were learned from.
To keep track of the agent’s confidence in the different properties and rela-
tionships, the properties and relationships that make up the precondition
of a decomposition rule each have counts indicating their importance. The
agent updates these counts as it refines its rules with subsequent examples.

For example, the following (simplified) graph of objects would rep-
resent a task specifying the state change of delivering a package from one

location to another by truck (the additions are coloured green and the dele-
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tions are coloured red):

Total: 10

obj1([Type location(10), airport(2)]
obj1 — (HasObject) — obj2

obj1 — (ConnectedTo) — obj3

obj2([Type package(10)], [MadeOf cardboard(8), wood(2)], ...)
obj2 — (AtLocation) — obj1
obj2 — — 0bj3

obj3([Type location(10), airport(3)]
obj3 — — obj2
obj3 — (ConnectedTo) — objl

The task in the example specifies that if the rule is successfully executed,
the package object will no longer be related by an AtLocation relationship
with location obj1 and it will become related by an AtLocation relationship
with location obj3. The rest of the properties and relationships specify the
precondition of the decomposition rule, what should be true in the state
when the task is achieved. It is particularly important that the type of
the object that changes location is package and that the two locations are
related by a ConnectedTo relationship. This is because a truck can only be
used to deliver packages, and it can drive only between locations that are
close enough to each other.

3.4.3 Goals and tasks have a core and a context

Goals and tasks have a similar, though semantically distinct, structure: the
labelled and unlabelled properties and relationships in their object graphs.
Subsequent chapters of the thesis will also refer to the labelled properties
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and relationships (additions and deletions for tasks and must and must not
for goals) as the core, and to the unlabelled properties (the precondition

for tasks and the candidates for goals) as the context.

3.4.4 Goal-state differences encode how the current state

needs to be transformed to satisfy a goal

Although the decomposition rules of HOPPER and TADPOLE are ways
of achieiving tasks, they can just as easily be used to satisfy goals. The
way to use these decomposition rules to satisfy a goal is to first match the
goal to the current state, find the difference between the two, and then
find a decomposition whose head-task would transform the current state
in the appropriate way. After the decomposition rule is applied, the same
method can be used recursively to achieve each of the sub-goals in the
decomposition.

A goal-state difference is represented by a graph of objects. It labels its
properties and relationships in four different ways: what has to be made
true, what has to be kept true, what has to be made false, and what has to
be kept false. This depends on which aspects of the goal are already satis-
fied in the current state and which are not. If no properties or relationships
have to be made true or made false then the goal is achieved, otherwise
the agent searches for a decomposition rule whose head task will achieve
the desired state changes without undoing those aspects of the goal that
are already satisfied.

The remainder of the goal-state difference graph consists of the proper-
ties and relationships of the state objects that the goal objects are matched
with in the current state. The agent uses these unlabelled properties and
relationships to compare them with the preconditions of various decom-
position rules to determine whether they are applicable in the current
state.

For example, if the agent wants to satisfy the goal of having a hot cup
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of coffee in a state where there is a cold cup of coffee, then the goal-state
difference would be (where the make true properties and relationships are

coloured green, the keep true are coloured dark green):

Total: 10
obj1([Type cup, container], [Colour blue], ...)
obj1 — (Contains) — obj2

obj2([Type liquid], [Taste coffee], [Temperature hot], ...)
obj2 — (In) — obj1

3.5 Representation of decomposition rules

As well as decomposing tasks into sub-goals, the representation of de-
composition rules used by HOPPER and learned by TADPOLE includes

constraints that apply to the decomposition rule as a whole.

3.5.1 The sub-goals of a decomposition are partially-ordered

For many tasks the order that the sub-goals are achieved in is important.
For example, when mixing food, the cover of the blender should be closed
before the blender is turned on. It would be sufficient for decomposition
rules to store one total-ordering of their sub-goals, describing one known
way of achieving their task. However, often some sub-goals have no de-
pendencies between them and can be achieved in arbitrary order. For ex-
ample, when making lunch it does not matter whether you make a sand-
wich or a cup of coffee first. Sub-goals that have no ordering constraints
between them can often be achieved in parallel. Knowing which sub-goals
can be achieved in parallel enables the interleaving of the achievement of

sub-goals, and in general allows for more efficient plans.
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Every decomposition rule has a set of sub-goal dependencies specify-
ing for each sub-goal which other sub-goals need to be satisfied first. From
these sub-goal dependencies it is straightforward to determine the partial
ordering of the sub-goals. The sub-goal dependencies are also useful for
determining how to interleave two decompositions (this is explained in
Chapter 4).

3.5.2 Decompositions have variables constraining object match-
ing in sub-goals

It is usually important for the goal objects in different sub-goals of the
same decomposition to refer to the same state objects. For example, a sim-
plified decomposition for making a cup of tea could look like:

Task: make a cup of tea
sub-goal: cup on table
sub-goal: tea-bag in cup
sub-goal: kettle filled with boiling water
sub-goal: cup filled with boiling water
sub-goal: tea-bag in trash

In this decomposition rule, it is critically important that the cup referred
to in the task and the sub-goals be the exact same cup object in the state
and not different cups. When the head task is matched with a goal-state
difference and when each of the sub-goals are matched with a state, it is
important that the cup objects specified in their object graphs match with
the same cup state object.

Decomposition rules keep track of these object matching constraints
with variables. A variable in a decomposition rule constrains two or more
object nodes in the head task and in the sub-goals to match to the same

object in the state.
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3.5.3 Decomposition rules can be recursive

Because the decomposition rules of HOPPER and TADPOLE decompose
tasks into sub-goals, they cannot be directly recursive. However, in the
right state, the best way to satisfy one of the sub-goals of a decomposition
may be to use the same decomposition rule recursively. For example, the
decomposition for the task of getting an object out of a container may be to
first satisfy the goal of the container being open, then to satisfy the goal of
the object not being in a container, and then to satisfy the goal of the con-
tainer being closed. If the object inside is within another smaller container,
then the the same decomposition rule can be used recursively to get it out
of the smaller container and out of any other nested containers that may

be inside.

3.6 Limitations

Although the representation used by HOPPER and TADPOLE is expres-
sive, it has a number of shortcomings that have to be addressed if the
algorithms are to scale to the Human Planning Domain.

3.6.1 The state representation cannot express quantities

The biggest limitation of the state representation used by HOPPER and
TADPOLE is that it is fundamentally qualitative. Although this provides
a good environment in which to use and learn decomposition rules, it can-
not express quantitative properties of the world which are often critically
important in the human planning domain.

There is no measure of similarity among property values and relation-
ships that describe a state; two property values are either equal or unequal.
For example, the two colours light red and dark red are as dissimilar as the
colours red and blue.
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Multivalued properties help to address this issue to some extent. For
example, the similarity of a truck and a car would be expressed by their
type properties having some property values in common: [Type truck, ve-
hicle] and [Type car, vehicle]. However, this representation is by itself not
adequate to express numerical quantities such as the distance between two
places. Such numerical properties and relationships may be very impor-
tant in the human planning domain. For example, distance is critical when
deciding how to get from one location to another.

There are two main ways of addressing this problem. The first is to ex-
tend the state matching aspects of the HOPPER and TADPOLE algorithms
to recognize that two unequal values for numerical properties may never-
theless be very similar. The second way is to transform a quantitative state
description into a qualitative one and then present that to HOPPER and
TADPOLE as normal. For example, the relationships [Distance 104me-
tres], [Distance 193metres], [Distance 49kilometres], [Distance 158kilome-
tres] could be transformed into [Distance near], [Distance near], [Distance
far], and [Distance far] respectively. Which approach is best remains an

issue to be explored.

3.6.2 The representation cannot express continuous time

An important limitation of the way that time is represented by HOPPER
and TADPOLE is that it is qualitative in nature. Not only is time discrete,
but the duration in absolute time between time steps can vary. HOPPER
and TADPOLE only receive a state update when a state change occurs.
They have no way of determining how long in absolute time the state has
remained unchanged between time steps. However, in the HPD, actions
and their resulting state changes can take a variable amount of time and
this can be significant, especially when the agent is achieving multiple
tasks at once.

One way of addressing this issue without modifying either HOPPER
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or TADPOLE is to make sure that the time slices between states are very
fine grained. In this way, actions that take a longer amount of time can
be broken down into shorter sub-actions, resulting in a greater number
of time slices to execute them. For example, the action of moving a cup
from one place to another can be broken down into: moving the agent’s
hand next to the cup, grasping the cup, lifting the cup, moving the hand
and cup to the desired location, releasing the cup, and moving the agent’s
hand away from the cup.

However, this does not address cases where the agent needs to wait
a certain amount of time until a state change occurs (e.g. waiting until
the water in a pot starts boiling). This is particularly important when the
agent wants to achieve multiple goals at once. It is only worthwhile for
the agent to begin another task while waiting if the waiting time is long
enough. The event-driven state change representation that simulates time
in HOPPER and TADPOLE is not rich enough to distinguish between a
short and a long waiting time. In order to fully scale to the HPD, the
representation of time as well as HOPPER and TADPOLE will have to be
extended to properly handle executing and learning from behaviour that

involves waiting.

3.6.3 The state representation cannot represent compound

objects

The Human Planning Domain includes hierarchical compound objects and
it is often important to deal with them at multiple levels of abstraction.
This is especially true when the creation of compound objects is integral
to the execution of a plan. For example, setting the table involves creating
a set of place settings which themselves are compound objects consisting
of a knife, fork, plate, cup, and so on. The state representation used by
HOPPER and TADPOLE has no way of representing such hierarchically
structured objects.
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A related limitation of the representation is the inability of goals to
represent any kind of quantification. However, this can be resolved by en-
riching the state description to include dynamically created sets of objects.

The kind of decomposition rules that HOPPER can use and TADPOLE
can learn are determined by the state representation. This means that if
the state representation is extended to include compound objects, then the
goals, tasks, and decomposition rules used by HOPPER and learned by
TADPOLE will be automatically extended as well.

3.6.4 Goals and tasks cannot represent disjunctive condi-

tions

The properties and relationships that specify the state constraints of goals
and the preconditions of tasks are all conjunctive conditions. Goals and
tasks do not represent disjunctive conditions because this would unduly
complicate TADPOLE's learning task. It may sometimes be useful to be
able to represent a disjunctive condition within a single goal or precondi-
tion, although this is rare.

A decomposition rule with a disjunctive precondition can be expressed
by dividing the disjuncts among multiple decomposition rules that all
achieve the same task, with each disjunct in the precondition of a sepa-
rate rule. However, this would involve a significant amount of redundant
information because each of the rules encoding each disjunct would have
to have a redundant copy of the same decomposition.

A disjunctive sub-goal can be expressed by a higher-level constraint
that forms a superset of all of the disjuncts. The goal could then include
additional constraints to exclude any undesired objects. For example, if
the object to deliver a package should be a truck or a car, then this sub-goal
can be expressed by constraining the type of the object to be a vehicle that
can handle a payload at least as heavy as a the heaviest package (excluding

bicycles). However, for some disjunctive goals it may be difficult (or even
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impossible in some domains) to express them in this way.

The context of goals and tasks provide a way of approximating dis-
junctive conditions. Given enough examples to learn from, any disjunctive
conditions will become more heavily weighted than the other properties
and conditions in the context. The more alternatives in the disjunction the
more examples are necessary to distinguish the weighting of each of the
alternatives.

However the context can only at best roughly approximate disjunc-
tive conditions because every property and relationship in the context is
treated independently of every other, so disjunctive conditions involving
more than a single property or relationship cannot be accurately repre-
sented.

3.6.5 Variables cannot constrain object properties

The variables in decomposition rules currently only constrain the iden-
tities of different task and goal nodes, making sure that they all match to
the same state object. However, it is sometimes important to also constrain
the properties of different objects in tasks and in sub-goals. For example,
when two substances (liquids or powders) are mixed together, then the re-
sulting mixture has the properties of both original substances. The current
representation has no way of expressing this state change — a single task
can only specify what happens when two specific substances are mixed
together (e.g. if hot water and a tea-bag are mixed together, then the re-
sulting liquid will taste like tea).

Property variables can also be important when expressing sub-goals.
For example, when setting the table, a repeated sub-goal could be to place
a plate and a cup of the same colour on the table. The current representa-
tion has no way of expressing this goal — it can specify that the cup and
plate should be a particular colour, but it has no way of expressing the

constraint that they be the same colour.



Chapter 4

HOPPER

This chapter describes HOPPER (Hierarchical Ordered Partial-Plan Execu-
tor and Re-planner), an algorithm that uses decomposition rules to gener-
ate and execute plans.

As well as being a planner, HOPPER also serves the secondary func-
tion of being a testbed for the decomposition rules learned by TADPOLE
(Chapter 5). The only effective way of evaluating TADPOLE is by actually
using the decomposition rules it learns to generate plans. Although HOP-
PER can stand alone and use hand-coded rules, it is specifically designed
to use the decomposition rules learned by TADPOLE.

A tertiary function of HOPPER is to further refine the rules learned by
TADPOLE. HOPPER learns from experience and refines its decomposition
rules based on whether or not they successfully achieved their task when
HOPPER executed them.

Organization of the chapter

e Section 4.1 presents an overview of the HOPPER algorithm. It ex-
plains how HOPPER creates and maintains a goal decomposition hi-
erarchy by decomposing goals into sub-goals. Subsequent sections
elaborate on important aspects of the algorithm.

79
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e Section 4.2 covers the exceptions to the decomposition algorithm:
when HOPPER is unable to decompose a goal or sub-goal, and when

a goal has to be decomposed multiple times to be achieved.

e Section 4.3 delves more into the mechanics of how goals are matched

to states and how tasks are matched to goal-state differences.

e Section 4.4 describes how HOPPER detects and reacts to unexpected
events (both disruptive events and unexpected opportunities).

e Section 4.5 describes the requirements of a planning and plan-executing
algorithm that achieves complex goals in the HPD. It then explains
HOPPER’s least commitment decomposition strategy, and how it is

particularly suited to meet these requirements.

e Section 4.6 explains the importance of minimizing the side-effects of
decompositions with “clean-up” sub-goals and how HOPPER deals
with such sub-goals when it updates its decomposition hierarchy.

e Section 4.7 describes how HOPPER interleaves parts of its decom-
position hierarchy in order to execute sub-goals in parallel and to
produce a more optimal plan.

e Section 4.8 describes HOPPER'’s limitations and the kinds of prob-
lems it is not suited to handle well.

e Section 4.9 concludes the chapter by discussing how HOPPER could

be extended to handle non-routine, novel tasks.
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4.1 Overview of the Algorithm

This section presents a simplified overview of HOPPER'’s planning and
plan-execution algorithm; subsequent sections provide further details about
specific aspects of the algorithm. The pseudo-code for the HOPPER algo-
rithm can be found in appendix A.1.

4.1.1 HOPPER acts in sense-action-sense cycles

Although HOPPER is a planning agent that produces and executes plans
with look ahead, it interacts with its environment like a reactive agent.
It achieves a goal by calling the achieveGoal function (A.1.1) which first
initializes the decomposition hierarchy, and then repeatedly interacts with
a simulated environment at a sequence of discrete time steps or cycles until
the goal is achieved or HOPPER determines that it cannot achieve the goal.

At each time step, cycle (A.1.3) receives limited sensory information
about the world, and from this it constructs a partial description of the
current state. Using this information and HOPPER'’s decomposition rules,

it selects and returns an atomic action to execute.

4.1.2 HOPPER generates a goal decomposition hierarchy

HOPPER achieves a goal by choosing an appropriate decomposition rule,
using it to decompose the goal into a partial order of sub-goals and then
recursively decomposing the sub-goals into sub-sub-goals and so on all
the way down to atomic goals. Atomic goals are goals that are decom-
posed with atomic decomposition rules; rather than being decomposed
into a partial order of simpler sub-goals, atomic goals are decomposed
into a single atomic action that will achieve them in the current state.

In this way, HOPPER constructs a goal decomposition hierarchy by as-
sociating higher-level goals with partial orders of sub-goals. Each partial-
order of sub-goals associated with a higher-level goal indicates which goals
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have to be achieved (and in what order) in order to achieve the higher level
goal.

While it is constructing the decomposition hierarchy by recursively de-
composing sub-goals, HOPPER only decomposes the unconstrained sub-
goals in each partial order: those sub-goals that are not ordered to come
after any other sub-goal. HOPPER decomposes goals only when neces-
sary; only the goals that are achievable by HOPPER in the current time
step are decomposed further. Goals that are to be achieved in future time
steps remain undecomposed. In this way HOPPER builds a goal decom-
position hierarchy with the earlier goals and sub-goals more fully decom-
posed than the later ones.

Figure 4.1 shows a graphical representation of the decomposition hi-
erarchy HOPPER would generate to achieve the goal of having lunch.
HOPPER would choose a decomposition rule appropriate for achieving
the goal in the current state and then use it to decompose the goal into a
number of sub-goals that, if achieved in the given order, would achieve
the main goal of having lunch. The sub-goals in each decomposition in
the figure are strictly ordered except for those joined by double-headed
arrows which can be achieved in either order.

The figure shows one valid decomposition for having lunch: making
tea, making a sandwich, eating, and then cleaning up afterward. Of the
four top sub-goals, making tea and making a sandwich are unconstrained
and do not depend on earlier sub-goals, and so HOPPER decomposes both
of these sub-goals into partial-orders of sub-sub-goals (note that for the
sake of clarity and readability, only the decomposition for making tea is
shown in Figure 4.1). The eating and cleaning up goals cannot be achieved
until after the tea and sandwich have been prepared, so those goals remain
undecomposed.

When HOPPER is first presented with a goal to achieve, it initializes
an empty decomposition hierarchy with the initializeHierarchy function
(A.1.2). It then calls the updateHierarchy function (A.1.6) to expand the
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Figure 4.1: Decomposition Hierarchy for having lunch

newly intialized decomposition hierarchy. Each newly initialized goal in
the decomposition hierarchy has no sub-goals, and for each such goal the
updateHierarchy function calls the decompose A.1.8 function to find its
appropriate sub-goals. HOPPER then recursively calls updateHierarchy

on the sub-goals to generate the rest of the decomposition hierarchy.

4.1.3 HOPPER maintains its goal decomposition hierarchy

At each time step, after HOPPER receives sensory information and up-
dates its state description, it calls the updateHierarchy function to go down
the decomposition hierarchy and update the unconstrained sub-goals (the
sub-goals not ordered to come after any other sub-goal), from the top-goal,
down the left-hand side of the hierarchy to the atomic goals at the bottom.

updateHierarchy removes any unconstrained goal that is satisfied in the
current state (whether by design or serendipity) from the decomposition
hierarchy. The function removes a satisfied unconstrained goal even if it

has unsatisfied sub-goals (unless they are labelled as clean-up, see Section
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4.6): the goal and the entire sub-hierarchy below it is removed. The sub-
goals of a goal in the hierarchy specify how to achieve the higher-level
goal, and if the higher-level goal has already been achieved, then there is
no reason to achieve the sub-goals.

Note that updateHierarchy does not remove any satisfied goals that are
ordered to come after any other goal. This is because achieving the earlier
goals in the decomposition may undo the future goals that are currently
satisfied. For example, the decomposition to deliver a package by truck
involves driving a truck to where the package is, loading the package into
the truck, driving the truck to the destination, and unloading the truck.
The final sub-goal of the decomposition is to make the package not be
in the truck. Initially, this final sub-goal is satisfied (the truck is initially
empty), but it is incorrect to remove this sub-goal from the decomposition
hierarchy. It is important that the goals of a decomposition be achieved
in their specified order, and so updateHierarchy removes only the uncon-
strained satisfied goals from the decomposition hierarchy.

After the decomposition hierarchy has been updated and the uncon-
strained satisfied goals removed, new goals in the hierarchy become un-
constrained. When a goal is removed from the decomposition hierarchy,
the subsequent goal (or goals) that were ordered to come after that goal
become unconstrained. These newly unconstrained goals need to be up-
dated as well. If they are satisfied in the current state, then they are also
removed from the decomposition hierarchy and the next goal (or goals)
in the decomposition become unconstrained. The newly unconstrained
goals that are not satisfied are recursively decomposed down to atomic
goals in the manner described in Section 4.1.2. updateHierarchy contin-
ues this process until there are no un-updated, unconstrained goals in the
decomposition hierarchy.

As time progresses, subsequent time steps pass, the state changes, and
HOPPER receives new sensory information; the unconstrained goals in

the hierarchy become satisfied, they are removed, and the subsequent
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Figure 4.2: Achieving a cup of tea
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goals are decomposed. In this way the decomposition hierarchy gradually
shifts: earlier, satisfied goals are removed and future, unsatisfied goals are
decomposed and achieved. This process continues until all the goals in
the hierarchy have been decomposed and satisfied, culminating with the
achievement of the top goal.

Figure 4.2 shows an example of how the decomposition hierarchy to
achieve a cup of tea changes as the initial unconstrained sub-goals are
achieved. The highlighted goals in the decomposition hierarchy indicate
the unconstrained goals that are satisfied in the current state. The example
decomposition for making a cup of tea is fully ordered so that sub-goals
are decomposed one by one; Section 4.7 covers the more complex case of
interleaving the plans of co-ordered sub-goals.

The first step in making a cup of tea is to get the cup on the bench, and
the first step to achieve that is to grasp the cup. After this goal is achieved,
HOPPER removes it from the hierarchy. In the next state, the goal of the
cup being on top of the bench is achieved and, because it is now uncon-
strained, HOPPER removes it from the hierarchy as well. The parent goal
remains unsatisfied because it still has an unsatisfied clean-up sub-goal
of not grasping the cup (Section 4.6 explains the importance of clean-up
sub-goals). In the next state, both the low-level goal of not holding the
cup is achieved as well as the higher level goal of getting the cup on the
bench. HOPPER removes both of these goals from the decomposition hier-
archy. In general, achieving the last sub-goal of a decomposition will tend
to achieve the associated higher-level goal. The next sub-goal of getting a
tea bag into the cup now becomes unconstrained (it depends only on the
cup being on the bench). Because this sub-goal is not atomic, HOPPER de-
composes it into the appropriate partial order of sub-goals (note that for
the sake of clarity the lowest level of the decomposition is not shown in

the figure) and the process continues until the top goal is satisfied.
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4.1.4 HOPPER achieves atomic unconstrained goals

Once the decomposition hierarchy has been completely updated in the
current time step, HOPPER uses the hierarchy to select an atomic action to
execute with the chooseAtomicAction function (A.1.14). It has to select an
atomic unconstrained goal from the decomposition hierarchy and execute
the corresponding atomic action that will achieve it in the current state.

Note that there may be two or more unconstrained atomic goals in dif-
ferent decompositions to choose from. This is because the ancestors of
the unconstrained atomic goals are co-ordered in a single decomposition
somewhere higher in the decomposition hierarchy.

For example, when achieving the goal of having lunch, the two sub-
goals of making tea and making a sandwich can be achieved in either
order and so HOPPER would decompose both at the same time. These
two sub-decomposition hierarchies would bottom out with atomic goals
resulting in at least two unconstrained atomic goals at the bottom: one for
achieving tea, and one for achieving a sandwich. One of the unconstrained
atomic goals could be to get the agent’s hand next to the cup (in order to
pick it up, in order to get it on the bench, in order to have it filled with hot
water, in order to make tea), and the other could be to get the agent’s hand
next to the cupboard handle (to grasp the handle, to open the pantry, to
get the bread on the table, to make the sandwich).

Because each goal in the decomposition hierarchy except for the root
goal is a means of achieving a higher-level goal, choosing which uncon-
strained atomic goal to achieve (with an atomic action) is a choice of which
of the two co-ordered ancestor goals to start achieving. When faced with
such a choice, chooseAtomicAction calls the chooseActionFromCandidates
function (A.1.15) which selects the one that is the most achieved already:
the one whose highest level sub-decomposition has the most sub-goals
achieved already.

For example, if the agent has to choose between achieving a cup of

tea and achieving a sandwich in the current time step and it notices that
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there is already a kettle of boiling water on the stove, then it will choose to
begin achieving a cup of tea because the decomposition for that goal has a
sub-goal that is already achieved.

If the co-ordered goals are equally unachieved; if they have the same
number of sub-goals already achieved at the same level of the decompo-
sition hierarchy (this will usually only happen when the goals are ini-
tially decomposed and they have no sub-goals already achieved), then
chooseActionFromCandidates will choose the one that it thinks will be
the easiest to achieve. This means the one with the with the shallowest
sub-hierarchy. A shallower hierarchy will tend to have fewer leaf nodes,
which means fewer atomic goals, which ultimately corresponds to fewer
atomic actions, and thus implies that the parent co-ordered goal is simpler
(easier to achieve). So when there are multiple unconstrained atomic goals
in different decompositions, chooseActionFromCandidates selects the one
that is highest in the decomposition hierarchy (it has the fewest number of
ancestors between it and the root goal).

If the unconstrained atomic goals are at the same level of the decom-
position hierarchy, and their ancestor co-ordered goals are equally un-
achieved, then chooseActionFromCandidates selects arbitrarily among them.
However, once it has made a choice, HOPPER will in general continue
achieving the same co-ordered goal in subsequent time steps. This is be-
cause after one of the co-ordered goals has been chosen, it will in gen-
eral be more achieved (by one atomic goal) than the other alternative co-
ordered goals in the next time step, and so HOPPER will choose to execute
it again. The only way that HOPPER can switch to trying to achieve a dif-
ferent co-ordered goal is if an unexpected event were to serendipitously
(see Section 4.4) achieve one of the high-level sub-goals of one of the other
co-ordered goals. However, switching becomes increasingly unlikely as

HOPPER achieves more of the co-ordered goal in subsequent time steps.
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4.1.5 HOPPER refines its decomposition rules after success-

fully executing them

After the updateHierarchy function successfully executes a decomposition
rule (the goal being achieved is satisfied in the current state and all of its
sub-goals have been satisified) it refines the decomposition rule with the
refineRule function (A.1.10). The function refines the core of the head-
task and the sub-goals, updates the counts of the context properties and
relationships based on the state objects they were matched with, it updates
the decomposition variables, and updates the partial ordering of the sub-
goals based on the order they were achieved.

The way that HOPPER refines a decomposition is identical to the way
TADPOLE does after a successful parse, and Chapter 5 gives the details of
this process.

However, updateHierarchy does not refine a decomposition rule if the
goal it was achieving becomes satisfied serendipitously. If a goal becomes
satisfied because of an unexpected event when the decomposition that was
achieving it is still incomplete (it still has unachieved sub-goals), then up-
dateHierarchy has no guarantee that the way the decomposition rule was
matched to the current state was correct and so it does not refine it.

4.2 Decomposition Exceptions

The standard manner in which HOPPER achieves goals (as described above)
is by decomposing them into a partial order of sub-goals, and then achiev-
ing the sub-goals one by one in the order specified by the decomposition.
The higher-level goal is usually achieved at the same time as its last sub-
goal. However, there are two exceptions to this rule: HOPPER may be
unable to decompose a goal at all, and a goal may remain unsatisfied after
all of its sub-goal are achieved. This section describes these two cases in
detail.



CHAPTER 4. HOPPER 90

4.2.1 HOPPER redecomposes the parents of failed sub-goals

When updateHierarchy attempts to decompose an unconstrained goal with
the decompose function, it may be unable to do so. This is because of in-
complete knowledge: HOPPER does not know an applicable decomposi-
tion rule to decompose the goal in the current state.

When a failure occurs in the decomposition of a goal in the hierarchy,
updateHierarchy is conservative and tries to minimize any change to the
decomposition hierarchy. It tries to resolve the problem as low in the hi-
erarchy as possible, and it only redecomposes higher level goals when it
becomes necessary.

To make progress, updateHierarchy backtracks one level up the decom-
position hierarchy to the parent goal and tries to find an alternate decom-
position. updateHierarchy continues looping until it is unable to find a
viable alternate decomposition; only then does it propagate the failure up
the decomposition hierarchy and tries to redecompose the grandparent
goal. updateHierarchy continues to propagate the failure up the hierarchy
until it either finds a valid alternate decomposition or it reaches the root
goal and is unable to decompose it. If updateHierarchy cannot decompose
the root goal in the current state, then it has no way of achieving the main
goal and so it fails.

If updateHierarchy finds a viable alternate decomposition, then it de-
composes the parent goal and generates its sub-hierarchy in the manner
described in Section 4.1. Note that this redecomposition can also fail and
be re-redecomposed if updateHierarchy is unable to decompose one of its
sub-goals.

Figure 4.3 shows an example of HOPPER achieving the goal of having
lunch with the decomposition of making a sandwich, making something
to drink, and then cleaning up afterward. When achieving having a drink,
a decomposition that the agent could use is making a cup of tea. If the
agent subsequently discovers that there is no tea in the pantry, then its
decomposition of making a cup of tea would fail and the agent would
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have to find an alternate way of achieving having a drink. It would then
backtrack up the hierarchy and redecompose the goal of having a drink
with an alternate decomposition (in this example, buying a can of soda)
while preserving the rest of the decomposition hierarchy. If there were
no other viable alternative decompositions (e.g. the agent had no money),
then the failure would be propagated higher, and the agent would have to
find an alternate way of having lunch (e.g. a sandwich with no drink).

4.2.2 HOPPER redecomposes unsatisfied goals

Usually when the last sub-goal in a decomposition is achieved the parent
goal is achieved as well. However, in some cases the parent goal remains
unsatisfied even when all of its sub-goals have been achieved. This can be
because of four causes:

e The decomposition rule used to decompose the goal is incorrect (achiev-
ing the sub-goals in the given order does not in fact achieve the
higher-level goal).

e The agent’s model of the world is incorrect. The perceived state of
the environment is noisy and uncertain, and the true state may be
different from what the agent believes it to be. In such a case the se-
lected decomposition rule may be inappropriate. For example, if the
agent incorrectly believed that a desired object was inside a closed
drawer, then the decomposition of getting something out of a closed
drawer would fail to acquire the object.

e The agent executed the decomposition incorrectly. Even with the
correct decomposition it is possible that the agent executed the cor-
responding actions incorrectly. For example, if the agent tries to bake
a souffle, then even if it uses the correct decomposition, it may not
beat the mixture correctly and fail.
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Figure 4.3: Redecomposing making a drink
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e Multiple applications of the decomposition are required to satisfy
the parent goal. If the agent is stirring its tea to make the sugar dis-
solve, then it may need to repeat this multiple times until the sugar
is dissolved.

In the first two cases, HOPPER should try an alternative decomposition
(or propagate the failure up the decomposition hierarchy if no alternative
decomposition can be found, as described in the previous section). In the
last two cases, HOPPER should try the decomposition again.

The updateHierarchy function has no way of knowing which of these
cases was actually the cause, so it optimistically assumes that it was be-
cause of one of the two latter cases, and it redecomposes the parent goal.
This is consistent with HOPPER's conservative decomposition update strat-
egy: it tries to resolve problems in the decomposition hierarchy as locally
as possible, and failures are propagated up the hierarchy only as a last

resort.

4.2.3 HOPPER usually uses the same decomposition when

redecomposing

When a goal is redecomposed, the decompose function will usually try
the same decomposition again. The relevant parts of the state of the world
that made the previous decomposition most appropriate to achieving the
goal are likely to still hold, and so the previous decomposition will again
be most appropriate. However, if the state has changed significantly since
the last attempt, a different decomposition rule may be more appropriate
to the new state and decompose will use it instead.
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4.2.4 HOPPER attempts the same decomposition a limited

number of times

A consequence of retrying decompositions is that if multiple attempts make
no progress towards achieving the goal (the decomposition rule is incor-

rect or there is a hidden aspect of the state that makes the decomposition

inappropriate), then HOPPER could get stuck in an infinite loop, repeat-

edly trying the same decomposition without success.

To prevent such infinite loops, updateHierarchy keeps track of how
many times a decomposition rules has been tried for any given goal in
the decomposition hierarchy. HOPPER tries the same decomposition only
a limited number of times. After this limit is reached, updateHierarchy
prevents decompose from trying this decomposition rule again to decom-
pose the goal. If there are no other viable decompositions, it propagates
the failure up the hierarchy and tries to redecompose the parent goal.

There is a trade-off between not attempting a decomposition enough
times and failing to achieve the goal, and trying failed decompositions too
many times and wasting time and effort. Different decompositions may
have a different optimal number of times that they ought to be attempted.
For example, starting an old car may require a large number of turns of
the ignition key, while turning on a light switch should not be attempted
more than a few times.

Currently, HOPPER uses a fixed limit of four failed attempts for ev-
ery decomposition. However, extending it to be able to learn different
counts based on experience is straightforward: every time that HOPPER
successfully achieves a decomposition (or TADPOLE successfully parses
a decomposition) it could note how many times in a row it attempted the
decomposition, increase this number (e.g. by 50%), and set the new count
for the decomposition rule to be the maximum of the current count and
the new number. For example, if it took 10 stirs to completely dissolve the
sugar in a cup of tea, then the next time HOPPER executed this decompo-
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sition it would be willing to execute it up to 15 times.

4.2.5 Multiple redecompositions can encode indefinite be-

haviour

Redecomposing a decomposition multiple times is not only a useful way
of retrying an incorrectly executed decomposition, it also makes decom-
positions more powerful, allowing them to encode indefinitely repeated
behaviour in a single rule.

To accomplish some goals, it is necessary to repeat some behaviour
multiple times, but it is often impossible to predict ahead of time exactly
how many times the repetition will be necessary to achieve the goal. The
behaviour involved can range from being very simple and low-level (e.g.
repeatedly stirring sugar into a cup of tea until it is dissolved) to more
complex and high-level (e.g. repeatedly unloading packages from a truck
until the truck is empty).

It is important to note that a deliberative decomposition strategy has
no way of making use of this feature. Instead, it has to predict the exact
number of times each decomposition will be used when it generates its
plan. This can be awkward when dealing with tasks where this kind of
prediction is not possible (e.g. stirring sugar).

4.3 Matching Goals, States, and Tasks

As HOPPER maintains the goal decomposition hierarchy with the update-
Hierarchy function, it has to constantly check whether the unconstrained
goals in the hierarchy are satisfied in the current state. To do this, the
goals (a graph description of what is desired) have to be matched against
the current state of the world (a graph description of what is believed to be
true) to determine whether the desired goal properties and relationships
hold in the state. If a goal is not satisfied, then this same matching process
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determines the goal-state difference: a graph description of which goal
properties and relationships have to be made true, kept true, made false,
or kept false in order to achieve the goal.

HOPPER achieves goals by finding a task decomposition rule whose
head task (a graph description of the properties and relationships that will
change if the task is achieved) successfully matches with the goal-state
difference, and then decomposing the goal into a partial order of sub-goals
specified by the decomposition rule.

This section describes these two graph matchings, goals against states
and tasks against goal-state differences, in more detail.

4.3.1 Goals are matched against states

A goal is represented by a graph whose nodes consist of objects with prop-
erties and whose links consist of relationships between the objects. Sim-
ilarly, a state is represented by a graph of objects with properties and re-
lationships (Chapter 3 provides more details about the representation of
states, goals, and tasks).

Matching a goal against a state (to check whether it has been achieved
or to determine what state changes are necessary to achieve it) involves
searching for the best imapping of goal nodes to state objects. Figure 4.4
shows a possible mapping of goal nodes to state objects.

HOPPER searches for the best goal to state mapping by running a beam
search where at each step an unmapped goal node is mapped to an un-
mapped state node until all of the goal nodes are mapped. The score of a
mapping (or partial mapping) depends on how well the properties of the
goal objects and their relationships match with the corresponding state
objects.

Each property and relationship in the goal graph is classified as: con-
text, must, or must not (together, the must and must not properties and rela-
tionships constitute the core of the goal). The properties and relationships
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in the context of the goal have a count associated with them indicating how
many times they were present in successfully achieved decompositions
(by HOPPER) or in successfully parsed decompositions (by TADPOLE).
The properties and relationships in the context of the goal are those
that the agent believes may be important to the goal because they were
present in decompositions successfully achieved by HOPPER or success-
fully parsed by TADPOLE, but the agent has not seen them enough times
to justify assuming that they are. HOPPER gauges the importance and
relevance of a property by how many times it has seen it before, and so
matchings are scored based on how well the context matches the state,
weighted by the relative frequencies of the properties and relationships.
The core properties and relationships specify what is necessary for the
goal to be achieved. A goal is achieved only if every must property and
relationship is present in the current state, and every must not property
and relationship is not present. Otherwise, the goal is not achieved, and
HOPPER constructs a goal-state difference graph of the necessary state
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Figure 4.5: Goal for getting a truck to the location of a package

changes to achieve, and then it finds a task to achieve them (see below).

Figure 4.5 shows an example of what a goal to move a truck to the
location of a package could look like (the only core parts of this goal are the
must relationships marked green). The numbers in parentheses indicate
how many times a particular context property or relationship was seen
in a successfully achieved (by HOPPER) or parsed (by TADPOLE) goal.
These numbers are what determine the score of a goal-state match. In
the given example, the truck node would match with a blue truck object
slightly better than with a red truck, the pkg node would match with a
brown package slightly better than with a yellow package, etc.

HOPPER and TADPOLE use the same scoring mechanism for deter-
mining how well a goal node matches with a state node, and this is de-
scribed in more detail in Chapter 5.

The goal in Figure 4.5 would be satisfied if: the truck node were mapped
to a state object of type truck and vehicle, the loc node were mapped to a
state object of type location, and these two state objects were related to
each other by the atLocation and hasObject relationships.

Itis important to note that only the context properties and relationships
of the goal contribute to the score of a mapping. When a goal is matched
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with a state, having more or fewer core properties matched does not in-
dicate a better or worse match but a goal that is more or less achieved.
A goal-state mapping that has fewer unachieved core properties will still
require a task to achieve it and it is unclear whether tasks that make fewer
changes are shorter or easier to achieve than tasks that make more changes.
For example, changing your bank account from $0 to $500,000 (a small
change) can require an enormous amount of time and effort to achieve.
On the other hand, changing your house into a smoking, charred ruin (a
large change) requires no more effort than setting the curtains on fire!.

Any unmatched core properties will be achieved by a task. Unmatched
context properties will not. This is why only the context is used to calcu-
late how well a goal has matched (or partially matched) to a state, while
the core determines which properties and relationships have to be added
or deleted to achieve the goal. How well the context properties and rela-
tionships match determines how good a goal-state mapping is. Whether
or not the core properties and relationships match determines whether or
not the goal is achieved in a given goal-state mapping.

4.3.2 HOPPER constrains unachievable goal elements to

be true in the state

Some of the core elements of a goal (the must and must not properties and
relationships) are sometimes unachievable by any of the agent’s decompo-
sition rules. This is because none of the head tasks of the decomposition
rules specify the corresponding additions to add the must elements or the
corresponding deletions to delete the must not elements. This means that
if such a goal were matched to a state in such a way that these unachiev-
able core elements were not already satisfied, then the goal itself would
be unachievable because there would be no decomposition rule that could

1Of course, if you set up your insurance appropriately, you can achieve both goals
simultaneously.
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make them true or make them false as required.

For example, a goal to get a truck to a certain location may have as
part of its core that the truck node must be related to the location node by
the atLocation relationship and the truck node must have the type truck. If
the agent knew of no way of changing the type of an object and the truck
node were matched with a state object that was not a truck, then this goal
would not be achievable because the agent would have no way of making
it become a truck. The purpose of this method is to prevent ridiculous
goal-state matchings (for example, matching a red package to the truck
object of a goal just because the colour of the truck had always been red,
and depending on the decomposition rules to also change the type of the
package object to “truck”).

Usually when matching a goal against a state, HOPPER only considers
how well the goal’s context matches with the state. However, this assumes
that any part of the goal’s core that does not match will be achieved by a
task. This assumption does not hold for unachievable core goal elements,
and so when matching a goal against a state HOPPER constrains the un-
achievable core goal elements to already be true or false in the state as
required.

In the example above, HOPPER would constrain the truck node to
have to match with a state object whose type was truck. Similarly, if the
goal had any unachievable must not properties or relationships, then it
would constrain the goal to match against the state so that these elements
were already not true in the state.

The way that HOPPER determines whether a core goal element is un-
achievable or not is by keeping a set of all of the property and relationship
additions and deletions specified by all of the head tasks of its decompo-
sition rules. If HOPPER is given any new decomposition rules (e.g. new
rules learned by TADPOLE), then it adds their additions and deletions to
the appropriate sets. A must property or relationship is unachievable if it is
not in the set of property additions or relationship additions respectively,
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and a must not property or relationship is unachievable if it is not in the set
of property deletions or relationship deletions respectively.

Note that this method does not guarantee that a goal-state difference
will always be achievable. There may be separate rules that achieve each
of the state changes required to satisfy the goal, but no single rule that can
achieve all of them. In such cases, HOPPER would fail to find an applica-
ble rule, it would propagate the failure up the hierarchy, and redecompose
the parent goal as normal. As long as the required state changes are not
ridiculous, it is better for HOPPER to fail and try an alternative decompo-
sition rule than to use a poor goal-state matching and end up achieving an

irrelevant goal just because it can.

4.3.3 HOPPER constructs a goal-state difference from the
best goal-state mapping

Once HOPPER has found the best goal-state mapping, it constructs a goal-
state difference graph where the properties and relationships are classified
as: keep true (the must properties and relationships that are present in the
current state), make true (the must properties and relationships that are not
present in the current state), keep false (the must not properties and rela-
tionships that are not present in the current state), make false (the must not
properties and relationships that are present in the current state), and con-
text (all the other properties and relationships)®. Together, the make true,
keep true, make false, and keep false properties and relationships constitute
the core of the goal-state difference.

For example, if the goal in Figure 4.5 were mapped to the state depicted
in Figure 4.6 by the mapping;:

ZFor efficiency reasons, HOPPER does not actually construct an explicit goal-state dif-
ference graph, instead it matches tasks to states and goals directly. However, the effect is
the same so for clarity I describe this process as if an explicit goal-state difference graph
were generated.
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truck2([Type: truck, vehicle], [Colour: red], ...)
truck2 — (atLocation) — loc2

loc1([Type: location, warehouse])
loc1 — (hasObject) — pkg1

pkg2([Type, package], [Colour: brown], ...)
pkg2 — (atLocation) — loc1

loc2([Type: location, postOffice])

Figure 4.6: State description

truck — truck2
loc — loc1

pkg — pkg2

then the must relationship atLocation between truck2 and loc1 (and the
inverse hasODbject relationship between loc1 and truck2) would not be sat-
isfied in the state, and the goal-state difference would be the one depicted
in Figure 4.7.

To achieve the goal, HOPPER would have to find a task decomposition
rule that would add the appropriate atLocation and hasObject relation-
ships and maintain the type of truck2 as truck and vehicle and the type of
loc1 as location.

4.3.4 HOPPER uses the best task that matches the goal-
state difference
After constructing a goal-state difference for goals not satisfied in the cur-

rent state, updateHierarchy calls the decompose function to search through
HOPPER’s decomposition rules to find one that best matches the goal-
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truck2([Type: truck, vehicle], [Colour: red], ...)  keep true
truck2 — — loci
truck2 — (atLocation) — loc2

loc1([Type: location, warehouse])  keep true
loc1 — (hasObject) — pkg2
loc1 — — truck?

pkg2([Type, package], [Colour: red], ...)
pkg2 — (atLocation) — loc1

loc2([Type: location, postOffice])

Figure 4.7: Goal-state difference for getting a truck to the location of a
package

state difference and therefore achieves the goal.

The changes that will occur if a decomposition rule is executed are
specified by its head task, a graph whose nodes consist of objects with
properties and whose links consist of relationships between them. Match-
ing a task against a state-difference involves searching for the best map-
ping of task nodes to goal-state difference nodes.

decompose searches for the best task to goal-state difference mapping
by running a beam search where at each step an unmapped task node is
mapped to an unmapped goal-state difference node until all of the task
nodes are mapped. Whether the mapping (or partial mapping) is suc-
cessful depends on how well the properties of the task objects and their
relationships match with the corresponding goal-state difference objects.

The properties and relationships in the task graph are classified as ei-
ther: precondition, additions or deletions. The additions and deletions specify
what properties and relationships will be added and deleted respectively

if the decomposition rule is achieved. The properties and relationships in
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the precondition specify what should be true in the state when the decom-
position is executed.

A task to goal-state difference mapping is viable if the task additions
and deletions form a superset of the make true and the make false properties
and relationships respectively. The task may have extra additions or dele-
tions that do not match the make true or make false elements of the goal-state
difference. The extra additions have to match with nodes or relationships
where the property or relationship to be added is not already present. The
extra deletions have to match with nodes or relationships where the prop-
erty or relationship to be deleted is present. However, these extra addi-
tions or deletions must not undo any aspects of the goal that are already
satisfied: they must not delete any keep true properties or relationships
that are already satisfied and they must not add any keep false properties
or relationships that are already not present.

The remaining precondition properties and relationships determine how
good the match is. The properties and relationships in the precondition
of the task are those that were present when the task was successfully
achieved by HOPPER or successfully parsed by TADPOLE. A property
or relationship may be a crucial part of the precondition or it may be ir-
relevant. HOPPER gauges the importance and relevance of a property
or relationship by how many times it has seen it before, and so match-
ings are scored based on how well the precondition matches the goal-state
difference, weighted by the relative frequencies of the properties and rela-
tionships.

To find the best matching task, decompose first searches through HOP-
PER’s known decomposition rules to find all the applicable rules: all the
the rules whose head task to goal-state difference mapping is viable. This
corresponds to the set of rules for achieving the goal in question. From
this set, decompose then selects the rule whose head task to goal-state dif-
ference mapping has the highest score as determined by the matching of
the task’s precondition properties and relationships. This corresponds to
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Total: 7
truck([Type: truck(7), vehicle(7)], [Colour: red(5), green(2)], ...)
truck — — destination

truck — (atLocation) — start  delete

start([Type: location(7), postOffice(5), warehouse(2)])
start — (connectedTo(7)) — destination
start — (hasObject) — truck  delete

destination([Type: location(7), airport(6), warehouse(1)])
destination — (connectedTo(7)) — start
destination — — truck

Figure 4.8: Task for moving a truck

the rule that is most applicable in the current state.

Note that dividing the task to goal-state difference mapping into two
phases, matching the additions and deletions first and only then the pre-
condition, greatly reduces the cost of the mapping. This is because the
additions and deletions must satisfy the stringent applicability constraints
given above. This greatly reduces the number of candidate nodes they can
match with and it can lead to early failure. For example, if there is a make
true property in the goal-state difference and there is no corresponding ad-
dition property anywhere in the task, then the decomposition rule cannot
be used to achieve the goal and there is no need to match any other node.

Figure 4.8 shows an example of a head task for the decomposition of
moving a truck from one location to another. A viable mapping of the task

to the goal-state difference in Figure 4.7 would be:

truck — truck2
start — loc2
destination — loc1
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As soon as decompose successfully finds a decomposition rule whose
task matches the desired goal-state difference, udpateHierarchy applies
the corresponding decomposition. If the decomposition is atomic then
udpateHierarchy associates the appropriate atomic action with the parent
goal, otherwise it associates the partial order of sub-goals specified by the

decomposition rule with the parent goal.

4.3.5 Decomposition variables restrict sub-goal matchings

The head task and the sub-goals of a decomposition rule often refer to the
same objects, and it is critically important that the state objects the head
task matched with are the same objects that the sub-goals match with.

Figure 4.9 shows a simplified decomposition rule (not showing any ir-
relevant parts of the context) that specifies how to deliver a package: get a
truck to the location where the package is, get the package into the truck,
get the truck to the destination location, and then get the package out of
the truck. It is important that the package, truck, and location objects re-
ferred to by the head task and sub-goals are constrained to match to the
same state object when the decomposition is being achieved. It is no good
trying to deliver a package by loading it into one truck and then driving
another very similar truck to the destination location.

To ensure that the objects in the head task and in the sub-goals of a de-
composition rule match with the same state objects, each decomposition
rule can have decomposition variables that refer to objects in the head task
and in the sub-goals. If after a matching (task with goal-state difference or
goal with current state) one of the objects referred to by a decomposition
variable is bound to a particular state object, then all subsequent match-
ings involving that decomposition variable are constrained to match with
the bound state object.

For example, the decomposition rule to deliver a package has four de-

composition variables referring to: the package, the initial location of the
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Head Task

P([Type: package(10)])
LO([Type: location(10)])
L1([Type: location(10)])
P— — L1
P — (atLocation) — LO  delete

Sub-Goal 1

T([Type: truck(10)])
LO([Type: location(10)])
T— — LO

Sub-Goal 2

P([Type: package(10)])
T([Type: truck(10)])
P— — T

Sub-Goal 3

T([Type: truck(10)])
L1([Type: location(10)])
T— — L1

Sub-Goal 4

P([Type: package(10)])
T([Type: truck(10)])
P—(in) =T  mustnot

Figure 4.9: Decomposition rule for delivering a package
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package, the destination of the package, and the truck used to deliver the
package. When the head task is matched, the package and both location
variables will be bound to particular state objects. Any future sub-goal
state matchings that refer to the package or either location will be con-
strained to match to the same state objects. Similarly when the first sub-
goal is matched, the truck variable will be bound to a specific state ob-
ject, and in future sub-goal state matchings the truck variable will be con-
strained to match to the same state object.

In practice, most of the nodes in sub-goal graphs are associated with
decomposition variables. This means that when goals are matched with
the current state most if not all of their nodes will often be bound to partic-
ular state objects. This greatly reduces the size of the graph to be matched
and makes matching goals with states a much more tractable problem.

4.4 Unexpected Events

As described in Chapter 1, one of the major challenges in the Human Plan-
ning Domain is its nondeterminism, and more generally its unpredictabil-
ity. In a nondeterministic domain, future states cannot be determined with
certainty. In an unpredictable domain, not only can future states not be
determined with certainty, but also the possible future states cannot be de-
termined. In other words, in an unpredictable domain there is always
the possibility of a completely unexpected event occurring at any time.
This can be because of incomplete or incorrect knowledge about the cur-
rent state of the world, incomplete or incorrect knowledge about how the
world works, or the actions of other agents.

An unexpected event can disrupt the decomposition hierarchy at any
level in a number of ways: it can undo a previously achieved goal, achieve
a previously unachieved goal, invalidate the precondition of a decompo-
sition, and satisfy a previously unsatisfied precondition of an alternative.

The unexpected events can be disruptive to the agent’s plan, or they can
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present opportunities to achieve the plan faster. Most unexpected events
are handled automatically by HOPPER's least-commitment decomposi-
tion strategy (covered in Section 4.5); those that are not must be handled
directly by HOPPER.

When responding to an unexpected event there are a number of pos-
sible ways of updating the decomposition hierarchy, ranging from ignor-
ing the event completely and keeping the decomposition hierarchy un-
changed, to redecomposing completely at every step. Both of these ex-

tremes are undesirable.

4.4.1 Ignoring unexpected events leads to plan failure

Ignoring unexpected events is problematic in non-deterministic domains
and especially in ones that have un-undoable actions. It is important that
plan failure is detected and handled as early as possible, otherwise the
agent can end up producing and executing long futile plans. Furthermore,
the agent would be unable to take advantage of any unexpected opportu-
nities that arose that could make the plan shorter.

For example, if the agent were planning a trip to another country and
it did not react to the information that its flight had been cancelled, then it
would end up going to the airport only to find when it go there that there

was no plane to board.

4.4.2 Redecomposing at every time step is too expensive

On the other extreme, unexpected events can be handled by dropping the
entire goal decomposition hierarchy and rebuilding it at every time step.
This is similar to Icarus” decomposition strategy described in Chapter 2.
However, there are two main problems with this approach.

The first problem is that there is no guarantee that the decomposition
hierarchy generated in the next time step will be the same as the one in the

previous time step. There may be two or more decompositions for achiev-
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ing the same sub-goal that are equally applicable in the current state. If
the decomposition hierarchy is dropped and rebuilt at every time step,
then it is possible that alternate decompositions will be used in different
time steps. Alternate decompositions will often disrupt each other be-
cause they are selected to achieve the same goal and so deal with the same
objects in the state. The approach of constantly rebuilding the decompo-
sition hierarchy can lead to the agent trying one decomposition to achieve
a goal or sub-goal, partially achieving it, then switching to an alternate
decomposition, partially achieving that decomposition, and in the process
interfering and undoing the other decomposition. The agent can end up
switching back and forth between alternate decompositions while making
no progress towards achieving the goal. This problem applies not only to
which decomposition of a number of viable alternatives is used to achieve
a particular goal, but also which goal of a number of co-ordered goals to
achieve first.

For example, if the goal were to deliver two packages to two different
destinations, then there would be two co-ordered sub-goals: delivering
one package and delivering the other one. It does not matter in what order
these two sub-goals are achieved, but one sub-goal should be achieved
completely before the other. If the decomposition hierarchy were dropped
and rebuilt at every time step, then this could lead to the agent driving
halfway to one destination, switching to the other co-ordered sub-goal,
driving partway to the other destination, switching to the other sub-goal,
and so on, resulting in the agent not making any progress towards either
goal.

The second problem is that redecomposing the entire hierarchy at ev-
ery time step is prohibitively expensive. Although this approach is viable
for relatively small hierarchies, coarse atomic actions, and a small num-
ber of known rules, it is clear that it will not scale to larger, more complex
domains. If this approach is to be scaled to the HPD, then it will have to
deal with deep hierarchies (used to solve complex tasks), a very large rule
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set (representing the agent’s knowledge about how to solve a wide vari-
ety of different tasks), and fine-grained atomic actions (the actions have to
be fine-grained enough that the agent can be reasonably confident of ex-
ecuting them successfully without unexpected interruptions). The larger
the decomposition hierarchy and the larger the agent’s rule set, the more
expensive it is to construct the goal decomposition hierarchy. With fine-
grained atomic actions, the entire goal decomposition hierarchy would
have to be rebuilt within very short intervals, which, given the large cost
involved, would be problematic.

A further difficulty with dropping and rebuilding the decomposition
hierarchy is that it precludes any reasoning about future sub-goals (cov-
ered in Sections 4.7 and 4.9), because this reasoning depends on the rela-

tive stability of the decomposition hierarchy.

4.4.3 HOPPER only redecomposes after unexpected events

Rather than redecomposing at every time step, HOPPER instead assumes
that its decomposition rules are generally correct and that redecomposi-
tion is warranted only when an unusual and unexpected event occurs.

To detect unexpected events, HOPPER makes predictions about future
states. When cycle finishes updating the decomposition hierarchy and
selecting the next action to return for the current time step, it makes a
prediction about what the subsequent state will be.

Because every atomic action executed by HOPPER is associated with
an atomic decomposition rule used to achieve an atomic goal, cycle can
make use of the atomic decomposition rule’s head task to make a predic-
tion about what the result of executing the action will be. It predicts that
the subsequent state will differ from the current state by the additions and
deletions specified by the head task of the atomic decomposition rule. If
the subsequent state differs in any way from the predicted state, then cycle
treats this as an unexpected event and it redecomposes the decomposition
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hierarchy accordingly by calling updateHierarchyUnexpected (A.1.5).

Clearly this prediction mechanism is limited, and it cannot account for
changes to the state not caused directly by the agent. HOPPER's pre-
diction mechanism can be extended to arbitrarily sophisticated physics-
learning and state-predicting systems. However, it is important to note
that being able to accurately predict a state change is not enough to guar-
antee that it is non-disruptive. It is only safe to assume that the changes
directly specified by the decomposition are non-disruptive.

4.4.4 HOPPER only redecomposes affected goals

Rather than dropping and then rebuilding the entire goal decomposition
hierarchy, updateHierarchyUnexpected only redecomposes the goals di-
rectly affected by the unexpected event that prompted the redecomposi-
tion.

When an unexpected event occurs, cycle first determines which state
objects changed unexpectedly. It labels a state object as changed if any of
its properties or relationships have been added or deleted unexpectedly
(the changes were not described by the head task of the last atomic de-
composition). updateHierarchyUnexpected then goes down the left hand
side of the decomposition hierarchy and verifies that the decompositions
used to decompose the unconstrained goals are still valid.

In keeping with HOPPER's conservative decomposition strategy, up-
dateHierarchyUnexpected tries to maintain the current decomposition hi-
erarchy and it redecomposes goals only when necessary. This means that
updateHierarchyUnexpected will not redecompose the current decompo-
sition if it was not directly affected by the unexpected event even if the un-
expected event made a new decomposition possible and even if the new
decomposition would match better than the current decomposition.

If the head task of a decomposition has any objects that were affected
by the unexpected event (the state objects the task objects are matched
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with were affected), then updateHierarchyUnexpected drops the entire sub-
hierarchy below it. When cycle subsequently calls updateHierarchy, the
goal-state difference will be recalculated and the goal will be redecom-
posed with a new decomposition rule (note that this can be the same de-
composition rule that decomposed it previously).

For example, the decomposition for delivering a package P1 from L1
to L2 is to get a truck to L1, get P1 into the truck, get the truck to L2,
and get P1 out of the truck. If upon arriving at L1 the agent noticed that
P1 was not in fact at location L1 but at location L3, then HOPPER would
register this as an unexpected event (the package was not where it was
expected to be). The unexpectedly modified state objects would be P1,
L1, and L3, and HOPPER would rematch any decomposition whose task
objects were matched to these state objects. The matching of the head
task of the decomposition used to achieve the deliver package goal would
change (the initial location object would now match with L3 rather than
L1), and so HOPPER would drop the sub-hierarchy of the deliver package
goal and rebuild it using the new task matching. The new decomposition
would now have as the first sub-goal getting a truck to L3. The result of
this would be that the agent would now drive to location L3 rather than
trying to load the non-existent package into the truck at location L1.

The way HOPPER handles opportunities is described in Section 4.7.

4.5 Decomposition by Least Commitment

When achieving goals, HOPPER decomposes only the unconstrained goals
in the decomposition hierarchy and leaves future goals undecomposed.
There are often multiple different decomposition rules that will achieve a
given goal, but HOPPER does not commit to a particular decomposition
rule until it is necessary. HOPPER waits until the goal becomes uncon-
strained and it is time to decompose it before selecting a decomposition
rule. It can then make a more informed decision and pick the decomposi-
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tion rule most appropriate to the current state.

This least-commitment goal-decomposition strategy is particularly well
suited to an unpredictable domain. By not committing to particular de-
composition rules for future goals until necessary, it can automatically
handle many of the unexpected opportunities and disruptions that would

affect the plan.

4.5.1 Thehigher agoalis in the hierarchy the more abstract
it is

The main goal of the goal decomposition hierarchy makes no constraints
on what state it should be achieved in. Whatever the initial state is when
HOPPER begins achieving the goal, HOPPER will find the decomposition
rule whose precondition best matches that state in order to decompose
the goal. However, the sub-goals will tend to reflect the precondition con-
straint of their parent decomposition rule. In general, it will only be ap-
propriate to achieve them in a state where the precondition holds. The
sub-sub-goal will inherit the state constraints of the sub-goals as well as
their own precondition constraints from their own parent decompositions
and so on down the hierarchy. In this way, the lower a goal is in the de-
composition hierarchy the more state constraints it inherits from its parent
decomposition, the narrower the range of states in which it is appropriate
to achieve the goal, and the more concrete it is.

4.5.2 Theleaves of the decomposition hierarchy correspond

to a plan of increasing abstractness

The way to achieve a goal in the decomposition hierarchy is to achieve its
sub-goals in the specified order. Because this applies to all of the decom-
posed goals in the decomposition hierarchy, the way to achieve a goal in
the decomposition hierarchy is to achieve its leaf goals in order. An in-
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Achieve
at hotel

Achieve Achieve Achleve Achieve at Achieve not Achieve

at airport checked in |n plane | destination airport in plane at hotel
Achieve Achieve Ach|eve Achieve taxi Achieve not
ordered taxi taxi arrlved in taxi at airport > in taxi
Achieve Achieve called Achieve Achieve phone
at phone taxi service booked tax1 hung up
Achieve in Achleve Achieve
corridor in study at phone
Achieve Ach|eve Achieve Achieve in
standing up at door door open corridor

Figure 4.10: Decomposition hierarchy for flying to another country

order traversal of a decomposition hierarchy’s leaf nodes corresponds to a
plan where each step in the plan is a goal that needs to be achieved.
Because HOPPER decomposes only the unconstrained and therefore
earliest goals and sub-goals, it produces a left-heavy decomposition hier-
archy, and an in-order traversal of the leaf nodes results in a sequence of
sub-goals where the initial sub-goals are at the lowest level of the decom-
position hierarchy and subsequent sub-goals are at higher (or equal) levels

of the hierarchy. Because goals lower in the decomposition hierarchy are
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more concrete and higher-level goals are more abstract, the hierarchy’s leaf
nodes correspond to a plan that begins with the lowest level atomic goals
and continues with increasingly higher-level and more abstract goals to
achieve. As it executes its plan, HOPPER receives updated information
about the state of the world which it uses to gradually fill in the details.
For example, Figure 4.10 shows the decomposition hierarchy for flying
to another country. An in-order traversal of the leaf nodes gives the se-
quence of goals that the agent needs to achieve in order to achieve the main
goal. The initial goals of this plan are very low-level and very strongly
constrain the state in which it is appropriate to achieve them. Standing
up, getting to the door, opening the door, and getting to the corridor are
only appropriate goals to achieve if the agent is sitting down in a room
connected by a corridor to a study that contains a phone. On the other
hand, the final goals in the plan are high-level and abstract, and make rel-
atively few constraints on the state in which they are achieved. The goals
of disembarking from the plane and then getting to the hotel do not con-
strain the state to any particular layout of the airport or even any means
of transportation (e.g. taxi, bus, walking) of getting to the hotel. HOP-
PER would not commit to a specific means of getting to the hotel until it
had arrived at the destination airport and it could make a more informed

decision based on the most up-to-date state information.

4.5.3 A plan of increasing abstractness is well suited to an

unpredictable domain

In an unpredictable domain, an unexpected event can occur at any time.
Planning requires the agent to predict future states given various actions
that the agent could take. However, the more distant a state is in the fu-
ture, the more likely that an unexpected event will occur between the cur-
rent state and that future state, possibly invalidating any prediction made.

One of the main problems with classical planning algorithms applied to
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an unpredictable domains (described in Chapter 2) is that they depend on
reliable state prediction from the initial state to the final state where the
goal is satisfied.

The advantage of a plan of increasing abstractness like the one gener-
ated by HOPPER is that it makes fewer and fewer constraints on predicted
future states which corresponds well with their increasing uncertainty in
an unpredictable domain. A high-level decomposition rule that has been
learned and applied in a wide variety of different states will have a gen-
eralized precondition. The constraints it makes on the state will be un-
likely to be undone by unexpected events. Most of the unexpected events,
whether they are opportunities to facilitate the plan or disruptions to im-
pede it, will occur below the level of the undecomposed goal, and so they
will be handled automatically when HOPPER selects the most appropriate
decomposition rule to the then current state.

For example, in the example of flying to another country, if the agent
were currently checking in with the airline, then HOPPER would ignore
any unexpected events that have implications for getting from the desti-
nation airport to the hotel until the agent actually arrived at its destination
and assessed the situation. If there were unexpectedly no taxis available,
then because HOPPER had not actually planned out how to get to the ho-
tel from the airport, it would not have to modify its plan at all. Instead, it
would use its knowledge about the current situation to select the appropri-
ate rule (e.g. taking the bus). Similarly, if an unexpected opportunity arose,
like a free shuttle service being available, then HOPPER could make use
of this opportunity immediately when it refined its plan for getting to the
hotel.

HOPPER'’s least-commitment strategy decomposes a sub-goal only when
it is actually time to achieve it and it has as much relevant information as

possible.
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4.5.4 Least-commitment goal decomposition is only justi-

fied if future goals are achievable

HOPPER's least-commitment goal-decomposition strategy has clear ad-
vantages in an unpredictable domain like the HPD. However, not decom-
posing a future goal until it is necessary is only justified if HOPPER can be
confident of having at least one decomposition rule for achieving it when
it comes time do so.

HOPPER can be confident of being able to achieve a future goal if
the problem it is solving is routine. A routine problem is one that it has
achieved before, possibly several times. This means that HOPPER should
have at least one decomposition rule for every goal and sub-goal it will
need to decompose, and possibly multiple rules with different precondi-
tions appropriate for different states. When solving a routine problem,
HOPPER is unlikely to face future goals or sub-goals for which it will not
have applicable decomposition rules. The more routine the problem is
the less likely that HOPPER will be unable to achieve the corresponding
future goals.

4.6 Clean-up sub-goals

Many decomposition rules have “clean-up” sub-goals at the end of their
decomposition whose only purpose is to minimize the superfluous side-
effects of their decomposition rule. Clean-up sub-goals are important to
make decomposition rules more modular: using one decomposition as op-
posed to another to achieve a goal in the decomposition hierarchy makes
no difference (or as little difference as possible) to the rest of the hierarchy.
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4.6.1 Many decomposition rules achieve their head task part-

way through their decomposition

Decomposition rules often achieve a superset of the effects specified by
their head task part-way through their decomposition. The remaining sub-
goals of their decomposition are clean-up sub-goals that serve to undo any
significant side-effects, so that after all the clean-up sub-goals have been
achieved, the effects of the decomposition are limited as much as possible
to those specified by their head task.

For example, the (simplified) decomposition rule to deliver a package
could be:

Task: -atLocation(P, L0), +atLocation(P, L1)
Goal1: atLocation(T, LO)
Goal2: in(P, T)
Goal3: atLocation(T, L1)
Goal4 (clean-up): —in(P, T)

The task of changing the location of the package is achieved as soon as
the truck reaches its destination, before it is unloaded. The final sub-goal
in the decomposition ensures that the final effect of executing the decom-
position will not include the package being in the truck.

Clean-up sub-goals occur at all levels of the decomposition hierarchy.
A low-level decomposition for moving a cup to a table would involve
grasping the cup, lifting it, placing it on the table, and then releasing it.
This decomposition would be achieved as soon as the cup is placed on the
table but before it is released by the agent’s hand. The final sub-goal en-
sures that the only effect of this decomposition is that the cup’s location
changes and not its relationship to the agent’s hand.

High level decompositions also have clean-up sub-goals. For example,
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the decomposition of having dinner could be to acquire the necessary in-
gredients, set the table, cook the meal, eat the food, and clean the plates
and cutlery. Again, the task of having dinner is accomplished as soon as
the food has been eaten, but before the plates have been washed. The sub-
goals for cleaning the plates and cutlery minimize the side-effects of the
decomposition for making dinner. Clean-up sub-goals in general derive
their name from these specific examples of sub-goals for cleaning up after

making dinner.

4.6.2 Clean-up sub-goals make decomposition rules mod-

ular

The reason that it is important that clean-up sub-goals are achieved is that
they minimize the side-effects of their decompositions. Minimizing side-
effects minimizes the interactions between different decompositions and
keeps them as modular as possible.

If a decomposition does not undo its side-effects, then those side-effects
may interfere with future decompositions. For example, not cleaning the
dishes after a meal will interfere with the making of future meals. Un-
cleaned up side-effects may also make it easier for the current goal to be
interfered with by future decompositions. For example, when delivering
a package, if the package is not unloaded from the truck that delivered it,
then any movement of the truck by future decompositions will undo the
original goal. This is particularly important for HOPPER because it does
not keep track of goals that it has already achieved.

If side-effects are not undone, then every decomposition rule that could
be affected would need to account for the side-effects in their sub-goals
and preconditions. For example, every decomposition rule that made
use of a truck would have to consider the case of the truck already being
loaded with another package, and every such rule would need to include

as its first sub-goal the truck being empty. While it is possible to carefully
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handcraft such rules, learning such rules automatically is problematic be-
cause the information for dealing with the side-effect has to be re-learned
for every affected rule. Rather than redundantly duplicating the infor-
mation for handling side-effects at the beginning of many decomposition
rules, it is more economical to encode this information at the end of the
rule that creates them.

Minimizing the side-effects also makes decomposition rules more pre-
dictable. High-level tasks may be decomposed into a large number of dif-
ferent decomposition hierarchies depending on the specific state in which
each sub-goal is decomposed (different states will satisfy different precon-
ditions for alternate decomposition rules for achieving the same sub-goal).
Nevertheless, if the side-effects of the decomposition rules are minimized,
then, despite the variety of possible decomposition hierarchies, the effects
of achieving the high-level task will be limited (as much as possible) to
those specified by the task itself. Minimizing the side-effects of decompo-
sitions means HOPPER can use alternative decompositions to achieve a
particular goal without affecting the rest of the hierarchy.

The predictability of decomposition rules allows HOPPER to reason
about the effects of achieving future sub-goals because the effects decom-
position rules used to achieve it will be minimized to achieving the goal
and nothing else. This is important for interleaving the execution of dif-
ferent decompositions (described in Section 4.7), and also for high-level

planning with decomposition rules (discussed in Section 4.9).

4.6.3 HOPPER ensures that goals with clean-up sub-goals

are not removed prematurely

A consequence of HOPPER's reactive decomposition updating algorithm
is that a goal is removed from the decomposition hierarchy as soon as
it is satistied. This is so that HOPPER can notice and take advantage of

goals that are serendipitously achieved by unexpected events. However,
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it is important for HOPPER to distinguish between goals that have been
serendipitously achieved, and goals that have not been “cleaned up” yet.
Because clean-up sub-goals undo superfluous side-effects after the head
task has been achieved, they always come after their parent goal has been
satisfied. Note that it is not enough to distinguish uncleaned-up goals
from those serendipitously achieved by noticing unexpected events, be-
cause the unexpected events may be irrelevant to the goal being consid-
ered.

To make sure that a decomposition’s “clean-up” sub-goals are achieved,
updateHierarchy does not remove a goal from the decomposition hierar-
chy if it has any “clean-up” sub-goals. If a goal is satisfied, then HOPPER
removes all of its non-clean-up sub-goals. Only when the satisfied goal
has no “clean-up” sub-goals left does updateHierarchy remove it from the
decomposition hierarchy.

4.6.4 HOPPER achieves sub-goals only when necessary

The only purpose of clean-up sub-goals is to reduce the side-effects of their
decomposition, otherwise they are not critical to achieving the parent goal.
Occasionally, clean-up sub-goals are achieved and then immediately un-
done by the initial goals of the next decomposition. For example, a high-
level description of a decomposition to put sugar into a cup of tea could be:

Task: +cup of tea is sweet
Goal1: hand grasping spoon
Goal2: spoon over sugar container
Goal3: spoon contains sugar
Goal4: spoon over cup
Goal5: sugar in cup
Goal6: spoon in sink, spoon not in cup (clean-up)
Goal7: hand not grasping spoon (clean-up)
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and a high-level description of a decomposition to stir a cup of tea un-
til the sugar is dissolved could be:

Task: -tea has visible sugar in it
Goal1: hand grasping spoon
Goal2: spoon in cup
Goal3: sugar dissolved
Goal4: spoon not in cup
Goal5: spoon in sink (clean-up)
Goal6: hand not grasping spoon (clean-up)

Note that the first two goals of the decomposition to dissolve sugar will
undo the two clean-up sub-goals of the decomposition to put sugar into
the tea in the reverse order that they were achieved. Clearly, it is waste-
ful to achieve clean-up goals that will be immediately undone; there is no
point putting the spoon down only to pick it up again.

HOPPER addresses this issue by not achieving clean-up sub-goals im-
mediately. If a goal in the decomposition hierarchy has only clean-up sub-
goals remaining to be achieved, then updateHierarchy searches through
the subsequent sub-goals in the decomposition hierarchy (sub-goals that
would become unconstrained if this sub-goal were removed) to find any
that are satisfied in the current state but would be undone if any of the
pending clean-up sub-goals were achieved. If a pending clean-up sub-
goal would clobber one of these already satisfied sub-goals, then achiev-
ing it would be counter-productive, and updateHierarchy removes it from
the decomposition hierarchy. After the decomposition hierarchy has been
updated, HOPPER then achieves the remaining pending clean-up goals in
the order specified by their decomposition.
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4.7 Interleaving Decompositions

Decomposition rules that undo their side-effects with clean-up sub-goals
are modular. Because they achieve only the effects specified by their head
task, HOPPER can use alternative decomposition rules to achieve a par-
ticular sub-goal without affecting the rest of the decomposition hierarchy.
However, the same modularity which minimizes how much different de-
compositions interfere with each other also limits how much they can fa-
cilitate each other.

Naively achieving one goal after another in the decomposition hierar-
chy will tend to result in sub-optimal behaviour. To remedy this problem,
HOPPER decomposes co-ordered goals (goals that are part of the same
decomposition where neither is constrained to come before the other) in
parallel, and searches for a way of interleaving the execution of both goals

in a way that results in a shorter plan.

4.7.1 Naively achieving goals in order results in sub-optimal

plans

Unlike classical planners, HOPPER does not search the space of possible
sequences of atomic actions that will lead to a desired state, so it can make
no guarantees about the optimality of the number of atomic actions it will
end up performing. This is especially true because HOPPER begins exe-
cuting atomic actions before its plan is completely specified.

Although HOPPER cannot guarantee or even search for optimal plans,
there are ways of improving the performance of goal decomposition plan-
ning within the framework of the goal decomposition hierarchy. This de-
pends on finding and exploiting ways of achieving multiple sub-goals at
the same time.

For example both the plans for doing the shopping and dropping off

a letter in a mailbox require getting in the car, driving to the required lo-
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cation, and then driving back home. If the two instances of driving could
be combined and executed at the same time, then the plan could be made
much shorter and more efficient (e.g. dropping off the letter in the mailbox
on the way to the shop).

Naively achieving one of these goals completely and then achieving
the other results in an inefficient plan (e.¢. driving to the shop, doing the
shopping, driving back home, driving to the mailbox, dropping off the

letter, and then driving home again).

4.7.2 Identical sub-goals achieved at the same time improve

plan efficiency

The plans to achieve different goals often have identical sub-goals lower
in the decomposition hierarchy. If the execution of these plans is carefully
interleaved in such a way that the identical sub-goals are achieved at the
same time, then the identical sub-goal needs only to be achieved once to
be satisfied in all of the separate plans. Not having to redundantly re-
achieve the same sub-goal in other decompositions will reduce the length
of the agent’s plan to a greater or lesser extent depending on how high
the sub-goal is in the decomposition hierarchy. The higher a sub-goal is
in the hierarchy, the deeper its sub-hierarchy, the more atomic actions are
needed to achieve it, and the more atomic actions will be saved if it does
not need to be achieved.

4.7.3 HOPPER tries to interleave the sub-hierarchies of co-

ordered goals

At each time step, cycle calls the updatelnterleavings function (A.1.11) to
maintain the interleavings it has found in previous time steps. updateln-
terleavings removes any interleavings that were affected by any unex-
pected events, and if no interleavings remain, then it calls the interleave-
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Hierarchy function (A.1.12) to search for a way of interleaving the sub-
decomposition hierarchies of co-ordered goals.

The interleavings generated by interleaveHierarchy do not affect the
structure of the decomposition hierarchy. Rather, they are a separate index
into the structure, indicating to chooseAtomicAction and chooseAction-
FromCandidates which sub-goals in the hierarchy should be achieved and
in what order. An interleaving has the same structure that a decomposi-
tion hierarchy does, and it can be used in place of the decomposition hier-
archy when chooseAtomicAction and chooseActionFromCandidates select
the appropriate atomic action to execute.

interleaveHierarchy interleaves the sub-decomposition hierarchies of
co-ordered goals in such a way that any identical sub-goals they share
are achieved at the same time (co-ordered goals are goals in the decompo-
sition hierarchy that belong to the same decomposition and there are no
ordering constraints between them: it does not matter which of the goals
is achieved first).

It only makes sense to interleave the plans of goals in the decompo-
sition hierarchy if there are no ordering constraints between them. Two
goals cannot be achieved simultaneously if one is constrained to be achieved
before the other. For example, an international trip could involve taking a
taxi to the airport, flying to the destination, and then taking a taxi to the
hotel. Despite the fact that the two taxi rides share many identical sub-
goals (ordering a taxi, getting in and out of the taxi, paying the driver,
etc.), they cannot be interleaved because they are strictly ordered to occur
one after the other.

There are two ways in which two (or more) goals in a decomposition

hierarchy can have no ordering constraints between them:

e The goals are top-level goals that the agent needs to achieve. For
example, the agent is tasked with delivering a number of packages
to various different locations. Because these top-level goals are not

within the same decomposition and have no parent goals, HOPPER
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assumes they have no ordering constraints between them, and that

it does not matter what order they are achieved in.

e The goals are part of the same decomposition but have no ordering
constraints between them. An example of such a decomposition is
achieving relatively independent parts of a goal: making dinner in-
volves making a salad, boiling some potatoes, and frying a steak;
because these components are relatively independent of each other,

it does not matter what order they are achieved in.

Any goals that are not constrained to come after any other goal can po-
tentially be interleaved. This is one of the main reasons why HOPPER re-
cursively decomposes all of the unconstrained goals in the decomposition
hierarchy during the construction and updating phases of the algorithm:
so that it can search through the sub-hierarchies for shared sub-goals.

4,74 HOPPER searches the sub-hierarchies of co-ordered

goals for matching sub-goals

After interleaveHierarchy finds the candidate co-ordered sub-goals, it calls
interleave (A.1.13) to find a way to interleave their sub-hierarchies into a
single, consistent plan.

interleave searches the sub-hierarchies of co-ordered goals for match-
ing sub-goals. Two sub-goals match if their respective goal nodes are
mapped to state objects in such a way that their must and must not con-
straints on state objects and relationships are identical. The context of the
sub-goals does not have to be identical for them to match, because the
only purpose of a goal’s context is to help match it against a state, and the
sub-goals in question have already been matched to the current state.

There may be multiple groups of co-ordered goals at different levels of
the decomposition hierarchy, and there may be multiple pairs of match-

ing sub-goals in a pair of sub-hierarchies of co-ordered goals. Because



CHAPTER 4. HOPPER 128

achieving higher-level sub-goals in parallel results in a greater efficiency
gain, interleave searches the decomposition hierarchy with a breadth-first
search. It examines the sub-hierarchies of co-ordered goals higher in the
decomposition hierarchy before examining those lower in the hierarchy,
and it searches the sub-hierarchies themselves with a breadth-first search,
searching for matching sub-goals higher in the sub-hierarchies before those
lower down. Note that the matching sub-goals need not be at the same
depth in the decomposition hierarchy.

Figure 4.11 shows part of HOPPER’s decomposition hierarchy if the
agent had the goals of delivering two packages, one locally by truck and
one to a more distant location by plane. These two goals are co-ordered;
the agent could achieve them in either order, and so HOPPER would de-
compose both and search for matching sub-goals. Delivering a package
locally requires picking it up and dropping it off with a truck. Delivering
a package to a more distant location requires first delivering it to the air-
port and then flying it to the appropriate destination. In this case, both
the packages are at the same initial location, and so both sub-hierarchies
have the same initial sub-goal (and sub-sub-goal) of getting a truck to that
location.

Once interleave has found two matching sub-goals in the sub-hierarchies
of two co-ordered goals it calls interleaveDecomps to search for a way to
interleave the execution of their two parent decompositions in such a way
that the sub-goals are achieved at the same time, but making sure that both
parent goals are still achieved.

4.7.5 HOPPER preserves the goal dependencies when in-
terleaving decompositions
The sub-goals of a decomposition are partially ordered, and a sub-goal

generally depends on all of the sub-goals that are ordered to come before

it: the sub-goals that are ordered to come before the sub-goal in ques-
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Figure 4.11: Two matching sub-goals at different depths in the hierarchy

tion should be satisfied before the sub-goal in question is achieved. How-
ever, some sub-goals are mutually incompatible with other sub-goals in
the same decomposition; they cannot both be satisfied at the same time.
Such sub-goals “clobber” each other; achieving one unachieves the other.
interleaveDecomps assumes that a sub-goal depends on all of the sub-
goals that are ordered to come before it except those that are clobbered
by intervening sub-goals or the sub-goal itself.
For example, the (simplified) decomposition to deliver a package:

Task: -atLocation(P, L0), +atLocation(P, L1)
Goal1: atLocation(T, LO)
Goal2: in(P, T)
Goal3: atLocation(T, L1)
Goal4 (clean-up): —in(P, T)

is fully ordered (Goall — Goal2 — Goal3 — Goal4). Goall is the first
sub-goal and so has no dependencies. Goal2 depends on Goall. Goal3
comes after both Goall and Goal2, however it clobbers Goall (it is not
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possible to achieve Goall and Goal3 at the same time because the same
truck cannot be at two different locations at the same time), and so it de-
pends only on Goal2. Goal4 is ordered to come after Goall, Goal2, and
Goal3, but because Goal3 clobbers Goal1, Goal4 depends only on Goal2
and Goal3.

When interleaving two decompositions interleaveDecompsfirst deter-
mines their respective goal dependencies, and then searches for a way to
order all the sub-goals so that the matching sub-goals are achieved at the
same time and all of the goal dependencies of both decompositions are
preserved.

4.7.6 HOPPER fixes the matching sub-goals and then inter-

leaves the remaining sub-goals

When interleaving two decompositions, interleaveDecomps first fixes the
matching sub-goals to be achieved at the same time, and then searches
for a valid ordering of the remaining sub-goals that preserves all of the
goal dependencies of both decompositions. However, two decomposi-
tions may have more than one matching sub-goal in common. It may not
be possible to interleave the decompositions so that all of the matching
sub-goals are achieved in parallel, but it may be possible to achieve some
of the sub-goals in parallel.

interleaveDecomps accounts for this by first trying to find a viable in-
terleaving with all of the matching sub-goals constrained to be achieved at
the same time, and then successively relaxing these constraints. If two de-
compositions have n matching sub-goals, then after failing to find a viable
interleaving where all of them are fixed, it tries to find a viable interleav-
ing for all cases where n — 1 are fixed. If it can find no viable interleavings,
then it continues searching in all cases where n — 2 are fixed, and so on,
until it finally tries to find a viable interleaving in all cases where only one
of the matching sub-goals is fixed.
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For example, the decomposition to deliver packagel from location1
to location2 with truck1 and the decomposition to deliver package2 from
location1 to location2 with truck1 have two matching sub-goals in com-
mon: getting truck1 to location1, and getting truck1 to location2. HOPPER
would first try to find a viable interleaving where both of the shared sub-
goals are achieved at the same time. If it were not successful, then it would
search for an interleaving where first one and then the other pair of match-
ing sub-goals was achieved at the same time. HOPPER stops searching for
a way to interleave the two decompositions only when all three attempts
to find a viable interleaving fail. In the worst case, if two decompositions
share n matching sub-goals, HOPPER will attempt to find an interleaving
2" — 1 times (the number of possible subsets of an n-sized set, excluding
the empty set), but this is not an issue because two decompositions will
only very rarely share more than 2 matching sub-goals.

4.7.7 HOPPER searches for valid insertion points for the

remaining sub-goals into the interleaving

Once it has fixed the matching sub-goals, interleaveDecomps progressively
searches for appropriate places to insert the remaining sub-goals of one de-
composition into the other. Figure 4.12 shows an example of interleaveDe-
comps interleaving two decompositions for delivering two different pack-
ages from the same initial location.

Each goal in the interleaving has a range over which it is satisfied be-
ginning just after the goal itself and ending with the first goal that clob-
bers it. If no goal clobbers it, then the range extends across the entire in-
terleaving. The sub-goals of one decomposition will often interfere with
or clobber the sub-goals of the other. This means that as interleaveDe-
compsinserts goals into the interleaving, it has to update the ranges over
which each goal in the interleaving is satisfied because each new goal may

clobber one of the goals already in the interleaving.
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3. Search for valid insertions of remaining sub-goals
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Figure 4.12: Interleaving two decompositions for delivering packages
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When searching for an insertion point for a goal into the interleaving,
interleaveDecomps makes sure that its goal dependencies are satisfied:
the goal can only be inserted at a point in the interleaving where all of
the goals it depends on are satisfied. interleaveDecomps also makes sure
that the goal being inserted does not itself violate the goal dependencies
of other goals in the interleaving: the goal cannot be inserted within the
satisfied range of a goal that it clobbers.

A goal will be inserted only when all of the goals it depends on are
already in the interleaving. This means that, in general, when a goal is
inserted into the interleaving there will not be any goals that depend on
it already inserted. An exception to this rule is the matching sub-goals
which are inserted at fixed points at the beginning of the algorithm. To
account for this, interleaveDecomps enforces a further constraint that if
any matching sub-goals depend on the goal being inserted, the goal must
be inserted at a point where its satisfaction range includes all the matching

sub-goals that depend on it.

4.7.8 The interleaving is a partial order of sub-goals

A decomposition consists of a partial order of sub-goals. When inter-
leaveDecomps inserts sub-goals from one decomposition into another, it
partially orders them (while preserving their respective goal dependen-
cies). If a goal can be inserted directly before a goal in the interleaving and
it can be inserted directly after it, then there are no ordering constraints
between the two goals. As well as inserting the goal before or after the
other goal in the partial order, a third option is to co-order the two goals.
When searching for a viable interleaving, interleaveDecomps runs a pri-
ority search where it prefers to co-order the inserted goals with the inter-
leaved goals if possible. This is because the more co-ordered goals there
are, the more flexible the interleaving, and the more opportunities inter-

leaveDecomps has for subsequent sub-interleavings.
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4.7.9 HOPPER interleaves interleavings with co-ordered goals

If a group of co-ordered goals consists of three or more goals, then inter-
leave looks for shared sub-goals in their sub-hierarchies and, if it finds
them, tries to interleave two of the co-ordered goals. If it finds a viable in-
terleaving for two of the co-ordered goals, then the rest of the co-ordered
goals remain co-ordered with the interleaving itself. This means that they
can be interleaved with the interleaving. In such a case, interleave searches
through the sub-hierarchies of the remaining co-ordered goals and looks
for matching sub-goals they share with the interleaving or any of the sub-
goals of its unconstrained goals. If it finds such matching sub-goals, then
interleave tries to interleave the decomposition in which they occur with
the interleaving by first fixing the matching sub-goals, and then searching
for valid insertion points for the remaining sub-goals as normal.

For example, if the agent had the following three co-ordered goals:

Deliver pkg1 from loc1 to loc2 using truck
Deliver pkg2 from loc1 to loc3 using trucki
Deliver pkg3 from loc2 to loc3 using trucki

HOPPER would first find an interleaving for the first two co-ordered goals:

(truck1 at loc1) — (pkg1 in truck1, pkg2 in truck1) — (truck1 at loc3) —
(pkg2 not in truck1) — (trucki at loc2) — (pkg1 not in truck)

HOPPER would then decompose the third co-ordered goal and search its
sub-hierarchy for any matching sub-goals it had in common with the in-
terleaving (or the sub-goals of its unconstrained goals). In this case, there
are two matching goals in common: (truck1 at loc3) and (truck1 at loc2).
HOPPER would then find the following interleaving:
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(truck1 at loc1) — (pkg1 in truck1, pkg2 in truck1) — (truck1 at loc3) —
(pkg2 not in truck1, pkg3 in truck1) — (truckl at loc2) — (pkg1 not in
truck1, pkg3 not in truck1)

Note that HOPPER does not guarantee optimal interleaving for more than
two co-ordered goals. In this example, if in the first interleaving the agent
planned to go to loc2 first and then to loc3, then the best interleaving HOP-
PER would be able to find for the third co-ordered goal would be:

(truck1 at loc1) — (pkg1 in truck1, pkg2 in truck1) — (truck1 at loc2) —
(pkg1 not in truck1) — (truckl1 at loc3) — (pkg2 not in truck1, pkg3 in
truck1) — (truck1 at loc2) — (pkg3 not in truck1)

However, since HOPPER does not begin achieving any sub-goals until it
has completed interleaving all of the co-ordered goals, it should be rela-
tively straightforward to extend HOPPER to backtrack to earlier interleav-
ings during its search so that it can find the optimal interleaving for all of
the co-ordered goals.

4.7.10 HOPPER treats the resulting interleaving as an in-

dex into the decomposition hierarchy

The interleaving of two co-ordered goals is a partial order of sub-goals that
are already present and fully decomposed in HOPPER’s decomposition hi-
erarchy. The interleaved goals can themselves be viewed as the top nodes
of a partial decomposition hierarchy, making it possible for HOPPER to
treat an interleaving like any other decomposition hierarchy. However, it
is important to note that each interleaving is dependent on the main de-
composition hierarchy. Any changes to the decomposition hierarchy such
as a sub-goal being serendipitously achieved are also reflected in the in-
terleavings involving those sub-goals or any of their descendants.
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4.7.11 HOPPER finds sub-interleavings for the co-ordered

goals within an interleaving

When HOPPER is partway through achieving the goals of an interleaving,
updatelnterleavings treats the co-ordered goals of an interleaving like the
co-ordered goals of the decomposition hierarchy and searches for a way of
sub-interleaving their sub-hierarchies. If it finds a sub-interleaving, then
it pushes it on to a stack of interleavings and recursively applies the in-
terleaving algorithm to it. This can lead to further sub-sub-interleavings
as HOPPER finds ways of optimizing its plan at ever finer levels of detail.
When chooseActionFromCandidates determines what action to execute in
a particular time step, it only makes use of the lowest-level interleaving at
the top of the interleavings stack.

For example, after satisfying the first goal of the interleaving given
above of having truck1 at location loc1, HOPPER would then decompose
the two goals of (pkg1 in truckl) and (pkg2 in truck1). Because these
two goals are co-ordered, HOPPER would search their sub-hierarchies for
shared sub-goals and try to interleave them if it found any. If the decom-
position to load a package into a closed truck was to first open the truck,
load the package, and then close the truck again, then the sub-interleaving
HOPPER would find would be:

(truck1 is open) — (pkg1 in truck1, pkg2 in truck1) — (truck1 is not open)

HOPPER would again treat the sub-interleaving as any other decompo-
sition: it would interleave it with other decompositions if they shared
matching sub-goals, and it would search for sub-sub-interleavings when
it decomposed and achieved any co-ordered sub-goals that it may have.
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4.8 Limitations

HOPPER has a number of limitations that have to be addressed if it is to
fully scale to the HPD. These limitations relate not only to HOPPER but to
TADPOLE as well. This is because any modification to the decomposition
rules used by HOPPER that extends its power adds an additional burden
on TADPOLE that has to learn the rules in the first place.

4.8.1 HOPPER has no way of keeping a goal satisfied

As soon as a goal is satisfied, HOPPER removes it from its goal-decomposition
hierarchy and moves on to achieving the next goal. This can be problem-
atic if a sub-goal needs to remain satisfied throughout the execution of
a decomposition. Once a sub-goal is removed from the hierarchy, HOP-
PER has no way of detecting let alone handling an unexpected event that
would disrupt it. However, extending HOPPER to handle this should be
relatively straightforward. HOPPER’s decomposition rules already keep
track of sub-goal dependencies, and before executing a sub-goal, HOP-
PER could insist that all of its dependencies are already satisfied in the
current state, and if they are not, then it could redecompose the parent
goal and execute the decomposition again (skipping the already-achieved
sub-goals).

4.8.2 HOPPER has a fixed limit for the number of failed

decomposition attempts

HOPPER has a fixed limit of four failed attempts before it gives up and
tries an alternative decomposition. This crude, general limit needs to be
extended to a separate, specific limit for each rule that is learned from
experience. An additional factor that HOPPER should take into consider-
ation is the height of the decomposition being redecomposed. The higher

a failed decomposition rule is in the hierarchy, the more atomic rules it
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will take to achieve, and the more expensive it is to reapply it. HOPPER
should be less eager to repeatedly execute high-level decompositions than

cheap, low-level ones.

4.8.3 HOPPER does not manage resource use

An important limitation of HOPPER is that it in no way keeps track of
resource use. For example, driving a truck from one location to another
would use up some fuel which could affect the execution of subsequent
decompositions (without fuel, the truck cannot be reused to deliver any-
thing else). It is quite straightforward to add resources to the precondi-
tions and effects of tasks (HTNs have done this); however, it is completely
unclear how to learn such rules without additional domain knowledge.
Furthermore, it is unclear whether intensive resource management is even
part of the HPD. People are not particularly effective at managing logistics
operations, and instead rely on specialized algorithms to optimize such
tasks.

4.8.4 HOPPER does not deal with action duration and wait-

ing

HOPPER'’s most important limitation is that it does not deal with action
duration and waiting. This is an important aspect of HPD, and to address
it, the representation would have to simulate time more realistically (e.g.
provide sensory information about the current state at fixed time intervals
rather than when a state change occurs). The representation of the decom-
position rules would also have to be extended so that tasks would have an
estimated duration and waiting a certain amount of time was a possible
action the agent could execute. HOPPER's interleaving mechanism would
also have to be modified so that it could make efficient use of waiting time
by achieving other sub-goals during that time. A good cook can achieve

multiple different sub-goals while waiting for others to complete. To make
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full use of the ability to wait, especially in novel situations, the agent will
also need to be extended with a physics learning system that can predict

how the state will change over time.

4.8.5 HOPPER does not learn from negative examples

HOPPER only refines a decomposition rule after it successfully executes it.
It cannot learn from a failed attempt to execute a decomposition because
it is difficult for it to identify the reason the rule failed. A rule can fail to
achieve its task (even when it is reapplied repeatedly) because its precon-
dition is incorrect and it was applied in an inappropriate state, or because
the rule’s variable or sub-goal constraints are wrong and they matched
to the wrong state objects, or it could be because the rule’s ordering con-
straints are wrong and the sub-goals were achieved in the wrong order,
or the rule could be completely correct but a hidden, unexpected effect
disrupted the plan.

4.8.6 HOPPER is only applicable for routine tasks

HOPPER can only achieve tasks that it is familiar with — tasks for which
it has the appropriate rules. Although it can achieve such tasks in new
situations, it has no way of achieving truly novel tasks that it has never
seen before. The next section discusses several ways to extend HOPPER
to handle novel tasks.

4.9 Achieving Goals without Applicable Decom-

position Rules

HOPPER’s goal decomposition hierarchy is useful for achieving relatively
simple goals and routine tasks; however, it could be extended to be a

framework for more sophisticated reasoning about the agent’s plan in
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new or unusual situations where the agent has no applicable decompo-
sition rule. This section describes two interesting ways that HOPPER
could be extended to handle non-routine situations: backward-chaining
and forward-chaining. These planning methods are flexible enough to
solve arbitrary problems given very little domain knowledge, but they
have an exponential cost and are utterly intractable for achieving the agent’s
main task. However, the modularity of the decomposition rules could be
used to constrain the search to only the relevant sub-goals and the relevant

level of abstraction of the decomposition hierarchy.

4.9.1 Backward-chaining could be used to satisfy the pre-

condition of a decomposition rule

While planning with HOPPER, if the agent came across a sub-goal in the
goal decomposition hierarchy for which it had no applicable decompo-
sition rule, then rather than failing and trying to find an alternative de-
composition rule for one of the ancestor goals, the agent could instead
try to satisfy the precondition of a decomposition rule for achieving the
goal. The agent would find the difference between the precondition of
this decomposition rule and the current state, and post this as a sub-goal
to achieve. Once this sub-goal is achieved, the decomposition rule should
become applicable and the agent should be able to achieve the goal nor-
mally. Note that the new sub-goal could itself be unachievable. In such
a case, the agent would then recursively apply the same algorithm and
try to satisfy the precondition for a decomposition rule for achieving the
new sub-goal. Of course, at each step there could be multiple different
decomposition rules for achieving the goal/sub-goal in question, and the
agent would have to search backward for the appropriate precondition to
satisfy. The agent would continue backward-chaining in this way until it
found an achievable sub-goal.

When performing this search, an important factor to consider is that
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the cost of executing one decomposition rule can be radically different
from the cost of executing another decomposition rule. For example, it is
far more expensive and time-consuming to travel to another city by walk-
ing there compared with the cost of executing the decomposition of driv-
ing there. A short plan of expensive actions may be worse than a longer
plan of cheaper actions. The backward-chaining search should take note of
the cost of doing each decomposition “action”. A good way of estimating
the cost of a decomposition rule is by decomposing only its unconstrained
sub-goals and determining the length of their longest branch. The longer
the branch, the deeper the decomposition is likely to be, and the more
expensive it will be to execute.

The advantage of embedding the backward-chaining algorithm within
HOPPER is that it is very tightly constrained. Rather than trying to achieve
the agent’s entire main goal with this kind of search, the agent only searches
for a way of achieving one particular sub-goal within the decomposition
hierarchy. And rather than back-chaining with atomic actions, the agent
back-chains with goals and sub-goals and it stops when it reaches one that
it knows how to achieve (it has an applicable decomposition rule for it).

The rest of the planning would proceed as normal.

4.9.2 Forward-chaining could be used to search with de-

composition rules

Decomposition rules can be viewed as high-level, abstract actions. They
have preconditions and they cause effects in the state. Because they try to
minimize their side-effects, they are also predictable which means that it is
possible to plan with them directly, whether to solve the top-level goal, or
a sub-goal in the decomposition hierarchy that the agent cannot otherwise
achieve.

If the agent has enough of an understanding of what the effects of its

rules are, including their various hidden effects that are not directly ob-
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servable, if it has enough knowledge about the physics of the domain and
it can predict the consequences of the direct effects, then the agent can
search for a sequence of decompositions that will have the desired effect
on the state, whether to satisfy the precondition of a decomposition to
achieve some sub-goal, or to achieve the sub-goal directly.

An important problem that needs to be overcome if this approach is
to be feasible is pruning the search space. An agent that can solve a wide
range of tasks in the HPD is likely to have a large set of decomposition
rules. This means that the branching factor for the search tree of a forward
search will be large and the search could end up being prohibitively ex-
pensive even for short plans. One possibility is to prefer decomposition
rules that manipulate the same kinds of objects that the agent wants to
affect. For example, there is not much point considering a decomposition
for changing a spare tire if the agent wants to bake a cake.



Chapter 5

TADPOLE

This chapter describes TADPOLE (TAsk Decomposition Parser and Online
LEarner), an algorithm that uses decomposition rules to parse the demon-
strated behaviour of a teacher and then learns new decomposition rules
and refines its existing decomposition rules from the resulting parsed de-
composition hierarchy.

The TADPOLE algorithm is the inverse of HOPPER. HOPPER uses de-
composition rules to generate a decomposition hierarchy in a top-down
manner by decomposing a top-level goal (or goals) into sub-goals, sub-
sub-goals, and so on down to atomic actions. TADPOLE uses decompo-
sition rules to generate a decomposition hierarchy in a bottom-up man-
ner by parsing an atomic sequence of states into a sequence of achieved
tasks, and then parsing the sequence of achieved tasks into a sequence of
higher-level tasks, and so on up to the top-level task that was achieved by
the original sequence of atomic actions.

The primary function of TADPOLE is to parse a teacher’s demonstrated
actions, reconstruct the decomposition hierarchy used to achieve the top-
level task, and then to use the parsed decomposition hierarchy to learn
and refine its decomposition rules. TADPOLE can also be used to parse
and interpret the observed behaviour of any agent, not just a teacher.

When TADPOLE learns from a teacher, it makes a number of felicity

144
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assumptions about the teacher’s behaviour and the lessons they provide.
These felicity constraints on the teacher ease TADPOLE’s learning task
and allow it to parse the teacher’s behaviour when TADPOLE's rule set
is still incomplete and not fully learned. Because TADPOLE cannot make
the same felicity assumptions about the behaviour of arbitrary agents that
it can for the behaviour of a teacher agent, it is best for it not to attempt to
parse the behaviour of non-teacher agents until it has correctly learned a

robust set of decomposition rules.

Organization of the chapter

e Section 5.1 provides an outline of what TADPOLE does. It describes
the kind of input that TADPOLE expects from the teacher and the
structure of the parsed decomposition hierarchy that it generates.
The section also describes the constraints on the teacher, and the fe-
licity condition assumptions that TADPOLE makes about the teacher

and the lessons it provides.

e Section 5.2 presents an overview of the TADPOLE algorithm, and
describes how TADPOLE interacts with its simulated environment.
This section covers TADPOLE's basic parsing techniques and how it
gradually builds its goal-decomposition parse as it sees subsequent
states of the teacher’s demonstration.

e Section 5.3 describes how TADPOLE addresses the problem of iden-
tifying the relevant features of a large, complex state. It goes on to ex-
plain in more detail the mechanics of how TADPOLE matches goals
and tasks to state-differences.

e Section 5.4 describes how TADPOLE scores the matchings between a
decomposition rule and a set of demonstrated state-differences, dis-
tinguishing between good matches and poor matches, and guiding

its beam search for the best parse of the teacher’s demonstration.
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e Section 5.5 covers how decomposition rules are refined once the teacher’s
demonstration has been successfully parsed.

e Section 5.6 covers TADPOLE'’s advanced parsing techniques: how
TADPOLE parses demonstrations with decompositions that have sub-
goals that are already achieved, how it parses demonstrations that
involve interleaved decompositions, and how it parses a repeated

decomposition into a single rule.

e Section 5.7 explains how TADPOLE uses gaps in the parsed goal-
decomposition hierarchy to learn new decomposition rules.

e Section 5.8 concludes the chapter by describing the limitations of
TADPOLE and ways in which the algorithm could be improved and
extended.
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5.1 Inputand Output of TADPOLE

TADPOLE is an algorithm that produces a decomposition hierarchy by
parsing the demonstrated behaviour of a teacher agent. This decompo-
sition hierarchy is an interpretation of the teacher’s behaviour, and TAD-
POLE uses it to learn new decomposition rules and refine old ones. This
section describes the assumptions TADPOLE makes about the nature of
its input and the output it generates.

TADOPLE learns and refines its decomposition rules by observing a
teacher agent that provides lessons of how to achieve various goals. The
purpose of each lesson is to teach TADPOLE a way of achieving a goal (in
other words, each lesson demonstrates a task). The demonstration consists
of a sequence of states generated by a teacher executing a sequence of
atomic actions in the given domain that result in the goal being achieved.

5.1.1 A teacher is necessary in order to learn complex rules
in the HPD

One of the fundamental motivations for both TADPOLE and HOPPER is
to duplicate at least to an extent humans’ ability to rapidly learn in very
complex domains. The domains TADPOLE learns in are modelled after
the Human Planning Domain to be large, complex, and unpredictable. In
such domains humans can learn very quickly given only a few examples,
even when they have only a rudimentary and incomplete understanding
of the physics of the domain. For example, humans can successfully make
a cup of coffee after seing only one example, and they can successfully
operate electrical devices in the kitchen without needing any understand-
ing of electronic circuits. However, in order to learn how to achieve a
novel task in a poorly understood domain, humans require a teacher to
first demonstrate how to do it. Trial-and-error experimentation with elec-

tricity and fire is dangerous, and may never result in the discovery of key
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steps such as the use of yeast to make dough rise.

The vast majority of skills that humans have are learned by observing
others, and a key learning ability that humans have is the ability to learn
from a teacher. It would not be sensible to attempt to duplicate humans’

ability to learn quickly in complex domains and do it without a teacher

5.1.2 Having a human teacher places constraints on TAD-
POLE

As described in Chapter 1, TADPOLE and HOPPER are inspired by the
problem of creating an autonomous agent that acts intelligently in the real
world, specifically in the Human Planning Domain. In such a domain,
TADPOLE would run as a program in a robotic body and the role of the
teacher would fall to a human instructor.

Note that TADPOLE could also learn from a non-human teacher, as
long as the system used decomposition rules to generate its lessons and it
abided by the felicity conditions described here.

TADPOLE can only observe the external effects of the teacher’s actions

TADPOLE would have no access to the internal state of a human teacher,
and in order to scale to the HPD, TADPOLE cannot depend on such ad-
ditional information. Because of this, TADPOLE cannot observe what ac-
tions the teacher decided to perform, or any of the reasoning the teacher
went through to select the actions. TADPOLE can only see the sequence of
states that resulted from the teacher’s actions. Note that depending on the
particular domain, actions can have hidden effects that modify the state
but are not directly observable by TADPOLE.
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The teacher will not always undo unimportant side-effects

Some side-effects of executing a decomposition are not important and the
teacher may not bother to undo them before concluding the lesson. For
example, when delivering a package by truck, the fact that the truck’s po-
sition changes as well is an unimportant side-effect that can be ignored,
so when the teacher demonstrates how to deliver a package by truck, they
may not bother returning the truck to its original location in the demon-
strated lesson especially if they go on to demonstrate the delivery of more
packages.

TADPOLE must be able to recognize that some of the effects of the
same decomposition may or may not be present in different instances, and

TADPOLE must be able to match and update its rules appropriately.

The teacher provides only a limited number of lessons for each task

Generating lessons for TADPOLE can be a time-consuming process. This
is especially true for more complex tasks. The more complex a task, the
deeper its goal-decomposition hierarchy, the more atomic actions need to
be executed to achieve it, and the more actions the teacher needs to in-
corporate in its lesson demonstration. Because of this, TADPOLE cannot
depend on the teacher providing a large number of examples for each de-
composition rule, and one of the criteria for evaluating TADPOLE is the
number of lessons it requires to learn effective decomposition rules (see
Chapter 6 for more details).

5.1.3 TADPOLE makes felicity assumptions about the teacher

It can be very difficult to learn from a bad teacher, especially when the
teacher provides no feedback as is the case for TADPOLE. A learner may
need to use much more cautious learning techniques to learn from bad
teaching. TADPOLE makes several assumptions about the teacher’s demon-

strations in order to simplify its learning task. If the teacher does not sat-
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isfy these assumptions, then TADPOLE may fail to learn or may learn in-

correctly.

TADPOLE assumes that the teacher uses decomposition rules

An important assumption that TADPOLE makes is that the teacher uses
decomposition rules to achieve the goals it demonstrates in its lessons.
There are many ways of planning to achieve goals: finding an order-
ing of atomic actions by reasoning about the preconditions and effects of
atomic actions, using a learned reactive policy from states to actions, using
learned macro-actions, and so on. However, TADPOLE assumes that the
teacher uses decomposition rules to generate a goal-decomposition hier-
archy (in a similar manner to HOPPER) and determines the appropriate
atomic actions to execute from it. Note that it would not matter if the
teacher actually used a different planning method, as long as that method
generated behaviour that could have been generated from decomposition

rules.

TADPOLE assumes that the teacher demonstrates simple tasks before

complex ones

TADPOLE assumes not only that each lesson is implicitly structured by a
goal-decomposition hierarchy, but also that the sequence of lessons itself
is structured.

Learning a large number of new, interacting rules, or even correctly
parsing a teacher’s demonstration that involves a large amount of novel
information is very difficult. This is because without knowing enough
of the rules used by the teacher, the parse of the teacher’s demonstration
becomes increasingly ambiguous, and the more novel information there
is in the lesson, the more uncertain and ambiguous the parse is. If the
teacher presents too many new decompositions at once, then the learner

may not be able to separate the new decompositions correctly and will
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either combine them into a single, very complex, and ultimately useless
decomposition or it will fail to learn at all.

Good human teachers will often present new information and new
ways of doing things in the context of things the student has already mas-
tered, with subsequent lessons building on previous lessons.

TADPOLE exploits this assumption by building on the knowledge it
gained from earlier lessons. It parses the teacher’s demonstration in a
bottom-up manner, using rules it learned in previous lessons to parse the
low-level decompositions and form the context in which it can learn new,
higher-level decomposition rules. In this way, TADPOLE only has to deal
with only a limited amount of novel information and new rules at a time.

In order for TADPOLE to make use of knowledge from earlier lessons,
the sequence of lessons presented by the teacher must generally build from
simpler tasks to more complex tasks in such a way that each new rule
will be demonstrated within the context of rules that have already been
taught. If this felicity condition is violated, TADPOLE will either become
too confused and will simply reject the lesson and refuse to learn from it,

or it will learn incorrect or overly large rules.

TADPOLE assumes that the teacher does not make mistakes

TADPOLE receives only a limited amount of information from the teacher:
apart from the demonstration itself, the only other information it receives
is a signal when the lesson begins and when it ends. Because of this, TAD-
POLE must assume that the teacher’s demonstration is completely correct
with no unnecessary actions or mistakes. If the teacher does make a mis-
take, then TADPOLE treats the mistake as just another part of the demon-
stration.

TADPOLE has no a priori way of determining what is intentional and
what is a mistake in the lesson it observes. Although mistakes do share
some characteristics with each other, they are by themselves not enough
to uniquely identify mistakes in the teacher’s demonstration.
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If a teacher accidentally does something wrong they usually immedi-
ately undo the mistake. For example, when demonstrating how to make
an omelette, if the teacher accidentally drops an egg on the floor, then they
will immediately undo this unwanted effect by cleaning up the mess be-
fore proceeding with the rest of the demonstration. However, immediately
undoing a sub-goal is not enough to distinguish mistakes from intentional
changes to the state. In many tasks, sub-goals achieved earlier in the task
are undone later (with clean-up sub-goals). For example, when making a
cup of coffee, the teacher will first open the cupboard containing a cup,
and then close the cupboard after taking out the cup. There is no a priori
way for TADPOLE to determine that opening and closing a cupboard with
the side-effect of having a cup on the bench is intentional, whereas creat-
ing a mess on the floor and cleaning it up with the side-effect of having egg
shells in the trash is a mistake. Without having an understanding of the
physics of the domain and the various hidden effects and relationships,
TADPOLE cannot determine which side-effects are important and which
are not. In the example given above, for all TADPOLE knows there could
be an omelette spirit that needs to be appeased with egg shells in the trash
in order for the omelette to come out right.

Note that the demonstrations TADPOLE observes may contain irrel-
evant state changes caused by unpredictable events occurring in the do-
main that are beyond the control of the teacher. However, TADPOLE re-
quires that the teacher continually makes progress towards achieving the
task it is demonstrating so that at least some of the state changes are al-
ways caused and intended by the teacher.

A requirement for identifying mistakes is more and richer information
from the teacher. Human teachers often provide significantly more in-
formation that just what they demonstrate. They use body language to
show emotions such as frustration which help to show when things have
gone wrong. Human teachers also use verbal communication with their

students and inform them when something unexpected occurs that dis-
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rupts the demonstration. Future work on TADPOLE could exploit this
additional information to relax the assumption that the teacher makes no

mistakes during a lesson.

TADPOLE assumes the teacher will demonstrate a range of examples

When learning decomposition rules, TADPOLE learns which properties
and relationships are significant by observing demonstrated instances of
the teacher using decomposition rules to achieve tasks. TADPOLE as-
sumes that properties and relationships that tend to recur in different ex-
amples are significant so it is important for the teacher to diversify its ex-
amples. For example, if the teacher were demonstrating how to deliver a
package and it showed 1000 instances where it always delivered a pack-
age with a red truck, then TADPOLE would assume that the red colour of

the truck was significant to the decomposition rule.

5.1.4 Each lesson consists of a sequence of states separated

by atomic time slices

Both TADPOLE and the teacher agent interact with a simulated environ-
ment in sense-action-sense cycles (in similar way that HOPPER does). At
each time slice, TADPOLE receives a sensory description of the world, and
the teacher agent selects an atomic action and executes it.

Immediately before beginning a lesson, the teacher informs TADPOLE
that the lesson is about to begin. The teacher then proceeds to select and
execute a sequence of atomic actions that result in a goal being achieved
in the state. Once the goal has been achieved and the lesson is concluded,
the teacher informs TADPOLE that the lesson is finished. The teacher is
then free to demonstrate a new lesson of how to achieve another (or the

same) task.
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5.1.5 The agent and the teacher may control an avatar

Depending on the particular domain, the agent (consisting of both TAD-
POLE and HOPPER) and the teacher may or may not control avatars rep-
resented in the state. An avatar consists of an object (or several closely
related objects) in the state. In domains with avatars, every agent that in-
teracts with the simulated environment has a corresponding avatar. An
agent in such a domain can only execute atomic actions to directly affect
its corresponding avatar. Only by manipulating its avatar can an agent
affect other objects in the world.

In a domain such as a logistics domain there is no need for the agent or
the teacher to have any “physical” presence in the simulated world, since
the actions are not performed directly (e.g. the trucks are assumed to have
drivers). In other domains that assume actions are performed directly, it
is necessary to give both the agent and the teacher avatars with which to
execute their actions.

In a domain involving avatars, the agent and the teacher each con-
trol separate avatars. When TADPOLE observes the demonstration of a
teacher in such a domain, it maps its own avatar to the teacher’s avatar in
its mental representation of the world. For example, if the teacher demon-
strates how to make a cup of coffee and in one state the robotic arm of
the teacher’s avatar is next to a cup and in the next state the arm is grasp-
ing the cup, then TADPOLE will remap the states in the demonstration so
that the robotic arm of TADPOLE's avatar is next to and then grasping the
cup. TADPOLE does this so that when it learns decomposition rules from
the demonstration HOPPER will apply them to its own avatar, rather than
trying to control the teacher’s avatar (when learning how to pick up a cup,
HOPPER should use its own arm and not try to grab the teacher’s arm and
use it to lift objects!).

Children’s ability to mimic observed behaviour at an early age suggests

that humans may have such a mechanism built in [17].
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5.1.6 TADPOLE assumes it knows about all of the atomic

actions the teacher may execute

In order to completely parse the teacher’s demonstrated lessons, TAD-
POLE must able to learn the appropriate atomic decomposition rules. How-
ever, because TADPOLE can only observe the effects of the teacher’s ac-
tions but not the actions themselves, it must have a way of determin-
ing what atomic action the teacher executed at each time step based on
the state changes that occurred. TADPOLE assumes such a mechanism,
and though the mechanism for learning how to perform the atomic ac-
tions themselves is outside the scope of this thesis, TADPOLE does learn
the atomic appropriate decomposition(s) for each atomic action from the

teacher’s demonstrations.

5.1.7 TADPOLE generates a hierarchical decomposition parse

of the teacher’s demonstration

The end result of TADPOLE’s parse is a reconstructed goal-decomposition
hierarchy that TADPOLE believes the teacher used to achieve the task
demonstrated in the lesson. Note that there may be a number of possi-
ble alternative parses, in which case TADPOLE selects the one that best
matches its current rule set.

The decomposition hierarchy generated by TADPOLE is a DAG of
state-differences achieved by the teacher during the demonstration, where
each state-difference describes the state changes that the teacher achieved
between an earlier time and a later time in the lesson. Each node in the
DAG (except for the atomic nodes at the bottom of the hierarchy) has an
ordered sequence of children.

Each atomic node at the base of the hierarchy corresponds to the dif-
ference between two consecutive states in the teacher’s demonstration, the
result of the teacher executing a single atomic action. The state-differences

higher in the decomposition hierarchy correspond to the difference be-
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Figure 5.1: State-difference decomposition hierarchy

tween the initial state of their earliest descendant atomic node and the
final state of their latest descendant atomic node. The root node of the hi-
erarchy corresponds to the difference between the initial state and the final
state of the demonstration. Figure 5.1 shows a graphical representation of
such a state-difference hierarchy, and indicates with arrows which states
the root state-difference node and a mid-level state-difference node are the
difference of.

For any demonstration, there are a very large number of ways of pars-
ing it, with each parse corresponding to a unique DAG of state-difference
nodes. TADPOLE justifies its final parse by matching its decomposition
rules to the state-difference nodes of the parse. Every state-difference node
and its direct children in the decomposition hierarchy are matched against
a decomposition rule. A node’s state-difference corresponds to the head-
task of a decomposition rule that achieves it, and the child nodes corre-
spond to the sub-goals of the decomposition rule. Note that a node that
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Figure 5.2: Decomposition rules matched with a state-difference hierarchy

corresponds to the head-task of a decomposition also corresponds to a
sub-goal of a parent decomposition, and a node that corresponds to a sub-
goal also corresponds to the head-task of a sub-decomposition. This is
true for all nodes in the hierarchy except for the atomic nodes at the base
of the hierarchy which correspond to atomic decompositions, and the root
node(s) at the top of the parsed hierarchy. Figure 5.2 shows a graphical
representation of how decomposition rules would be matched with the
state-difference hierarchy in the previous example.

The entire decomposition hierarchy is scored depending on how well
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the state-differences calculated from the teacher’s demonstration match
with the decomposition rules used to parse them. Every node in the de-
composition hierarchy keeps track of its decomposition rule matching so
that the overall score of the partial parse can be calculated and so that the
decomposition rules can be refined if the partial parse is completed and
selected.

TADPOLE is capable of parsing interleaved decompositions resulting
in a goal-decomposition hierarchy where the sub-goals of one node are
interleaved with the sub-goals of another. In such cases, two nodes in
the goal-decomposition hierarchy can share some of the same sub-nodes.
These correspond to sub-goals of two different decompositions that the
teacher achieved in parallel.

A parsed hierarchy may have nodes that are not matched with any de-
composition rules. These represent “holes” that TADPOLE cannot explain
with its existing rules. These holes are opportunities to learn new decom-

position rules as described in Section 5.7.

5.2 Overview of the Algorithm

This section presents a simplified overview of TADPOLE’s parsing algo-
rithm; subsequent sections provide further details about specific aspects
of the algorithm. The pseudo-code for the TADPOLE algorithm can be
found in appendix A.2.

5.2.1 TADPOLE runs a beam search over the space of par-

tial parses

For any demonstration longer than the bare minimum there are almost
always multiple different possible ways of parsing it. TADPOLE searches
for the best parse with the highest score where the score of a parse is calcu-

lated from how well the decomposition rules used in the parse match with
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the demonstrated sequence of states (and the resulting state-differences).
Because the number of possible parses can be intractably large for demon-
strations of even moderate length, TADPOLE cannot simply enumerate
all the possible parses and select the best one. Instead, TADPOLE searches
for ways of extending partial parses into complete parses.

A partial parse, like a complete parse, consists of a hierarchical DAG of
state-difference nodes. However, a complete parse will have only one root
node at the top level, while a partial parse can have multiple such nodes.
A completely unparsed partial parse will consist of a single level of state-
difference nodes which will correspond to the state-differences achieved
by the teacher’s atomic actions.

TADPOLE runs a beam search where each partial parse is scored in
(almost) the same way that a complete parse is (Section 5.3 provides more
details about the scoring mechanics). Once it has found a number of pos-
sible complete parses, TADPOLE simply selects the one with the highest
score.

The beam needs to accommodate at least 10 to 20 partial parses in order
to correctly parse the demonstrations in the kitchen and logistics domains
(these two domains are described in Chapter 6), but it should be as wide
as practically possible (the wider the beam, the slower the algorithm, but
the greater the chance of TADPOLE finding the correct parse).

5.2.2 TADPOLE begins to parse the teacher’s demonstra-

tion as soon as it observes a new state

TADPOLE is an online algorithm: it begins to parse and interpret the
teacher’s demonstration as soon as it begins. The learnLesson function
(A.2.1) begins to parse a new lesson after the agent has observed the first
two states (so that it can determine the initial state change caused by the
teacher), and it extends its partial parses with every new observed state of

the teacher’s demonstration.
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When it observes a new state, learnLesson first calculates the differ-
ence between the new state and the last state it observed. It then makes
use of this state-difference to determine what atomic action the teacher
just executed. learnLesson then calls findBestAtomicHierarchy (A.2.2) to
search through TADPOLE’s atomic decomposition rules (decomposition
rules that have a head-task and an atomic action instead of a partial or-
der of sub-goals) to find the best matching rule. After finding the best
rule, learnLesson calls extendParse (A.2.3) to extend every partial parse
on the beam with a new node that has the calculated state-difference and
its matching to the head-task of the best matching atomic rule.

It is important to note that as the parse progresses, TADPOLE matches
new decomposition rules only to the root state-difference nodes. How the
state-difference nodes are parsed lower down in the parsed hierarchy does
not affect how the parse progresses except for their contribution to the
overall score of the partial parse. Because the new atomic state-difference
node will always be the difference between the last observed state and
the newly observed state, matching different atomic decompositions will
always result in the same sequence of root-state difference nodes, so there
is no reason not to simply use the best matching atomic decomposition for
every partial parse.

After extendParse has extended a partial parse with the new state-
difference parsed by an atomic decomposition rule, it searches through
TADPOLE’s non-atomic decomposition rules for ways of matching them
to the root nodes of the newly extended partial parses. learnLesson then
calls getNeighbouringParses (A.2.8) to find the possible ways of extending
the partial parse with the newly matched decomposition rules. learnlLes-
son continues to search for ways to match decomposition rules to the pos-
sible partial parses and then to extend them until it can no longer make
progress (when none of its non-atomic decomposition rules match com-
pletely to any part of any of the partial parses). It then keeps the best par-
tial parses on its beam and waits to observe the next state in the teacher’s
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demonstration.

5.2.3 TADPOLE can make use of additional domain knowl-

edge to help match atomic rules

Atomic actions are “black box” procedures that affect the state when exe-
cuted. Atomic decompositions show how to achieve a particular task by
executing an atomic action. If learnLesson can determine or at least nar-
row down the possibilities of what atomic action the teacher executed in
the last time slice, it can greatly narrow down what task the teacher was
trying to achieve and which decomposition rule they used to achieve it.
The viable atomic actions are those that, if executed in the previous state,
will generate a subset of the state changes noted in the state-difference.
Note that even if TADPOLE knows which atomic action the teacher
executed, there can still be multiple possible candidate atomic decomposi-
tions, and findBestAtomicHierarchy will still have to find the best matching
one. This is because there could be multiple atomic decompositions with
the same atomic action, reflecting the fact that the same atomic action can
have very different effects in different states. For example, the atomic ac-
tion of twisting one’s hand can result in a door becoming unlatched or
water being released from a tap depending on whether the hand is grasp-
ing the knob of a door or the spigot of a tap. To determine what task the
teacher was trying to achieve (unlatching a strange, tap-shaped door or
turning on the water of a tap), findBestAtomicHierarchy has to match the
head-tasks of the candidate atomic decompositions with the observed ef-

fect demonstrated by the teacher.
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5.2.4 TADPOLE matches the sub-goals of decomposition

rules to the state-differences of partial parses

TADPOLE extends the decomposition hierarchy of a partial parse by bot-
tom up parsing. extendParse searches for non-atomic decomposition rules
that match a consecutive sequence of root state-difference nodes (nodes
without parent nodes at the top of the decomposition hierarchy). A de-
composition rule matches a consecutive sequence of state-difference nodes
if every sub-goal of the decomposition rule matches with one of the state-
difference nodes and if the head-task of the decomposition rule matches
with the difference between the first state of the state-difference sequence
and the last state of the sequence.

If a rule matches, then getNeighbouringParses calls the getNeighbour
(A.2.10) function to add a new node to the top of the decomposition hierar-
chy. The new node has the newly calculated state-difference between the
first and last state of the state-difference sequence, and its child nodes are
the consecutive sequence of state-difference nodes that the decomposition
rule’s sub-goals matched. In this way, the node becomes a new root node
in the decomposition hierarchy of the partial parse in place of the con-
secutive sequence of nodes which now become its sub-nodes. Figure 5.3
shows a graphical representation of TADPOLE extending a partial parse
by matching a decomposition rule against demonstrated state-differences.

Parsing the decomposition hierarchy with a decomposition rule in this
way alters the root level of the partial parse, replacing a consecutive se-
quence of nodes with a new node. A new decomposition rule could po-
tentially match to a consecutive sequence of root nodes that includes this
newly parsed node, and so after successfully parsing part of a decomposi-
tion hierarchy with a decomposition rule learnLesson continues to search
for decomposition rules to further parse the decomposition hierarchy un-
til it can make no more progress (it can find no decomposition rule that

matches any consecutive sequence of root nodes).
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For any partial parse, there may be multiple decomposition rules that
match to different consecutive sub-sequences of root nodes. If these sub-
sequences overlap, then they will, in general, be mutually exclusive: they
will correspond to different ways of parsing the teacher’s demonstration.
Parsing with one of the decomposition rules will remove the entire sub-
sequence of root nodes it is matched to (making them all sub-nodes of a
new root node) and thus make the overlapping nodes unavailable to be
used in the parse of the other decomposition rule(s).

TADPOLE cannot determine which way of parsing is correct based on
how well their respective decomposition rules match to the state-differences
because a locally worse matching decomposition can end up parsing the
decomposition hierarchy in such a way as to enable much better match-
ing decomposition rule parses at higher levels of the hierarchy. TADPOLE
cannot reliably predict how good the score of the final parse will be based
on how well one of the decomposition rules matches to a part of that parse.
Instead, whenever getNeighbouringParses finds a new way of parsing a
decomposition hierarchy, it adds the new partial parse to the beam of par-
tial parses and continues searching.

In effect, when parsing, TADPOLE searches the space of partial parses
where the neighbouring partial parses result from all the possible ways of
matching a decomposition rule to a partial parse and then parsing it.

Note that just because there are some decomposition rules that match
does not mean that it is correct to immediately use any of them to parse a
partial parse. It may instead be correct to wait for future input and then
use a decomposition rule that also matches with the newly added nodes.
Parsing with a decomposition prematurely may preclude the parsing of
a future, better-matching decomposition. To avoid this problem, when
learnLesson adds all of the possible extensions of a partial parse to the
beam, it also adds the partial parse itself back into the beam.
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5.2.5 TADPOLE maintains a beam of partially-matched de-

compositions

It is inefficient to constantly try to rematch decomposition rules every
time that a partial parse is modified (either by being further parsed by
a decomposition rule, or by being extended with a newly observed state-
difference). Matching a sub-goal of a decomposition rule to the same state-
difference more than once is wasteful. The partial parses on the beam have
many of the same root state-difference nodes. All of the partial parses
are related to each other, whether because they are direct siblings (in the
search space) or because they are more distantly related, and so most of
them will share some (but never all) of the same root nodes. At every time
step they are also all extended by the same atomic state-differences which
means that at least at the beginning of each time step all of the partial
parses share at least one common root state-difference node.

To avoid rematching decomposition rules, for every partial parse, TAD-
POLE maintains a set of partially-matched decompositions: decomposi-
tion rules that have matched some but not all of their sub-goals to some
of the root state-difference nodes. When getNeighbouringParses finds ex-
tension of a partial parse, it copies the still valid partially matched de-
compositions. When it parses a partial parse with a decomposition rule
and replaces the matched root nodes with a new node, it removes only
the partially-matched decompositions involving the now demoted state-

difference nodes.

5.2.6 TADPOLE extends partially-matched decompositions

Whenever a new root node is added to a partial parse, whether by being
extended with a new atomic state-difference, or by being parsed with a de-
composition rule, extendParse calls matchToNew (A.2.5) to search through
TADPOLE'’s known decomposition rules to find sub-goals that match to
the new node. If it finds a decomposition rule with a sub-goal that matches
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the new node, then it adds the new partially matched decomposition rule
(having only one of its sub-goals matched) to the set of partially matched
decomposition rules of that partial parse.

extendParse also calls extendPartialMatches (A.2.4) that finds any par-
tially matched decomposition rules with an unmatched sub-goal matching
the new node, and extends them to include the new node. If this extension
completes the partial decomposition rule matching (all of its sub-goals are
matched, and the head-task of the decomposition rule matches with the
state-difference between the first and last state of the state-difference node
sequence) then getNeighbouringParses parses the partial parse with the
decomposition rule as described above.

Matching decomposition rules in this way prevents TADPOLE from
needlessly re-matching the same sub-goals to the same state-difference
nodes, and it also allows it to prune poorly matched partially matched
decompositions. If TADPOLE knows a large number of decomposition
rules, then it is possible that there will be an excessive number of partially
matched decomposition rules, many of which score quite poorly. How
well a decomposition rule matches overall is determined from how well
the sub-goals and task matching match to their respective state-differences
(this is described in more detail below). If most of a partially matched
decomposition matches poorly, then it is very likely than any complete
decomposition matching that derives from it will also match poorly, and
so it is unlikely to be worth searching for a way to complete the partial
matching. To prune such poor-scoring partial decomposition matchings,
TADPOLE maintains a secondary beam of partial matchings for each par-
tial parse. TADPOLE keeps only the n best scoring partial decomposition
matchings for each partial parse on the main beam, where n is a parameter
for the width of the secondary beam. The optimal value for this parameter
depends on the domain, but it should in general be as large as is practically
feasible.
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5.2.7 TADPOLE only considers parsing sequences that in-

clude a new state-difference node

When TADPOLE searches for a way to further parse a partial parse, it
searches for a sequence of root state-difference nodes to match against a
decomposition rule. However, many of these sequences will have already
been parsed in other partial parses on the beam. This is because when-
ever getNeighbours parses a partial parse during a time step, it adds all
of the possible extensions of the partial parses to the beam. These exten-
sions will share many of their root nodes. Reparsing the same sequence of
state-difference nodes with the same decomposition rule as another partial
parse on the beam would result in duplicate partial parses. Such duplicate
partial parses would not only take up unnecessary room on the beam, but
would also greatly slow down the algorithm.

To avoid this problem, getNeighbours only parses partial parses in
a way that does not produce duplicates. getNeighbours considers only
sequences that include either the new root state-difference node every
partial parse was extended with in the current time step or a root state-
difference node that is an ancestor of the new node.

The only possible way to create duplicate neighbouring partial parses
from two different partial parses is if the two sequences of root state-
difference nodes used to parse each partial parse are completely disjoint
from each other. As long as both parsed sequences have at least one state-
difference in common, then the resulting neighbouring partial parses will
have to be different from each other. The only way that a root state-
difference node can be an ancestor of the new node that every partial parse
was extended with in the current time step is if it was created in the cur-
rent time step as well. This means that the sequences including this node

are safe from the danger of creating duplicate partial parses as well.
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5.3 Matching decomposition rules to state differ-

ences

This section and the subsequent one describes the mechanics of how task
and sub-goal graphs are matched with the state-difference graphs of the
teacher’s demonstration. This section describes how TADPOLE deals with
the problem of distinguishing the relevant and irrelevant objects in a large
and complex state so that the state-difference graph can be pruned to a
tractable size. The next section delves into the details of how the match-

ings are scored.

5.3.1 Nodes are matched with state objects and links are

matched with state relationships

When parsing the lessons demonstrated by the teacher, TADPOLE matches
the task and sub-goal graphs of its decomposition rules to the state-difference
graphs demonstrated by the teacher. It matches the nodes of a task or sub-
goal graph with objects of the corresponding state-difference graph. As
a result, the links of the task or sub-goal are automatically matched with
the appropriate relationships in the state-difference. A link between two
nodes in a task or a sub-goal graph matches with the relationship between
the two objects the two nodes are matched with. If there is no relationship
between the two objects, then the link is matched with an empty relation-

ship.

5.3.2 Complex domains have many irrelevant objects

The HPD is extremely complex with a very large number of objects, each
with many properties and relationships with other objects. If TADPOLE is
to scale to the HPD, it must be able to handle such domains and learn rules

in very complex states that have a large number of objects. For example,
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the kitchen domain can have hundreds of objects each with many proper-
ties and many relationships between objects. Determining what aspects of
the state are relevant to the lesson and which are not is a significant chal-
lenge that needs to be overcome. Different aspects of the state are relevant
depending on the specific goal that is being achieved. For example, if the
task is to put a cup on the table, then the fact that the cupboard containing
the cup is closed is important while the specific colour of the cup is irrele-
vant. However, if the task is to paint the cup, then the colour of the cup is
critically important.

5.3.3 Decomposition rules should have as few irrelevant

objects as possible

Decomposition rules that have a large number of irrelevant objects in their
task and sub-goal graphs are problematic for both TADPOLE and HOP-
PER. They are more difficult for TADPOLE to parse and more difficult
for HOPPER to execute. The irrelevant objects act as noise when the de-
composition rule is matched to the state, acting to obscure the significant
objects in the precondition of the rule and the import aspects of the rule’s
sub-goals. This makes it difficult to determine when the precondition of
the decomposition rule is satisfied and when its sub-goals are achieved.
Also, because matching decomposition rules involves matching the task
and sub-goal graphs to state graphs, the larger the object graphs of the
task and sub-goals of the rule, the more computationally expensive the
algorithm is (if the goal/task graph has m nodes and the state graph has
n nodes, then there are n™ possible matches of goal/task nodes to state
nodes). It is therefore important for TADPOLE to limit the task and sub-
goal graphs to contain the relevant objects and as few irrelevant objects as
possible.

The problem of identifying the important aspects of the state is exac-
erbated by the fact that, as described in Section 5.1.2, TADPOLE cannot
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rely on the teacher to provide a large number of lessons and examples. It
cannot gradually distinguish the relevant and irrelevant objects from ex-
perience, but must instead use heuristic rules to prune most of the objects

in the state immediately.

5.3.4 TADPOLE identifies important aspects of the state by
what has changed

Central to TADPOLE's task is identifying the teacher’s intention - what
sub-goals the teacher wanted to achieve throughout the demonstration.
TADPOLE does this by finding the difference between earlier and later
states and noting which aspects of the state changed. It in fact matches the
tasks and sub-goals of its decomposition rules with these state-difference
graphs. A state-difference graph is like a state graph, but some of the prop-
erties and relationships in the graph are labelled as additions and dele-
tions. Added properties and relationships are those that were present in
the later state but not the earlier state, and deleted properties and relation-
ships are those that were present only in the earlier state.

At least some of the differences between two states in the teacher’s
demonstration are intentional, caused by the teacher trying to further the
task being demonstrated, and they help greatly in identifying both the
important aspects of the state and what sub-goal the teacher was trying to
achieve. TADPOLE therefore makes the assumption that things that have
changed are relevant components of the state difference.

However, not all of the differences between two states will be relevant.
Some of the differences that occurred between two states will be unin-
tended changes that were not caused by the teacher and are not relevant to
achieving the goal being demonstrated. This can include both predictable
changes that occur in the state (for example, the passage of time), and com-
pletely unexpected and unpredictable changes. Part of TADPOLE’s task

is distinguishing between the state differences that were intended by the
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teacher and those that are irrelevant to the task being demonstrated.

As well as the properties and relationships that changed directly, some
of the properties and relationships in the state that did not change could
also be important. This includes properties and relationships in the pre-
condition of the decomposition rule encoded in its head task, and proper-
ties and relationships of sub-goals that were already true and did not need
to be achieved by the teacher.

For example, when a package is delivered from one location to another,
only the location of the package changes from the initial state to the fi-
nal state, but the fact that the object being moved is a package does not.
Nonetheless, this property is critically important as a precondition to the
decomposition rule. The decomposition rule for moving an object from
one location to another by loading it in a truck and then delivering it is
only applicable for packages and other similar objects. If the object to be
moved is not a package but a car, for example, then the delivery decom-
position rule is not appropriate (it is better to simply drive the car to the
desired location rather than first loading it into a truck).

Similarly, when TADPOLE matches the sub-goal of a decomposition
rule to a state difference, some of the properties and relationships in the
state that did not change may nevertheless be important aspects of the
sub-goal. For example, when making a cup of coffee it is important that
the object that will contain the coffee is at least a container if not a cup even
though this property of the object never changes in the teacher’s demon-

stration.

5.3.5 TADPOLE prunes away state objects that are only dis-
tantly related to state changes
When matching goals and tasks to state differences, TADPOLE first prunes

the state difference graphs to get rid of as many irrelevant nodes as possi-
ble. To do this, TADPOLE makes use of the heuristic that the farther away
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an object node is from any state changes in the state difference graph (dis-
tance between nodes in the graph is measured normally as the length of
the shortest path between them), the less relevant it is. Objects whose
properties changed in the state difference graph are the most relevant, the
objects directly related to the objects whose properties changed are the
next most relevant, the objects directly related to the objects that are di-
rectly related to the objects whose properties changed are the next most
relevant, and so on. The same heuristic also holds for relationships that
changed: the objects that directly take part in the changed relationship are
most relevant, the objects directly related to these objects are next most
relevant, and so on.

The threshold distance from a state change beyond which a node is
pruned is a parameter that can be set for TADPOLE and whose optimal
value depends on the nature of the domain. In general, however, for ev-
ery unit of distance that the threshold is increased, the size of the state-
difference graph can potentially increase exponentially (e.g. if every object
node on the fringe of the graph is related to at least two new, unique object
nodes, then by including these new object nodes, the fringe of the state-
difference graph would double), so it is important to keep this threshold
distance as small as possible.

In both the kitchen and the logistics domains (see Chapter 6), the thresh-
old distance was set to 2, which means that state-difference graphs in-
cluded the objects that changed, and all of the objects they were directly
related to. Larger threshold distances did not produce better matchings

and just made the matching more expensive.

5.3.6 TADPOLE prunes away state changes that are not matched

in sub-nodes

In the HPD, unpredictable events occur and the world changes of its own

accord or due to the actions of other agents. This means that when ob-
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serving the teacher’s demonstrations, TADPOLE can expect some of the
state changes it observes to not be caused by the teacher and be irrelevant
to the lesson. The greater the difference in time between an earlier state
and a later state, the more irrelevant state changes there are likely to be
between the two states.

Each node in a parsed decomposition hierarchy represents the state-
difference between the first and last states of the base of the node’s sub-
hierarchy as described above. The higher a node is in the decomposition
hierarchy, the wider the base of the sub-hierarchy, the greater the time
difference between the first and last state, and the more irrelevant state
changes there will be in the state-difference.

Irrelevant state changes are a minor concern at low levels of the de-
composition hierarchy. However, at higher levels they can introduce a
large number of irrelevant nodes to the state-difference graphs reducing
both the efficiency and accuracy of the algorithm. TADPOLE therefore
uses additional heuristics to further prune away irrelevant state changes
and hence the objects associated with them.

After matching the sub-goals of a decomposition rule to a sequence of
root state-difference nodes, TADPOLE constructs a new state-difference
node by finding the difference between the first and last states of the se-
quence. Before matching this new state-difference against the head task
of the decomposition rule, TADPOLE eliminates irrelevant state changes
by pruning away any that were not matched in any of the rule’s sub-goal
matchings. A state change that was not important in any of a rule’s sub-
goals is unlikely to be important in the rule’s head-task or the in the goal
that the rule achieves.

While this may sometimes eliminate an important object from the head-
task, it is nevertheless a useful heuristic for limiting the size of the state-
difference graphs at higher levels of the decomposition hierarchy. Section
5.8 discusses ways of addressing the limitations imposed by this heuristic.
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5.3.7 At least some of the core elements of a task must be

successfully matched

Because a task is learned, it may include some spurious additions and
deletions, and TADPOLE allows some of these core elements to mismatch.
However, if none of the additions or deletions specified by the head-task of
arule occurred in the state-difference, then the teacher could not have used
that rule to achieve the state-difference. To account for this, TADPOLE
disallows any matching between a task and a state-difference that does
not successfully match at least some of the core elements of the task, no
matter how well the context of the task matches or how well the sub-goals
of the rule matched. TADPOLE would resolve such a situation by trying

alternate parses instead.

5.3.8 At least some of the core elements of a sub-goal must

be achieved

Sub-goals are also learned, so they may include spurious must and must
not properties and relationships, and TADPOLE allows some of these core
elements to mismatch. Similarly to a task, if none of the sub-goal’s core
elements match successfully with the demonstrated state-difference, then
the teacher could not have been achieving this sub-goal, and TADPOLE
disallows the match. TADPOLE also imposes an additional constraint on
sub-goal to state-difference matchings: at least one of the must and must
not properties and relationships of a sub-goal must be directly achieved by
the state-difference it is matched with.

A sub-goal can only match with a state-difference if the state-difference
is a plausible instance of the teacher satisfying that sub-goal. Because some
parts of the sub-goal may initially be satisfied, TADPOLE allows the core
elements of a sub-goal to successfully match with the context (elements
that have not changed in the state and so were initially true) of the state-

difference. A sub-goal’s must properties and relationships match success-
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fully if the corresponding objects have the corresponding properties and
relationships in the context, and a sub-goal’s must not properties and rela-
tionships match successfully if the corresponding objects do not have the
corresponding properties and relationships in the context.

However, at least one must property or relationship of the sub-goal
must match successfully with an addition or at least one must not property
or relationships must match successfully with a deletion specified by the
state-difference, indicating that the sub-goal was not completely satisfied
in the initial state of the state-difference and only became satisfied when
the state-difference was achieved by the teacher. If all of the core elements
(and therefore the goal itself) were initially already satisfied, then the state-
difference could not be an instance of the teacher satisfying the sub-goal,
so TADPOLE would disallow the match.

5.4 Scoring the decomposition rule matchings

This section describes how the matchings between decomposition rules
and sets of state-differences are scored. The scoring differentiates good
matches from poor matches and guides TADPOLE’s beam search for the
best parse of the teacher’s demonstration. The details of the scoring mech-
anism are a minor part of TADPOLE and are not a focus of the thesis. I
believe that many alternative weightings and alternative scoring mecha-
nisms would work equally well as long as they took into account the same
factors.

5.4.1 The task, sub-goals, variables, and sub-goal depen-
dencies contribute equally to the overall score
The score of the matching between a decomposition rule and a set of

demonstrated state-differences depends on how well the rule’s head-task
matches with its corresponding state-difference and how well each of the
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rule’s sub-goals match with each of their corresponding state-differences.
The score also depends on how consistent the matched state-differences
are with the rule’s variables, and how consistent the ordering of the sub-
goals is with the sub-goal dependency constraints of the decomposition
rule.

The task matching and sub-goal matchings all involve matching a graph
with a context and a core against a state-difference graph and so their
scores are all comparable. However, these graphs can be of differing sizes.
A larger graph does not indicate that the sub-goal is more important than
sub-goals with smaller graphs, only that it contains more detail, and so
it should not contribute more to the final score than the other sub-goals.
TADPOLE takes the differing sizes of the sub-goal and head-task graphs
into account by scaling their matching scores to be in the range of 0 to 1.

The consistency of the rule’s variables and sub-goal dependencies are
also important for determining how well the rule matches the demon-
strated state-differences. To compute the rule’s overall score, TADPOLE
calculates an average of the head task score, the sub-goal scores, the vari-
able consistency score and the sub-goal dependencies score so that the last
two scores each have a weighting equivalent to a sub-goal or task match-

ing.

5.4.2 The matching score is a weighted average of the fre-

quency counts

The properties and relationships in the head-task and sub-goal graphs of
decomposition rules have counts indicating how often they have been
present in the instances the rule is a generalization of. The score of a
matching of a task or sub-goal to a state-difference is a weighted aver-
age of how often the properties and relationships of the state-difference
appeared in the task or sub-goal expressed as a fraction between 0 and 1.

If a property or relationship has never appeared in any of the instances
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the rule is a generalization of, then it gets a frequency count of 1, and so
its score will be 1/(the total number of instances).
For example, a node in the head-task of a decomposition rule (general-

ized from 10 instances) for opening a box could look like:

node1(10)
Type: box(10), container(10)
MadeOf: wood(3), cardboard(7)
Colour: red(2), blue(3), green(3), yellow(2)
Open: no

If this task node were matched to the following state-difference node:

box1
Type: box, container
MadeOf: cardboard
Colour: black
Open: no

then the frequencies of the properties would be 1.0 twice because the object
is a box and a container, 0.7 because it is made of cardboard, 0.1 because
its colour is black (a colour the box has never been before), and 1.0 twice
because it was closed and then it became open.

The scores for the matchings of different rules that are generalizations
of different numbers of instances can be directly compared and combined.
It does not matter whether a rule is the generalization of 10 instances or
100, because the score reflects the frequency with which properties and

relationships occurred.
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5.4.3 The weight of the score of core attributes is double

the weight of ones in the context

The core properties and relationships of a task and sub-goal are much
more important and much more indicative of a good match than the prop-
erties and relationships in the context. To reflect this, the weight of the
score of matching a core property or relationship is double that of context
properties and relationships.

Note that the frequency score for core properties and relationships will
always be either 1.0 or 0.0 because a core property or relationship has to
have been present in every instance that the rule is a generalization of. If
it is present in the state-difference then the frequency score is 1.0; if it isn’t
then it is 0.0.

5.4.4 TADPOLE gauges the importance of properties and

relationships by their maximum possible score

Not all of the properties and relationships of a task or sub-goal are equally
important and they do not contribute equally to the final score. Properties
and relationships that do not favour a single value strongly but have had
a broad range of different values appear in the different instances the rule
is a generalization of are less likely to be important than those that have
had the same value in the majority of the instances.

For instance, in the example node given above, the type of the object
being a box and a container is likely to be important because each of the
10 instances has had these same values for the Type property. On the other
hand, the colour of the box is less likely to be important because in the 10
instances, the object has been 4 different colours without any real consis-
tency.

TADPOLE determines the importance of a property or relationship and
the weight of its frequency score (and therefore how much it contributes

to the overall score) by the frequency of its most common value. In the
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example node given above, the weight of the MadeOf property would be
0.7 because the most common value (cardboard) has a frequency of 0.7,
and the weight of the Colour property would be 0.3.

Note that some of the properties of an object are multivalued. The
Type property, for example, can have multiple values for a single object
(the node given above is both a box and a container). The Colour property,
on the other hand, can only have a single value for any given object. TAD-
POLE treats multivalued properties as if they were separate, independent
properties whose weight is equal to their frequency.

In the node to state-difference object matching given above, the score
for the node would be: (1.0*1.0[box] + 1.0*1.0[container] + 0.7*0.7[card-
board] + 0.1*0.3[black] + 1.0*1.0*2[yes] + 1.0*1.0"2[no])/(1.0 + 1.0 + 0.7 +
0.3 +2.0 +2.0) = 0.93 (a very high score).

5.4.5 The variable matching score is the fraction of consis-

tent variables

Decomposition rules usually have at least one variable constraint. When
HOPPER uses a decomposition rule to achieve a goal, the rule’s variable
constraints constrain how the head-task and sub-goals are matched with
the state. Nodes in different task and sub-goal graphs that belong to the
same variable are constrained to match to the same object in the state.

When TADPOLE parses the demonstration of a teacher, this restric-
tion on having variable nodes all match the same state object is relaxed.
The fact that in all the previous instances two nodes in two different sub-
goals matched to the same state object may have just been a coincidence
rather than a requirement, and by parsing a demonstration where such a
constraint does not hold, TADPOLE has a way of unlearning an incorrect
variable constraint.

Variable constraints form an integral part of a decomposition rule and

whether or not a matching with a set of state-differences is consistent with
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these constraints affects the final score strongly. In a rule matching, the
score for all of the variable constraints is the fraction of variables that
are consistent. This score contributes to the final overall score and has a
weight that is equivalent to that of a sub-goal matching or task matching.
Because decomposition rules tend not to have a large number of variables,
this means that the score of a matching with any inconsistent variable con-
straints will tend to be lowered significantly.

5.4.6 The sub-goal ordering score is the fraction of consis-

tent sub-goal dependencies

Each decomposition rule has a set of sub-goal dependency constraints that
constitute a partial order for its sub-goals. This set of sub-goal dependen-
cies consists of those that held in every instance the rule is a generalization
of. If the rule matching involves a new ordering of sub-goals not previ-
ously seen in any of the instances the rule is a generalization of, then at
least some of its sub-goal dependencies will be violated.

The order the sub-goals of a decomposition rule are achieved in is of-
ten critically important, and instances that have a very different ordering
compared to what TADPOLE has seen before will decrease the matching
score significantly. The score for the sub-goal ordering in a decomposition
rule is the fraction of sub-goal dependencies that are consistent with the
example. This score contributes to the final overall score and has a weight
that is equivalent to that of a sub-goal matching or a task matching.

5.5 Refining decomposition rules

At the end of the teacher’s demonstration, if the highest scoring parse on
the beam has a high enough score, then TADPOLE uses it to refine the
decomposition rules it used to construct the parse.
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5.5.1 Matching state-differences are instances of decompo-

sition rules

A decomposition rule used by TADPOLE and HOPPER is a generaliza-
tion of the set of instances of when that decomposition rule was success-
fully achieved. Examples of the decomposition rule being successfully
achieved come from either HOPPER or from the examples of a teacher
that are parsed by TADPOLE. When TADPOLE matches a decomposition
rule with a set of demonstrated state-differences, the state-differences are
assumed to be an instance of the decomposition rule. When TADPOLE

refines the rule, it generalizes the rule to take account of the new instance.

5.5.2 TADPOLE drops the non-matching core elements of

a refined task

The core of a head-task specifies what was added and deleted from the
state in every instance when the decomposition rule was achieved. When
the task is refined with a new instance, any addition or deletion that does
not appear in the state-difference must have been noise or an unimportant
side-effect in previous instances and is dropped from the core of the task.

Every property and relationship deletion in a task had to have been
present in the initial state of every state-difference instance the rule is
a generalization of. The deletions TADPOLE determined were noise or
unimportant side-effects and so did not belong in the core of the task could
nevertheless be important parts of the precondition that happened to have
been undone by the time the decomposition was completely achieved. To
account for this, TADPOLE moves these former deletions to the context of
the task and they become part of the task’s precondition. Because these
properties and relationships appeared in every instance so far, they each
receive a count equal to the number of instances the rule is a generalization
of.

Because the core additions of a task are never present in the initial state
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of the state-difference instance of the rule, they do not belong in the pre-
condition of the task. So if TADPOLE determines that these additions are

noise or side-effects, it simply drops them from the core of the rule.

5.5.3 TADPOLE drops the non-matching core elements of

a refined sub-goal

The core of a sub-goal specifies what had to be true and what had to be
false in the state in every instance when the sub-goal of a decomposition
was achieved. When the sub-goal is refined with a new instance, any core
property or relationship that is not consistent with the state-difference is
not a definite requirement and is dropped from the core of the sub-goal.

When the teacher achieves a sub-goal, they only need to achieve the
aspects of the sub-goal that are not already true. The changes achieved
by the teacher in the state-difference the sub-goal is matched against only
have to make the unsatisfied parts of the sub-goal true without affecting
the satisfied parts. This means that a core property or relationship is con-
sistent with a state-difference if it is achieved by the additions or deletions
of the state-difference, or if it already holds in the context of the state-
difference.

A must property or relationship in the sub-goal’s graph holds if it ap-
pears in the context of the matched state object or relationship (as appro-
priate) or if it is added by an addition specified in the state difference. If
a must property or relationship does not hold, then TADPOLE removes it
from the sub-goal’s core and moves it into the context. Because it held in
every previous instance, the property or relationship gets a count equal to
the number of instances the rule is a generalization of.

A must not property or relationship in the sub-goal’s graph holds if it
does not appear in the context of the matched state object or relationship
(as appropriate) or if it is deleted by a deletion specified in the state dif-
ference. If a must not property or relationship does not hold (i.e. if the



CHAPTER 5. TADPOLE 184

property or relationship appears in the context or in an addition), then
TADPOLE removes it from the sub-goal’s core. TADPOLE does not move
the property or relationship in question to the context, because the context
of a sub-goal consists only of the properties and relationships that poten-
tially should also be true and not those that should potentially not be true.

5.5.4 TADPOLE updates the counts of properties and rela-

tionships in the context

After refining the core of a task or sub-goal and after moving any requi-
site core properties and relationships into the context, TADPOLE refines
the context. For every node in the task or sub-goal graph, TADPOLE in-
creases the count of every property that also appears in the state object the
node is matched with and it adds a new property with a count of 1 for
every property in the state object that does not appear in the node. Sim-
ilarly, for every link in the task or sub-goal graph, TADPOLE increases
the count of every relationship that also appears in the state relationship
it is matched with, and adds a new relationship with a count of 1 for any
new state relationship that does not appear in the link. If the link is not
matched with a state relationship (there exists no relationship between the
two state objects the two task or sub-goal nodes at either end of the link are
matched with), then TADPOLE does not modify the link. Note that this
will implicitly lower both the score of the link and its importance in future
matchings, because the number of instances of the rule has increased by 1
while the counts of the relationships of the link have not, decreasing their
frequency and importance scores as described in Section 5.4.
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5.5.5 TADPOLE drops any sub-goal dependencies not con-

sistent with the instance’s sub-goal ordering

Each decomposition rule has a set of dependency constraints between
its sub-goals specifying for each sub-goal which sub-goals ought to be
achieved before it. When TADPOLE refines a decomposition rule with
new instances, TADPOLE keeps only the sub-goal dependencies that are
consistent with all of the instances the rule is a generalization of. The rea-
son that TADPOLE does not maintain a count of how many instances each
sub-goal dependency is consistent with is to maintain a single consistent
set of sub-goal dependencies. This information is necessary to generate a
partial ordering of the rule’s sub-goals which is necessary for HOPPER to
interleave its plan as described in Chapter 4.

A sub-goal dependency constraint on two sub-goals specifies that the
constraining sub-goal should be satisfied before the dependent sub-goal
is achieved. A sub-goal dependency is inconsistent with a decomposition
matching if the constraining sub-goal is not satisfied in the initial state of
the state-difference the dependent sub-goal is matched with. Furthermore,
any instance that does not satisfy the ordering constraint is considered to
be sufficient evidence that the ordering is not a necessary constraint, so
when TADPOLE refines a decomposition from a decomposition matching,

it drops any inconsistent sub-goal dependency constraints.

5.5.6 TADPOLE splits inconsistent variables into two or

more variables

Every decomposition variable constrains at least two nodes in the head-
task and sub-goals of a decomposition rule to bind to the same state ob-
ject. If this constraint is violated in the teacher’s demonstration, then the
constraint must really have been just a coincidence where the nodes hap-
pened to bind to the same state object and TADPOLE drops the variable.

However, TADPOLE must account for the fact that two or more variables



CHAPTER 5. TADPOLE 186

may be hidden beneath a single variable. If these variables, happened to
have been bound to the same state object in previous instances, then they
would have been indistinguishable from a single variable. TADPOLE ad-
dresses this issue by splitting any inconsistently matched variable into two
or more new variables depending on how many groups their nodes form,
where a group of nodes consist of those that are matched to the same state
object.

For example, if a rule had a variable that constrained 5 nodes to bind
to the same state object, and in the teacher’s demonstration two of the
nodes matched to one state object, two matched to another state object,
and the fifth matched to a third state object, then TADPOLE would split
the original variable into two new variables each constraining one of the
two groups of nodes. TADPOLE does not create a new variable to account
for any group of nodes of size 1 because a decomposition variable must
constrain at least two nodes.

5.5.7 TADPOLE modifies its decomposition rules gradu-
ally

TADPOLE can modify its decomposition rules significantly by refining
them from observed examples demonstrated by the teacher. The refine-
ments include:

e adding new properties and relationships and modifying the impor-
tance of the old properties and relationships in the tasks and sub-

goals of its decomposition rules
e removing incorrect core properties and relationships
e generalizing the dependency constraints of the sub-goals of its rules

e dropping old variables and learning new ones.
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However, any rule matching with an instance that would result in any
significant change if the rule was to be refined would necessarily have a
significant penalty in its matching score as described in Section 5.4. This
means that such a rule matching is unlikely to end up in TADPOLE’s fi-
nal parse and is therefore unlikely to be refined. This ensures that TAD-
POLE will modify its decomposition rules only when it is confident that
it matched the correct rule and that it matched it correctly to the state-
differences demonstrated by the teacher.

In general, TADPOLE will significantly modify only one aspect of a
decomposition rule at a time, leaving the rest of the decomposition un-
changed. This is consistent with TADPOLE’s assumption about the teacher
that they demonstrate only a limited amount of novel information at a

time and in the context of familiar rules as described in Section 5.1.

5.6 Parsing interleaved, partially-achieved, and

repeated decompositions

When the teacher demonstrates novel rules, TADPOLE can expect the
teacher to abide by the felicity conditions described in Section 5.1 and
demonstrate lessons that are easy to parse. In such lessons, TADPOLE
can expect each novel decomposition to appear in its entirety and have all
of its sub-goals achieved in the parsed hierarchy. TADPOLE can also ex-
pect novel decompositions to appear individually and independently of
the other decompositions in the parse.

However, it is not reasonable for TADPOLE to expect the teacher to
abide by such stringent constraints when demonstrating rules that make
up the context surrounding the novel rules, or when the teacher presents
reinforcing lessons that do not contain any novel rules at all. Though
it is reasonable for the teacher to take care in being clear when demon-

strating novel rules, novel rules generally make up only a small part of
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the parsed decomposition hierarchy, and requiring the same kind of care
when demonstrating the remaining, familiar decompositions is difficult
and tedious. This problem is exacerbated in a deeper decomposition hier-
archy because the deeper the hierarchy, the more familiar decomposition
rules it will contain.

The teacher should not be restricted in this way when demonstrating

familiar rules for three reasons:

e It is much more efficient to achieve decomposition rules in paral-
lel whenever possible. This is the reason that HOPPER interleaves
the execution of its decomposition rules, and it is reasonable for the
teacher to also interleave the execution of any familiar decomposi-

tions in the demonstration.

e Whenever decomposition rules are used to generate a goal decom-
position hierarchy, many of the decompositions within the hierarchy
will have some of their sub-goals initially achieved and so these sub-
goals will be absent from the hierarchy. It is very tedious for the
teacher to make sure that every decomposition in a lesson has all of
its sub-goals present in the decomposition hierarchy. To ensure this,
the teacher would have to verify that none of the sub-goals of any
decomposition is satistied when the teacher begins to execute it. Not
only is this difficult, but it also greatly limits the kinds of lessons the
teacher can demonstrate to those that take place in states satisfying

such a rigid constraint.

e There are decompositions that have to be executed multiple times
before their head-task is achieved. The difficulty with parsing such
a decomposition lies in the fact that the number of times the decom-
position has to be executed can vary. The teacher may not be able
to predict how many times they will need to execute the decomposi-

tion, and if they could somehow fix the number of times they execute
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the decomposition in every lesson, TADPOLE would end up learn-
ing a decomposition rule that had a fixed, repeated set of sub-goals
rather than the more flexible rule that keeps achieving its sub-goals
until it is itself achieved.

TADPOLE must therefore be able to parse familiar rules that are inter-
leaved with each other, familiar rules that are initially partially achieved
and do not have all of their sub-goals represented in the decomposition
hierarchy, and familiar rules that are repeatedly executed.

Being able to parse these kinds of decompositions not only eases the
burden of the teacher, but it also has the important benefit of allowing
TADPOLE to parse the behaviour of other, non-teacher agents. If TAD-
POLE cannot depend on the teacher being extra helpful when parsing fa-
miliar rules, then it definitely cannot make such assumptions about other
agents that are not constrained to follow any felicity conditions at all. The
parsing techniques described in this section are also useful for parsing and
learning from the behaviour of non-teacher agents so long as they do not
utilize novel rules TADPOLE is not yet aware of.

5.6.1 TADPOLE parses contiguous sub-goals of interleaved

decompositions

When extendParse searches for a way to match the root nodes of a partial
parse to the sub-goals of decomposition rules, it allows multiple sub-goals
from different decomposition rules (and different sub-goals from the same
decomposition rule) to match with the same state-difference node forming
separate partial decomposition matchings that have nodes in common. ex-
tendParse also does not require that the matched sub-goals of one partially
matched decomposition be contiguous with each other: they can be sep-
arated by one or more state-difference nodes not matched to any of the
sub-goals of the decomposition.
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When getNeighbouringParses looks for extensions of a partial parse,
it goes through all of the completed decomposition matchings (those that
do not have any sub-goals left to bind to a root state-difference node) and
tries to find a combination of them that together form a viable parse. For
every combination, if the completed decomposition matchings form a vi-
able parse, then getNeighbouringParses adds the resulting partial parse to
the beam and continues its search.

In order to be a viable parse, a set of decomposition matchings must

satisfy the following conditions:

e Every decomposition matching must be complete.

e The decomposition matchings must be contiguous with each other.
The set of root state-difference nodes the sub-goals of the decomposi-
tion matchings are matched with must not have any other root nodes
between them.

e Each decomposition matching must match at least one of its sub-
goals with a root state-difference node that none of the other de-
composition matchings have matched with. A decomposition whose
sub-goals are all achieved in parallel with the sub-goals of other de-

compositions is completely superfluous.

e Each decomposition matching must match one of its sub-goals with
at least one root state-difference node that is matched by at least one
other decomposition matching and therefore is achieved in paral-
lel with the sub-goal(s) of another decomposition. If none of the
sub-goals of a decomposition are achieved in parallel, then there is
no reason to interleave that decomposition. Note that if TADPOLE
learns in a domain where decompositions are interleaved without
having any of their sub-goals achieved in parallel, then this con-

straint can be relaxed.
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e Each decomposition matching must be matched in such a way that
its variables and all of its sub-goal dependency constraints are con-
sistent. If a decomposition matching violates any of the rule’s vari-
able or sub-goal dependency constraints then this an indication that
the wrong rule has been matched (or the right rule has been in-
correctly matched) or that TADPOLE has not learned the rule com-
pletely; in either case, TADPOLE should not proceed with the parse.

e As with a single completed decomposition matching, to prevent du-
plicate partial parses being added to TADPOLE’s beam, at least one
of the decomposition matchings must match one of its sub-goals

with the latest root state-difference node.

These constraints not only ensure that getNeighbouringParses parses
interleaved decompositions correctly but it also prunes the search space
of partial parses. If getNeighbouringParses tried to interleave every set
of contiguous partial parses, then the parse search space would greatly
increase. The constraints on parsing interleaved decompositions keeps
the search space tractable so that getNeighbouringParses tries interleaving
only promising decompositions.

Once getNeighbouringParses calls getNeighbour with a viable set of
interleaved decomposition matchings (note that in most cases, the viable
set of decomposition matchings will correspond to a single, uninterleaved
decomposition matching), getNeighbour parses the matched root state-
difference nodes in the same manner as described in Section 5.2.4 except
that it adds a new root state-difference node for each interleaved decom-
position matching. getNeighbour adds the new root state-difference nodes
in an arbitrary order but it notes that the order is in fact arbitrary. If
these new root state-difference node are later parsed to be sub-goals of
the same higher-level decomposition, then there will be no ordering con-

straint present between these sub-goals.
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5.6.2 TADPOLE identifies already achieved sub-goals if their

variables are bound

When a decomposition is executed (either by the teacher or another agent)
often some of its sub-goals will already be true in the state and will not
need to be achieved. In order to be able to parse the teacher’s lessons and
especially the behaviour of other agents, TADPOLE must be able to parse
decompositions that have some sub-goals already achieved.

It is not feasible for extendParse to search for every way that every
sub-goal of every decomposition could have been initially achieved. This
is especially true in states with hundreds of objects. Sub-goals that are al-
ready true in the state are not achieved by the teacher (or other agent) and
so there are no state-differences to guide the search making the matching
very expensive.

extendParse resolves this problem by calling matchToAlreadyAchieved
(A.2.7) that takes advantage of a decomposition’s variables. A decom-
position’s sub-goal will have many if not all of its nodes constrained by
variables that also constrain the nodes of the other sub-goals. If the other
sub-goals have already been matched with their respective state-difference
nodes, then they have bound the variables that constrain them. TADPOLE
can then make use of these bindings to constrain the matching of any un-
matched sub-goals with the state to determine whether it was initially al-
ready achieved.

matchToAlreadyAchieved checks for initially achieved sub-goals only
in partial decomposition matchings that are consistent with the decom-
positionl’s variables and the decomposition ordering constraints. This is
to ensure that the rule in question is well-learned and matchToAlready-
Achieved can correctly match any potentially already achieved sub-goals
with the state. It is especially important that the decomposition’s vari-
ables are correct because the sub-goal to state matching depends on this.

It is also important that the sub-goal’s context is also accurate because it
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guides the matching of the sub-goal’s nodes that are not constrained by
the variables.

When matchToAlreadyAchieved searches for a way to extend partial
decomposition matchings it goes through all of the consistent partial de-
composition matchings and matches any of their unmatched sub-goals
that have all of their variables completely bound (all of the variables that
constrain any of the sub-goal’s nodes are bound by other sub-goals that
are already matched with state-difference nodes). Note that this does not
include variable bindings between the sub-goal and the task (which has
not been matched yet). matchToAlreadyAchieved matches any remaining
unbound objects in these sub-goals with the state the decomposition was
initially executed in (the first state of the first state-difference node the de-
composition is matched with).

If matchToAlreadyAchieved determines that a sub-goal of a partial de-
composition matching is initially satisfied, then it adds a new partial de-
composition matching to the beam of the partial parse. Just because a
sub-goal is satisfied at the beginning of the execution of a decomposition
does not mean that it is not reachieved later within the decomposition.
The sub-goals of decompositions often interact, achieving and unachiev-
ing each other. Therefore extendParse keeps track of both possibilities on
its partial decomposition matching sub-beam, one in which the sub-goal
is initially achieved, and one in which the sub-goal remains unachieved to
await the rest of the teacher’s demonstration.

For example, the decomposition for loading a package into a truck in-
volves opening the truck, loading the package, and closing the truck. The
final sub-goal of ensuring that the truck is closed will usually be initially
achieved (when the truck is closed). However, because this sub-goal is un-
done when the first sub-goal of having the truck open is achieved, the final
sub-goal will have to be re-achieved despite the fact that it was satisfied in
the initial state.

If matching a sub-goal to the initial state of a partial decomposition
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matching completes the matching (because the sub-goal was the last un-
matched sub-goal of the matching), then getNeighbouringParses gener-
ates an extension of the partial parse and adds it to the beam as normal.
Note that matchToAlreadyAchieved only checks for initially achieved
sub-goals in new partial decomposition matchings that have at least one
of their sub-goals matched with the latest state-difference node to prevent
duplicate partial parses on its beam as described in Section 5.2.7.

5.6.3 TADPOLE combines identical adjacent decomposi-

tions into a single repeated one

There are decompositions that need to have their sub-goals achieved (in a
given order) a number of times before their head-task is achieved (for ex-
ample, stirring a cup of tea until the sugar is dissolved). The exact number
of times the decomposition will have to be executed is unpredictable and
cannot be determined beforehand. This means that parsing such decom-
positions is not straightforward because they will be executed a different
number of times in different states.

When the same decomposition is parsed multiple times in sequence,
and each decomposition is matched to the same state objects, then get-
Neighbour treats this as a single repeated decomposition. It parses all of
the matched state-difference nodes and creates a new root state-difference
node that is the difference between the initial state of the entire sequence
and the final state of the entire sequence. It is important that the corre-
sponding nodes in each of the decomposition matchings match with the
same state objects, because decompositions that are matched with differ-
ent state objects achieve different goals and should not be collapsed into a
single repeated decomposition.

getNeighbour will not parse a repeated decomposition if the decompo-
sition matchings in the sequence have any inconsistent sub-goal depen-

dency constraints and especially not if they have any inconsistent variable
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constraints. getNeighbour must be confident that the rule it has learned
is correct and that all of the decomposition matchings in the sequence in-
deed refer to the same decomposition rule before it will commit to parsing
them as a single repeated decomposition.

5.7 Learning New Rules

When parsing the teacher’s demonstration, TADPOLE will sometimes be
unable to parse parts of the goal-decomposition hierarchy. This is either
because it has no rules to match a given sequence of state-differences or
because any rules that do match, match so poorly that it is better off not
parsing the sequence at all. At the end of the lesson, if the best scoring
partial parse has these kinds of holes in the parsed goal-decomposition hi-
erarchy, then TADPOLE learns new decomposition rules to fill these holes.

There are two kinds of holes that TADPOLE could have in its goal-
decomposition hierarchy: a hole at the very top of the hierarchy which
exists if the hierarchy has more than one root state-difference node, and
a hole at a lower level of the hierarchy where TADPOLE can determine
from the surrounding context that a sequence of state-differences achieve

a sub-goal but TADPOLE does not have an appropriate rule to parse them.

5.71 TADPOLE learns a new rule if the final parse has mul-

tiple root nodes

The easiest and most logical way for the teacher to instruct TADPOLE and
teach it a new decomposition rule is to simply demonstrate an instance of
the decomposition rule being executed. Because the decomposition is at
the highest level of the decomposition hierarchy, this results in a partial
parse that at the end of the teacher’s lesson remains incomplete, with a
number of unparsed, root state-difference nodes.

If at the end of the teacher’s lesson, the best partial parse (the one
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with the highest score) has more than one root node, then learnLesson
calls completePartialParse (A.2.13) to construct a new rule from these top
nodes. It constructs the rule by inferring both the head-task and the sub-
goals of the rule.

Each state-difference node and the sub-hierarchy below it is a way of
achieving a sub-goal of the new decomposition. The sub-goal was not
satisfied before the sub-hierarchy of the state-difference node was exe-
cuted and it was satisfied afterward, and the state changes specified by the
state-difference node are useful for determining what the sub-goal being
achieved was. At least some of the changes specified in the state-difference
node were caused by the teacher and at least some of those changes were
necessary to satisfy the sub-goal.

completePartialParse learns a first approximation of a new sub-goal
from its corresponding state-difference node. It determines what must be
true from the additions and what must not be true from the deletions. Note
that completePartialParse only considers the relevant changes, those per-
taining to objects that were matched with nodes in the tasks matched with
the state-difference nodes of the decompositions one level lower in the de-
composition hierarchy as described in Section 5.3.6.

completePartialParse generates the sub-goal’s context from the remain-
ing properties and relationships that remained unchanged in the state-
difference node, but it includes only those that are within a threshold dis-
tance from the relevant state changes. It is even more important to limit
the size of sub-goals than it is the size of state-differences they match with.
Because of this, completePartialParse uses an even stricter threshold of 1
to limit the size of newly learned sub-goal graphs, so that it includes only
the objects that changed and their direct relationships. It initializes the
properties and relationships in the newly generated context with a count
of 1.

completePartialParse calculates the head-task of the new decomposi-
tion rule by finding the difference between the initial state and the final
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state. Again, it includes only the relevant state changes and it generates
the head-task’s context in the same manner as described above.
completePartialParse learns the initial sub-goal dependencies by de-
termining, for each sub-goal, which other sub-goals were already satisfied
in the state just before the teacher achieved the sub-goal (the initial state
of the state-difference node that the sub-goal was calculated from).
completePartialParse learns the initial variables of the new decompo-
sition rule cautiously. It groups all of the nodes of the newly learned task
and sub-goals and generates a variable constraint for each group of nodes
that matched the same state object. Although this creates an initial de-
composition rule that is very constrained, the variable constraints will be
rapidly relaxed when the rule is refined from subsequent examples.
completePartialParse learns a new decomposition rule in this way when
the best scoring partial parse on the beam is incomplete and has multiple
root nodes. Note that there may be other partial parses on the beam that
are completed, but TADPOLE considers only the highest scoring partial
parse once the teacher’s lesson is concluded. Figure 5.4 shows a graphical

representation of TADPOLE learning a new rule in this way.

5.7.2 The context of sub-goals is extended to include im-

portant relationships

When the agent learns new sub-goals it drops objects and relationships
farther than a threshold distance from the observed state changes. Though
this is an effective way of dropping irrelevant parts of the goal, sometimes
relevant relationships with important objects in the decomposition may be
dropped.

For example, to pick up a cup from within a closed cupboard the agent
must first open the cupboard, but it is critically important that the cup-
board the agent opens is the same one that the cup is in! The first sub-goal

of the appropriate decomposition involves opening a container. However,
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Figure 5.4: TADPOLE learning a new rule by completing a parse
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the state change this goal was learned from does not directly involve the
cup that is about to be picked up, because only the cupboard changed from
being closed to being open.

In order to capture the critical relationship that the cupboard being
opened must contain the cup being picked up, the threshold distance would
have to be increased to include all the objects directly related to the core
components and all the objects directly related to those objects. In this ex-
ample, in order to include the critical Contains relationship between the
cupboard and the cup by increasing the threshold, all the other relation-
ships and objects involved with the cupboard and cup would also have to
be included. Such an extension of the threshold would include all of the
other irrelevant items within the cupboard as part of the sub-goal. Increas-
ing the threshold distance exponentially increases the number of (mostly
irrelevant) objects included in the goal which is extremely undesirable as
discussed above.

To include important relationships when learning a new rule with-
out extending the threshold, completePartialParse extends each sub-goal
graph with all of the relationships between its nodes and state objects that
correspond to decomposition variables. In the example above, the cup-
board would be matched in all three sub-goals of the decomposition (it is
opened, emptied, and then closed), and the cup would be matched in the
second sub-goal and the head-task of the new rule, and so both of these
objects would correspond to decomposition variables. completePartial-
Parse would extend the first sub-goal of the newly learned rule to include
the Contains relationship between the cupboard and the cup (which cor-
responds to a decomposition variable). Note that it would not extend the
second or third sub-goals because the second will already include a core
relationship between these two nodes (the cup is no longer In the cup-
board) and there is no direct relationship between the cupboard and the
cup in the third state-difference graph.

If completePartialParse drops a variable after refining a decomposition
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rule with a new example, then it also drops any of its additional relation-

ships that the rule’s sub-goals were extended with.

5.7.3 TADPOLE does not learn if it is not confident about

its final parse

Updating incorrectly matching rules is clearly detrimental. Not only will
the context be skewed; but because TADPOLE drops mismatching vari-
able constraints, sub-goal dependency constraints, and task and sub-goal
core constraints; such critical information may be lost completely if TAD-
POLE refines an incorrectly matching rule. Learning a new rule incorrectly
is even more detrimental: the incorrectly learned rule will not only not
help HOPPER achieve its tasks, but it will also make it more difficult for
TADPOLE to parse future lessons correctly.

To prevent this, TADPOLE learns cautiously, and it requires that the
best matching parse it finds at the end of the teacher’s lesson have a score
that is above a set threshold. The threshold value is a parameter that can
be set depending on how reliable the teacher is. Note that this also applies
to the learning of new rules (as described in Section 5.7): if the score of
the best parse does not exceed the threshold, then TADPOLE will also not
learn any new rules from the parse.

TADPOLE also does not learn new rules if the final parse has too many
root state-difference nodes. Decomposition rules are unlikely to have more
than 7 or 8 sub-goals, so a final parse that has 15 or more root state-
difference nodes is a strong indication that TADPOLE did not parse the
demonstrated lesson correctly. In such cases, TADPOLE is too confused
about the teacher’s lesson, and it does not learn any new rules or refine

any of its old ones.
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TADPOLE gives partial parses with fewer root nodes higher scores

TADPOLE parses demonstrated behaviour online. It begins to parse as
soon as a lesson begins and it does not know when it will end. For any
partial parse on the beam, at any point in the parse, the lesson could po-
tentially end in the next time slice. If that were to happen, then TADPOLE
would generate a new decomposition rule from the root state-difference
nodes (assuming the best partial parse had a high enough score). New de-
composition rules have a low score to discourage TADPOLE from learning
spurious rules as described below in Section 5.7.4. The introduction of a
new decomposition rule to the top of parse would decrease the score of
the overall matching. The more unparsed root state-difference nodes, the
larger the new decomposition rule, the greater the weights of its score, the
greater the decrease of the overall score would be.

TADPOLE takes account of the fact that the lesson could end at any
point and decreases the score of every partial parse on its beam to what
it would become if the lesson ended in the next time slice. This has the
effect of lowering the score of partial parses with more root nodes by a
greater amount, and biasing the search toward partial parses that are more
completely parsed and have fewer root nodes.

TADPOLE greatly benefits from this because at any time slice, no mat-
ter how deep the parsed hierarchies are, the partial parses on its beam will
tend to have a small number of root nodes. Because at each time slice,
TADPOLE only works on the root level of the partial parses and there are
never more partial parses than the width of the beam, the cost of the algo-
rithm will tend to be uniform for each time slice, and the overall cost of the
algorithm is linear in the length of the demonstration. Note that this does
not consider the increasing cost of searching for matching decompositions
as TADPOLE learns more rules (this limitation is discussed in Section 5.8).
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5.74 TADPOLE learns a new rule that would parse a new

way of achieving a sub-goal

A second way that TADPOLE learns a new rule is if it observes a new
way of achieving a sub-goal lower down in the hierarchy. Because the
decomposition for achieving the sub-goal is a new one (TADPOLE has
not learned it before), TADPOLE will not be able to parse it, but it can
deduce the new rule from the surrounding context that it has parsed. If
the parent decomposition has only a single remaining unparsed sub-goal
and the other parsed sub-goals form two groups separated by unparsed
state-difference nodes, then TADPOLE assumes that the head-task of the
new decomposition achieves the unparsed sub-goal, and it assumes that
the sub-goals of the new decomposition correspond to the unparsed state-
difference nodes separating the two groups of parsed sub-goals of the par-

ent decomposition.

TADPOLE can complete a partial decomposition matching by learning
a new rule to parse its sub-goal

getNeighbouringParses incorporates this learning mechanism by calling
getHoleFillingNeighbours (A.2.11) which completes a partial decomposi-
tion matching by bridging two groups of the decomposition’s parsed sub-
goals with a new decomposition rule that would parse its remaining sub-
goal. As described in Section 5.2.4, a completed partial decomposition
matching results in a new root state-difference node and an extension to a
partial parse that TADPOLE adds to its beam.
getHoleFillingNeighbours constructs a new rule from the state-difference

nodes the same way completePartialParse does for top-level new rules de-
scribed above. Note that the boundaries of the new decomposition have to
be delineated by the parsed sub-goals of the parent decomposition. This
means that getHoleFillingNeighbours cannot learn new decompositions if
the missing sub-goal is the first or the last one of the parent decomposition.
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Figure 5.5: TADPOLE learning a new rule by filling a hole in the parse
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Section 5.8 covers this in more detail.

Spuriously learned rules are detrimental to TADPOLE

If TADPOLE misparses the teacher’s demonstration and learns an incor-
rect rule, then not only does it not learn the correct new rule(s) intended by
the teacher, but the new incorrect rule will tend to disrupt future lessons
as well.

Spurious rules negatively affect TADPOLE directly because every ad-
ditional such rule is another rule TADPOLE has to search through in fu-
ture matchings. Spurious rules that are similar enough to another rule
TADPOLE has learned, may also be matched and refined with some of
the future lessons intended for the other rule. TADPOLE would end up
splitting its knowledge of the decomposition between two rules resulting
in two moderately learned rules instead of one well learned one. Splitting
knowledge about a decomposition among multiple rules is an issue that
needs to be addressed (see Section 5.8), but it is particularly likely to hap-
pen with spuriously learned new rules because they do not represent any
real decomposition used by the teacher and so they cannot make use of

any examples to distance themselves from the rule they are mimicking.

Parsing holes within the hierarchy is most useful for learning from non-

teacher agents

Demonstrating a new decomposition rule by embedding it within the goal-
decomposition hierarchy is a cumbersome way to teach it. If the teacher
wishes to demonstrate a new decomposition rule, then demonstrating it
at the top of the hierarchy is a better approach because it requires a much
smaller decomposition hierarchy (there is no context above the hole) and
much less effort on the part of the teacher. TADPOLE is most likely to en-
counter a new decomposition rule in the middle of a demonstrated parse

if the demonstration was not primarily intended to teach that rule.
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This makes this method particularly useful for learning new decom-
position rules from non-teacher agents whose primary purpose is not to
instruct TADPOLE. However, in such cases, because TADPOLE cannot
rely on any felicity conditions, it needs to be confident that it has used the
correct rules to parse the agent’s observed behaviour correctly so that it

does not learn spurious rules.

The parent decomposition must be well-parsed

To minimize the risk of learning spurious rules, getHoleFillingNeighbours
will only learn a new decomposition rule from a hole in the middle of
a parsed decomposition hierarchy if it is confident that it has parsed the
parent decomposition correctly. All of the parent decomposition’s variable
constraints, sub-goal dependency constraints, and all of the task and sub-
goal core properties and relationships must be consistent with the demon-
strated state-differences. The parent decomposition must also not have
more than one unparsed sub-goal. Although these are very stringent con-
straints, getHoleFillingNeighbours cannot rely on the teacher’s felicity con-
ditions to facilitate learning because the observed behaviour may not have
been generated by a teacher, and getHoleFillingNeighbours must ensure
that its rules are correct and it has parsed the behaviour correctly before
committing to learning a new rule.

Newly learned rules have a low score in the parse

New decomposition rules that fill holes in the middle of the parsed decom-
position hierarchy contribute to the score of the partial parse they are part
of. The score of other decomposition matchings in the partial parse reflect
how well TADPOLE'’s rules match the demonstrated state-differences; be-
cause the new decompositions are new, their score cannot be determined
in this way and is instead a parameter of TADPOLE that determines how
confident TADPOLE is in learning new rules. However, initially, newly
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learned rules will tend to be over-specialized to the particular instance
they were learned from, so the score for newly learned rules should be
relatively low. In the evaluation of TADPOLE covered in Chapter 6, this
parameter was set to 0.5. Such a low score ensures that the rest of the de-
composition hierarchy is parsed very well before new rules are included

in the parse. This reduces the chances of learning a spurious rule.

5.8 Limitations and Future Extensions

This section describes the various limitations of TADPOLE, the issues that
will need to be addressed if it is to scale completely to the Human Planning

Domain, and various ways of extending and improving the algorithm.

5.8.1 TADPOLE cannot refine its rules to add additional

relevant objects

The primary reason that TADPOLE learns and refines its rules by match-
ing them with state-differences is so that it can identify the relevant and
irrelevant objects in the state. Although this heuristic of determining ob-
ject relevance by distance from properties and relationships that changed
is very effective, it does not guarantee that all of the irrelevant objects will
be eliminated from the learned rules or that all of the relevant objects will
be included. As TADPOLE sees more demonstrated examples it can grad-
ually learn which of the rule’s properties and relationships are significant.
However, if an important object is so distant from the state changes that it
is not even included in the rule’s task or sub-goal graphs, then TADPOLE
has no way of learning that it is significant to the rule.

For example, whether or not an electrical switch is turned on is criti-
cally important to the working of a microwave, even though the state of
the switch does not change and it is only distantly related to the contents
of the microwave which do change in the state graph. But there is no a
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priori way for TADPOLE to know that the electrical switch is important,
so any rules that TADPOLE learns about heating objects in the microwave
will not include the switch in their task and sub-goal graphs no matter
how many examples of heating TV dinners it sees.

Extending the size of the task and sub-goal graphs is not a viable solu-
tion because important objects like a switch or a fuse-box may be arbitrar-
ily distant from the state changes being learned, and extending the graphs
to include all of the distantly related objects would make the graphs so
large that the algorithm would become intractable. It would also make
the algorithm inaccurate because most of the added object nodes would
be irrelevant and their score would only swamp the score of the relevant
nodes.

There are two ways of extending TADPOLE to address this problem:

e Include a more in depth understanding of the physics of the domain.
If TADPOLE knows that electrical appliances are plugged into elec-
trical sockets and the switches controlling those sockets are impor-
tant, then it can include them in every rule that deals with turning

on an electrical appliance.

e Have TADPOLE include objects in its rules that are directly pointed
out by the teacher to be critically important. This would place a
heavier burden on the teacher who would have to first determine
which important objects TADPOLE would be likely to ignore and
then directly draw its attention to them. However, good human

teachers already do this during their lessons.

5.8.2 The set of decomposition rules will need to be in-
dexed

When TADPOLE searches through its decomposition rules to find one

that matches a sequence of root state-difference nodes, it simply iterates
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through them one by one. This has a cost that is linear in the total number
of decomposition rule, and it is manageable when the agent has a rela-
tively small set of rules. However, to be effective in the Human Planning
Domain the agent will need to have a very large set of rules and iterating
through the entire set every time that the agent needs to use a rule to fur-
ther parse a small part of a demonstration will not be feasible. TADPOLE
will need to use a rule indexing scheme to narrow the set of rules to match

to help it find the appropriate rule faster.

5.8.3 TADPOLE can only parse repeated decompositions

once it has learned the underlying rule

There are some decomposition rules that need to executed and re-executed
an indefinite number of times before their head-task is achieved. How-
ever, in order to learn such a rule, TADPOLE needs to see at least one
example of the rule being successfully executed once. Once it has learned
the fundamental decomposition, it can then apply it repeatedly an indef-
inite number of times and correctly parse indefinitely repeated sequences
of the rule.

If the first time TADPOLE sees a decomposition, the decomposition
is in a repeated sequence, then it will learn a single long decomposition
rule with a repeating sequence of sub-goals rather than recognizing that
this is an example of a short decomposition rule being repeated. To ease
the burden of the teacher, future extensions of TADPOLE should be able
to recognize repeated sequences of sub-goals and break them apart into
repetitions of a single decomposition.
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5.8.4 TADPOLE cannot properly interpret behaviour that

is a response to unexpected events

In unpredictable domains, unexpected events can occur which dramati-
cally alter the plan being executed. Although TADPOLE can parse demon-
strations that include unexpected state changes, it assumes that all of the
sub-goals of the parse are steps towards achieving a particular decomposi-
tion. It has no way of parsing a demonstration that includes a state change
that causes the teacher to backtrack and try a different decomposition half-
way through.

Although it is reasonable to expect the lesson of a teacher to be a single
coherent plan for achieving a task in one particular way, if TADPOLE is
to be used to parse the behaviour of arbitrary agents, then it must have a
way of parsing plans that involve backtracking and re-planning mid-way
through the plan.

5.8.5 TADPOLE cannot combine multiple rules into a sin-

gle rule

TADPOLE is designed to avoid learning redundant rules that describe the
same decomposition. However, given enough widely varying examples,
it is inevitable that at least some redundant rules will be learned. If TAD-
POLE is to scale to the Human Planning Domain it will need to have a
mechanism for dealing with redundant rules that will accumulate over
time. It will need to have a way of identifying similar, redundant rules,
matching them, and generalizing them together into a single rule. How-
ever, this would be a mechanism for generalizing the agent’s set of decom-
position rules, and this thesis focuses mainly on learning and generalizing

the rules themselves.



Chapter 6
Evaluation

This chapter covers the evaluation of TADPOLE and HOPPER. It discusses
the challenges of evaluating systems like TADPOLE and HOPPER that op-
erate in general domains like the HPD. Because what TADPOLE and HOP-
PER do is qualitatively different from other systems, directly comparing
them (e.g. by efficiency) is inappropriate. Instead, this chapter presents
concrete examples of TADPOLE parsing and learning from a teacher’s
demonstrations and HOPPER achieving various tasks in two different do-
mains. Every rule learned by TADPOLE is tested by being executed by
HOPPER, and HOPPER uses only rules that have been previously learned
by TADPOLE so that the two systems are evaluated together.

Organization of the chapter

e Section 6.1 describes the challenges of evaluating systems that learn
and plan in general domains like the HPD.

e Section 6.2 describes the kitchen domain and the logistics domain,
the two domains TADPOLE and HOPPER are evaluated in. The sec-
tion also provides the motivation for selecting these two domains in

which to evaluate the two systems.

211
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e Section 6.3 provides a series of examples of TADPOLE parsing the
demonstration of a teacher and HOPPER using the learned rules to

achieve related tasks.

e Section 6.4 concludes the chapter by analyzing the examples pre-

sented in the previous section in more detail.
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6.1 Evaluating General Intelligence Systems

Evaluating Artificial Intelligence systems that are focused on solving spe-
cific problems in narrow, well-defined domains is well-understood and
relatively straightforward. However, the problem of duplicating the gen-
erality and versatility of human cognition has received far less attention,
and the methodology for evaluating such Human-Level Intelligent (HLI)
systems is also less developed. John E. Laird et al. have pointed out that it
is not even clear what criteria are appropriate for evaluating HLI systems
[30], and the evaluation of HLI systems has been limited.

HOPPER and TADPOLE neither separately nor together constitute an
HLI system, but only the planning component of such an agent. A full
HLI system would need additional capabilities including learning and ex-
ecuting low-level, continuous actions; identifying different types of objects
and relationships in the environment; learning the physics of the world
and predicting how objects interact and change over time; and commu-
nicating with other agents. However, because the HPD involves a wide
range of different tasks in a wide range of different domains, HOPPER
and TADPOLE have to show the same kind of generality and versatility
required of an HLI system, and many of the same challenges of evaluating
HLI systems also apply to the evaluation of HOPPER and TADPOLE in
the HPD.

6.1.1 Directly comparing HOPPER and TADPOLE to hu-

man behaviour is inappropriate

HOPPER and TADPOLE are not trying to model exactly how humans
learn to solve various tasks and problems. Instead, their purpose is to
solve the same kinds of planning problems that people excel at. Com-
paring response times, accuracy, and error rates with those of people is

appropriate only for evaluating systems directly modeling human cogni-
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tion, such as ACT-R, so such evaluation techniques are not applicable to
HOPPER and TADPOLE.

6.1.2 HLI systems satisfice different tasks rather than opti-
mizing a single task

One of the primary characteristics that distinguishes HLI systems from
other systems in Artificial Intelligence is their generality. Al systems that
focus on achieving a single task in a single domain can be evaluated straight-
forwardly: better systems can solve the given task more efficiently than
others. HLI systems, on the other hand, achieve many different tasks in
many different domains. Optimal behaviour is not an important part of
the evaluation. This is because humans can solve a wide range of tasks
but rarely do so optimally, and it is unreasonable to expect HLI systems to
duplicate humans’ versatility and to solve each individual task optimally
as well. Because of this, standard machine learning performance compar-
isons are not appropriate.

It is important to note that it is difficult to compare the generality of
different HLI systems. It is unclear which system is better: a system that
can achieve a large number of simple tasks or a system that can achieve
a small number of difficult tasks. A further problem is that it is unclear
how to quantify the difficulty of a task. Just because a system can handle
tasks that humans find difficult is no guarantee that it will be able to han-
dle tasks that humans find easy. For example, being able to quickly and
accurately perform large mathematical calculations and playing chess at
world-class level does not help in making a cup of coffee or even identify-
ing a cup of coffee from a picture.

Because creating systems that can solve intricate problems (such as
chess) that humans find challenging has not led to a generally intelligent
system, HOPPER and TADPOLE take the opposite approach. They focus

on learning how to solve straightforward (for humans), routine tasks so
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that they can be used in the future as a foundation for mechanisms and
algorithms for solving more difficult problems.

To give confidence that HOPPER and TADPOLE can scale to the wide
range of tasks present in the HPD, they are evaluated on a number of dif-
ferent tasks in two different domains: the Kitchen Domain and the Logis-
tics Domain. Section 6.2 describes the two domains in detail, and Section
6.3 presents detailed examples of HOPPER and TADPOLE learning and
solving different tasks.

6.1.3 Itisimportant to distinguish learned knowledge from

hand-crafted knowledge

HLI systems have a fixed architecture that remains constant from task to
task and from domain to domain, and they have domain knowledge that
they acquire and which is only appropriate to a particular domain. Do-
main knowledge is critical to the system being able to successfully com-
plete the corresponding tasks in a domain. The two critical issues that
have to be addressed for any HLI system is how to use domain knowl-
edge to robustly solve problems and how to learn and acquire the domain
knowledge in the first place.

In hierarchical decomposing systems like HOPPER and TADPOLE, the
domain knowledge is encoded in decomposition rules. As discussed in
Chapter 2, the bulk of the research into these systems has focused on the
problem of applying domain knowledge to solve tasks robustly and ef-
ficiently. The issue of learning decomposition rules has hardly been ad-
dressed. In most cases, the entirety of the domain knowledge is hand-
coded. In systems where learning has been addressed, the vast majority (if
not all) of the rules have been hand-coded and the system’s task has been
to learn the appropriate preconditions of the rules, their weights, utilities,
or probabilities of success. The issue of learning new decomposition rules

for solving completely novel tasks has not been addressed.
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When a system’s decomposition rules and its domain knowledge in
general is hand-crafted, evaluating the architecture of the system becomes
problematic. This is because it is difficult to tell whether the system solved
a task successfully because of a robust architecture or because of cleverly
engineered decomposition rules. An architecture can be directly evaluated
in terms of how expressive it is and how easy it is to program new rules
to solve novel tasks — how quickly and how accurately one can craft new
decomposition rules. However to evaluate the problem-solving power of
such a system requires a standard benchmark of tasks to be solved and
a standard set of rules to be used. However, if all of the rules are hand-
crafted, then it is difficult to come up with a justifiable set of benchmark
rules.

A rule-execution system, such as HOPPER, cannot be independently
evaluated using hand-crafted rules because there is no way of distinguish-
ing the architecture from the hand-crafted rules. On the other hand, a rule-
learning system, such as TADPOLE, cannot be independently evaluated
because there is no way of determining the quality of the rules learned.
These difficulties can be overcome by evaluating HOPPER and TADPOLE
simultaneously: HOPPER uses only rules learned by TADPOLE, and ev-
ery rule learned by TADPOLE is used by HOPPER to achieve related tasks.

6.2 The Kitchen and Logistics Domains

HOPPER and TADPOLE have been evaluated in a kitchen domain and a
logistics domain because these two domains are both part of the HPD but
have different characteristics and different kinds of tasks to achieve. Being
able to effectively learn how to achieve different tasks in both domains
serves to illustrate the generality of HOPPER and TADPOLE.

An important distinction between these two domains is that the dis-
tribution of the burden between the executor HOPPER and the learner
TADPOLE is different. In the kitchen domain, the bulk of the burden is
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borne by TADPOLE. Once TADPOLE has learned the necessary rules, us-
ing them to achieve tasks is relatively straightforward for HOPPER. In the
logistics domain on the other hand, the bulk of the burden is borne by
HOPPER. There are relatively fewer rules that need to be learned by TAD-
POLE, but it is important for HOPPER to apply those rules appropriately
to produce efficient plans.
The two domains evaluate both TADPOLE and HOPPER, but the kitchen

domain evaluates TADPOLE more intensely, and the logistics domain eval-
uates HOPPER more than TADPOLE.

6.2.1 HOPPER and TADPOLE are evaluated in a kitchen

domain

The kitchen domain is a simplified representation of a typical household
kitchen. HOPPER and TADPOLE have been tested in this domain because
there are a large number of varied tasks to achieve requiring a large num-
ber of different decomposition rules. Furthermore, the domain is rich and
complex with many objects and relationships, and it requires a large num-
ber of atomic actions to achieve even simple tasks. One benefit of evaluat-
ing HOPPER and TADPOLE in such a domain is that it tests their ability

to deal with a large number of irrelevant objects in the state.

The kitchen domain has a large number of richly described objects

The kitchen domain is characterized by a large number of objects with rich
properties and relationships. Figure 6.1 shows a diagrammatic represen-
tation of a typical kitchen world state. Note that the absolute placement
of the objects and their dimensions are not included in the state represen-
tation that HOPPER and TADPOLE take as input. They are present in the
diagrammatic representation only to help give an intuitive understanding
of the state. The full, first-order description of the state, which includes
all of the properties and relationships of every object (including relative
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Figure 6.1: Graphical representation of a typical kitchen world state

positions), is extensive and it is not included here for the sake of clarity;
however, it can be found in the appendix.

Note that the state has two avatars controlled by a teacher and by the
agent. The agent is called hopper, because HOPPER interacts directly with
the environment while TADPOLE only passively observes the actions of
the teacher. The teacher and HOPPER interact with the environment by
controlling their avatar’s teacherArm and robotArm respectively. When
observing the teacher, TADPOLE maps its own robotArm to any changes
it observes of the teacherArm so that the rules it learns will be applicable
to it (hopper) and not the teacher as described in Section 5.1.5.

HOPPER and TADPOLE assume a vision system that represents the

world in first-order logic. A typical object in the kitchen domain is de-
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scribed as:

kettle1: Type=[electricalKettle, container], MadeOf=[metal],Colour=[grey],
Open=[yes], Running=[no], Graspable=[yes], Clean=[yes], Tempera-
ture=[cool], Movable=[yes]

kettle1 — [On] — bench1

kettle1 — [Supports, Contains] — water1

kettle1 — [GraspedBy] — robotArm

For any particular task, most of an object’s properties will be irrelevant;
however, which properties are irrelevant will depend on the task being
achieved. For more complex tasks where an object is repeatedly manipu-
lated by the agent, which properties are relevant will change as the agent
achieves different sub-tasks. For example, when making a cup of tea, the
agent will manipulate the kettle object repeatedly as it achieves the task.
The fact that the kettle is graspable and movable is important when the
agent wants to move it around; the fact that it is a container that is open is
important when the agent wants to fill it with water or pour water out of
it; and the property of whether or not the electrical kettle is running or not
is important when the agent is heating water with it. Other properties are
almost never relevant, such as the colour of the kettle or what it is made
of; however, for any property, a task can always be invented where that
property is critically important. For example, if the agent wanted to heat
the kettle in a microwave or on a stove, then the fact that the kettle is made
out of metal would be very important.

Every object in the kitchen domain is also related to at least one other
object in the state. These relationships describe quantitatively the relative
spatial positions of different objects. For example, an object can be above
another object, support it, be next to it, be within it, contain another object,
and so on. As with an object’s properties, only some of its relationships
will be important for any particular task.
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The kitchen domain is a great simplification of an average kitchen and
ignores many important details. The domain does not deal with electricity
or circuits, so the kettle does not have to be plugged in to work properly.
However, it does have to be sitting on the bench in order to be able to boil
water.

Another important aspect of real kitchens which the state representa-
tion generally leaves out is the internal structure of objects (substructure
is included only when necessary for a task). For example, the kitchen do-
main does not distinguish a cup with a handle from a cup without a han-
dle. This is so that TADPOLE does not have to work out for every set of
state changes how to cluster the affected objects in the world and to de-
termine what are the primary state changes and what are merely derived
ones. For example, if the state description of the world were to include
the internal structure of a clock as separate objects (the clock hands, the
numbers on the clock face, the batteries of the clock, and so on) and the
agent (or the teacher) moved the clock from one place to another, then the
state change would include not only the clock changing position, but also
all of its components as well (e.g. the base of the clock was on top of the
table and now it is on top of the floor). The significant state change that
TADPOLE should learn from is that the clock changed position and what
is important is that it was graspable, movable, and not supporting another
object. The components of the clock, most of which are not graspable or
movable, changing position as well is an unimportant state change that
is derivable from the fact that they are components of the clock. The state
representation keeps the structure of objects relatively simple so that TAD-
POLE does not have to bear the additional burden of determining which
state changes are derivable and which are not.

Clearly, requiring the state representation to be flat and without a hi-
erarchical structure is a significant limitation of HOPPER and TADPOLE
that will have to be addressed if these algorithms are to scale to more com-
plex domains with more complex tasks. Ideally, HOPPER and TADPOLE
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should use a hierarchical state description such as GRAM [6] and then
change the “resolution” at which they view the world appropriately as
the execution of a task progresses. For example, when achieving the task
of moving a clock, the representation of the state should describe only the
clock object; when achieving the sub-task of moving the agent’s hand to
grasp the clock, the representation should change to include a more de-
tailed description of the clock so that the agent can grasp a particular part
of the clock. The representation of the state should describe the numbers
on the clock face and the clock hands only if the agent is trying to deter-
mine the time or setting the clock. Dynamically changing the resolution at
which objects are described based on the task being achieved is an inter-
esting avenue for future research but it is outside the scope of this thesis.

The kitchen domain has low-level atomic actions

The atomic actions of the kitchen domain are at a low level of abstraction
(e.g. move hand to cup, grasp cup, lift). Evaluating HOPPER and TAD-
POLE in a domain with atomic actions at such a low level of abstraction

has two main advantages:

e Low-level atomic actions better approximate continuous time.

e When expressed in terms of low-level actions, the tasks are longer
and /or more difficult, which tests whether HOPPER and TADPOLE

will scale to long tasks

Different tasks in the kitchen domain require different decomposition

rules

The tasks in the kitchen domain deal mainly with food preparation and
general cleaning up. These tasks share a set of common sub-tasks such as

opening and closing containers, moving objects around, and pouring and
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mixing liquids that can be re-used by the agent. However, most decompo-
sition rules generate different effects, and without a complete representa-
tion of time that allows waiting, there is little opportunity for interleaving
and optimizing plans in the kitchen domain. Once TADPOLE has learned
the requisite decomposition rules, achieving tasks with HOPPER is rela-

tively straightforward.

The kitchen domain has un-undoable actions

Because the kitchen domain has actions that cannot be undone (for exam-
ple, you cannot unscramble an egg) it is important that the agent execute
its tasks and sub-tasks in the correct order. This property of the kitchen

domain makes it risky for a reactive agent with an imperfect policy.

TADPOLE makes use of a heuristic about the importance of grasping
objects

In the kitchen domain, the agent and the teacher interact with the world
by moving their avatar’s arms next to objects in the world, grasping them,
and then manipulating them in some way. TADPOLE identifies the rele-
vant objects in the state by noting which objects have changed from time
slice to slice (as described in Sections 5.3.5 and 5.3.6) and it ignores the
rest. However, because grasping objects is so important to how the teacher
(and agent) interacts with the world, whenever the teacher is grasping
an object, TADPOLE automatically considers the grasped object and the
teacher’s arm relevant and includes it in the state-difference it constructs
even if the grasped object has not changed since the last time slice. This
reasonable heuristic allows TADPOLE to learn about buttons, switches,
and faucets — objects that change other objects in the state but do not

change themselves.
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6.2.2 HOPPER and TADPOLE are evaluated in a logistics

domain

The logistics domain is much simpler than the kitchen domain. It has
fewer objects with fewer properties. The primary tasks in the logistics
domain involve transporting packages from one location to another. Loca-
tions are grouped into separate “cities”, and packages can be transported
locally (within a city) by loading them into a truck and driving them to the
appropriate location. To deliver packages between cities, they have to be
transported to the city’s airport, loaded on to a plane, flown to the destina-
tion city’s airport, and then delivered to the appropriate location by truck.
Figure 6.2 shows a graphical representation of a typical logistics state.
The atomic actions that can be performed in the domain are at a higher
level of abstraction than those in the kitchen domain. Because of this, the
state description does not include avatars, and the agent interacts with the
environment directly instead. The atomic actions include loading a pack-
age into a truck (or plane), driving a truck from one location to another,

and unloading a package, all without reference to an avatar.

Different tasks in the logistics domain re-use the same decomposition

rules

The logistics domain has only a limited range of different types of tasks
to achieve, the most important of which are delivering packages by truck
and by plane. This limited range of task types require an equally lim-
ited number of decomposition rules, making TADPOLE’s job relatively
straight-forward because it has fewer decomposition rules to learn. How-
ever, this also means that the different tasks that HOPPER has to achieve
will re-use the same decomposition rules, which increases the number of
shared sub-goals and the number of opportunities HOPPER has to inter-
leave their execution.
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Figure 6.2: Graphical representation of a typical logistics state

Efficiency of plans is important in the logistics domain

The logistics domain does not include any pathfinding — every location
in a city is connected and equidistant from every other location in the city.
However, the order in which a truck visits various locations to pick up
and drop off packages can greatly affect the final length of the plan. This
makes the efficiency of the plan generated to deliver the various packages
an important consideration, especially because every extraneous atomic

action is so expensive, and needless driving and especially needless flying
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from location to location should be avoided.

As discussed in Chapter 4, HOPPER cannot guarantee that the plan it
generates will be optimal, however, it can strive to shorten its plans by in-
terleaving its sub-tasks and satisfying multiple sub-goals in parallel. The
logistics domain is ideal for testing HOPPER's interleaving mechanism as
well as TADPOLE's ability to parse such interleaved plans. To this end,
after TADPOLE has learned the fundamental decomposition rules, HOP-
PER was tasked with achieving multiple concurrent goals — delivering
multiple packages to different locations. The multiple package deliveries
are chosen so that the optimal way of satisfying all of the goals is to inter-

leave their deliveries.

6.3 Example Tasks

This section provides a short description of the example tasks that TAD-
POLE learned and HOPPER executed. The next section considers some of

the more interesting examples in more detail.

6.3.1 TADPOLE learned the necessary atomic rules of the

kitchen domain

In order to parse high-level decomposition rules, TADPOLE first has to
learn the lower-level rules they utilize, beginning with the atomic rules.
TADPOLE learns new atomic rules by observing a one action demonstra-
tion by a teacher or by noticing a new atomic state-change within a larger
demonstration for a higher-level rule.

TADPOLE learned the following atomic rules in the kitchen domain by
observing single action demonstrations by the teacher:

e Moving the robotArm next to an object by seeing a demonstration of
the teacher moving their hand next to a cup, a door, and a towel. The
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wide range of different objects in the examples emphasized that the
agent can move its arm next to any object no matter what its proper-

ties are.

e Grasping an object from two demonstrations of the teacher grasping
a cup and a door handle.

e Pulling open a container from two demonstrations of the teacher
pulling open a cupboard and a drawer.

e Releasing an object from two demonstrations of the teacher releasing
a cup and a door handle.

e Moving the robotArm away from an object from two demonstrations

of the teacher moving their arm away from a cup and a towel.

e Pushing a container closed from two demonstrations of the teacher
pushing a cupboard and a drawer closed.

e Lifting an object from three demonstrations of the teacher lifting a

cup, spoon, and towel.

e Putting down an object from two demonstrations of the teacher putting
down a cup on a towel and a spoon on a bench.

It is very tedious for the teacher to teach such low-level actions by demon-
strating them directly. However, because these actions are so simple, it
would be straight-forward to extend the agent to make it explore its en-
vironment and learn such rules independently by trying various actions
randomly.

TADPOLE learned the remaining atomic rules in the kitchen domain

by observing the teacher demonstrate how to achieve higher-level tasks:

e Turning on a tap from two demonstrations of the teacher filling a cup

and a pot with water.
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e Turning off a tap from the same two demonstrations.

e Turning a kettle on from a demonstration of the teacher boiling some

water with a kettle.

e Pouring boiling water on to a tea-bag from two demonstrations of
the teacher making a cup of tea.

e Turning on a stove from a demonstration of the teacher boiling water

with a stove (in order to make a cup of tea).

e Turning off a stove from the same demonstration.

6.3.2 TADPOLE learned the higher-level rules of the kitchen

domain

TADPOLE learned its higher-level decomposition rules by observing and
parsing demonstrated lessons of the teacher where each lesson consisted
of nothing more than a sequence of states. It is important to note that
the order in which the lessons were presented to TADPOLE is important.
Later lessons rely and build on earlier lessons (the parsed hierarchies for
higher-level rules require sub-parses of lower-level rules). For example,
TADPOLE cannot learn how to make a cup of tea if it does not understand
how to use the sink to fill the kettle with water, and it cannot learn how to
use the sink if it does not know how to transfer an object into the sink.

TADPOLE learned the following decomposition rules by observing the
teacher’s demonstrations (in the given order):

e Opening a container from two demonstrations of the teacher open-
ing a cupboard and a drawer. Note that this rule is not atomic and
it is different from the atomic rule of pulling open a container. To
open a container in the kitchen domain, the agent has to move its
arm next to the handle of the container, grasp it, pull on it, release it,
and finally move its hand away.
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e Closing a container from two demonstrations of the teacher closing
a cupboard and a drawer. This rule is also different from the atomic

rule of pushing a container closed.

e Transferring an object from one location to another from two demon-
strations of the teacher moving a spoon from a bench to a plate and
a towel from a table to a bench.

e Transferring an object out of a closed container from a demonstration
of the teacher taking out a cup from a cupboard and placing it on
the floor and a demonstration of the teacher taking out a knife and
placing it on the table.

e Filling a container with water from two demonstrations of the teacher
filling a cup and a pot with water.

¢ Boiling water with a kettle from a demonstration of the teacher doing
this.

e Pouring water from one container to another when the two contain-
ers are next to each other from a demonstration of the teacher pour-

ing water from a kettle into a cup that is next to it.

e Pouring water from one container to another when the two contain-
ers are not next to each other from a demonstration of the teacher

pouring water from a pot into a cup.

e Making a cup of tea from a demonstration of the teacher doing this
in a state where the cup and the tea-bag are inside a cupboard and
from a second demonstration where the cup and tea-bag are already
on the bench.

¢ Boiling water with a pot on the stove from a third demonstration of
the teacher making a cup of tea, but this time boiling the water with
the stove.
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6.3.3 HOPPER successfully made a cup of tea

To evaluate TADPOLE’s learned decomposition rules as well as HOPPER
itself, HOPPER was tasked with making a cup of coffee in three different

scenarios:

e All cups and the box of tea are in the cupboard. HOPPER prop-
erly interleaved three applications of the decomposition for taking
an object out of a container — taking a cup and a tea-bag out of the
cupboard which itself involves taking the tea-bag out of the box of
tea — so that it opened and closed each container (the cupboard and

the box of tea) only once.

e A cup and the box of tea are already on the bench. HOPPER properly
took advantage of the fact that the first two sub-goals of the decom-
position for making a cup of tea were partially achieved and it did

not waste time opening or closing the cupboard.

e The kettle breaks unexpectedly when HOPPER tries to use it. HOP-
PER first tried to get the kettle to work by pushing its “on” button
repeatedly. After failing four times (the maximum number of times
that HOPPER is willing to attempt a decomposition) to make the ket-
tle work, HOPPER gave up and used its rule for boiling water with
a stove instead without having to modify any other part of its plan.

In the kitchen domain, HOPPER was assigned only tasks for making a
cup of tea. However, because this is such a complex task, HOPPER had to
make use of every other decomposition rule TADPOLE learned in order
to successfully achieve the task’s sub-goals and sub-sub-goals, and so the
task of making a cup of tea tested all of the decomposition rules learned
by TADPOLE in the kitchen domain.
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6.3.4 TADPOLE successfully learned the decomposition rules

of the logistics domain

When learning decomposition rules for the logistics domain, for the sake
of efficiency, TADPOLE did not take into account the rules it learned in the
kitchen domain. The kitchen and logistics rules are sufficiently different
from each other that it is unlikely that a mismatch would occur when pars-
ing the teacher’s demonstrations, and so ignoring the kitchen rules did not
affect the resulting TADPOLE’s parses. TADPOLE’s and HOPPER's per-
formance degrades as the total number of rules they know increases. So
they will have to be extended with a rule indexing system that can de-
termine what the appropriate rules are for a given domain and limit the
number of rules they have to consider.

TADPOLE learned the following atomic decomposition rules in the lo-

gistics domain:

e Driving a truck from one location to another from a demonstration

of driving a blue truck and a red truck.

e Flying a plane from one location to another from a demonstration of
this.

e Loading a package into an open vehicle from demonstrations of load-
ing a package into an empty truck and loading a package into a non-
empty truck. TADPOLE learns an overly specific rule from the first
demonstration, and it needs the second demonstration to realize that
a truck will not necessarily become non-empty after loading a pack-
age into it, and so it drops this state-change from the rule’s task.

e Unloading a package from an open vehicle from demonstrations of
unloading a package from a truck with one package in it and unload-

ing a package from a truck with multiple packages in it.

e Opening a vehicle from a demonstration of opening a truck.
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Closing a vehicle from a demonstration of closing a truck.

TADPOLE learned the following higher-level decomposition rules in

the logistics domain:

Loading a package into a closed vehicle from demonstrations load-
ing a package into a closed empty truck and loading a package into

a closed non-empty truck.

Unloading a package from a closed vehicle from a demonstration of
unloading a package from a closed truck with multiple packages in
it.

Emptying a vehicle from a demonstration of unloading a package

from a closed truck with a single package in it.

Delivering a red and then blue package from one local location to
another local location by truck from two demonstrations one where
the truck ended up in a new location and one where the truck ended

up back at its start location.

Delivering a package from one location to a non-local one by truck

and by plane from a demonstration of this.

6.3.5 HOPPER successfully interleaved the plans for deliv-

ering packages to their destination

Although TADPOLE did not see a single example of the delivery of multi-
ple packages being interleaved, HOPPER can nonetheless make use of the

decomposition rules TADPOLE did learn to successfully interleave such

plans by identifying common sub-goals in different decompositions.

HOPPER correctly interleaved the execution of the following tasks:

HOPPER delivered two packages from two different start locations

and to two different destinations (no interleaving was possible).
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HOPPER delivered two packages from the same start location to two
different destinations. It correctly interleaved the two plans so that
it drove to the start location only once, and it also correctly formed
a sub-interleaving so that it only opened and closed the truck once

when it was loading the two packages into it.

HOPPER correctly interleaved the plans for delivering two packages

from two different start locations to the same destination.

HOPPER correctly interleaved the plans for delivering two packages

from the same start location to the same destination.

HOPPER correctly interleaved the plans for delivering three pack-
ages — two packages were at the same start location and the third
was at the destination of one of the other packages. However, HOP-
PER finds the optimal plan only half of the time and generates a sub-
optimal plan otherwise. Section 6.4.10 covers this in more detail.

HOPPER correctly interleave the plans for delivering two packages
from the same start location to two different destinations where one
of the destinations was local and the other was non-local (and so

required a plane to deliver it).

HOPPER was also able to adjusts its plan to handle unexpected events:

HOPPER began executing the decomposition for delivering a pack-
age from one location to another, but when it got to the initial loca-
tion of the package it noticed that the package was in fact at a differ-
ent location. It redecomposed its decomposition for delivering the
package and then immediately drove to the correct initial location

rather than trying to load a non-existent package into the truck.

HOPPER began executing one of the two decompositions for deliv-
ering two packages from two different start locations and to two dif-

ferent destinations, but when it got to the initial location of the first
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package it noticed that the second package was unexpectedly also
at this location. It redecomposed and then correctly interleaved the
two decompositions so that it took advantage of the opportunity to
load both packages into the truck.

6.4 Discussion of Example Tasks

The concrete examples of HOPPER and TADPOLE being applied to var-
ious tasks that are discussed below are in graphical form for the sake of
clarity. HOPPER and TADPOLE operate in rich, complex domains (this is
especially true for the kitchen domain) and the decomposition rules TAD-
POLE learns from demonstrations within those domains reflect that. Al-
though TADPOLE cuts out a large number of objects it deems irrelevant
from the state-differences it observes, each task and sub-goal of its de-
composition rules still has several objects in its graph, and each object has
a number of properties associated with it. This, combined with the fact
that a large decomposition rule may have six or seven sub-goals, and that
tasks such as making a cup of coffee require a dozen or more rules to suc-
cessfully parse and accomplish, means that it is not possible to present
all of the rules in their entirety (let alone all of the state descriptions after
each atomic action) without including an overwhelming amount of de-
tail. Instead, each example presents TADPOLE's final parse or HOPPER’s
complete decomposition hierarchy. Different examples evaluate different
aspects of TADPOLE’s and HOPPER's algorithms, and they highlight and
omit the details of their corresponding hierarchies appropriately.

6.4.1 TADPOLE and HOPPER scale to large decomposi-

tion hierarchies

As discussed in Chapter 5, TADPOLE begins parsing the teacher’s demon-

stration before the demonstration is completed. It maintains a beam of
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partial parses and extends them gradually as it views additional states
(and state-differences) of the teacher’s demonstration. This allows it to
successfully parse extensive decomposition hierarchies.

As discussed in Chapter 4, HOPPER begins executing its plan before it
is fully formed. It uses a least-commitment decomposition strategy and
decomposes only the unconstrained sub-goals of its decomposition hi-
erarchy. Although HOPPER cannot guarantee that its plan is sound, by
keeping most of its decomposition hierarchy undecomposed, it can han-
dle even large decomposition hierarchies in nondeterministic domains.

Figure 6.3 shows a graphical representation of the final parsed decom-
position hierarchy inferred by TADPOLE after observing the teacher’s first
lesson about how to make a cup of tea. The “makeTea” decomposition
rule that TADPOLE learned from this lesson is extensive, and a complete
description can be found in the appendix.

Note that because the demonstration to make a cup of tea consists of
a sequence of 70 states (a result of 69 atomic actions) the graphical repre-
sentation omits the lowest levels of the parsed hierarchy for the sake of
clarity. Each node in the decomposition hierarchy represents three things:
a state-difference, a task, and a goal. The state-difference is a difference
between an earlier and a later state in the teacher’s demonstration; which
states are used to generate the state-differences of a parse depends on the
structure of the decomposition hierarchy. The task is the head of a rule
that achieves the additions and deletions specified by the state-difference.
The goal is the sub-goal of the node’s parent decomposition rule that is
satisfied as a result of the state-difference being achieved by the task. For
the sake of clarity, the graphical representation of the parsed decomposi-
tion hierarchy includes only a textual representation of the tasks in each
node. The tasks are described with action verbs to emphasize the fact that
tasks specify changes (additions and deletions).

To be able to properly parse this demonstration, TADPOLE had to first

learn the necessary decomposition rules such as opening and closing con-
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Figure 6.3: TADPOLE's parse for making tea
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tainers, filling containers with water, boiling water in a kettle, pouring
liquids, and so on. For each of these decomposition rules, TADPOLE had
to observe and parse a separate lesson from the teacher (each lesson con-
sisted only of a sequence of states and TADPOLE was not informed what
decomposition rule is being demonstrated).

It is feasible for an agent to learn basic decomposition rules such as
picking up and putting down objects through experimentation and trial
and error. However, in order for this to be feasible, the agent would need
to have a way of determining and identifying interesting changes in the
world so that it would learn only useful decomposition rules and not
swamp its rule set with superfluous rules learned from random combi-
nations of atomic actions that had some unimportant effect on the world.

Although TADPOLE observed a lesson and learned every decomposi-
tion rule directly only once or twice, in the course of learning its rule set,
TADPOLE observed multiple examples of lower-level rules. This is be-
cause the parsed decomposition hierarchies for higher-level rules tend to
make use of lower-level decompositions. In the set of lessons that TAD-
POLE observed in the kitchen domain, it only observed two direct demon-
strations for how to open a container; however, this decomposition rule
was re-used in the two lessons demonstrating how to transfer an object out
of a closed container, and the rule for transferring objects out of a closed
container was itself re-used twice in two of the lessons demonstrating how
to make a cup of tea (the cupboard was opened to take out the cup, and
the box of tea was opened to take out the tea-bag). So after observing
all the lessons in the kitchen domain, TADPOLE refined the “make-tea”
decomposition rule based on three examples, the “transfer-object-from-
closed-container” rule based on six examples, and the “open” decomposi-
tion based on eight examples.

The lessons TADPOLE learned in the kitchen domain demonstrate that
the lower parts of TADPOLE's parsed decomposition hierarchies will tend
to be parsed with decomposition rules that are used more often. TAD-
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POLE will have observed the teacher use such low-level rules more often.
Similarly, HOPPER will also have used low-level rules more often. This
means that the lower-level a rule is, the more it will have been refined,
and the more certain the parse making use of it will be.

The property of lower-level rules being more refined is important in
allowing TADPOLE to scale to large parses for complex, high-level de-
compositions. The lower a decomposition is in TADPOLE’s parse, the
less constrained it is by the sub-parse below it (making it more difficult
to parse it correctly), and the larger the proportion of the parse above it
that depends upon it (making it important to parse correctly). The extra
refinement of low-level rules offsets the fact that they are less constrained,
and allows TADPOLE to generate the correct parse.

TADPOLE co-orders interleaved decompositions

The initial part of the demonstrated lesson for making a cup of tea in-
volved the teacher taking a cup and a tea-bag out of the same cupboard
and putting the tea-bag into the cup. Because the teacher took these two
objects out of the same container, the two decompositions are interleaved,
sharing the sub-goals of opening and closing the cupboard. However, the
tea-bag was itself in a closed box which had to first be opened and then
closed once the tea-bag was removed. TADPOLE had to first parse the de-
composition removing the tea-bag from the box, and then recognize that
removing the tea-bag from the box and placing it into the cup also satisfies
the sub-goal of not having the tea-bag in the cupboard anymore and so
makes it a viable part of the decomposition for removing the tea-bag out
of the cupboard.

When TADPOLE parses two sub-goals whose decompositions are in-
terleaved, it assumes that neither sub-goal is constrained to be before the
other and that they can be satisfied in arbitrary order. The reasoning is
that since the teacher began executing the plan for satisfying the second
sub-goal before it had finished executing the plan for the first sub-goal
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(the two plans were interleaved), the second sub-goal does not depend on
the first sub-goal being already satisfied. Figure 6.3 depicts this arbitrary
ordering of the first two sub-goals of the “make-tea” decomposition rule
with a two-way arrow, and the total-ordering of the remaining sub-goals
with a one-way arrow.

The heuristic of co-ordering interleaved sub-goals is correct most of
the time; however, it can be too quick in dropping sub-goal ordering con-
straints, especially if the sub-goals that are shared are clean-up sub-goals.
In the case of making a cup of tea, putting the tea-bag into the cup first and
then moving both on to the kitchen bench would be a bit unusual but not
incorrect. On the other hand if the teacher were making a birthday cake
and opened a cupboard, took out and applied some icing to a cake, then
took out some candles and put them on, and then closed the cupboard;
then TADPOLE would incorrectly conclude that the sub-goals of getting
icing and candles on a cake could be achieved in arbitrary order. Because
TADPOLE drops the ordering constraints completely, it has no way to re-
cover from this kind of mistake, and so without additional heuristics to
determine when sub-goals can be co-ordered, TADPOLE should be more

cautious and not make use of this heuristic.

Decompositions do not have to match clean-up sub-goals that match
with already achieved sub-goals of subsequent decompositions

Figure 6.4 shows a lower part of TADPOLE's parse for the lesson of mak-
ing a cup of tea in detail. Specifically, it shows the sub-parse for pouring
water from the kettle to the cup in full, down to the sequence of demon-
strated states from which TADPOLE infers the hierarchy of state-differences.
The decomposition for pouring a liquid from one container to another in-
volves moving the container containing the liquid to the other container,
pouring, and then moving the now empty container back where it came
from. The figure focuses on this part of the parse because it illustrates

an instance of interleaving where clean-up sub-goals remain unachieved



CHAPTER 6. EVALUATION 239

because they are the inverse of already achieved sub-goals. The figure
highlights already achieved sub-goals in green and unachieved clean-up
sub-goals in red. TADPOLE correctly parsed the demonstrated states even
though some clean-up goals remained unachieved, and the three sub-
decompositions were all only partially complete.

When TADPOLE parses a decomposition, some of the rule’s sub-goals
may already be achieved in the decomposition’s initial state and so are not
made true by the teacher. TADPOLE also allows a decomposition to leave
some of its clean-up sub-goals unachieved. But while already achieved
sub-goals depend only on their decomposition’s initial state, TADPOLE
only allows a clean-up sub-goal to remain unmatched and be unachieved
if it is the inverse of an already achieved sub-goal of an adjacent decom-
position.

In the example shown in Figure 6.4, the clean-up sub-goals of releasing
the kettle and moving the agent’s hand away from it after placing it next
to the cup are not achieved because they would be immediately undone
by the first two sub-goals of the decomposition for pouring from the kettle
to the cup. Similarly, the clean-up sub-goals of releasing the kettle of the
pour decomposition are also not achieved because they are the inverse of
the already achieved sub-goals of the decomposition for moving the kettle
on to the bench. This leads to the unusual parse where the second sub-
decomposition has only a single sub-goal that is satisfied (its two initial
sub-goals are already satisfied when the decomposition is executed, and
its last two clean-up sub-goals remain unachieved.

TADPOLE correctly parsed the demonstration for pouring in this way
and learned the decomposition rule that breaks down the lesson into the
three sub-goals of moving an object, pouring, and moving an object rather
than as a sequence of 9 atomic decompositions.

Although in practice HOPPER will execute these same 9 atomic ac-
tions, breaking the rule into these three sub-goals helps it to achieve the

task in unusual circumstances as well. For example, if HOPPER wants to
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Figure 6.4: TADPOLE's parse for pouring
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pour a liquid from a jug that is in a closed container such as the refrigera-
tor, then HOPPER can make use of the decomposition rule for transferring
objects out of closed containers (open the container, move the object, then
close the container) to satisfy the first sub-goal of getting the jug next to
the cup. Note that in this case, the clean-up sub-goals have to be achieved

because HOPPER has to release the jug in order to close the refrigerator.

6.4.2 TADPOLE learns new rules from holes in its parsed

decomposition hierarchy

TADPOLE learns new rules by filling in gaps in its parses of the teacher’s
lessons. Usually, the gap is at the very top of the parse when the teacher
demonstrates a new lesson, and TADPOLE constructs the head-task of its
new rule from the difference between the first and the last state, and it
constructs the sub-goals from the top state-difference nodes of its partial
parse. However, a gap in TADPOLE’s parse can also occur within the
decomposition hierarchy, when the teacher satisfies a sub-goal in novel
way.

Figure 6.5 shows an outline of TADPOLE’s parse for making a cup of
tea and is focused on the decomposition for boiling water with an electrical
kettle. In a subsequent lesson, the teacher instead used the stove to boil
water in a pot. Because the decomposition for boiling water with a stove
is quite different from the decomposition for boiling water with a kettle,
TADPOLE was unable to directly parse the example. However, although
TADPOLE could not parse the new way of boiling water, it could parse
around this decomposition and recognize that the teacher was making a
cup of tea. This allowed it to infer from the surrounding context that the
teacher had to have achieved the sub-goal of having boiling water, and
that the hole in its parse had to correspond to a new rule for achieving
boiling water as shown in Figure 6.6. In this way, TADPOLE learned an

alternative method for boiling water from a hole within the parse of the
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Figure 6.5: TADPOLE’s parse for boiling water

teacher’s lesson.

6.4.3 HOPPER adjusts its plan with alternate decomposi-

tion rules when faced with unexpected events

The more rules HOPPER has for achieving various goals, the more robust
its plans are, and the less HOPPER has to modify them when they are
disrupted by unexpected events.

If a decomposition fails (HOPPER satisfies the sub-goals but the parent
goal remains unsatisfied), then HOPPER re-decomposes the parent goal
with the same decomposition and tries again. HOPPER tries the same de-
composition four times before giving up and trying an alternative decom-
position rule. If HOPPER does not know an alternate decomposition rule,

it keeps going up the decomposition hierarchy until it can find a parent
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Figure 6.6: TADPOLE learning a new rule for boiling water from a hole in
its parse

goal for which it has an alternate decomposition that it can use. The more
decomposition rules HOPPER knows, the lower down in the hierarchy it
redecomposes, preserving more of its original plan.

When HOPPER attempted to make a cup of tea and found that the ket-
tle was broken (turning on the kettle had no effect), it first redecomposed
the sub-goal with the same atomic rule for turning on the kettle (pushing
the button on the kettle) and tried the same decomposition four times. Af-
ter failing to turn on the kettle after pushing the button four times, HOP-
PER gave up. Since HOPPER knew no other rule for turning on the kettle,
it went up the hierarchy and redecomposed the goal for boiling water with
its newly learned rule for boiling water on the stove. The rest of HOPPER's

plan remained intact, and it proceeded to successfully make a cup of tea.
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6.4.4 TADPOLE can be prone to learning ritualistic behaviour

The way in which HOPPER used the stove to boil water was unusual. It
took the kettle (which was already filled with water from the failed at-
tempt to use the kettle to boil water) and moved it to the sink, and only
then did it move the kettle on to the stove to heat it and the water inside
it. The reason HOPPER did this is because the first sub-goal of the decom-
position for boiling water with the stove is to get a container filled with
water in the sink. The container that HOPPER matched to this sub-goal
was the kettle, and the best way to achieve this first sub-goal was to pick
up the kettle and transfer it into the sink.

This bizarre behaviour is a result of the agent’s lack of knowledge
about the domain. It has no way of knowing which state-changes the
teacher achieved are significant and which are irrelevant — that filling a
container with water is significant, but the fact that it is in the sink is irrel-
evant. For all it knows, there could be a hidden pressure switch under the
sink that has to be activated by a heavy object (for example, a kettle filled
with water) in order to be able to then turn on the stove.

This example highlights the fact that TADPOLE is vulnerable to learn-
ing rituals because of a lack of deeper understanding of the task at hand.
Extending TADPOLE with a system that learns about the physics of the
domain is a possible way of addressing this issue, but it is beyond the
scope of this thesis.

6.4.5 HOPPER ought to use a different scoring mechanism
than TADPOLE

The example of HOPPER boiling water with the stove identifies a second
problem with HOPPER: it insists on boiling water on the stove in a kettle
rather than in a pot. The reason for this is that the third sub-goal of the
“make-cup-of-tea” decomposition is to get boiling water in a container

that has been a kettle three times (twice from teacher demonstrations and
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once from HOPPER successfully achieving the task) and a pot only once.
HOPPER thus preferentially matches the kettle as the container to use
even though the rule for boiling water with a stove would match better
if it used a pot. The reasoning is once again, that for all HOPPER knows,
having boiling water in a kettle specifically is important to making a cup
of tea. However, TADPOLE had already seen a complete example of the
teacher successfully using a pot to boil water when making a cup of tea,
and so HOPPER should have no qualms about using a pot in the same
way.

The problem lies with the fact that HOPPER uses the same scoring
mechanism to select its rules as TADPOLE does for parsing demonstra-
tions. This works well in most cases, but the contexts of rarely used alter-
native decompositions may be swamped by the default decompositions
in the sub-goals they achieve. For example, if TADPOLE observed the
teacher making a cup of tea with a kettle 100 times and with a pot only
once, then HOPPER would insist very strongly that a kettle always be used.

The fundamental difference between TADPOLE and HOPPER is that
TADPOLE is trying to determine what decomposition rule the teacher is
using while HOPPER already knows which rules it is using. The fact that
the teacher is using a kettle to boil water, though irrelevant for HOPPER,
is useful evidence for TADPOLE that helps it determine that the teacher
is making a cup of tea. Because HOPPER does not try to determine what
decomposition rule is being used, it should focus only on the properties
and relationships that have always been present and so may be necessary
to the sub-goal being achieved (e.g. the object has to be a metal container
but not necessarily a kettle or a pot).

This difference between indicative and necessary properties and rela-
tionships needs to be reflected in HOPPER's scoring mechanism.
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6.4.6 TADPOLE refines the context of its decomposition

rules

The way that packages are delivered to different locations (at least at the
local level) in the logistics domain is by truck. The “deliver” decomposi-
tion rule specifies how to do this by driving a truck to where the package
is, loading the package into the truck, driving the truck to its destination,
and unloading the package. A truck can be moved from location to loca-
tion by simply driving it there, and this is specified by the “drive” decom-
position rule.

The “drive” and “deliver” decomposition rules are similar in that, once
executed, they change the location of an object. However, the “drive”
rule is only applicable to trucks and the “deliver” rule is only applicable
to packages, and this is reflected in the preconditions of these two rules.
Because TADPOLE learns these decomposition rules from demonstrated
lessons and because it does not employ any heuristics about the relative
importance of different object properties, it requires multiple examples to
learn that the type of an object being relocated is much more important
than its colour (for example).

After TADPOLE observed a single example of a red truck being driven
from one location to another, and then a single example of a blue pack-
age being delivered from one location to another, because it had nothing
more to go on, the two decomposition rules it learned weighed the type
and colour of the objects being relocated equally in the rules” precondi-
tions. If HOPPER were tasked with relocating a red package, then the pre-
conditions of the head-tasks of both rules would match equally well (one
would match the type of the object correctly and the other would match
its colour), and HOPPER would have no basis for deciding which decom-
position rule to use. HOPPER would have a 50% of choosing the incorrect
(and ridiculous) decomposition of attempting to drive the red package to
its destination (given what TADPOLE observed, for all HOPPER knows,
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red things are driven and blue things are delivered).

Only after TADPOLE had seen additional examples of different coloured
trucks being driven and different coloured packages being delivered would
it adjust the relative weightings of the type and colour of the object being
relocated to the correct value where the type is critically important and
the colour is irrelevant. Having poorly learned rules and selecting the
wrong decomposition rule for execution is not disastrous, however. This
is because if HOPPER selects the wrong decomposition and attempts to
drive a package (or deliver a truck), then that decomposition will fail, and
HOPPER will try the alternative (correct) decomposition. When HOPPER
successfully executes that decomposition it refines it in the same way that
TADPOLE does and gradually reweights the properties and relationships

of the rule’s precondition appropriately.

6.4.7 TADPOLE has more difficulty finding the correct parse

in a less detailed domain

The example of moving red and blue packages and trucks highlights the
fact that it is often more difficult to learn in simpler, less detailed domains,
than in richly detailed domains. Although richly detailed domains have a
lot more irrelevant information that has to be pruned away, that same de-
tail helps to disambiguate between similar decomposition rules. If enough
detail is included in the state description, the difference between packages
and trucks would become obvious enough that even after only a single
example, HOPPER would recognize that red packages are more similar to
blue packages than they are to red trucks.

TADPOLE has a similar problem with correctly learning the rule for
delivering a package by plane. This is because the decomposition involves
flying the plane to one airport, loading the package into the plane, flying
the plane to the destination airport, and unloading it; and this decom-

position is structurally very similar to the decomposition for delivering a
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package by truck. The only difference between these two decompositions
is that the Type of one delivery vehicle is [truck, vehicle] and the other
is [plane, vehicle], and that the local locations are directly related by the
ConnectedTo relationship while the two airports are not. Given the lack
of detail in the state description and the complete lack of any background
domain knowledge, TADPOLE has no way of knowing that the difference
in vehicle type and location distance is any more significant than the vehi-
cle’s colour.

In this example, TADPOLE would normally interpret the demonstra-
tion of delivering a package by plane as a slightly unusual instance of
delivering by truck. In order for TADPOLE to learn the correct new rule,
it required an additional heuristic that flying a plane from one location
to another is not an unusual form of driving a truck from one location to
another. The example shows that in order to learn the correct set of decom-
position rules from the lessons provided, TADPOLE requires a minimum
of domain knowledge, either in the form of a more detailed state descrip-
tion or as additional heuristics.

6.4.8 TADPOLE refines the variables and the core of its de-

composition rules

As well as refining the precondition of a decomposition rule’s head-task
and the contexts of its sub-goals, TADPOLE also refines the additions and
deletions specified by the task, the must and must not properties and re-
lationships specified by the sub-goals, and the variables of the rule. It
is important to note that only TADPOLE makes these refinements; HOP-
PER does not, and in fact, cannot. This is because the core parts of de-
composition rules are integral to how HOPPER uses them when planning.
HOPPER uses the must and must not properties and relationships of sub-
goals to determine when they have been satisfied, it uses the additions and

deletions of tasks to determine which decomposition rule is appropriate to
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achieve desired state-changes (state-changes that will satisfy a particular
goal in the current state), it uses the sub-goal dependencies to interleave
decompositions, and it uses the variables of a decomposition rule to con-
strain the matchings of its sub-goals to the current state which is critical
in determining what HOPPER needs to achieve. HOPPER can only refine
the context of a successfully executed decomposition rule.

Refining the core of a decomposition rule is important because when it
is first learned, TADPOLE may inadvertently pick up extraneous and ir-
relevant state changes. TADPOLE drops any addition or deletion of a task
that is not present in the state change the task is successfully matched with.
Similarly, it drops any must property or relationship of a sub-goal that is
not true (or made true) in the state-difference the sub-goal is matched with,
as well as dropping any must not property or relationship that is true (or
is made true) in the state-difference. If there are significant differences
between the core of a decomposition rule and the state-differences it is
matched with, then this is usually and indication that the match is incor-
rect and a better (or completely new) rule is appropriate. This is why core
mismatches are strongly penalized in the scoring of the matching. Simi-
larly two task or goal objects may be matched with the same state object
coincidentally and not because they have to be, and TADPOLE discards
such spurious variables so as not to unduly constrain HOPPER when it
uses the rule.

When TADPOLE first learned the decomposition rule for delivering a
package locally, the effect of the demonstrated lesson was not only that
the package changed locations, but also that the truck used to deliver the
package did as well. TADPOLE noted both of these effects and specified
the appropriate deletions in the head-task of the learned rule given below.
Important variables that are included in the task are not only the package
and its initial location and final destination, but also the truck and its ini-
tial location (its final destination is the same as the package’s).
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loc3: VAR311 {Type={location=2}}

loc3 — link(1L): — package1
loc3 — link(OL): — truck
loc3 — link(13L): ConnectedTo=2 — loc2
loc3 — link(10L): ConnectedTo=2 — loc1

loc2: VAR312 {Type={location=2}}
loc2 — link(8L): [HasObject] — truck1
loc2 — link(5L): ConnectedTo=2 — loct
loc2 — link(9L): ConnectedTo=2 — loc3

truck1: VAR314 {Type={truck=2}, Colour={red=2,blue=1}, Open={no=2}}
truck1 — link(11L): — loc3
truck1 — link(7L): [AtLocation] — loc2

package1: VAR315 {Type={package=2}, Colour={blue=2,red=1}}
packagel — link(3L): — loc3
packagel — link(12L): [AtLocation] — loc1

loc1: VAR316 {Type={location=2}}

loc1 — link(2L): ConnectedTo=2 — loc3
loc1 — link(4L): [HasObject] — package1
loc1 — link(6L): ConnectedTo=2 — loc2

However, TADPOLE later observed and parsed a lesson where the truck’s
initial location was the same as the destination of the package, and at the
end of the lesson, the truck returned to its starting location. This meant
that the truck’s location did not change after the lesson was complete and
this was reflected in the top state-difference.

This was a significant mismatch with the head-task of the “deliver”

rule because the additions and deletions of the truck’s location are not
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present in the state-difference it was matched with. However, because
all four sub-goals of the decomposition rule matched well with the sub-
state-differences, the overall score was high enough for a successful rule
matching.

Note that in this case it does not matter how many times TADPOLE ob-
serves the truck’s location change after delivering a package before seeing
the special case of the truck delivering a package to its own initial location.
The greater number of examples where the truck’s location has changed
will increase the weight of this change in the rule’s task, and so increase
the penalty for this change not being present. However, the greater num-
ber of examples will also increase the weight of the sub-goals’ must and
must not properties and relationships and their successful matching will
outweigh this penalty.

After successfully matching the head-task of the “deliver” decompo-
sition rule, TADPOLE recognized that the delivery truck will not always
change location after the execution of the rule, and it successfully refined
the decomposition rule to reflect this by removing these additions and
deletions from the task graph:

loc3: VAR311 {Type={location=3, airport=1}}
loc3 — link(1L): — package1
loc3 — link(10L): ConnectedTo=3 — loc1

package1: VAR315 {Type={package=3},Colour={blue=2,red=1,green=1}}
packagel — link(3L): — loc3
packagel — link(12L): [AtLocation] — loc1

loc1: VAR316 {Type={location=3}}
loc1 — link(2L): ConnectedTo=3 — loc3
loc1 — link(4L): [HasObject] — package1
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Similarly, TADPOLE initially learned an overly specific rule for mak-
ing a cup of tea when it observed a demonstration of the teacher moving
a cup and tea-bag out of the cupboard. The head-task of the initial rule
specified that among the state-changes that would result when the “make-
cup-of-tea” decomposition was executed would be that the cup and tea-
bag would not be in their starting containers. After parsing a second les-
son where the cup and tea-bag were already on the bench, TADPOLE suc-
cessfully refined the “make-cup-of-tea” rule to drop these extraneous state
changes.

6.4.9 HOPPER interleaves and sub-interleaves decomposi-

tions with shared sub-goals

When HOPPER has two goals to achieve neither of which is constrained to
be satisfied before the other, then it decomposes both of them and searches
for shared sub-goals. If it finds any shared sub-goals, then it attempts to
find a way to interleave the execution of their decompositions in a way
that does not violate the sub-goal dependencies of either decomposition
(Chapter 4 describes the interleaving algorithm in more detail). The inter-
leaving itself can also include co-ordered sub-goals, sub-goals that have
no ordering constraints between them, and the decompositions of such
sub-goals can themselves be interleaved if they share any sub-sub-goals.
Figure 6.7 shows an example in which HOPPER had two co-ordered
goals: to deliver two packages from the same location to two different lo-
cations. The initial sub-goal of both decompositions was to get a truck to
the location loc2 so HOPPER found a way of interleaving the execution of
both decompositions so this sub-goal was only satisfied once. In the inter-
leaving, the sub-goals of getting pkg1 and pkg2 into the truck did not inter-
fere with each other or with either of the adjacent sub-goals, so HOPPER
did not make any ordering constraints between them. As a result, once
HOPPER achieved the first sub-goal of the interleaving by driving truck1
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Figure 6.7: HOPPER interleaving the delivery of two packages
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to loc2, it decomposed both sub-goals of getting pkg1 and pkg2 into the
truck and it searched for any shared sub-sub-goals. Because they shared
two sub-goals each (making truckl open and then closed), HOPPER in-
terleaved these two sub-decomposition to produce a sub-interleaving so
that the truck was open and closed only once. Note that in this sub-
interleaving, the sub-goals for loading the packages into the truck were
again co-ordered, so if there had been a way for interleaving their decom-
positions as well (e.g. by using the same forklift to load both packages),
HOPPER could have found a sub-sub-interleaving to further optimize the
plan.

6.4.10 HOPPER interleaves multiple decompositions with

shared sub-goals

For any two decompositions with shared sub-goals there are often multi-
ple different ways of interleaving them. In the example above, after driv-
ing to the initial location of the two packages and loading both into the
truck, the agent can deliver the packages in either order, and both inter-
leavings are equally valid. When searching for an interleaving, HOPPER
uses the first one it finds. However, this is not always ideal because the
ordering of sub-goals in the interleaving can be important when HOPPER
interleaves additional decompositions into the interleaving.

Figure 6.8 shows an example of HOPPER interleaving a third decom-
position into the two-decomposition interleaving from the previous ex-
ample. The third package’s initial location is the destination of one of the
interleaved packages and the destination of the third package is the desti-
nation of the other interleaved package. The best plan is to drive a truck
to loc2, load pkg1 and pkg2 into the truck, then drive to loc3, the initial
location of pkg3, and load pkg3 into the truck while unloading pkg2, and
then to drive to loc4 and unload the two packages there; and this is the
plan shown in Figure 6.8.
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Figure 6.8: HOPPER interleaving the delivery of three packages

However, this optimal plan depends on HOPPER having selected the
appropriate interleaving when it first interleaved the decompositions for
interleaving the deliveries of pkg1 and pkg2. If, after loading both pack-
ages at loc2, HOPPER planned to unload pkg1 first at loc4 and only then
to go to loc3 to unload pkg2, then it would only be able to produce a sub-
optimal plan to also deliver pkg3: drive to loc2, load pkg1 and pkg2 into
the truck, drive to loc4, unload pkg1, drive to loc3, unload pkg1 and load
pkg3 into the truck, then drive again to loc4, and unload pkg3.

A possible future extension for HOPPER is to keep track of multiple
interleavings if it is interleaving more than two decompositions so that it

can find the more optimal interleaving for multiple decompositions.
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6.4.11 HOPPER interleaves decompositions that are on dif-

ferent levels of abstraction

When HOPPER searches for shared sub-goals of co-ordered goals, it not
only looks through their immediate decompositions, but also through sub-
decompositions at every level of the decomposition hierarchy. Because
HOPPER follows a least-commitment decomposition strategy and decom-
poses only unconstrained sub-goals, if two goals are co-ordered with each
other, then all of the decomposed (and therefore unconstrained) sub-goals
and sub-sub-goals of one co-ordered goal are also co-ordered with the de-
composed (and therefore unconstrained) sub-goals and sub-sub-goals of
the other co-ordered goal. This means that the decompositions of any
shared sub-goals at any level of the decomposition hierarchy are valid can-
didates for interleaving.

Figure 6.9 shows an example of interleaving two decompositions at
different levels below their co-ordered parent goals. HOPPER had two co-
ordered goals of delivering two packages, one locally, and one non-locally.
The rule for delivering a package non-locally (too far to deliver it by truck)
specifies that the package needs to first be delivered to a local airport be-
fore it can be flown by airplane to its destination. This local delivery of
the package to the airport used a truck like any other local delivery, and
since the second package had the same initial location as the first package,
HOPPER interleaved these two plans as normal. Once HOPPER had sat-
isfied all of the sub-goals in the interleaving, it had in the process achieved
the first top goal, and the first sub-goal of the decomposition of the second
top goal. HOPPER then went on to satisfy the rest of the sub-goals of the
decomposition for flying the second package to its destination.
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Figure 6.9: HOPPER interleaving a local and non-local delivery

6.4.12 HOPPER can approximate quantifiers with repeated

decompositions

The decomposition rules used by HOPPER and TADPOLE are not expres-
sive enough to represent quantifiers in their tasks or sub-goals. However,
HOPPER can approximate some aspects of quantifiers with repeated de-
compositions. A decomposition can potentially be redecomposed an un-
limited number of times (although HOPPER is configured to give up after
4 failed attempts), and HOPPER exploits this to achieve “for all” quanti-
tied goals.
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Although repeated decompositions allow HOPPER to achieve “for all”
quantified goals, it still cannot express such goals or tasks, and to compen-
sate for this, the state description must be modified with explicit properties
or relationships specifying the goal. For example, to express the goal that a
truck should contain nothing (the truck should not be related to any object
via the Contains relationship), the state description had to be modified to
include an additional isEmpty property for the truck object.

The lesson for emptying a truck made use of the fact that HOPPER
redecomposes failed decompositions to specify that the way to empty a
truck (make its iSEmpty property equal to yes) is to remove a single pack-
age from it. If the truck is not empty after the first package is removed,
then removing more packages from the truck will eventually make it empty.

Figure 6.10 shows a graphical representation of HOPPER’s decomposi-
tion hierarchy as it achieved the goal of emptying a truck. It is important to
note that HOPPER does not immediately achieve clean-up sub-goals, but
instead it keeps track of them on a stack and only achieves them if they do
not conflict with the already-achieved sub-goals of subsequent decompo-
sitions (chapter 4 covers this in more detail). In this example, it allowed
HOPPER to reload multiple packages from the truck without needlessly
closing and re-opening the truck.

The limit of 4 failed attempts before giving up still applies to such
quantified goals, which means that HOPPER can successfully empty a
truck only if it has no more than 4 packages. This highlights the fact that
a numerical limit is too crude a heuristic. Instead of a general limit, each
decomposition could have its own learned limit based on the number of
times it tends to get executed (e.g. once or twice to open doors, ten or
twenty times when stirring a cup of tea).

A second way of overcoming this limitation is for HOPPER to have
some way of determining whether or not it is making progress towards
the goal. For example, as it is unloading packages it can notice that the

truck is becoming steadily emptier, or when stirring a cup of tea it can no-
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Figure 6.10: HOPPER emptying a truck
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tice that the sugar is steadily dissolving. As long as HOPPER believes it is
making progress towards satisfying the goal, it could continue redecom-
posing with the same decomposition. This approach has the advantage
of allowing HOPPER to redecompose indefinitely as long as it thinks it is
making progress. It would allow HOPPER to empty a truck of hundreds
of packages even if TADPOLE had only ever seen examples of two or three

packages being unloaded.

6.4.13 TADPOLE has to see a single successful use of a re-

peated decomposition to learn the correct rule

To learn a repeated decomposition rule in the first place, TADPOLE needs
to see the task being achieved with a single execution of the decomposi-
tion. To learn the decomposition rule for emptying a truck, TADPOLE had
to observe a lesson where the teacher emptied a truck by taking out a sin-
gle package. However, once TADPOLE has learned the rule, it can parse
redecompositions of it as shown in Figure 6.11. If TADPOLE parses multi-
ple, adjacent instances of the same rule being applied to achieve the same
task, then it collapses these instances into a single decomposition.

The restriction that TADPOLE places upon the teacher to initially demon-
strate a repeated decomposition being successfully achieved after a single
execution of the decomposition can make the initial lesson awkward, espe-
cially for tasks that almost always require multiple executions of their de-
composition. For example, it would be difficult for the teacher to contrive
an example where it dissolved the sugar in a cup of tea after stirring it only
once. In the example of learning how to empty a truck there is the further
difficulty that the decomposition rules for emptying a truck and unload-
ing it are almost identical to each other, and the only way TADPOLE was
able to learn two separate rules from these two lessons is because it was
forced to by the teacher.

Ideally, TADPOLE should be able to learn a new repeated decomposi-
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Empty < _'. Empty - _'. Empty
truckl  « *  truckl * truck1

Unload Unload Unload
package2 package1 package3d

Figure 6.11: TADPOLE's parse for emptying a truck

tion from an example of the teacher repeatedly applying the same decom-
position. However, it would need a way to distinguish between a repeated
decomposition and one that had multiple identical sub-goals which were
all achieved with the same sub-decomposition (e.g. stirring the tea until
the sugar is dissolved and stirring the tea exactly 11 times). With a lack of
in-depth knowledge about the domain and a lack of additional guidance
from the teacher, a cautious method would be to learn learn multiple dif-
ferent rules from different examples of the decomposition being applied
a greater or lesser number of times, and only then to combine these rules
into a single, repeated decomposition rule.
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6.4.14 HOPPER can take advantage of unexpected oppor-

tunities to interleave

When an unexpected event occurs while HOPPER is executing its plan, it
identifies any affected decompositions and redecomposes them in light of
the new state information. Usually when an unexpected event occurs it
affects HOPPER'’s plan negatively (if it affects it at all) — it means that a
rule has been misapplied and HOPPER has to redecompose at least part
of its decomposition hierarchy to adjust its plan. The examples of HOP-
PER repeatedly trying to use a broken kettle and of it driving to the wrong
location to pick up a package are examples of wasted effort. However, oc-
cassionally an unexpected event can present an opportunity for HOPPER
to shorten its plan.

Figure 6.12 shows an example of HOPPER taking advantage of an un-
expected opportunity to interleave and thus shorten its plan for delivering
two packages. HOPPER was initially tasked with delivering pkg1 to loc2
and pkg2 to loc4. After decomposing both goals, because it initially be-
lieved that pkg1 was at location loc1 and pkg2 was at location loc3, it saw
no way of interleaving these two plans, and so it began achieving the first
one by driving truck1 to loc1. Upon arriving at loc1 it noticed that it had
been mistaken about the initial location of pkg2 and that it was also at
loc1. This unexpected state change prompted HOPPER to redecompose
the decomposition dealing with pkg2. The first sub-goal of the newly re-
decomposed decomposition of getting truck1 to loc1 was already achieved
in the current state, and so HOPPER removed it from the decomposition
hierarchy and proceeded to decompose the next sub-goal of getting pkg2
into truck1. At this point, HOPPER noticed that it could interleave its plan
for loading pkg1 and pkg2 into truck1 and it did so in the standard way,
proceeding to successfully executing the rest of the plan and delivering
both packages to their appropriate destinations.

In this way, HOPPER makes use of unexpected opportunities (that it
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Figure 6.12: TADPOLE takes advantage of an opportunity to interleave
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could not plan for in the initial state) while executing its plan, modifying
only the necessary parts of its decomposition hierarchy.



Chapter 7
Conclusion

This thesis has presented three main contributions:

e a rule framework that decouples the concepts of tasks and goals re-

sulting in more re-usable decomposition rules.

e HOPPER, an implemented planning system whose least-commitment
decomposition strategy allows it to handle and recover from unex-
pected disruptive events, and whose novel interleaving algorithm
allows it to take advantage of opportunities to shorten its plan by

executing multiple sub-goals in parallel.

e TADPOLE, an implemented learning system that can parse and in-
terpret the behaviour of other agents, learning both the structure and
the preconditions of new decomposition rules by filling in the holes

in its parse.
Rules decomposing tasks into sub-goals are most appropriate to the
HPD

Rules that decompose tasks into sub-goals make up a flexible toolset for
an intelligent agent. Because tasks specify only the preconditions and ef-

fects of their decomposition rules, the agent can determine from the cur-
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rent state what changes it requires, and then re-use the rules to achieve
multiple different goals.

The weakly constrained partial-ordering of sub-goals is particularly
appropriate to a least-commitment decomposition strategy where rules
are applied and decomposed only when it comes time to execute them. A
rule’s task tightly constrains the states to which the rule is applicable, help-
ing to ensure that when it comes time to apply a rule, the right one will be
used. A rule’s sub-goals may be decomposed a significant time after their
parent decomposition was and so their weak constraints ensure that the
rule remains flexible in the face of possible future unexpected events.

However, the current representation will have to be extended for it to
be applicable to the HPD. The decomposition rules will have to be able to
deal with conditional effects within a single rule rather than inefficiently
spreading them across multiple rules. They will also have to be able to
represent resources and especially time which can be very important in
the HPD.

HOPPER is able to react and to deliberate

HOPPER’s least-commitment decomposition strategy strikes the right bal-
ance between deliberative and reactive planning. It makes future aspects
of the plan increasingly abstract, only filling in the details as they become
apparent. This allows it to react to unexpected events by only minimally
modifying its plan. But it generates enough of the plan to allow it to look
ahead and optimize it by interleaving the execution of different decompo-
sitions with shared sub-goals.

However, HOPPER does not address important aspects of the HPD. It
has no mechanism for optimizing the use of resources. It will have to be
extended to either handle resource management itself or to make use of a
specialized system that does. A particularly important resource to manage
is time. HOPPER will have to be extended to be able to wait for sub-goals
to be achieved, and its interleaving algorithm will have to be extended to
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make use of this time to achieve other sub-goals.

TADPOLE learns by first understanding demonstrated behaviour

The most significant contribution of this thesis is TADPOLE. It is an al-
gorithm for learning complete decomposition rules while placing only a
minimal burden on a teacher. TADPOLE extends its knowledge base by
parsing, interpreting, and understanding the teacher’s behaviour in terms
of the decomposition rules it already knows.

When parsing a teacher’s lesson, TADPOLE’s biggest challenge is deal-
ing with the enormous amount of irrelevant state information without
eliminating any important objects from its consideration. TADPOLE cur-
rently uses a variety of heuristics to identify relevant objects, but there is
a great deal of scope for extending TADPOLE to use additional domain
knowledge to facilitate its parsing by helping it identify important, rele-
vant objects. TADPOLE'’s interaction with the teacher is also extremely
restricted, and it could be extended to make use of additional communi-
cation with the teacher.

No matter how effective TADPOLE is in learning decomposition rules
or how careful the teacher is in presenting appropriate lessons, it is in-
evitable that TADPOLE will learn redundant rules describing different ap-
plications of the same rule. The most important way that TADPOLE needs
to be extended is a mechanism allowing it to detect redundant rules into a
single rule.

Because TADPOLE's efficiency degrades steadily as the number of rules
it knows increases, a rule indexing system for determining which rules are
appropriate to the current domain will have to eventually be included. For
example, it is unreasonable for TADPOLE to consider rules for mending

fences when it is observing the teacher make an omelette.
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HOPPER and TADPOLE form the foundation of a generally intelligent

agent

HOPPER and TADPOLE together form an agent that is capable of learn-
ing and achieving routine behaviour in a large, complex, unpredictable
domain. However, this is not enough for an independent agent to be able
to operate effectively in the HPD. No matter how extensive and good its
rule set, the agent will have to be able to achieve completely novel tasks it
has never seen before, and it will have to be able to interpret the behaviour
and motivation of non-teacher agents behaving in unusual ways.

Although such problems exceed the capabilities of HOPPER and TAD-
POLE, both of them provide a solid foundation upon which to build an
agent that can solve such challenges.



Appendix A

A.1 HOPPER pseudo-code

Al1l

achieveGoal(goal, variableConstraints, knownRules)
hierarchy — initializeHierarchy(goal, variableConstraints)
action « cycle(<>, <>, hierarchy, <>, <>, knownRules)

while(action ## SUCCESS and action # FAIL)
executeAction(action)
action < cycle(<>, <>, hierarchy, <>, <>, knownRules)
endwhile

return action

Al12

initializeHierarchy(goal, variableConstraints)
matchedGoal «+ <goal, <>, variableConstraints, <>>
rootNode «— <matchedGoal, <>, {}, <>, {}>
hierarchy «— <rootNode, {}>
return hierarchy
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A.l13

cycle(prevState, predictedDiff, hierarchy, interleavingStack, knownRules)
currentState < sense()
stateDiff «— calcStateDiff(prevState, currentState)
unexpectedlyChangedNodes «— calcUnexpected(stateDiff, predictedDiff)

for interleaving in interleavingStack do
if interleavingAffected(interleaving, unexpectedlyChangedNodes) = TRUE then
interleavingStack — interleavingStack \ {interleaving}
endif
endfor

hierarchy < updateHierarchyUnexpected(hierarchy, unexpectedlyChangedNodes)
hierarchy «— updateHierarchy(hierarchy, hierarchy, currentState, knownRules)
interleavingStack < updatelnterleavings(hierarchy, interleavingStack)

if hierarchy = FAIL then return FAIL
endif

if hierachy is empty then return SUCCESS
endif

if interleavingStack is empty then

atomicAction < chooseAtomicAction(hierarchy)
else

interleaving < peek from interleavingStack

atomicAction < chooseActionFromCandidates(interleaving)
endif

predictedDiff «— makePrediction(currentState, atomicAction, matchedTask)
prevState < currentState

return atomicAction
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Al4

interleavingAffected(interleaving, unexpectedlyChangedNodes)
for hierarchy in interleaving do
<node, subHierarchies> « hierarchy
<matchedGoal, matchedTask, satisfiedSubGoals, decomp, prevRules> «— node
<goal, goalToStateMap, decompVarConstraints, state> « matchedGoal

if (stateNodes of goalToStateMap) N unexpectedlyChangedNodes # {} then
return TRUE
endif
endfor
return FALSE

A.l.5

updateHierarchyUnexpected(hierarchy, unexpectedlyChangedNodes)
<node, subHierarchies> « hierarchy
<matchedGoal, matchedTask, satisfiedSubGoals, decomp, prevRules> «— node
<goal, goalToStateMap, decompVarConstraints, state> < matchedGoal

if (stateNodes of goalToStateMap) N unexpectedlyChangedNodes # {} then
matchedGoal «+ <goal, <>, decompVarConstraints, <>>
node «— <matchedGoal, <>, {}, <>, {}>
hierarchy — <node, {}>
else
for each subHierarchy in subHierarchies do
subHierarchy «— updateHierarchyUnexpected(subHierarchy,
unexpectedlyChangedNodes)
subHierarchies < replace old subHierarchy with new subHierarchy
endfor
endif

return hierarchy
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A.l.6

updateHierarchy(root, hierarchy, currentState, knownRules)
<node, subHierarchies> « hierarchy
<matchedGoal, rule, matchedTask, satisfiedSubGoals, d, prevRules> <« node

unsatisfiedSubGoals — {}

for each unconstrained subHierarchy in subHierarchies do
<subNode, ssh> « subHierarchy
<matchedSubGoal, mst, sssg, d, pr> < subNode
<subGoal, gtsm, vc, s> «— matchedSubGoal

subHierarchy «— updateHierarchy(root, subHierarchy, currentState,
knownRules)

if subHierarchy = FAIL then
return FAIL
endif

if subHierarchy is empty then
subHierarchies < subHierarchies \ {subHierarchy}
satisfiedSubGoals < satisfiedSubGoals U {matchedSubGoal}
else
unsatisfiedSubHs «— unsatisfiedSubHs U {subHierarchy}
subHierarchies « replace old subHierarchy with new subHierarchy
endif
hierarchy — <node, subHierarchies>
endfor

allUnsatisfiedAreCleanup <+ TRUE

noUnsatisfiedAreCleanup — TRUE

for each subHierarchy in unsatisfiedSubHs do
<subNode, ssh> « subHierarchy
<matchedSubGoal, mst, sssg, d, pr> < subNode
<subGoal, gtsm, vc, s> «+— matchedSubGoal
if subGoal is clean-up then

noUnsatisfiedAreCleanup «— FALSE

else
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allUnsatisfiedAreCleanup «— FALSE
endif
endfor

if allUnsatisfiedAreCleanup = TRUE then
rootCopy < root with node removed
satisfiedGoals <+ getUnconstrainedSatisfiedGoals(rootCopy, currentState)
originalUnsatisfiedSubHs < unsatisfiedSubHs

loop
unsatisfiedSubH <« unconstrainted subHierarchy from unsatisfiedSubHs
<subNode, subSubHs> « unsatisfiedSubH
<subMatchedGoal, smt, sssg, sd, spr> <— subNode

if Jgoal € satisfiedGoals where isInverse(goal, subMatchedGoal) = TRUE

then
unsatisfiedSubHs «— unsatisfiedSubHs \ {unsatisfiedSubH}
subHierarchies — subHierarchies \ {unsatisfiedSubH}
hierarchy — <node, subHierarchies>

endif

loopwhile originalUnsatisfiedSubHs # unsatisfiedSubHs
endif

if matchedGoal satisfied in currentState and noUnsatisfiedAreCleanup = TRUE
then
hierarchy «— <>

if decomp not empty and unsatisfiedSubHs is empty then
<rule, ruleDecompCount> «— decomp
rule — refineRule(rule, matchedTask, satisfiedSubGoals)
endif

return hierarchy
endif

if unsatisfiedSubGoals is empty then
if ruleDecompCount > DECOMPOSITION_LIMIT then
prevRules «— prevRules U {rule}
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endif

<goal, goalToStateMap, varConstraints, state> «— matchedGoal
goalToStateMap « findBestGoalToStateMap(goal, currentState, varConstraints)
matchedGoal <+ <goal, goalToStateMap, varConstraints, currentState>

rulesTried — {}
loop
hierarchy «— decompose(matchedGoal, currentState, knownRules,
prevRules U rulesTried)

if hierarchy is empty then
return FAIL
endif

<node, subHierarchies> « hierarchy
<mg, rule, mt, ssg, d, prevRules> — node

hierarchy < updateRuleDecompCount(hierarchy, rule, ruleDecompCount)
hierarchy «— updateHierarchy(hierarchy, currentState, knownRules)

if hierarchy = FAIL then
rulesTried < rulesTried U {rule}
endif
loopwhile hierarchy = FAIL
endif

return hierarchy
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Al1.7

getUnconstrainedSatisfied Goals(hierarchy, currentState)
unconstrainedSatisfiedGoals < {}
<node, subHierarchies> « hierarchy
<matchedGoal, matchedTask, satisfiedSubGoals, decomp, prevRules> «— node

if matchedGoal satisfied in currentState then
unconstrainedSatisfiedGoals < unconstrainedSatisfiedGoals U {matchedGoal}
endif

for each unconstrained subHierarchy in subHierarchies do
unconstrainedSSGs < getUnconstrainedSatisfiedGoals(subHierarchy, currentState)
unconstrainedSatisfiedGoals < unconstrainedSatisfiedGoals U unconstrainedSSGs
endfor

return unconstrainedSatisfiedGoals
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A.1.8

decompose(matchedGoal, currentState, knownRules, prevRules)
goalStateDifference « calcGoalStateDiff(matchedGoal, currentState)
rulesToTry < knownRules \ prevRules

possibleDecomps — {}
for each rule in rulesToTry do
<task, subGoals, constraints> « rule
taskToStateMap — findBestTaskToStateMap(task, goalStateDifference)

matchedTask « <task, taskToStateMap, currentState>
decomp « <rule, 1>
node «— <matchedGoal, matchedTask, {}, decomp, prevRules>

subHierarchies «— {}

for each subGoal in subGoals do
subHierarchy < initializeHierarchy(subGoal, constraints)
subHierarchies < subHierarchies U subHierarchy

endfor

hierarchy «— <node, subHierarchies>
possibleDecomps — possibleDecomps U {<hierarchy, taskToStateMap>}

endfor

if possibleDecomps is empty then
return <>
endif

<hierarchy, taskToStateMap> « get best from possibleDecomps
return hierarchy
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A.19

updateRuleDecompCount(hierarchy, prevRule, prevRuleDecompCount)
<node, subHierarchies> « hierarchy
<matchedGoal, matchedTask, satisfiedSubGoals, decomp, prevRules> < node
<rule, ruleDecompCount> «— decomp

if prevRule = rule then

ruleDecompCount < ruleDecompCount + 1
else

ruleDecompCount — 1
endif

decomp « <rule, ruleDecompCount>

node — <matchedGoal, matchedTask, satisfiedSubGoals, decomp, prevRules>
hierarchy — <node, subHierarchies>

return hierarchy

A.1.10

refineRule(rule, matchedTask, satisfiedSubGoals)
<originalTask, originalSubGoals, originalConstraints> « rule
matchedTask « refineTask(matchedTask)
<task, taskToStateMap, state1> «— matchedTask

subGoals — {}
subGoalToStateMaps < {}
for each matchedSubGoal in satisfiedSubGoals do
matchedSubGoal < refineGoal(matchedSubGoal)
<subGoal, subGoalToStateMap, state2> «— matchedSubGoal
subGoals — subGoals U {subGoal}
subGoalToStateMaps — subGoalToStateMaps U {subGoalToStateMap}
endfor

constraints « refineSubGoalOrdering(originalConstraints, satsifiedSubGoals)
constraints < refineRuleVariables(constraints, taskToStateMap, subGoalToStateMaps)
rule — <task, subGoals, constraints>

return rule
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Al111

updatelnterleavings(hierarchy, interleavingStack)
loop
originalStack < interleavingStack
interleaving < peek from interleavingStack
for subHierarchy in interleaving do
if subHierarchy no longer present in hierarchy then
interleaving < interleaving \ {subHierarchy}
endif
endfor
if interleaving is empty then
interleavingStack < interleavingStack \ {interleaving}
endif
loopwhile originalStack # interleavingStack

interleaving «— {}
if interleavingStack is empty then
interleaving < interleaveHierarchy(hierarchy)
else
toplnterleaving < peek from interleavingStack
unconstrainedHs — get unconstrained elements from toplnterleaving
interleavingm « interleave(unconstrainedHs)
endif

if interleaving # {} then
interleavingStack < push interleaving on to interleavingStack

endif

return interleavingStack
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A1.12

interleaveHierarchy(hierarchy)
<node, subHierarchies> « hierarchy

if subHierarchies is empty then
return {}
endif

unconstrainedSubHs < get unconstrained elements from subHierarchies
if jJunconstrainedSubHs| = 1 then
interleaving < interleaveHierarchy(unconstrainedSubHs)
return interleaving
else
interleaving < interleave(unconstrainedSubHs)
if interleaving # {} then
return interleaving
else
for h in unconstrainedSubHs do
interleaving <+ interleaveHierarchy(h)
if interleaving # {} then
return interleaving
endif
endfor
endif
endif
return {}
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A.1.13

interleave(coOrderedHierarchies)
for <h1, h2> every two pair combination of hs from coOrderedHierarchies do
for subH1 — depthfirst traversal of unconstrained subHs of h1 do
<node, subHs1> « subH1
<matchedGoall, mt, ssg, d, pr> < node
for subH2 — depth first traversal of unconstrained subHs of h2 do
<node, subHs2> «— subH2
<matchedGoal2, mt, ssg, d, pr> < node
if matchedGoal1 is the same as matchedGoal2 then
interleaving <+ interleaveDecomps(subHs1, subHs2)
endif
endfor
endfor
endfor

if interleaving = then
return interleaving
endif

for every h3 in coOrderedHierarchies where h3 # h1 and h3 # h2 do
for subH3 « depth first traversal of unconstrained subHs of h3 do
<node, subHs3> « subH3
<matchedGoal3, mt, ssg, d, pr> < node
if matchedGoal3 is the same as a goal in interleaving then
interleaving < interleaveDecomps(interleaving, subHs3)
endif
endfor
endfor

return interleaving
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A.l1.14

chooseAtomicAction(hierarchy)
<node, subHierarchies> « hierarchy
<matchedGoal, matchedTask, satisfiedSubGoals, decomp, prevRules> < node

if subHierarchies is empty then
<task, taskToStateMap, state> < matchedTask
<rule, decompCount> « decomp
<task, action, constraints> < rule
<actionName, actionArgs> « action
actionArgs «— calcActionArgs(taskToStateMap, constraints, actionArgs)
action — <actionName, actionArgs>
return <action, matchedTask>
endif

<action, matchedTask> < chooseActionFromCandidates(subHierarchies)
return <action, matchedTask>

A.1.15

chooseActionFromCandidates(hierarchies)
candidates — {}
for each unconstrained hierarchy in hierarchies do
<node, subHierarchy> « hierarchy
percentSatisfied < calcPercentSatisfied(subHierarchy)
candidates < candidates U {<subHierarchy, percentSatisfied>}
endfor

bestCandidates — get elements with highest percentSatisfied from candidates
bestCandidate < get element with shallowest sub-hierarchy from bestCandidates
<subHierarchy, percentSatisfied> < bestCandidate

<action, matchedTask> < chooseAtomicAction(subHierarchy)

return <action, matchedTask>
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A.l.16

calcPercentSatisfied (hierarchy)
<node, subHierarchies> « hierarchy
<matchedGoal, matchedTask, satisfiedSubGoals, decomp, prevRules> < node
<rule, decompCount> «— decomp
<rule, subGoals, constraints> « rule
return |satisfiedSubGoals| / |subGoals|
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A.2 TADPOLE pseudo-code

A21

learnLesson(knownRules, actionNames, firstState, secondState)
partialParses — {}
prevState — firstState
currentState <+ secondState

while currentState is not END_OF_LESSON do
stateDiff < calcStateDiff(prevState, currentState)
action — determineActionExecuted(prevState, currentState)
atomicHierarchy < findBestAtomicHierarchy(stateDiff, knownRules, action)

if partialParses is empty then
partialParse — <{atomicHierarchy}, atomicHierarchy, {}>
partialParses — partialParses U {partialParse}
else
allNeighbouringParses — {}
for partialParse in partialParses do
<topHs, newHs, partMatchedRules> « partialParse
topHs « topHs U {atomicHierarchy}
partialParse — <topHs, {atomicHierarchy}, partMatchedRules>

parsesToExtend «— {partialParse}

for parseToExtend in parsesToExtend do
parseToExtend < extendParse(parseToExtend)
allNeighbouringParses « allNeighbouringParses U {partialParse}
neighbours «— getNeighbouringParses(parseToExtend)
parsesToExtend < U neighbours

endfor

endfor
endif

partialParses < allNeighbouringParses

prevState < currentState

currentState — observeNextState()
endwhile
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bestParse «— get best element from partialParses

<topHs, newHs, partMatchedRules> « bestParse
if [topHs| > 1 then

bestParse < completePartialParse(bestParse)
endif

learnedRules < refineRules(bestParse, knownRules)
return learnedRules
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A22

findBestAtomicHierarchy(stateDiff, knownRules, actionExecuted)
candidateRules — {}
for rule in knownRules do
if rule is atomic then
<task, action, constraints> « rule
if action = actionExecuted then
candidateRules «— candidateRules U {rule}
endif
endif
endfor

<newRule, taskToStateMap> <+ constructAtomicRule(stateDiff, actionExecuted)
<task, action, constraints> <« newRule

matchedTask — <task, taskToStateMap, stateDiff>

bestNode «— <stateDiff, matchedTask, {}, newRule>

for rule in candidateRules do
<task, action, constraints> « rule
taskToStateMap «— matchTaskToStateDiff(task, stateDiff, {})
if taskToStateMap is better than mapping in bestNode then
matchedTask « <task, taskToStateMap, stateDiff>
bestNode «— <stateDiff, matchedTask, {}, rule>
endif
endfor

hierarchy — <bestNode, {}>
return hierarchy
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A.2.3

extendParse(partialParse)
<topHs, newHs, partMatchedRules> « partialParse
for newH in newHs do
partMatchedRules — extendPartialMatches(partMatchedRules, newH)
partMatchedRules — partMatchedRules U matchToNew(knownRules, newH)
endfor

partMatchedRules < matchTolnterleaved(partMatchedRules, topHs, newHs)
partMatchedRules « matchToAlreadyAchieved(partMatchedRules, topHs, newHs)

partialParse < <topHs, newHs, partMatchedRules>
return partialParse

A.24

extendPartialMatches(partMatchedRules, newH)
<newNode, subHs> «— newH
<stateDiff, mt, {}, r> — newNode
extMatchedRules — {}
for matchedRule in partMatchedRules do
<rule, mt, matchedSGs> «— matchedRule
<task, subGoals, vc> « rule

subGoalsToSkip — {}
for matchedSG in matchedSGs do
<goal, gtsm, h> «— matchedSG
subGoalsToSkip < subGoalsToSkip U {goal}
endfor
subGoalsToMatch «— subGoals \ subGoalsToSkip

for each subGoal in subGoalsToMatch do
goalToStateMap +— matchGoalToStateDiff(subGoal, stateDiff,
matchedSubGoals, vc)
if goalToStateMap not empty then
matchedSG «— <subGoal, goalToStateMap, newH>
matchedSubGoals «+ matchedSubGoals U {matchedSG}
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matchedRule — <rule, mt, matchedSubGoals>
extMatchedRules — extMatchedRules U {matchedRule}
endif
endfor
endfor
return partMatchedRules U extMatchedRules

A2.5

matchToNew(knownRules, newH)
partMatchedRules — {}
for rule in knownRules do
<task, subGoals, vc> « rule
<stateDiff, <>, mt, r> — newNode
for subGoal in subGoals do
goalToStateMap — matchGoalToStateDiff(subGoal, stateDiff, {}, vc)
if goalToStateMap not empty then
matchedSG «— <subGoal, goalToStateMap, newH>
matchedSubGoals <+ matchedSubGoals U {matchedSG}
matchedRule — <rule, matchedSubGoals>
partMatchedRules — partMatchedRules U {matchedRule}
endif
endfor
return partMatchedRules

A.2.6

matchTolnterleaved(partMatchedRules, topHs, newHs)
extMatchedRules — {}
for matchedRule in partMatchedRules do
<rule, mt, matchedSGs> « matchedRule

matchedHs — {}
for matchedSG in matchedSGs do
<g, gtsm, hierarchy> < matchedSG
matchedHs ? matchedHs U {hierarchy}
endfor
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firstH «— get first element of matchedHs

subGoalsToSkip «— {}
for matchedSG in matchedSGs do
<goal, gtsm, h> «— matchedSG
subGoalsToSkip — subGoalsToSkip U {goal}
endfor
subGoalsToMatch « subGoals \ subGoalsToSkip

if matchedHs N newHs # {} then
for each subGoal in subGoalsToMatch do
goalToStateMappings < get all mappings from matchedSGs
allVarsBound « allVarsBound(subGoal, vc, goalToStateMappings)
if allVarsBound = TRUE then
for each topH in topHs do
if topH earlier than firstH then
<node, subHs> — topH
<stateDiff, mt, mgs, r> <« node
gtsm «— matchGoalToStateDiff(subGoal, stateDiff, matchedSGs,
vC)
if gtsm not empty then
matchedSG — <subGoal, gtsm, topH>
matchedSGs — matchedSGs U {matchedSG}
matchedRule «+ <rule, matchedSubGoals>
extMatchedRules — extMatchedRules U {matchedRule}
endif
endif
endfor
endif
endfor
endif
endfor
return partMatchedRules U extMatchedRules
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A.2.7

matchToAlreadyAchieved(partMatchedRules, topHs, newHs)
extMatchedRules «— {}
for matchedRule in partMatchedRules do
<rule, matchedSGs> — matchedRule

matchedHs « {}
for matchedSG in matchedSGs do
<g, gtsm, hierarchy> «— matchedSG
matchedHs — matchedHs U {hierarchy}
endfor

firstH « get first element of matchedHs
<firstNode, subHs> « firstH
initialState < get initial state of stateDiff

subGoalsToSkip — {}
for matchedSG in matchedSGs do
<goal, gtsm, h> «— matchedSG
subGoalsToSkip « subGoalsToSkip U {goal}
endfor
subGoalsToMatch — subGoals \ subGoalsToSkip

if matchedHs N newHs # {} then
for each subGoal in subGoalsToMatch do
goalToStateMappings < get mappings from matchedSGs
allVarsBound — allVarsBound(subGoal, vc, goalToStateMappings)
if allVarsBound = TRUE then
gtsm «— matchGoalToState(subGoal, initialState, matchedSGs,
vC)
if gtsm not empty then
matchedSG — <subGoal, gtsm, initialState>
matchedSGs — matchedSGs U {matchedSG}
matchedRule «+ <rule, matchedSubGoals>
extMatchedRules — extMatchedRules U {matchedRule}
endif
endif
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endfor
endif
endfor
return partMatchedRules U extMatchedRules

A28

getNeighbouringParses(partialParse)
<topHs, newHs, partMatchedRules> — partialParse
if |topHs| > LIMIT then
return {}
endif

neighbours — getHoleFillingNeighbours(partialParse)

completeMatchedRules — {}
for partMatchedRule in partMatchedRules do
<rule, mt, matchedSGs> «+ partMatchedRule
<task, subGoals, vc> « rule
if |[matchedSGs| = |subGoals| then
taskMatching < calcTaskMatching(task, matchedSGs)

if taskMatching is not empty then
partMatchedRule — <rule, taskMatching, matchedSGs>
completeMatchedRules < completeMatchedRules U {partMatchedRule}
endif
endif
endfor

ruleCombinations < get all combinations of completeMatchedRules

for rulesCombo in ruleCombinations do
allMatchedTopHs « {}
newNodeMatched «+— FALSE
everyMatchedRulePartiallylIndependent — TRUE
everyMatchedRulePartiallyOverlapping < TRUE
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for partMatchedRule in rulesCombo do
<rule, <>, matchedSGs> — partMatchedRule
matchedTopHs — {}
for matchedSG in matchedSGs do
<subGoal, goalToStateMap, topH> « matchedSG
<node, subHs> — topH
matchedTopHs — matchedTopHs U {topH}
if node € newNodes then
newNodeMatched — TRUE
endif

endfor

if matchedTopHs \ allMatchedTopHs = {} then
everyMatchedRulePartiallylndependent <+ FALSE
endif

if matchedTopHs # {}
and matchedTopHs \ allMatchedTopHs = matchedTopHs then
everyMatchedRulePartiallyOverlapping < FALSE
endif

allMatchedTopHs < allMatchedTopHs U matchedTopHs
endfor

if allMatchedTopHs are contiguous
and newNodeMatched = TRUE
and everyMatchedRulePartiallylndependent = TRUE
and everyMatchedRulePartiallyOverlapping = TRUE then
neighbour «— getNeighbour(partialParse, rulesCombo)
neighbours — neighbours U {neighbour}
endif
endfor

return neighbours
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A.29

calcTaskMatching(task, matchedSGs)
firstMatchedSG « get first element of matchedSGs
<goal, gtsm, topH> « firstMatchedSG
<node, subHs> « topH
<stateDiff, mt, mgs, r> < node
initialState < get initial state of stateDiff

lastMatchedSG «— get last element of matchedSGs
<goal, gtsm, topH> « firstMatchedSG

<node, subHs> — topH

<stateDiff, mg, mt, r> <« node

finalState < get final state of stateDiff

topStateDiff — calcStateDiff(initialState, finalState)
taskToStateMap — matchTaskToStateDiff(task, topStateDiff, matchedSGs)

if taskToStateMap is not empty then
taskMatching < <task, taskToStateMap, topStateDiff>
return taskMatching

else

return <>
endif

A.2.10

getNeighbour(partialParse, completedRules)
<topHs, newNodes, partMatchedRules> «— partialParse
matchedTasks — {}
for completedRule in completedRules do
<rule, matchedTask, matchedSGs> < completedRule
matchedTasks «— matchedTasks U matchedTask
endfor

if all matchedTasks the same then
completedRules < combineRepeated(completedRules)
endif



APPENDIX A.

newTopHs — {}
for completedRule in completedRules do
<rule, matchedTask, matchedSGs> < completedRule
matchedTopHs «— {}
for matchedSG in matchedSGs do
<subGoal, goalToStateMap, topH> «— matchedSG
<node, subHs> — topH
<sd, matchedGoals, mt, r> < node

matchedGoals <+ matchedGoals U {matchedSG}

node — <sd, matchedGoals, mt, r>

topH «— <node, subHs>

topHs < replace old topH with new topH

matchedTopHs «— matchedTopHs U {topH}
endfor

<task, tsm, stateDiff> « matchedTask
newTopNode « <stateDiff, matchedTask, matchedSGs, rule>
newTopH — <newTopNode, matchedTopHs>
newTopHs «— newTopHs U {newTopH}
topHs < replace matchedTopHs with newTopH
endfor

for partMatchedRule in partMatchedRules do
<rule, matchedTask, matchedSGs> «— partMatchedRule
for matchedSG in matchedSGs do
<subGoal, goalToStateMap, topH> «— matchedSG
if topH ¢ topHs then
partMatchedRules < partMatchedRules \ {partMatchedRule}
endif
endfor
endfor

neighbour — <topHs, newTopHSs, partMatchedRules>
return neighbour
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A.211

getHoleFillingNeighbours(partialParse)
<topHs, newHs, partMatchedRules> « partialParse
neighbours — {}

for matchedRule in partMatchedRules do
<rule, matchedSGs> «— matchedRule
<task, subGoals, vc> «+ rule

unmatchedSGs «— subGoals

matchedHs — {}

for matchedSG in matchedSGs do
<@, gtsm, hierarchy> «— matchedSG
matchedHs «— matchedHs U {hierarchy}
unmatchedSGs <« unmatchedSGs \ {g}

endfor

{unmatchedSG} — unmatchedSGs

<fstMatched, midUnmatched, sndMatched> < groupMatchedHs(topHs, matchedHs)

if matchedHs N newHs # {}
and |matchedSGs| + 1 = |[subGoals|
and |midUnmatched| > 1 then
firstUnmatchedH « get first element of midUnmatched
<node, subHs> « firstUnmatchedH
<firstStateDiff, mt1, mgs, r1> < node
initialState — get earlier state of firstStateDiff

lastUnmatchedH « get last element of midUnmatched
<node, subHs> « lastUnmatchedH

<lastStateDiff, <>, mt2, r2> < node

finalState — get later state of lastStateDiff

midStateDiff < calcStateDiff(initialState, finalState)

goalToStateMap < matchGoalToStateDiff(unmatchedSG, midStateDiff,
matchedSGs, vc)
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if goalToStateMap not empty then
<newRule, matchedST, matchedSSGs> «+ learnRule(midStateDiff,
midUnmatched)
for each topH in midUnmatched do
<node, subHs> « topH
< stateDiff, mt, mgs, r> < node
correspondingMatchedSSG «— get corresponding sub-sub-goal
from matchedSSGs
node — <stateDiff, mt, {correspondingMatchedSSG}, r>
topH < <node, subHs>
midUnmatched « replace old topH with new topH
endfor

node — <midStateDiff, matchedST, {}, newRule>
newTopH «— <newTopNode, midUnmatched>
topHs < replace midUnmatched with newTopH

matchedSG «— <umatchedSG, goalToStateMap, newTopH>
matchedSGs «— matchedSGs U {matchedSG}

taskMatching < calcTaskMatching(task, matchedSGs)
if taskMatching is not empty then
completedRule «— <rule, taskMatching, matchedSubGoals>
neighbour — getNeighbour(partialParse, completedRule)
neighbours — neighbours U {neighbour}
endif
endif
endif
endfor
return neighbours
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A.2.12

groupMatchedHs(topHs, matchedHs)

firstMatched «— {}

unmatchedMid — {}

secondMatched — {}

secondMatchedComplete <+ FALSE

otherMatched «— FALSE

for topH in topHs do

if topH € matchedHs then
if secondMatchedComplete = TRUE then
otherMatched — TRUE

endif

if unmatchedMid = {} then
firstMatched « firstMatched U {topH}
else
secondMatched — secondMatched U {topH}
endif
else
if secondMatched = {} then
unmatchedMid <« unmatchedMid U {topH}
else
secondMatchedNodesComplete < TRUE
endif
endif
endfor

if otherMatched = TRUE then

return <, {}, {}>
else

return <firstMatched, unmatchedMid, secondMatched>
endif
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A.2.13

completePartialParse(partialParse)
<topHs, newHs, pmr> « partialParse

firstH — get first element of topHs

<node, subHs> « firstH

<firstStateDiff, mt, mgs, r> < node
initialState <« get earlier state of firstStateDiff

lastH — get last element of topHs

<node, subHs> « lastH

<lastStateDiff, mt, mgs, r> < node
finalState < get later state of lastStateDiff

stateDiff «— calcStateDiff(initialState, finalState)

completedRule < learnRule(stateDiff, topHs)
completedParse — getNeighbour(partialParse, {completedRule})
return completedParse

A.2.14

refineRules(hierarchy, knownRules)
<node, subHs> « hierarchy
< stateDiff, matchedTask, mgs, rule> <« node
<task, subGoals, constraints> « rule

matchedSubGoals «— {}
for subH in subHs do
<subNode, subSubHs> «— subH
<sd, mt, matchedGoals, r> < subNode
matchedSubGoal < get matched goal corresponding to rule
matchedSubGoals «— matchedSubGoals U {matchedSubGoal}
endfor

knownRules — knownRules \ {rule}
rule — refineRule(rule, matchedTask, matchedSubGoals)
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knownRules — knownRules U {rule}
for subH in subHs do
knownRules « refineRules(subH, knownRules)

endfor

return knownRules



Appendix B

B.1 [Example state description in the Kitchen Do-
main

draweri1: MadeOf=[wood], Colour=[white], Open=[no], Vertical=[yes], Type=[container,
drawer], Temperature=[cool]

drawer1 — link(135L): [Supports, Contains] — spoon2

drawer1 — link(131L): [Supports, Contains] — knife2

draweri — link(116L): [PartOf] — bench1

drawer1 — link(125L): [Supports, Contains] — fork1

drawer1 — link(133L): [Supports, Contains] — fork2

draweri — link(119L): [ConsistsOf, ControlledBy] — drawerHandle1

drawer1 — link(121L): [Supports, Contains] — knife1

drawer1 — link(127L): [Supports, Contains] — spoon1

spoon2: MadeOf=[metal], Colour=[steel], Type=[spoon, cutlery], Graspable=[yes],
Clean=[yes], Temperature=[cool], Movable=[yes]

spoon2 — link(134L): [On, In] — drawer1

teacherArm: Type=[arm]
teacherArm — link(101L): [PartOf] — teacher1
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spooni: MadeOf=[metal], Colour=[steel], Type=[cutlery, spoon], Graspable=[yes],
Temperature=[cool], Clean=[yes], Movable=[yes]
spoon1 — link(126L): [On, In] — drawer1

sugari: Colour=[white], Type=[food, powder, sugar], Temperature=[cool],
Taste=[sweet]
sugari — link(122L): [On, In] — tin1

hopper: Vertical=[yes], Type=[student, robot], Temperature=[cool]
hopper — link(78L): [On] — floor1
hopper — link(77L): [ConsistsOf] — robotArm

faucet1: MadeOf=[metal], Colour=[steel], Type=[faucet], Graspable=[yes],
Temperature=[cool], Clean=[yes]

faucet1 — link(8L): [On, Controls] — tap1

faucet1 — link(9L): [PartOf] — sink1

clock1: MadeOf=[ceramics], Colour=[blue], Time=[12:00], Type=[clock],
Temperature=[cool], Fragile=[yes]
clock1 — link(102L): [PartOf] — wall1

cooktop1: MadeOf=[metal], Colour=[black], Type=[cooktop], Temperature=[cool],
Clean=[yes]

cooktop1 — link(24L): [ConsistsOf] — heatingElement1

cooktop1 — link(25L): [ConsistsOf] — dial1

cooktop1 — link(26L): [PartOf] — bench1

teaBox1: MadeOf=[cardboard], Colour=[yellow], Open=[no], Type=[container,
box], Graspable=[yes], Temperature=[cool], Clean=[yes], Movable=[yes]
teaBox1 — link(106L): [Supports, Contains] — teaBag4

teaBox1 — link(60L): [Supports, Contains] — teaBag1
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teaBox1 — link(27L
teaBox1 — link(74L
teaBox1 — link(34L
teaBox1 — link(62L

: [In, On] — cupboard2
Supports, Contains] — teaBag3
ConsistsOf, ControlledBy] — teaBoxHandle1

Supports, Contains] — teaBag?2

~— ~— ~— ~—
— —

stool1: MadeOf=[wood], Colour=[brown], Type=[stool, furniture], Clean=[no],
Temperature=[cool]

stool1 — link(140L): [On] — floor1

stool1 — link(142L): [NextTo] — table1

flour1: Colour=[white], Type=[flour, food, powder], Temperature=[cool], Taste=[flour]
flourt — link(2L): [On, In] — tin2

tap1: MadeOf=[metal], Colour=[steel], Vertical=[yes], Running=[no], Type=[tap],
Temperature=[cool], Clean=[yes]

tap1 — link(12L): [Supports, ControlledBy] — faucett

tap1 — link(11L): [PartOf, Controls] — sink1

kettle1: MadeOf=[metal], Colour=[grey], Open=[yes], Running=[no], Type=[container,
electricalKettle], Graspable=[yes], Clean=[yes], Temperature=[cool], Mov-
able=[yes]

kettle1 — link(13L): [On] — bench1

kettle1 — link(70L): [ConsistsOf, ControlledBy] — button2

cup2: MadeOf=[ceramics], Colour=[white], Open=[yes], Type=[cup, dish,
container], Graspable=[yes], Temperature=[cool], Clean=[yes], Movable=[yes]
cup2 — link(110L): [On, In] — cupboard2

ham1: Colour=[pink], Type=[ham, food], Graspable=[yes], Temperature=[cold],
Taste=[ham], Movable=[yes]
ham1 — link(144L): [On, In] — refrigerator
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cup1: MadeOf=[ceramics], Colour=[white], Open=[yes], Type=[dish, cup,
container], Graspable=[yes], Temperature=[cool], Clean=[yes], Movable=[yes]
cup1l — link(48L): [On, In] — cupboard?2

kitchen1: Colour=[white], Type=[location, kitchen], Temperature=[cool], Size=[medium]
kitchen1 — link(47L): [ConsistsOf] — floor1

kitchen1 — link(45L): [ConsistsOf] — wall1

kitchen1 — link(44L): [ConsistsOf, HasExit] — door1

button2: MadeOf=[plastic], Colour=[red], Type=[button], Clean=[yes], Tem-
perature=[cool]
button2 — link(69L): [PartOf, Controls] — kettle1

fork1: MadeOf=[metal], Colour=[steel], Type=[fork, cutlery], Graspable=[yes],
Temperature=[cool], Clean=[yes], Movable=[yes]
fork1 — link(124L): [On, In] — drawer1

knife2: MadeOf=[metal], Colour=[steel], Type=[cutlery, knife], Graspable=[yes],
Temperature=[cool], Clean=[yes], Movable=[yes]
knife2 — link(130L): [On, In] — drawer1

knife1: MadeOf=[metal], Colour=[steel], Type=[cutlery, knife], Graspable=[yes],
Clean=[yes], Temperature=[cool], Movable=[yes]
knife1 — link(120L): [In, On] — drawer1

table1: MadeOf=[wood], Colour=[brown], Type=[surface, table, furniture],
Temperature=[cool], Clean=[no]

table1 — link(129L): [Supports] — towell

table1 — link(137L): [ConsistsOf] — tableLeg1

table1 — link(139L): [ConsistsOf] — tableLeg?2
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table1 — link(143L): [NextTo] — stool1
table1 — link(80L): [On] — floor1

pot2: MadeOf=[metal], Colour=[steel], Open=[yes], Type=[container, pot],
Graspable=[yes], Temperature=[cool], Clean=[no], Movable=[yes]
pot2 — link(99L): [On, In] — cupboard1

pot1: MadeOf=[metal], Colour=[steel], Open=[yes], Type=[kettle, container],
Graspable=[yes], Temperature=[cool], Clean=[yes], Movable=[yes]
pot1 — link(98L): [On, In] — cupboard1

breadLoaf1: Colour=[bread], Type=[bread, food], Graspable=[yes], Tem-
perature=[cold], Taste=[bread], Movable=[yes]

breadLoaf1 — link(148L): [On, In] — bag1

breadLoaf1 — link(150L): [In] — refrigerator1

fork2: MadeOf=[metal], Colour=[steel], Type=[fork, cutlery], Graspable=[yes],
Clean=[yes], Temperature=[cool], Movable=[yes]
fork2 — link(132L): [On, In] — drawer1

bag1: MadeOf=[plastic], Colour=[clear], Open=[no], Type=[container, bag],
Graspable=[yes], Temperature=[cold], Movable=[yes]

bag1 — link(149L): [Supports, Contains] — breadLoaf1

bag1 — link(146L): [On, In] — refrigerator1

milk1: Colour=[white], Type=[liquid, food, milk], Temperature=[cold], Taste=[milk]
milk1 — link(31L): [In, On] — milkBottle1

wall1: Colour=[white], Vertical=[yes], Type=[wall], Temperature=[cool], Clean=[yes]
walll — link(87L): [PartOf] — kitchen1
walll — link(86L): [ConsistsOf] — clock1
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walll — link(85L): [ConsistsOf] — window1

tableLeg2: MadeOf=[wood], Colour=[brown], Vertical=[yes], Type=[tableLeq],
Temperature=[cool]
tableLeg2 — link(138L): [PartOf] — table1

tableLeg1: MadeOf=[wood], Colour=[brown], Vertical=[yes], Type=[tableLeq],
Temperature=[cool]
tableLeg1 — link(136L): [PartOf] — table1

refrigerator1: MadeOf=[metal], Colour=[white], Type=[container, refriger-
ator], Temperature=[cool], Clean=[yes]

refrigerator1 — link(30L): [Supports, Contains] — milkBottle1

refrigerator1 — link(22L): [ConsistsOf, ControlledBy] — fridgeHandle1
refrigerator1 — link(153L): [Contains] — bottleCap1

refrigerator1 — link(147L): [Supports, Contains] — bag1

refrigerator1 — link(151L): [Contains] — breadlLoaf1

refrigerator1 — link(66L): [Supports, Contains] — cheese1

refrigerator1 — link(4L): [On] — floor1

refrigerator1 — link(145L): [Supports, Contains] — ham1

trashCan1: MadeOf=[plastic], Colour=[white], Open=[yes], Type=[trashCan,
container], Temperature=[cool], Clean=[no]
trashCan1 — link(76L): [On] — floor1

fryingPan1: MadeOf=[metal], Colour=[steel], Open=[yes], Type=[container,
fryingPan, pot], Graspable=[yes], Temperature=[cool], Clean=[yes], Mov-
able=[yes]

fryingPan1 — link(97L): [On, In] — cupboard1

sink1: MadeOf=[metal], Wet=[yes], Colour=[steel], Open=[yes], Type=[container,
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sink], Temperature=[cool], Clean=[yes]

sink1 — link(5L): [ConsistsOf] — faucet1

sink1 — link(1L): [ConsistsOf] — drain1

sink1 — link(6L): [ConsistsOf, ControlledBy] — tap1
sink1 — link(7L): [NextTo] — bench1

milkBottle1: MadeOf=[plastic], Colour=[white], Open=[no], Type=[container,
bottle], Graspable=[yes], Temperature=[cold], Movable=[yes]

milkBottle1 — link(23L): [In, On] — refrigerator1

milkBottle1 — link(32L): [Supports, Contains] — milk1

milkBottle1 — link(37L): [ConsistsOf, ControlledBy] — bottleCap1

cupboardHandle2: MadeOf=[plastic], Colour=[blue], Type=[handle], Gras-
pable=[yes], Temperature=[cool], Clean=[yes]
cupboardHandle2 — link(54L): [PartOf, Controls] — cupboard2

cupboardHandle1: MadeOf=[plastic], Colour=[blue], Type=[handle], Gras-
pable=[yes], Temperature=[cool], Clean=[yes]
cupboardHandle1 — link(67L): [PartOf, Controls] — cupboard1

door1: MadeOf=[wood], Colour=[brown], Open=[no], Vertical=[yes], Type=[door,
exit], Temperature=[cool], Clean=[yes]

door1 — link(90L): [ConsistsOf] — keyhole1

door1 — link(91L): [ConsistsOf, ControlledBy] — doorHandle1

door1 — link(88L): [PartOf, LeadsTo] — kitchen1

teaBoxHandle1: MadeOf=[cardboard], Colour=[yellow], Type=[handle], Gras-
pable=[yes], Clean=[yes], Temperature=[cool]

teaBoxHandle1 — link(33L): [PartOf, Controls] — teaBox1

teaBoxHandle1 — link(81L): [In] — cupboard2
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plate2: MadeOf=[ceramics], Colour=[white], Type=[dish, plate], Graspable=[yes],
Clean=[yes], Temperature=[cool], Movable=[yes]

plate2 — link(50L): [In] — cupboard2

plate2 — link(114L): [On] — plate1

floor1: MadeOf=[wood], Colour=[brown], Type=[surface, floor], Tempera-
ture=[cool], Clean=[no]

floor1 — link(79L): [Supports] — trashCan1

floor1 — link(41L): [Supports] — teacher1
floor1 — link(43L): [PartOf] — kitchen1
floor1 — link(42L): [Supports] — hopper
floor1 — link(10L): [Supports] — refrigerator1
floor1 — link(40L): [Supports] — cupboard1
floor1 — link(141L): [Supports] — stool1
floor1 — link(39L): [Supports] — bench1
floor1 — link(38L): [Supports] — table1

dial1: MadeOf=[plastic], Colour=[black], Type=[dial], Graspable=[yes], Tem-
perature=[cool], Clean=[yes]

diall — link(56L): [PartOf] — cooktop1

diall — link(55L): [Controls] — heatingElement1

teacher1: Vertical=[yes], Type=[robot, teacher], Temperature=[cool]
teacher1 — link(83L): [On] — floor1
teacher1 — link(82L): [ConsistsOf] — teacherArm

plate1: MadeOf=[ceramics], Colour=[white], Type=[dish, plate], Graspable=[yes],
Clean=[yes], Temperature=[cool], Movable=[yes]

plate1 — link(112L): [On, In] — cupboard2

plate1 — link(115L): [Supports] — plate2
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doorHandle1: MadeOf=[wood], Colour=[brown], Type=[handle], Graspable=[yes],
Temperature=[cool]
doorHandle1 — link(104L): [PartOf, Controls] — door1

cheesel: Colour=[yellow], Type=[food, cheese], Graspable=[yes], Tem-
perature=[cold], Taste=[cheese], Movable=[yes]
cheesel — link(64L): [On, In] — refrigerator1

button1: MadeOf=[plastic], Colour=[black], Type=[button], Temperature=[cool],
Clean=[yes]
button1 — link(20L): [PartOf, Controls] — blender1

robotArm: Type=[arm]
robotArm — link(100L): [PartOf] — hopper

tin1: MadeOf=[metal], Colour=[white], Open=[yes], Type=[container, tin],
Graspable=[yes], Temperature=[cool], Movable=[yes]

tin1 — link(35L): [On, In] — cupboard?2

tin1 — link(123L): [Supports, Contains] — sugar1i

tin2: MadeOf=[metal], Colour=[black], Open=[yes], Type=[container, tin],
Graspable=[yes], Temperature=[cool], Movable=[yes]

tin2 — link(3L): [Supports, Contains] — flour1

tin2 — link(52L): [On, In] — cupboard2

drain1: MadeOf=[metal], Open=[yes], Type=[drain], Temperature=[cool]
drain1 — link(OL): [PartOf] — sink1

cupboard1: MadeOf=[wood], Colour=[white], Open=[no], Type=[cupboard,
container], Temperature=[cool], Clean=[yes]
cupboard1 — link(68L): [ConsistsOf, ControlledBy] — cupboardHandle1
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cupboard1 — link(72L

( : [Supports, Contains] — fryingPan1
cupboard1 — link(75L

(

(

: [On] — floor1
: [Supports, Contains] — pot1
: [Supports, Contains] — pot2

cupboard1 — link(73L
cupboard1 — link(71L

~— ~— ~— ~—

cupboard2: MadeOf=[wood], Colour=[brown], Open=[no], Vertical=[yes],
Type=[cupboard, container], Temperature=[cool], Clean=[yes]

cupboard2 — link(93L): [Contains] — teaBag1

cupboard2 — link(84L): [Contains] — teaBoxHandle1

cupboard2 — link(29L): [PartOf, On] — bench1

cupboard2 — link(28L): [Supports, Contains] — teaBox1

cupboard2 — link(107L): [Contains] — teaBag2

cupboard2 — link(53L): [Supports, Contains] — tin2

cupboard2 — link(95L): [Contains] — teaBag3

cupboard2 — link(46L): [Supports, Contains] — tin1

cupboard2 — link(111L): [Supports, Contains] — cup2

cupboard2 — link(65L): [ConsistsOf, ControlledBy] — cupboardHandle2
cupboard2 — link(51L): [Contains] — plate2

cupboard2 — link(49L): [Supports, Contains] — cup1

cupboard2 — link(113L): [Supports, Contains] — plate1

window1: MadeOf=[glass], Colour=[clear], Vertical=[yes], Type=[window],
Temperature=[cool], Clean=[yes], Fragile=[yes]
window1 — link(103L): [PartOf] — wall1

towel1: MadeOf=[material], Colour=[red], Type=[towel], Graspable=[yes],
Temperature=[cool], Clean=[yes], Movable=[yes]
towell — link(128L): [On] — table1

bench1: MadeOf=[granite], Colour=[black], Type=[surface, bench], Tem-
perature=[cool], Clean=[yes]
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bench1 — link(18L): [NextTo] — sinkf
bench1 — link(19L): [On] — floor1

bench1 — link(14L): [Supports] — kettle1

bench1 — link(117L): [ConsistsOf] — drawer1

bench1 — link(109L): [Supports] — blender1

bench1 — link(16L): [Supports, ConsistsOf] — cupboard2
bench1 — link(17L): [ConsistsOf] — cooktop1

blender1: MadeOf=[glass], Colour=[clear], Open=[yes], Type=[blender, con-
tainer], Graspable=[yes], Temperature=[cool], Clean=[yes], Movable=[yes]
blenderi — link(108L): [On] — bench1

blender1 — link(21L): [ConsistsOf, ControlledBy] — button1

drawerHandle1: MadeOf=[plastic], Colour=[blue], Type=[handle], Graspable=[yes],
Clean=[yes], Temperature=[cool]
drawerHandle1 — link(118L): [PartOf, Controls] — drawer1

heatingElement1: MadeOf=[metal], TurnedOn=[no], Colour=[black], Type=[heatingElement],
Temperature=[cool], Clean=[no]

heatingElement1 — link(57L): [PartOf] — cooktop1

heatingElement1 — link(58L): [ControlledBy] — diald

fridgeHandle1: MadeOf=[plastic], Colour=[white], Type=[handle], Graspable=[yes],
Temperature=[cool], Clean=[yes]
fridgeHandle1 — link(15L): [PartOf, Controls] — refrigerator1

teaBag4: MadeOf=[tea], Colour=[brown], Type=[teaBag], Graspable=[yes],
Clean=[yes], Temperature=[cool], Movable=[yes]

teaBag4 — link(89L): [On, In] — teaBox1

bottleCap1: MadeOf=[plastic], Colour=[blue], Type=[screwCap], Graspable=[yes],
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Temperature=[cold], Movable=[yes]
bottleCap1 — link(152L): [In] — refrigerator1
bottleCap1 — link(36L): [PartOf, Controls] — milkBottle1

teaBag3: MadeOf=[tea], Colour=[brown], Type=[teaBag], Graspable=[yes],
Clean=[yes], Temperature=[cool], Movable=[yes]

teaBag3 — link(63L): [In, On] — teaBox1

teaBag3 — link(94L): [In] — cupboard2

teaBag2: MadeOf=[tea], Colour=[brown], Type=[teaBag], Graspable=[yes],
Temperature=[cool], Clean=[yes], Movable=[yes]

teaBag2 — link(61L): [In, On] — teaBox1

teaBag2 — link(96L): [In] — cupboard2

teaBag1: MadeOf=[tea], Colour=[brown], Type=[teaBag], Graspable=[yes],
Clean=[yes], Temperature=[cool], Movable=[yes]

teaBag1 — link(92L): [In] — cupboard2

teaBag1 — link(59L): [On, In] — teaBox1

keyhole1: Colour=[black], Vertical=[yes], Type=[keyhole], Temperature=[cool]
keyhole1 — link(105L): [PartOf] — door1

B.2 Example sequence of atomic actions for a les-

son

The following sequence of 69 atomic actions is an example of a lesson gen-
erated by the teacher. Note that TADPOLE does not see the atomic actions
themselves but only their result. In this case it would see a sequence of 70
states in the form shown above.
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MoveArm[cupboardHandle2], Grasp, PullArm, Release, LiftArm, MoveArm[cup1],
Grasp, LiftArm, MoveArm[table1], Release, LiftArm, MoveArm[teaBoxHandle1],
Grasp, PullArm, Release, LiftArm, MoveArm[teaBagi], Grasp, LiftArm,
MoveArm[cup1], Release, LiftArm, MoveArm[teaBoxHandle1], Grasp, PushArm,
Release, LiftArm, MoveArm[cupboardHandle2], Grasp, PushArm, Release,
LiftArm, MoveArm[kettle1], Grasp, LiftArm, MoveArm[sink1], Release, Lif-
tArm, MoveArm[faucet1], Grasp, TwistArm, TwistArm, Release, LiftArm,
MoveArmlkettle1], Grasp, LiftArm, MoveArm[bench1], Release, Lift Arm,
MoveArm[button2], PushArm, PushArm, LiftArm, MoveArm[kettle1], Grasp,
LiftArm, MoveArm[cup1], TwistArm, LiftArm, MoveArm[bench1], Release,
LiftArm, MoveArm[teaBag1], Grasp, LiftArm, MoveArm[trashCan1], Re-
lease, LiftArm

B.3 Example decomposition rule for making a cup

of tea

MakeCupOfTea DECOMPOSITION (4):

Graph:
183N: VAR217 {}

183N — link(OL): {} — cup1
cup1: VAR218 {MadeOf={ceramics=3}, Colour={white=3}, Open={yes=3},
Type={cup=3, dish=3, container=3}, Clean={yes=3}, Temperature={cool=3}}

cupl — link(13L): {} — 183N

trashCan1: VAR221 {MadeOf={plastic=3}, Colour={white=3}, Open={yes=3},
Type={trashCan=3, container=3}, Clean={no=3}, Temperature={cool=3}}
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trashCan1 — link(6L): {} — teaBag1

teaBag1: VAR220 {MadeOf={tea=3}, Colour={brown=3}, Type={teaBag=3},
Clean={yes=3}, Temperature={cool=3}}
teaBag1 — link(9L): {} — trashCanf
SUB-GOALS:
Sub-Goal A

Graph:

cupboard2: VAR215 {MadeOf={wood=3}, Colour={brown=3}, Open={yes=2,
no=2}, Vertical={yes=3}, Type={cupboard=3, container=3}, Clean={yes=3},
Temperature={cool=3}}

cupboard2 — link(1L): {}[Supports] — teaBag1

cupboard2 — link(4L): {}[Supports] — cup1

cup1: VAR218 {MadeOf={ceramics=3}, Colour={white=3}, Open={yes=3},
Type={cup=3, dish=3, container=3}, Clean={yes=3}, Temperature={cool=3}}
cup1l — link(6L): {}[On] — cupboard2

cupl — link(7L): {} — teaBag1

teaBag1: VAR220 {MadeOf={tea=3}, Colour={brown=3}, Type={teaBag=3},
Clean={yes=3}, Temperature={cool=3}}

teaBag1 — link(2L): {} — cup1

teaBag1 — link(10L): {}[On] — cupboard2

Sub-Goal B

Graph:

table1: VAR216 {MadeOf={wood=3}, Colour={brown=3}, Type={surface=3,
table=3, furniture=3}, Clean={no=3}, Temperature={cool=3}}

table1 — link(11L): {} — cup1
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cupboard2: VAR215 {MadeOf={wood=3}, Colour={brown=3}, Open={yes=2,
no=2}, Vertical={yes=3}, Type={cupboard=3, container=3}, Clean={yes=3},
Temperature={cool=3}}

cupboard2 — link(12L): {Supports=1} — teaBag1

cupboard2 — link(4L): {}[Supports] — cup1

cup1: VAR218 {MadeOf={ceramics=3}, Colour={white=3}, Open={yes=3},
Type={cup=3, dish=3, container=3}, Clean={yes=3}, Temperature={cool=3}}
cupl — link(5L): {} — table1

cup1 — link(6L): {}[On] — cupboard2

teaBag1: VAR220 {}
teaBag1 — link(13L): {On=1} — cupboard2
Sub-Goal C

Graph:
183N: VAR217 {}

183N — link(1L): {} — kettle

kettle1: VAR219 {MadeOf={metal=3}, Colour={grey=3}, Open={yes=3},
Type={container=3, electricalKettle=3}, Running={no=3}, Clean={yes=3},
Temperature={cool=3}}

kettle1 — link(OL): {} — 183N

Sub-Goal D

Graph:
table1: VAR216 {}
table1 — link(7L): {Supports=3} — cup1

183N: VAR217 {Colour={clear=3}, Type={water=3, liquid=3}, Tem-
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perature={hot=3}}
183N — link(2L): {}[On, In] — kettle1
183N — link(1L): {} — cup1

cup1: VAR218 {MadeOf={ceramics=3}, Colour={white=3}, Open={yes=3},
Type={cup=3, dish=3, container=3}, Clean={yes=3}, Temperature={cool=3}}
cupl — link(3L): {} — 183N

cup1 — link(6L): {On=3} — table1

cup1 — link(4L): {Supports=3} — teaBag1

kettle1: VAR219 {MadeOf={metal=3}, Colour={grey=3}, Open={yes=3},
Type={container=3, electricalKettle=3}, Running={no=3}, Clean={yes=3},
Temperature={cool=3}}

kettle1 — link(OL): {}[Supports, Contains] — 183N

teaBag1: VAR220 {}
teaBag1 — link(5L): {On=3} — cup1
Sub-Goal E

Graph:
table1: VAR216 {}
table1 — link(7L): {Supports=3} — cup1

183N: VAR217 {}
183N — link(5L): {In=3, On=3} — cup1

cup1: VAR218 {MadeOf={ceramics=3}, Colour={white=3}, Open={yes=3},
Type={cup=3, dish=3, container=3}, Clean={yes=3}, Temperature={cool=3}}
cupl — link(1L): {}[Supports] — teaBag1

cup1 — link(6L): {On=3} — table1

cupl — link(4L): {Supports=3, Contains=3} — 183N
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trashCan1: VAR221 {MadeOf={plastic=3}, Colour={white=3}, Open={yes=3},
Type={trashCan=3, container=3}, Clean={no=3}, Temperature={cool=3}}
trashCan1 — link(2L): {} — teaBag1

teaBag1: VAR220 {MadeOf={tea=3}, Colour={brown=3}, Type={teaBag=3},
Clean={yes=3}, Temperature={cool=3}}

teaBag1 — link(OL): {}[On] — cup1

teaBag1 — link(3L): {} — trashCan1

Partial Order: [[A, B], [C], [D], [E]]
Sub-goal dependencies:
Sub-goal A — []

Sub-goal B — ]

Sub-goal C — [A, B]

Sub-goal D — [C]

Sub-goal E — [A, B, D]

Variables:

VAR220 — (teaBag1,0) (teaBag1,2) (teaBag1,3) (teaBag1,0) (teaBag1,T)
VAR221 — (trashCan1,T) (trashCan1,3)

VAR219 — (kettle1,2) (kettle1,1)

VAR218 — (cup1,0) (cup1,0) (cup1,T) (cup1,2) (cup1,3)

VAR217 — (183N,1) (183N,2) (183N,3) (183N,T)

VAR216 — (table1,0) (table1,3) (table1,2)

VAR215 — (cupboard2,0) (cupboard2,0)
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