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1 Introduction 
This report discusses the design, implementation, and review of a planning algorithm that 

attempts to produce good contingent plans to achieve goals (specified as a set of assertions), 

given an initial world state, and using a specific type of knowledge representation. The 

knowledge is represented as a collection of system models, which are able to be generated 

by a learning agent using actual observations in a simulated 3D world (as developed in 

Adam Clarke’s PhD). These models capture the state changes of a small set of objects given a 

number of possible actions on some of these objects. The knowledge is represented using 

finite state automata, first-order logic, and qualitative physics. 

1.1 Qualitative Representation of Learned Behaviour 
Description of systems (can be taken directly from Honours report). 

Aside: Using the planning algorithm on alternative representations. 
Note that in this report we do not focus specifically on the problem of how to best represent 

knowledge in a particular system (what specific assertions should be considered, etc.). 

Various papers *Davis08 (“Pouring Liquids”), etc+ provide detailed specifications of this. 

Instead we focus on planning; our planner should be capable of constructing short plans that 

are as detailed as the systems it is planning in are – note that the maximum amount that can 

be achieve by a plan that can be produced in a feasible time frame will be dependent on how 

detailed the systems are. How detailed systems are will depend on how careful the 

observations were. Detailed observations will allow very specific plans. For example, a plan 

might be as low level as “tilt the pitcher so that it is beyond the point where the height of the 

water inside is over the edge of the spout, will cause the water to flow out of the pitcher into 

whatever is below it”, or as high level as “pour the water out of the pitcher”. 

We do, however, require that systems use a representation at least somewhat similar to that 

described above: assertions must be described using first order logic (additionally 

qualitative—potentially partially quantitative—reasoning is imperative to restrict the 

number of states that need to be evaluated) and knowledge must be encapsulated in 

modular finite state machines (this is key to restricting the amount of places the planning 

algorithm will need to look in order to come up with plans). 

1.2 The objectives of and uses for the Planning Agent 
Single system objectives (can be taken directly from Honours report). 

The second task of the planning agent is to construct plans that go through several systems. 

Again, the initial (current) and goal assertions will be specified by a set of assertions. These 

assertions may, however, span multiple systems. Not only will the planning algorithm have 

to find a plan that achieves each of the goal assertions, but it will also take generalised 

models that have assertions specified in terms of variables which it will need to bind to the 

specific objects mentioned in the goal (and initial) assertions. 

Producing plans that span multiple systems within a pool of knowledge that may contain a 

very large number of systems is an extremely difficult task. Realising this, we only aim to 

produce reasonably short plans that involve between one and around six systems, and we 

will only try to find one plan (any plan that achieves the goal assertions, not necessarily the 
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shortest one). Note that these goals align with what we feel are the potential uses for the 

planning algorithm. We imagine the planning algorithm would only ever need to be used to 

fill in the gaps of a hierarchical planner (as it is always preferable to follow rules learned via 

a hierarchical planner when available). This may mean performing unusual tasks, or 

performing tasks in an unusual way (such as using the sink in the bathroom to clean dishes 

if the sink in the kitchen becomes blocked). As such, when evaluating the algorithm, we 

attempted to consider several examples of unusual tasks that people are not likely to have 

learned standard rules for. Note that after a plan is produced and executed, it should be 

converted into a new decomposition rule and incorporated into a hierarchical planner. 

Section 3.4 presents some ideas on how this could be done. 

The algorithm we have come up with is an amalgamation of several standard planning 

techniques implemented with the specific kind of knowledge representation in mind, with 

the addition of some novel aspects. 

1.3 Document Structure 
Section two discusses the design, implementation, and review of the single system planning 

algorithm. Section three discusses the design, implementation, and review of the multi 

system planning algorithm. Section four provides some concluding remarks, and suggests 

possible future work that could be taken to extend the planner’s functionality. 
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2 Single System Planner 
See section 4.3 of the honours report. This section describes a problem with the original algorithm, and the changes that 

were made to solve this problem, as well as giving additional details as to why the algorithm works (also see the new 

pseudo code in the appendix). 

2.1 More detailed reasoning as to why the Algorithm works 
First, we give some reasoning as to why the original algorithm works (this is unrelated to 

the problem that we describe in the following section). 

The (original) algorithm labels each node in the graph with an expression in terms of the 

values of other nodes that it has transitions pointing to. We then traverse through the graph. 

Figure 1 shows the way in which a graph is traversed. We follow a particular kind of path 

(shown in red) through the graph. This path will go from the initial (starting) node, ending 

at a node that only has transitions that lead to either a goal state, or back to nodes that have 

already been visited. The path will not necessarily be just a straight line. There may be any 

number of branches that end at a node that only has transitions that lead to either a goal 

state, or back to nodes that have already been visited (also note, that there can be branches 

off of branches, etc.). In Figure 1, the red lines going from node 4 to node 6, and from node 

12 to node 15 show such sub-branches (similarly, the straight line from node 1 to node 17 is a 

branch—the main branch). A key point to note is that all of the nodes in a given branch can 

only point to a goal state or nodes that have already been visited. 

When considering a particular node (for example, node 8), which nodes will already have 

been visited? Any nodes that occur earlier on the same branch (nodes 1 to 4, and 7 to 8), and 

any nodes that occur on sub-branches that have been visited before the branch that this node 

is on (in Figure 1, sub-branch 4 to 6 must have been visited before the branch beginning at 

node 7, as node 8 has a transition to node 6, meaning nodes 5 and 6 have been visited before 

node 8—the traversal could just as easily have been performed the other way, in which the 

traversal could look like the one shown in Figure 2). 

This allows us to draw the conclusion that any visited node must either: 

a) Have a grounded value; or 

b) Have a path that leads back to the node that is currently being evaluated. 

Figure 1: Traversing a Graph 
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Proof of the conclusion above: 

If, on the first branch visited after a split point (such as the branch 4 to 6, which splits at 

node 4 in Figure 1), there is a sequence of nodes that have no transitions leading back to 

nodes before the starting point of the branch or to earlier nodes in the same branch that have 

such a transition themselves (such as node 6 on its own), then these nodes must all achieve 

grounded values by the time we move on from the branch and begin evaluating other 

nodes. This is because the value of these nodes will only depend on each other, and goal 

states (we already inferred above that there cannot be any transitions leading from any 

nodes on a branch to nodes on a later branch). Recall that once we reach the end of a branch 

we will begin backtracking and updating the values of nodes. This corresponds to (a) above. 

If, on the other hand, there is a transition from a node on a given branch that leads back to a 

node that is on a part of the path that occurs before the branch off point (such as the 

transition from node 5 to node 2), then this node and any earlier nodes on the branch will 

not have grounded values, at least not until the earlier node is evaluated. But this means that 

any nodes on branches that begin after this earlier node (node 2) can be reached by all nodes 

in this branch before the node that had the transition pointing back to the earlier node (node 

5). This corresponds to (b) above. 

Finally, if there is a transition from a node on a given branch (we now consider the given 

branch, as the branch 7 to 17 in Figure 1) that leads back to a node that is on an earlier 

branch (such as the transition from node 8 to node 6), then since the value of the node that 

this transition points to (node 6) is either grounded or has a path that leads back a node 

before the branching point, it does not change the fact that the value of the node that 

contains this transition (node 8) will have a value that is either grounded or leads back to a 

node before the branching point (node 6 will have a grounded value by the time node 8 is 

being evaluated, so this will be able to be substituted directly—node 8 itself will not actually 

be immediately grounded itself, due to the transition from node 9, which comes after node 8, 

to node 3). 

The same logic can be applied to branches off of branches, etc. (see Figure 3). In this 

example, node 12 has a transition leading to node 5 initially preventing nodes 6, 9, and 10 

from being updated. Once we being updating and eventually backtrack to node 5, however, 

all the values will be able to be updated (as no nodes in any branch beyond this point have a 

Figure 2: An Alternative Traversal 
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transition pointing back to an earlier node), and so when we go on to evaluate the final 

branch which includes node 14, the transition from node 14 to node 12 will be updated with 

grounded values. 

Why was it important to prove this? Because our algorithm makes the important 

assumption that if a node ever links back to an earlier node that does not have a grounded 

value, then we can insert the at-least-loop value. This is the key as to why the technique of 

substituting in at-least-loop values works. 

 

2.2 A Problem with the Algorithm 
We now move on to explaining the problem with the original algorithm. Note that the 

problem had nothing to do with the reasoning in section 2.1. The problem was instead to do 

with the way node values were being updated. Consider Figure 4 below. Since node 3 has a 

transition leading back to node 1, neither node 3 nor node 2 can obtain a grounded value 

until node 1 is evaluated (this is true for node 2 because it has a transition leading to node 3). 

Previously, once node 3 was reached, we would substitute in the value at-least-loop (as node 

3 only loops back to earlier nodes). This would give nodes 1 and 2 a temporary value for 

node 3 that could be used to evaluate their values (node 3 would itself be updated again 

later once node 1 and 2 have grounded values). The problem was that after backtracking to 

node 2, we discover some information about node 3 that node 1 needs to use to update its 

value properly. Thus, we cannot fully evaluate node 2 or 3 (because node 3 has a transition 

leading back to node 1)—but we can partially evaluate them. We would have automatically 

partially evaluated node 2 as part of the backtracking process (substitute in at-least-loop for 

node 3), but we ignored the fact that node 3 should be partially evaluated based on node 2 

as well. When evaluating node 1 it must use the updated value of node 3 (that is, the value 

of node 3 updated with the value of node 2)! 

Figure 3: Branches off of Branches 
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To resolve this problem, we need to ensure that every time a node updates (and improves) its 

value (either by evaluating itself for the first time as is the case for node 2 in Figure 4, or as a 

result of receiving an updated value from another node), that it updates all nodes that occur 

later in the current path (as well as then passing its value back to earlier nodes). 

To achieve this, we have altered the algorithm substantially. All nodes now maintain a 

“current value”, as well as the “expression” of how this value was derived. Every time a 

node receives an updated value from another node, it looks at this expression and 

substitutes in the new value accordingly. The value produced from this expression is the 

new current value for this node. If the node’s current value improves, then all other nodes1 

are updated (from the last node visited to the first node visited) with the improved value 

(and so on). 

For example, consider the graph shown in Figure 1Figure 4. Node 3 will begin with the 

expression value(3) = best(node1,node2)+1. When we backtrack to node 1, node 3 will be 

evaluated first. Both variables will be substituted for the value at-least-loop (as both node 1 

and node 2 will have already been visited—refer to the original algorithm or pseudo code 

for more details): 

value(3) = best(at-least-loop{node1},at-least-loop{node2})+1 = at-least-loop 

Now that node 3 has an updated current value (at-least-loop), it will initiate a cascading 

update of all the other nodes, starting with node 2. Evaluating node 2’s expression, which is 

value(2) = best(0,node3)+1, will give a current value of no-loop,1. Now that node 2 has an 

updated, and grounded, value this new value will in turn result in updates to node 3 and 

node 1. When updating node 3 a second time, we again look at its original representation: 

value(3) = best(at-least-loop{node1},no-loop,1{node2})+1 = no-loop,2 

As this is a new value for node 3 (improves upon the old value of at-least-loop), more updates 

will be initiated. Note that we ignored updates to node 1 in the above example, but it should 

be clear to see that node 1 will end receiving the correct values from both node 2 and node 3. 

2.3 Efficiency of the Updated Algorithm 
It may at first seem like the updating process could go on forever, although it is fairly easy 

to realise that the structure of the graphs will prevent this from being the case. In order to 

determine the efficiency of the algorithm, however, we need to work the maximum number 

                                                      

1 In fact, we only update nodes which have been traversed (on the path so far). This will not include 

nodes that are to be traversed on later branches. Because of the reasons discussed in section 2.1, we 

know this is not an issue. 

Figure 4: A Problem with the Algorithm 
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of updates may be carried out for any given graph. We show below that the updating part of 

the algorithm is guaranteed to terminate and that it will do so in polynomial time efficiency. 

Before we begin, note that in section 2.2 we stated that updates are only carried out when a 

node’s value is updated and improved. By determining when it is not possible for a series of 

updates to result in a nodes value improving we can infer when a cascading update must 

terminate. 

The key insight is that if node x updates node y and causes an improvement, then no later 

updates that were a result of updating any other node z with the value of node y can result 

in an improved value for node x (or node y). This is because all improvements to values as a 

result of the update must arise due to paths going through x. If x were to receive an update 

from z, then there must be a loop (x→z→...→y→x), and the value of x cannot improve by 

following a loop back to itself. The exception is in when we are updating values for the first 

time (rather than improving values) as in the example given in the previous section, but 

subsequent updates must still abide by this rule. 

Consider a node, node x, that has just received an updated value. Now any other nodes in 

the graph that have a transition going to this node can potentially be updated and may be 

improved with the new value—that is a maximum of n-1 updates. Each of these nodes could 

potentially update all the rest of the nodes (n-2 updates). Using the insight above, however, 

we can see that if node y updates node z, then node z cannot update node y or node x. This 

limits the number of possible updates to n-1 + n-2 + ... + 1 = 
      

 
; node y can improve all 

other nodes other than node x, but then node z can only improve all the other nodes except 

node x and node y, and so on—note that the second node to apply its updates can improve 

some of the same nodes that the first node improved if it improves them by a larger amount 

(if, for example, the transition going from the second node to node x is part of a non 

deterministic action, where the path cost down one of the other transitions is worse than 

value(x)+1). This is taken account of in the equation above, but is likely to be a quite rare 

occurrence in actual system models. 

There are also additional redundant updates that may be performed. Node b could update 

node c, then receive a better value from node a, and so have to update node c again. In the 

worst case, one update could be redundantly performed n-1 times, two updates could be 

redundantly performed n-2 times, etc. This would result in the potential maximum number 

of updates being of order n3. It is unlikely, however, that redundant updates will ever occur 

this often in practice, as they will only occur when the order in which we update nodes 

happens to be the opposite of how they are linked. 

Thus, the algorithm’s overall efficiency could potentially be O(n4), as there could be up to n 

updates, each affecting a maximum of from 1 to n nodes, which are all reasonably expensive. 

In reality, the efficiency is more likely to be O(n3) in almost all (if not all) cases. 
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3 Multi System Planner 
This section begins with a description of the multi system planning algorithm that was 

developed. It then reiterates the features added to models for use by this algorithm (most of 

these features are first mentioned in the description of the algorithm where appropriate). 

Finally, a collection of example systems and plans are provided to demonstrate the ability of 

the algorithm. 

Note that the term model is used to describe the structure of a system (our modular graphical 

representation of knowledge). These words are often used interchangeably. 

3.1 Description of the Algorithm 
To begin, the algorithm is given a set of assertions that it needs to ensure are true. 

Additionally, a set of assertions that are true in the current world state are given (if used in 

practice, these assertions would not need to be specified, but instead could be directly 

observed from the world, when required). 

The algorithm, after first removing any goal assertions that are true in the current state, will 

start by matching goal assertions to assertions found in models. 

3.1.1 Matching (and Scoring) a system 
Matching describes the process of mapping variables in a system to specific objects (where 

these objects are specified in the goal assertions, are observable in the current state of the 

world, or are temporary objects that will be created at some point in the plan). The matching 

process is difficult because there are an exponentially large number of ways that we could 

look at mapping variables to objects, and we get more information on how good our 

matching is as we move from looking at a single state to an initial and goal state pair. We 

always start off by matching a set of goal assertions to a system, which significantly limits 

the number of possible matchings, but leaves enough possibilities to prevent an exhaustive 

search. This has led us to develop a tiered binding process—we only keep the best looking 

bindings at each of several steps (where more information becomes available)—which is 

described below. 

Also note that there are some interesting properties when finding matchings in our systems 

that we have tried to take advantage of in the design of the algorithm. For example, where 

one state in a model matches a goal assertion, it’s likely that there will be several other states 

that also match this goal assertion. As such, we perform most of the matching work only 

once per model. 

Note on notation: where we refer to binding below, we are referring to the mapping of one 

variable to an object. Where we refer to matching, we are referring to the mapping of several 

variables to corresponding objects (a set of bindings that map different variables to objects). 

The first step is to find any states that contain an assertion that can potentially match at least 

one of the goal assertions. An assertion can potentially match another assertion if it has the 

same type, name, and value, and for each corresponding object, either one or both of the 

assertions contain a variable (or both contain the exact same object). A hash function would 

be required to find states with possible matching assertions in an efficient manner. 
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Aside: Using a Hash Function 
A hash function that is capable of taking us directly to potentially matching assertions 

should not be particularly difficult to implement. We would simply need to maintain a map 

of hashed assertion signatures (an assertion excluding the variable / object) to sets of states 

that contain an assertion with the corresponding signature. As the total amount of 

knowledge (number of systems) gets very large, this data structure would increase in size 

proportionally, but would also become more important. More advanced techniques, perhaps 

similar to those used by web search engine indexes, may be needed to determine which 

states to return when the number of results is large. 

Note that in the version of the algorithm that has been implemented, we have not produced 

such a hash function. Instead, we pre-produce a list of all possible assertions in each system, 

and examine the list for each system in the world to find matching assertions. Once a 

potentially matching system is found, we then examine all the states in the system to 

determine which states could match at least one goal assertion. 

When an assertion is found that potentially matches a goal assertion, a corresponding 

binding (or multiple bindings for a relational assertion) will be inferred—that is, a mapping 

of one or more variables to objects such that the matching assertion will become the same as 

the goal assertion. With this matching as a base, we then need to go on and match all the 

remaining variables specified in a system to objects that exist in the current world 

observations (the exception being for objects that are created in the model, or for objects that 

we believe may be created at an earlier step in the plan, since the planning algorithm 

constructs plans backwards). 

Before moving on, it should be noted that we divide assertions into changeable and 

unchangeable assertions. Assertions that are unchangeable (such as assertions that describe 

what an object is—“this object is a pen”) will only show up in the context of a model, and 

these must be matched. It is desirable to match as many changeable assertions as possible, but 

those that cannot be matched can be altered (or added if an object is created) in earlier steps 

in the plan (note that all goal assertions should be changeable). Additionally, some 

changeable assertions may not be true in all states of the model. If a changeable assertion is 

not true in the initial state we end up selecting to begin this model from, it would not end up 

being necessary to have matched this assertion at all. When learning systems, it would be 

possible, and not too difficult, to maintain a list of which assertions are unchangeable. This 

system could be enhanced further by labelling assertions with how “difficult” they are likely 

to be to change, based on previously cached plans where changing the given assertion was 

the goal. 

For each model that contains an assertion that potentially matches a goal assertion, we build 

lists of assertions (made up of assertions found in states, or in the context) that refer to each 

variable mentioned in the system. From these lists, we can generate a set of possible objects 

(from our current observations) that could match all of the unchangeable assertions (or at 

least one changeable assertion if there are no unchangeable assertions) in each list. 

Considering all possible combinations of objects that could be matched to each variable is 

too expensive, so at this point we generate a score for each possible object, per variable. 
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The score generated for an object represents its closeness to the list of assertions that are true 

of the variable in question. The less assertions that are untrue in the current state of the 

world, the less work the planner will have to do at earlier steps in the plan to make them 

true. Assertions that don’t match a current observation, but instead match one of the other 

goal assertions (this can often be true of context assertions) are also valued. The score is 

currently inversely proportional to the number of assertions that are untrue—that is, 

assertions that do not match a current observation or goal assertion (where an assertion has 

several different values across different states in the model, we only enforce that an assertion 

that can match it must match one of these values—we are lenient here because we have not 

yet worked out what our initial state will be). After scoring each potential object for a given 

variable, we keep only the best couple. Additionally, we add the possibility that a temporary 

object could match the variable—that is an object that will be created either in this system or 

at an earlier step in the plan. 

Next, we look at each of the different matchings that were inferred earlier from matching 

goal assertions in this model, as well as each combination of matchings that were inferred 

from matching goal assertions that belong to the same state. Each of these partial matchings 

(partial because they don’t bind every variable in the system) will satisfy at least one goal 

assertion. For each of these partial matchings then, we follow the process described below. 

(Note that applying this process to large models with many objects can result in many 

different possible matchings being produced. In such cases, a limited number of the largest 

matchings—those that contain the most variables—should be used.) 

For each variable that does not have a corresponding object in the partial matching, we 

consider a combination of this matching with each possible combination of bindings for each 

of the remaining variables (these combinations are constructed from the lists of objects that 

can match each variable, that we described two paragraphs earlier). Finally, once we have a 

set of possible full matchings for a model, we score each of these full bindings. 

Once we have a collection of the full matchings, we first remove any duplicate bindings and 

remove invalid bindings (ones where context assertions conflict with other goal assertions, 

etc). Next, to score a given matching, we begin by finding the best goal states. For each of the 

matching goal states that were used to construct the partial matching that this full matching 

was constructed from, we find the one that has the most assertions satisfied in the final 

matching. To further distinguish between states that match the same number of assertions, 

we rank states that can be reached by more states in the model as better than states that are 

can be reached by fewer states. The set of states that can be reached by a given state could be 

pre-computed and stored at each state in each system, or can generated reasonably quickly 

by the algorithm as it goes—an O(n2) operation. The reasoning behind using the number 

will become clear later in this section. We only keep the best couple of states per matching to 

use potential goal states. 

Now that we have a set of possible goal states (and their corresponding matchings) that each 

match at least one of the goal assertions we started with, we can generate a more detailed 

score than before, and only retain the best looking states. This time, when computing a 

state’s score, we take into account not only the number of changeable assertions in the model 

that aren’t matched to a current observation or goal assertion, but also the number of goal 
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assertions that may be achieved by the state (note that the number of assertions that may be 

achieved does not include context assertions as they cannot change in the system). 

Finally, we further refine the information obtained by constructing initial and goal state 

pairs—in order to achieve a goal, we have to start from some state in the system. For each 

goal state that remains, we look at each state that can reach the goal state as a potential initial 

state. For the state to be considered, at least one of the goal assertions that are achieved in 

the goal state must not be true in the initial state (this means the assertion will actually be 

achieved). Once we have a list of state pairs, we have all the information needed to consider 

one step of the plan. Thus we can perform a final round of scoring and retain only the 

number of pairs that we want to evaluate further. 

When scoring an initial and goal state pair, we can now consider only the relevant 

assertions—that is, those that are true in the context and the initial state. Assertions that are 

true in other states cannot be used to inflate scores (as they may have in earlier steps). 

Additionally, we limit the number of state pairs that can come from the same matching. The 

final number of state pairs we retain will depend on several factors as described in the 

following section. 

Aside: Improving the Heuristic Used 
Heuristics are obviously extremely important when constructing a planning algorithm of 

this type. The better the heuristic is the more likely it will be to find a solution quickly. The 

heuristic we currently use could almost certainly be improved upon. Our heuristic is based 

upon what we expect a regression planner should aim for, and some significant, but limited 

testing on constructed examples. A better heuristic would examine assertions in more detail. 

It could potentially include consideration of typical initial and goal states in certain systems, 

ensure that variables are only ever matched to objects that “potentially” have a value for 

each of the possible assertions that describe properties of that variable (note that this has 

been partially implemented), and consider a wide range of other factors. This could 

potentially have an enormous impact on the performance of the algorithm. Note that simply 

using the number of matching or non-matching assertions as a heuristic, as we currently do, 

is not necessarily the best indicator of closeness (as several non important assertions may be 

less valuable than one important one). 

3.1.2 Overview of how Regression Planning is performed 
The planning algorithm starts from a set of goal assertions and works backwards to get to a 

set of states where all assertions match assertions that are true in the current world state. 

Aside: Regression Planner versus Partial Order Planner 
Planning in reverse is significantly easier than planning from the current world state 

forwards to a goal. Planning in a forward direction would be extremely difficult because not 

only can states from many systems match the initial current world state, but we also may 

have no idea where to head from a given starting point (in order to achieve our goal 

assertions we are likely to have to achieve other unknown assertions first). When working 

backwards, we are always beginning from at least a state that achieves one of the goal 

assertions. We then try to find systems that are closer to our initial world state, but we also 

look for systems that appear to be potential last steps involved in achieving the goal (recall 
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our heuristic that looked for systems that achieve part of a goal, while requiring other goal 

assertions to be true). 

The justification behind using a regressive planner as opposed to a partial order planner (or 

other algorithms with different kinds of orderings such as Stackplan) is that we expect the 

goal assertions in our plans will have lots of interactions—that is, we expect that each system 

should solve quite a few assertions at once, as opposed to having several independent parts 

to a plan that could be solved in either order. Even if certain goal assertions can be solved in 

different orders, we would face the issue of how many assertions can be solved together. By 

using a regressive planning approach, we simply need to find one order that works, which is 

all we are trying to achieve (after achieving a task once, it would become significantly easier 

to work out other possible ways of achieving it if desired). 

As mentioned earlier, the first step involved is to remove any goal assertions that are already 

true in the current world state. The algorithm then performs the matching process described 

above to find a list of initial and goal state pairs that achieve at least one goal assertion. Note 

that no planning work needs to be performed in a single system (except for a reachability 

analysis) to generate these pairs. 

After generating this list, the algorithm selects the first pair and updates certain values: any 

goal assertions that are achieved by the pair (goal assertions that are true in the goal state, 

but not the initial state) are removed from the set of goal assertions remaining, and any 

context or initial state assertions that are not true in the current world state are added to the 

same set of goal assertions remaining. 

After updating these sets, the planning algorithm simply repeats this step recursively. If we 

reach a point where one of the assertions in the set of remaining goal assertions can't be 

achieved, this branch fails and we backtrack to the last set of state pairs we had and try the 

next option. 

With each step taken, the set of remaining goal assertions should eventually decrease until 

all assertions are achieved. Note, though, that there is no guarantee this process will actually 

come to an end. It may be that at least as many assertions continue to be added to the set of 

remaining goal assertions as are removed from it. If the agent does, however, have enough 

knowledge about the systems involved in completing a task, then a solution should be able 

to be found. We rely on the heuristic to guide the algorithm down paths that are likely to 

achieve all assertions as early as possible. Of course, it's likely the heuristic will often lead us 

down non-optimal paths. To take this into account, the planning algorithm performs 

dovetailed iterative deepening and widening. 

Aside: Reasons for using dovetailed iterative deepening and widening 
Iterative deepening means we evaluate paths up to a certain max depth, then if we do not 

find any paths of this length or shorter, we increase the max depth by one, and repeat. This 

limits the work done evaluating non-optimal paths. Iterative widening means we restrict the 

number of alterative solutions (width) evaluated to a fairly small number, then if no paths 

are found within these limits, we increase the width by a specified amount, and repeat. This 

limits the amount of backtracking required, preventing lots of work being carried out to 

evaluate paths that score poorly. To obtain the benefits of both approaches, dovetailed 
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deepening and widening involves evaluating all paths within a given depth and width, then 

if no paths are found, we increase both the depth and width, and repeat. 

The justification for using iterative deepening is that, since we are attempting to find just one 

plan of a reasonably short length, we can begin by checking short paths, and then slowly 

increase the length of plans we check if we cannot find any plans at a given length. The 

justification for using iterative widening is that since we have a good heuristic to guide our 

search, we can begin by restricting the number of alternative solutions evaluated to a fairly 

small number. 

Also note that for each iteration with a fixed depth and width, we reduce the number of 

additional paths (the width) that are examined as we go further down each path (add more 

systems to it). This is because we expect that as our paths get longer, and we get closer to 

our initial world state, the planner becomes more likely to select good systems, so we can 

reduce the search space at little cost. 

When the set of remaining assertions eventually becomes empty, we know we have a 

solution to the plan. At this point, we evaluate a single system plan (from the specified 

initial state to the specified goal state) in each system involved. We know this plan cannot 

fail as the goal state is reachable from the initial state. The worst case is that the plan type 

will be unsafe, but it cannot be none. The final plan returned is the sequential combination of 

each of these single system plans. The overall cost of the plan is the sum of the costs of each 

of the single system plans, and the plan type is the worst type of plan out of each these 

single system plans. 

Aside: Cleaning up unsafe and other plans 
After the algorithm is completed, it may return a plan that is unsafe (or that involves loops). 

It is possible (and indeed, quite likely) that there are alternative plans that are not unsafe, 

but we are unlikely to detect these. Because we have limited our algorithm to selecting only 

one goal state per system, we never considered the fact that states that were dead ends in one 

system may match to states in other systems that can return us to a step in the plan (whether 

it be an earlier step that creates a loop or a later step) and produce a plan that is safe overall. 

An example of this can occur in the pour water system. When pouring water from one cup 

into another, if the agent accidentally pours too much water fills up receiving cup, when its 

goal was to have only some water in the cup, it will arrive at a dead end state in this model, 

producing an unsafe plan. To improve the plan, the agent should be able to realise that if it 

arrives at this state, it can move to the tip out water system, and tip a little water out of the 

cup. Note that similarly, it may be possible that in some cases plans that involve loops could 

be converted into non loop plans (although this is likely to be a rare occurrence). 

This cleanup of plans could be implemented as a post processing step that activates after the 

planning algorithm has found a successful plan. The planner would then find all dead end 

states in each system, and attempt to find a plan from this state to any other state in another 

system that is in the plan. 
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3.1.3 Details of the Algorithm 

3.1.3.1 The “must be true” set of assertions 
After selecting an initial and goal state pair, any assertions that are in the context or initial 

state of a system and are true in the current world state are added to a set of assertions 

denoted the “must be true” assertions. This includes any assertions that are in the set of goal 

assertions the planning algorithm is given to start with, but happen to already be true in the 

current world state. Assertions are never removed from this set, though they will be altered 

(or potentially turned into explicit not assertions) if an assertion in the initial state of an 

earlier system in the plan contains an assertion with the same signature (has the same type, 

name, and object(s)) but a different value. 

When finding possible goal states (states that match at least one goal assertion), the planning 

algorithm will check to make sure that none of the assertions in the “must be true” set 

conflict with assertions in the goal state. This prevents the planning algorithm from 

producing invalid plans, where it requires the value of some assertion to change, even 

though no action is taken by the agent to causes this change. 

3.1.3.2 Entry and Exit Conditions 
It will usually be the case that an action in one system will have an effect on several (often 

many) other systems. When determining which of a system's assertions are valid, we require 

a way of ensuring that actions taken in other systems do not have undesired effects in this 

system. For example, consider a system that represents information about what happens 

when a container is filled with water from a tap. If in another system an action is performed 

that moves the container so that it is no longer under the tap, then we will have exited out of 

this system. The effect will be that the water level in the container will no longer be rising (if 

it was beforehand). 

One possible way to take into account these kinds of effects would be to add any actions we 

have noted that cause us to enter or exit the model directly into the model itself as 

transitions that lead to new states. Whenever we encounter an action that effects this model, 

we would simply add a new state to the model that describes the effect (in terms of 

assertions, or partial assertions—a partial assertion gives the new value for a value or 

derivative that has changed in a qualitative property, but not both) and add a transition to 

(or from) any relevant states to (from) this new state, with the corresponding action taken 

specified on the transition. This technique would, however, greatly reduce the benefit we 

gain by modularising our knowledge into models in the first place. Each model would 

potentially need to have very large numbers of exit and entry transitions and states added. 

Instead, we specify entry and exit effects in terms of the context assertions that are made 

false or true. Recall that context assertions are those which must be true in order for the 

model to be valid. Thus, we can only enter (or exit) a system when at least one of these 

assertions becomes true (false).  Whenever we encounter an action that effects this model, 

we note which context assertions are made true or false by the action, and specify effects (in 

the same way as above) against these assertions. This prevents us from having to specify 

actions explicitly and thus stops the models from dramatically increasing in size. Note that 

this approach relies on the fact that regardless of the action taken, when a certain subset of 

context assertions are validated (or invalidated), the same effects will take place in this 
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system. This should always be the case, although different actions may have different effects 

outside of this one system (this information will be represented in other systems). 

To take account of entry and exit effects in the planning algorithm, we add several steps. 

Firstly, to take into account exit effects, whenever we are considering a new system to add to 

the beginning of the plan, we check the exit effects of that system. We begin moving along 

the rest of the plan that has been calculated so far (a system at a time). If a system causes an 

exit effect to trigger by invalidating all of the specified assertions (usually just one assertion), 

then from that point onwards we check to see if the “effect” part of the exit effect invalidates 

the plan. If it does, we cannot use this model. 

Taking account of entry effects if more problematic, because we are planning in reverse. If 

we want to take advantage of an entry effect, the planner is able to add as goal assertions the 

assertions that need to become valid to cause the effect (in addition to any context assertions 

that aren't true as well). This is not currently implemented in our version of the algorithm. 

Also note that because move actions are handled in a unique way (see section 3.1.3.5), the 

entry effects of any move action that is used to achieve a context assertion in this model can 

be considered immediately. 

It is also worth pointing out that there may (and almost certainly will) be many effects of 

actions (that are part of a plan) that occur in systems that we do not consider. Usually these 

effects won't interfere with our plan, but in some cases these effects may prevent the 

computed plan from working correctly. When executing plans, if an unexpected change in 

state means the plan can no longer be carried out, then a new plan will need to be 

constructed from that point. Alternatively, if we want the plan to be robust before 

performing it, we could check for conflicts by performing a symbolic execution of the plan, 

and considering what other systems could be active at each step. 

Aside: Checking for plan conflicts in other systems 
At each state in the plan, we have a set of assertions that are true of the world (made up of 

the initial assertions with any assertions that have been changed, added, or removed up 

until this point in the plan). We can use this set of assertions to infer other models that are 

active. For each state in the plan, we would need to perform a matching process to find other 

models whose context (and default) assertions are contained in this list—note that we would 

only need to look for exact matches so this would be less difficult than the matching process 

undertaken when discovering plans. Discovering which models might match the set would 

again require the use of some kind of hashing function (as there would be too many models 

in the world to examine them all). 

Without having implemented this step, it is difficult to make a judgement as to how 

expensive this operation might be (clearly the cost would be proportional to the number of 

systems that make up the agent’s total knowledge). Performing this process in full would 

ensure that a given plan does not fail because of effects that may occur in other systems that 

are running at the same time as some part of the plan. 

3.1.3.3 Inference 
Certain types of assertions can be inferred from others, particularly when considering 

relationships. For example, if object A is inside object B, and object B is inside object C, then 
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object A is inside object C. At a high level, inference essentially just tells us that, when some 

set of assertions are all true, there is some other set of additional assertions that are also true. 

Additionally, it can be used to infer when a set of assertions is invalid (due to conflicting 

assertions being present). There is a large amount of standard inference rules that the 

planning algorithm could perform to aid it in determining if goal assertions are true. In our 

implementation, we have limited inference to only basic relational properties; for example, 

we infer transitive assertions for inside, above, and below relations (as shown above), as 

well as ensuring these relations are nonsymmetric (if object A is inside object B, object B 

cannot be inside object A), and we also infer symmetric relations for nearby and connected 

(if object A is nearby to object B, then object B is nearby to object A). 

Inference is performed on demand—that is, when evaluating a set of assertions, the planner 

will perform inference to see if any additional assertions are true or if the new set of 

assertions will be invalid. Since inference is performed on demand, we do not need to worry 

about when to remove inferred assertions (as we never always calculate and never store 

them). 

Also note that since we are planning backwards, inference is difficult. We are only able to 

combine a set of assertions with the current world state assertions to see what additional 

assertions are inferred. It may be that to achieve a goal, we need to combine a set of 

assertions with other assertions that will be achieved at an earlier step in the plan. This kind 

of inference is currently not considered by the planning algorithm, except in the case of move 

actions that lead to a system, due to the special way in which move actions are represented 

(see section 3.1.3.5). 

3.1.3.4 Object types and dealing with created and deleted objects 
The representation of objects is important in our systems, as the systems are usually 

describing the relationships between several objects (and the effects of actions an agent can 

perform on them). A rich hierarchy of classes would aid in inference and the ability to 

construct concise systems—for example, we would like to be able to specify the assertion 

“property is-a vehicle” and have assertions such as “property is-a car” match to this 

without having to do any more work explicitly. Our implementation currently does not have 

any class information built into it, as it was not necessary to consider when developing 

specific example systems. If, however, there was a large amount of knowledge (lots of 

systems) being represented, involving many different types of objects, then a well 

constructed class hierarchy is likely to be essential. 

A somewhat related issue arises when we consider how to handle the creation and deletion 

of objects. An example of a created object can be found in the fill a sink model where water 

is effectively created (as far as the agent is concerned). When an object like this is created, it 

can have a very large range of properties that become true (its temperature, saltiness, etc). 

Currently, we have to specify each of these properties explicitly in the model. In order to 

avoid having to specify each of these properties on each state where the object exists, we 

have a separate set of assertions which represent assertions that do not change in the model, 

other than being added when an object is created and/or removed with the object is 

destroyed. 
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Objects that are created and destroyed can be quite problematic for the planning algorithm; 

it can be quite difficult to score systems that involve the creation or destruction of an object 

because we only need to attempt to match assertions that relate to a created or deleted object 

to the current world state if the object exists in an initial state, and similarly we can only 

match goal assertions to assertions that related to a created or deleted object if the object 

exists in a goal state. We won't know which if this is the case until we produce initial and 

goal state pairs. Depending on the structure of a given system, it may only be possible to 

create or only destroy an object (invalidating our earlier matching that assumed the 

opposite). To deal with these issues, we give weights to the scoring of assertions, and set the 

weight of scorings that are generated from created and deleted assertions to a much lower 

value than the weights of other assertions (in the earlier scoring phases). Additionally, we 

ensure destroyed objects cannot be recreated (this prevents the planning algorithm from 

attempting to construct some foolish plans). 

Additionally, there is the issue that a variable that exists in one system may be bound to an 

object that is created in an earlier system. In section 3.1.1, we described how we might bind 

temporary objects to systems. Even when examining an initial and goal state pair, however, 

there is no way to determine what properties make sense for a temporary object (can we 

create water that is coloured green?). With sophisticated class information (as mentioned 

earlier), we could look at the default (common) values for objects of a certain type and may 

even have more detailed information specified, such as “water is always transparent”. This 

would greatly improve the ability of the planner. 

Objects can also be created out of other objects—for example, splitting a piece of wood in 

half creates two smaller pieces (or you could represent this as just one new piece and the 

original piece is half as large as it was before). In our example systems, there is a case where 

water is poured from one cup to another. We treat this as though the water from the pouring 

cup is destroyed (if the cup empties), and the water in the receiving cup is created. When an 

object is created from another object like this, it (usually) inherits all of properties of the 

object it is created from: the water in the receiving cup will have the same temperature, and 

saltiness, etc. as the water in the pouring cup. 

In order to avoid having to specify that all these properties carry over to the new object, we 

introduce a new kind of assertion that is specified in terms of objects for a whole system. We 

say that the water in the receiving cup comes from the water in the pouring cup. This means 

the water in the receiving cup receives all the properties of the water in the receiving cup, 

except for any that may be explicitly overridden in the assertions that are present in states in 

the model (a process somewhat similar to cloning). When matching objects to system 

variables, we can carry over any properties referring to a given object to the object that it is 

created from. So if our goal is to have boiling water in a particular cup, then we can achieve 

this by pouring water into it from another cup, and our new goal is for the water in that 

pouring cup to be boiling. 

3.1.3.5 Dealing with “move” actions 
The action of moving an object is special for a number of reasons. Move actions have a 

starting location and a final location. Such actions don't usually represent the change in 

relationship between objects (whereas almost all actions will generally represent changes in 

the properties of or relationships between objects). Instead, move actions are a way of 
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getting an object to where it can be used for a given task—in terms of our representation, 

they are essentially just used for transitioning between systems. Because of this, we treat 

move actions differently from other actions. 

When an assertion is found in the context or initial state of a system that is not true in the 

current world state, we check to see if the assertion can be achieved by a move action. An 

assertion will be achievable via move if it is a relation type assertion that specifies a 

particular kind of relation (such as above, or below)—the specifics of what relations can be 

achieved by move are configurable; in our system we allow above, below, inside, and 

nearby to be achievable via move actions, but a more complex knowledge representation 

may specify locations explicitly and provides more details about what objects will fit in 

where, etc. Additionally, we require that objects be specified as movable objects. To 

determine if an object is movable, we first check the current world state to see if the object 

exists and is specified as being movable. If the object does not exist, we can still attempt to 

achieve the assertion through a move operation, but require that when the object is created, 

it is a movable object (see the previous section for more details on this). If the object does 

exist, and is not specified as being movable, then we do not allow the assertion to be 

achieved via a move action. Additionally, the assertion describing the object's current 

location (if it does exist) must not be in the “must be true” list or else we cannot solve this 

assertion via a move action. 

After determining that an assertion can be achieved via a move action, we prefix the action 

to the start of the plan (before the plan that will be generated in the single system that the 

move action achieves an assertion for). Additionally, we annotate the assertion with 

constraints specifying where the object is being moved to. If we want to ensure that objects 

are only moved when they are able to be moved, we should add assertions such as 

“property not-obstructed object” and “property not-obstructed location” to the “must 

be true” list of assertions. 

Note that we are only able to treat move in this way because it does not matter where we are 

moving an object from (as long as it is not obstructed). Additionally, path finding is a fairly 

low level task (as compared with the kinds of reasoning we tend to see in our systems), and 

it makes sense that this kind of task would can be carried out via other planning methods. 

Additionally, it is worth noting that there can be a somewhat grey line when determining 

what actions should constitute as moves and which should not. Almost every action we 

perform involves moving something (whether that is our own fingers, or a box we are 

holding). The key insight given above was that moves do not really represent a relationship 

change between two objects, and that it does not matter where an object is moved from. For 

most actions, such as pouring water from one cup to another (which should not be 

considered as a move), there is a clear relational property between the objects involved in 

the action (one cup is above another). 

3.1.4 Time Complexity 
Clearly, the algorithm is exponential in terms of the time complexity it would take to 

perform an exhaustive search. There is no possible way to avoid the fact that systems can be 

bound to objects in a multitude of ways, and that plans can be found by combining systems 

can be together in an exponential number of possible orderings. By using heurstics that aim 

to achieve as many goal assertions as possible, while minimising the number of assertions 
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that will need to satisfied (earlier in the plan), we hope that we will be able to arrive at a 

solution without having to explore too many paths that do not lead to a solution. Because 

our goal was only to construct short plans that solve one conjunctive set of achievements at a 

time, this does appear to be feasible. 

Recall, however, that no single system planning needs to be performed (other than a 

reachability analysis) until we have discovered a multiple system plan that will definitely 

work. This significantly reduces the potential time taken by the algorithm. 

Aside: Lots of knowledge (systems) leads to many possible solutions 
It is worth noting that our experimenting with the system has so far only involved examples 

that we have constructed by hand. Creating examples by hand allows us to ensure that 

assertions are consistent across systems (ie: describing similar things at the same level of 

detail). If we used systems that were constructed automatically by a learning agent, the 

systems may not be as consistent. We believe, however, that with enough knowledge (lots of 

systems), it is likely that valid matches should be able to be found for any set of goal 

assertions and scored highly. If there are lots of systems available, then there are likely to be 

many possible ways to achieve goals, and so at least some systems that are on a valid path 

should score significantly higher than any invalid ones (as long as our matching heuristic is 

reasonably good). 

The current implementation of the algorithm does not incorporate a hashing function to 

speed up the time it takes to match goal assertions to assertions in systems. This is not too 

much of an issue as we have currently only been able to test it on reasonably small sets of 

models at a time (it takes quite a while to construct systems, and the agent which learns 

systems in a similar format is still under construction), so performing an exhaustive search 

of all models doesn't slow things down much. To perform a complete search that fails to a 

depth of six (a plan that goes through six systems not including move actions), with a 

maximum top level width of eight state pairs, on the example sets of systems provided in 

section 3.3, takes anywhere from a minute to fifteen plus minutes depending on the size of 

the systems being examined and number of objects in each system. 

3.1.5 Issues 
There are a couple of minor issues with the current planning algorithm, which may or may 

not be avoidable. Firstly, it is common for the planner to select the wrong initial state. This is 

best explained through an example—if our goal is to obtain boiling water, the planning 

algorithm might match to a goal state with boiling water and select as an initial state in that 

model a state where the temperature of the water is between room temperature and boiling, 

rather than at room temperature. This problem is mitigated by the fact that we select several 

potential initial states per system (and if they both score highly, they can both be evaluated). 

This problem is almost impossible to prevent—there is no way the planner can know if it 

should start with water that is at room temperature or between room temperature and boiling. 

First note though, that if the water that was to be boiled already existed in the initial world 

state, our heuristic would give a better score to the initial state that specifies the temperature 

that matches the current temperature of this water. A possible solution to the above 

example, then, is to specify default created object values, as discussed in section 3.1.3.4. This 
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is somewhat analogous to caching the plan where we create the default water (pouring 

water from a tap into a cup)—this process was discussed in the introduction—and may or 

may not provide any additional benefits. Note that where we are evaluating an assertion 

that the specified object does not have at all in the initial world state (which may be a 

property or a relation), a similar problem (and possible solution) arises. 

Another minor problem arises because we are only able to select a single goal state per 

model—allowing multiple goal states to be selected per model produces the possibility of 

plans branching to multiple systems, which we believed would decrease the efficiency of the 

planner too much. Selecting only one goal state can often mean doing extra work within a 

single system that is really needed. For example, if we are trying to fill a cup to a specific 

level, then if we fill it too high, we must tip some out, and if we tip too much out we must 

fill it back up a bit more. It may be that we did not actually need to fill the cup to a specific 

level (the next higher level may have been fine as well), as the next step in the plan involves, 

for example, doing something to the water and then pouring into another container. 

While this problem causes somewhat inflexible plans to be produced, it should be able to be 

mostly solved via a post processing step that goes back to check systems in the plan that 

outputted an unsafe or looping plan to see if they can be improved, as described in an aside 

in section 3.1.2. 

Finally, another issue is that pure regression planning prevents the heuristic from being able 

to incorporate the use of entry transitions and inference from earlier steps in the plan. This is 

a trade-off that seems acceptable. It would be interesting, however, to look at developing a 

forwards or partial order planner to draw comparisons from. 

3.2 Enhanced Representation of Models 
Initially, we used the same models as in the single system planner. It soon became apparent, 

however, that this representation would not be sufficient without several enhancements. 

Most of the changes made have been mentioned above in section 3.1, but we reiterate these 

here for clarity. 

 Entry and exit effects (see section 3.1.3.2): The specification of the effects (in terms of 

assertions that exist in the given system) of validating or invalidating a context assertion 

(or a set of context assertions). 

 Created and destroyed object context assertions (3.1.3.4): A set of assertions that are 

always true of objects in this system once they are created, or before they are destroyed. 

 Comes from object relations (see section 3.1.3.4): A set of assertions that describe any 

objects that come from—that is, are produced out of and hence inherit the properties of—

another object. 

 Ranges of values (see section 3.4.4): We allow the value of property assertions to be 

specified as a range of qualitative landmarks and ranges (rather than just one). This 

means the actual value for this property may be any one of the landmarks or ranges 

specified. Similarly, we allow a range of possible relations to be specified in relational 

assertions. 

 Explicit negation (discussed below): Any assertion that is mentioned in one (or more) 

state(s) in a system must be mentioned in all other states in that same system. This often 
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requires the use of not assertions. If, for example, the assertion “related connected 

objectA objectB” is specified in one state, then the assertion “not related connected 

objectA objectB” must be added to all other states in the system where the original 

assertion is not true. Note that explicit negation does not add to the representation of 

systems, but simply makes it substantially easier to plan with systems (as we do not have 

to consider whether or not assertions exist). Also note that explicit negation can be added 

to systems as a post-learning / pre-planning step (a learning agent would not need to 

ensure it adds explicit negation to learned systems). Note that not assertions do not need 

to be explicitly matched—they are simply assumed to be valid as long as they do not 

conflict with any other assertions. 

3.3 Example Models and Plans 
We have produced a range of example sets of systems, and possible goal assertions (as well 

as providing a set of initial assertions) with which to use to test to the planning algorithm. In 

this section, we provide a description of most of these sets of systems and the corresponding 

plans that were produced. 

3.3.1 Boiling Water in Cup 
Plug In Device (Kettle) -> Fill Container (Kettle) -> Boil Kettle -> Pour Water (Kettle to Cup) 

or: Fill Container (Cup) -> Microwave Fluid (in Cup) 

3.3.2 Drying a Towel with fan on Exercise Bike 
Exercise Bike -> Dry Towel 

Issue: The planning algorithm does not initially match the object that will be used to produce 

airflow to the exercise bike. 

Solution: Improve the heuristic to ensure that variables are matched to objects that 

“potentially” have a value for each of the possible assertions that describe that variable (in 

this case, airflow out of), as mentioned in the aside in section 3.1.1. 

3.3.3 Using Shower to produce Steam 
Shower -> Use Steam 

3.3.4 Apply Change Tyre system to get item out from under Car 
Change Tyre 

Issue: We are forced to specify that a tyre is punctured in order to get planning algorithm to 

match to the correct system. 

Solution: Currently, we are just specifying that a tyre is punctured. In order to use this 

system without doing so, we would need to implement the ability to use a system even 

though some assertions are not matched. This is discussed in detail in section 3.4.1. 

3.3.5 Building an unusual Mechanism (vibrating sand in box) 
Eccentric Cam -> Sand in Container 
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3.3.6 Other Models 
 Heating sand in Oven: Similarly to the Change Tyre system, we use the Oven system to 

perform an unusual action. Normally we would put food in the oven, but in this case we 

attempt to use it to heat sand. 

 Mow Lawns and Plant Flowers systems: As a test, we constructed a pair of systems that 

were entirely independent—one for mowing lawns, and another for planting flowers. 

The planning algorithm performed surprisingly well, and was able to construct plans of 

reasonable length (four plus systems). 

 Driving and navigating Car systems: We also constructed systems that represented a car 

driving around streets, and entered assertions representing a map into the initial 

assertions. The planner performed, as expected, quite poorly. This is because in order to 

solve a path planning type problem we would need to use a better heuristic involving 

distance. This is a good example of what our planning algorithm is not attempting to 

achieve. 

3.4 Discussion 
In this section, we will provide a discussion of several additional issues that have an effect 

on the planning algorithm, and mention ways in which any problems could be addressed. 

3.4.1 Using a system even though several assertions are unmatched 
In some scenarios, given a set of goal assertions and initial world assertions, we should 

match to a particular system, even though several of the context assertions are not satisfied. 

It may be that it would be otherwise impossible to satisfy these assertions, or that they could 

be achieved with more effort (by the planning algorithm or even by hierarchical rules). 

Regardless, if we discover a situation where there is a good chance a system will work as 

expected in spite of unmatched assertions, it is a good idea to attempt to use the system. 

When executing the plan, its success or failure can be reported back to the learning agent to 

refine the system information. 

In order to work well, the ideal approach would be to have weights on each context 

assertion stating how “important” they are believed to be. When learning, if a context 

assertion is present in 95% of the cases in which the system was in use, it would be 

considered very important, whereas if another context assertion was only present 70% of the 

time, it would be given a smaller weighting. The planning algorithm could then ignore 

matching assertions with smaller weightings if desired. An alternative that could be 

implemented in the absence of any weighting information would be to first attempt to find a 

plan looking for full matchings in all systems. If no short plans can be found, then try again, 

but allow one (or possibly more) assertions to not be matched. 

Also note that there are two different cases where we may want to use a system even though 

several assertions are not matched: 

 Removing the assertion(s) has no effect: This case will occur far more often. It occurs 

when there are one or more assertions in the context that are not needed for the system to 

run properly. For example, we may have a Fill the Sink system that has a context assertion 

stating “property colour tap red”. This assertion is clearly irrelevant to the running of 

the system, and so we could safely ignore it (leave it unmatched). 
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 Removing the assertion(s) means we also remove all related assertions in the model: 

This case will occur when we want to use a system but a part of the system is irrelevant—

that is, we only need to use a certain parts of the system (it may highlight a case where 

we would be better off having two separate systems). It may be that detecting such 

systems would be better done during the learning process. For example, if we again have 

a Fill a Sink system, and want to use this system to fill a container from the tap (for this to 

be the case, we must not have a Fill Container and/or Turn Tap system), we would be able 

to ignore (leave unmatched) any context assertions referring to the sink: “exists sink”, 

“related under tapSpout sink”, etc. At each state in the model, we would also need to 

remove any assertions that relate to the sink, such as “qproperty waterLevel sink ...”. 

This would leave only assertions relating to the tap and the water flow out of it. The 

effects of actions would remain unchanged so the system could still be used. 

3.4.2 Concurrency Issues 
We mentioned earlier that it is quite possible, in fact it will almost always be the case, that an 

agent will be in multiple systems at once (concurrently). It is likely then, that performing an 

action in one system may also cause changes in another system (either because that action is 

explicitly in that other model or via an exit transition). Checking to see what other effects 

our actions may cause is probably best handled via a post processing step (see the aside in 

section 3.1.3.2). 

Another possibility is that the only plan that can achieve a goal is one that acts concurrently 

in two systems—that is, we need to interleave actions within two systems to achieve some 

goal. It would be possible to infer this on the fly, but computationally extremely expensive. 

Instead the planner should be able to determine that while each goal assertion can be 

achieved in isolation, achieving either assertion prevents the achievement of the other (in 

many cases, this could be inferred by analysing why the planner failed on certain branches). 

A second phase planner that considers qualitative and timing information could then 

explore the possibility of a concurrent plan. 

Aside: Constructing non concurrent systems 
When evaluating how to handle concurrency, we determined that in most cases, systems can 

and should (and given how information is learned, most likely will) be constructed in such a 

way as to avoid tasks having to be performed concurrently. For example, we could have two 

separate models, one for heating food and another for stirring food. When learning these 

systems, however, the learning agent should notice the correlation between stirring and 

cooking and so produce another system that examines the effects of performing both tasks 

together. Similarly, if someone is told how to cook food, you would immediately construct a 

joint system. Due to this fact, the importance of dealing with concurrency is reduced. 

3.4.3 Specialised versus General Models 
A specialised model is one that contains a super set of the assertions that are true in another 

(more general) model—this means specialised models can always be inferred (although they 

could and probably should be stated explicitly as well). Wherever a specialised model can be 

matched, the more general model will be able to be matched as well. We should, however, 

always use more specialised models (instead of rather than as well as generalised models) 

where available, as they may contain more specific information about what will happen 
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when the agent performs certain actions. Note that the use of a regressive planner could 

potentially cause issues as we may believe a generalised system is appropriate, but earlier 

steps could unexpectedly satisfy the context assertions of a more specialised system instead 

(which could produce a different result than the more general system). 

3.4.4 Specifying values as Variables 
A possible enhancement to the system models that we use could be to specify values as 

variables. For example, the assertion “property temperature water X” states that the 

temperature of water is some variable X. This would allow us to specify other values in 

terms of X (for example, the same as X, less than X, in between X and Y). An example of where 

this might want to be used is in a Microwave model; we could state that the temperature of 

an object in the microwave will be greater than it was before after the microwave is turned on 

for some time. Alternatively, we could specify X in terms of something that can be directly 

inferred from the observations of the world (or from assertions in a plan). For example, in 

the assertion “property direction X”, X could be specified as “facing objectA”. Thus, with 

a little inference, we could work out the direction of X by observing the direction of A and 

taking the opposite. 

Our current implementation does not specify any values as variables. While using variables 

for values does make some effects easier to express, the models become more complex (there 

will be more work required to bind values to variables, etc). As an alternative, we allow a 

range of values to be specified in any assertion. That is, the value of a property or qproperty 

assertion can be specified as a set of qualitative landmarks and ranges. Similarly, we allow a 

range of possible relations to be specified in relational assertions. This allows us to show 

“disinterest” at certain times. For example, we may say the temperature of a fluid in the 

microwave rises from room temperature to a value that is either in the between room 

temperature and boiling or boiling (but we do not care which). We currently ignore the 

possibility of specifying values as variables in terms of observations about the world. This is 

an area that could be looked into further. 

3.4.5 Several Other Points 
 Cleaning up systems:  When we perform almost any task, we inevitably have to clean 

something up once we are done. Cleaning up is important as it generally involves 

restoring systems to their “ready” state. The planner may be able to infer to how to clean 

up systems without being told specifically, by performing certain exit transitions in 

systems that it were traversed through in the plan (as a post processing step). 

Alternatively, certain states, or exit effects could be explicitly specified as part of the 

cleanup process, and we could ensure that these states are reached or that these exit 

effects occur at some point in the planning process. 

 Maintaining goals: Sometimes, we may want to specify that a set of goal assertions need 

to be “maintained”. Essentially, this just requires checking to see if any of the goal states 

(states that the agent ends up in and that were used to achieve a goal assertion) have an 

outward time passing transition. If they do, then find a path back to the goal state from the 

state that the time passing transition leads to. This means the goal assertions can be 

maintained over time. 

 Using models for inference: A possible way of incorporating inference into the system 

directly is to construct models that have no actions. Instead, they would require context 
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assertions, entry and exit effects, and only a single state. Essentially these models would 

denote that when the context assertions are achieved, the assertions in the state become 

true, and when the context assertions are invalidated, the assertions in the state become 

false. This technique has not been looked into in detail. It may turn out that representing 

inference in this manner is much more inefficient than incorporating it more specifically 

into the planning algorithm. At the same time, it may (or may not) be possible for a 

learning agent to learn these kinds of inference systems (it may be that this information 

could be extracted from a combination of other learned systems). 

 Using partial order planning lookahead as a heuristic: This was not really considered. 

Worth mentioning? 

3.4.6 Probabilities and Costs 
Another look at probabilities and costs versus qualitativeness. 

3.4.7  
Actions at one level as plans at lower level stuff (see note 36). 
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4 Conclusion 
Can solve simple to moderately difficult tasks (that don't involve too many systems). 

Improvements still need to be made. 

Some notion that adding costs / probabilities, important but wouldn’t cover everything. 

Concurrency is a bit of an issue. 
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5 Appendix 

5.1 Qualitative Best & Worst Expression Evaluation Tables 
See honours report—note that unsafe values still do not have numbers associated with them which will cause 

problems in some systems that involve unsafe plans. Ideally, unsafe plans should be numbered with the path cost best 

case path cost when loops are involved, and the worst case path cost if no loops are involved. Simply using best case 

path costs only, however, should prevent errors (whilst not always make the best choices). 

5.2 Pseudo-code of the Single System Algorithm 
This section provides a pseudo-code overview of the updated single system planning 

algorithm. 

generate indistinguishable states (see honours report) 

initialize all states with expressions (see honours report) 

 

visitState(initialState) 

 

highlight plan (see honours report) 

 

1. visitState(currState) 

  add currState to list of visited states 

   

  for each neighbouring state (who has a corresponding variable in currState’s expression) 

    if this neighbouring state has not yet been visited 

      visitState(neighbouring state) 

 

  update any occurrences of currState in currState’s expression with the value at-least-loop, and evaluate 

  for each state visited so far, from the last state to the first 

    update any occurrences of currState in the state’s expression with at-least-loop, and evaluate 

    if currState’s value is now grounded 

      cascadingUpdate(state) 

 

1. cascadingUpdate(state) 

2.   update(state) 

3.   while the update queue is not empty 

4.     update(state) 

 

1. update(state) 

2.   take the nextState off the queue 

3.   for each state visited so far, from the last state to the first 

4.     update any occurrences of nextState in the state’s expression with the updated value of nextState, and evaluate 

5.     if state’s expression became grounded or was already grounded and improved with the update 

6.       add the state to the update queue (and remove any occurrences of state already in the queue) 
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5.3 Pseudo-code of the Multi System Algorithm 
This section provides a pseudo-code overview of the multi system planning algorithm. Note 

that to make the following pseudo-code easier to understand, it ignores some of the more 

complex steps, such as taking into account created and destroyed objects, and computing 

scores (see the relevant sections of this report that describe the algorithm for more details): 

1. find all systems that contain a state that matches at least one goal assertion, and the corresponding partial bindings 

2. find all possible full bindings for each system that we have generated partial bindings for 

3. retain the best looking bindings based on heuristic (section 3.1.1) 

4.  

5. for each system+binding, find all possible “goal” states that satisfy at least one goal assertion 

6. for each “goal” state, check to ensure no “exit effects” cause conflict with actions later in the plan 

7. for each “goal” state, check to ensure no “must be true” assertions are not true in the state (if so, ignore this state) 

8. retain the top “goal” states per system based on number of satisfied goal assertions and number of states that can reach it 

9. retain the best looking goal states based on more detailed heuristic 

10.  

11. for each goal state, find all possible initial+goal state pairs where at least one goal assertion is satisfied 

12. for each initial+goal state pair, check to ensure no existing objects are being created or non existing objects destroyed 

13. if there are no matching pairs, fail, and backtrack (see line 25) 

14. retain, and order the best “widthAtLevel” initial+goal state pairs based on more detailed heuristic 

15.  

16. take the first initial+goal state pair off queue: 

17.   if all context and initial state assertions are satisfied, and no goal assertions remain 

18.     return a single system plan going from the initial to goal state specified in the pair 

19.   else if at “maxDepthForThisIteration” 

20.     fail, and backtrack (see 25) 

21.   for all context and initial state assertions that are satisfied, add them to the “must be true” set of assertions 

22.   for all context, initial state and remaining goal assertions that are not satisfied, recursively find a plan to satisfy them 

23.   if able to recursively find a plan to satisfy all these assertions 

24.     return recursively generated plan(s) with a single system plan based on this initial+goal state pair added to the front 

25.   if unable to satisfy these assertions recursively (fail was returned) 

26.     if the queue of initial+goal state pairs is not empty 

27.       go to the next initial+goal state pair in the queue 

28.     else 

29.       fail, and backtrack 


