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MANIFOLD = connected, Hausdorft, locally Euclidean space



For a manifold M the following are equivalent.
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M is metrisable;

M is paracompact;

=

strongly paracompact;

is screenable;

is metacompact;

is o-metacompact;

is paraLindeldf;

is o-paraLindelsf;

is metaLindeldf;

is nearly metaLindeldf;

is Lindel6f;

linearly Lindelof;

is wi-Lindelof;

is wi-metaLindel6f;

is nearly linearly wi-metaLindelsf;
is almost metaLindelsf;

is hereditarily Lindel&f;

is strongly hereditarily Lindelsf;
is an Rg-space;

is cosmic;

every open k-cover of M has a countable k-subcover;
M is an N-space;

M has a star-countable k-network;
M has a point-countable k-network;

M has a k-network which is point-countable on some dense subset of
M:

M is second countable;

M is hemicompact;

M is o-compact;

M is Hurewicz;

M may be embedded in some euclidean space;

M may be embedded properly in some euclidean space;
M is completely metrisable;

there is a continuous discrete map f : M — X where X is Hausdorff
and second countable;

M is LaSnev;

M is an Mj-space;

M is stratifiable;

M is finitistic;

M is strongly finitistic;
M is star finitistic;

there is an open cover U of M such that for each « € M the set st(z, U)
is homeomorphic to an open subset of R";

there is a point-star-open cover U of M such that for each * € M the
set st(xz,U) is Lindeldf;

there is a point-star-open cover U of M such that for each * € M the
set st(x,U) is metrisable;

the tangent microbundle on M is equivalent to a fibre bundle;
M is a normal Moore space;

M is a normal 0-refinable space;

M is a normal subparacompact space;

M is a normal space which has a o-discrete cover by compact subsets;
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M X M is perfectly normal;

M is a normal space which has a sequence (Un)pcw of open covers
with Npst(z, Up) = {z} for each = € M;

M is perfectly normal and there is a sequence (Un)p ey of families of

open sets such that N, (z)5t(@, Un) = {=} for each @ € M, where
C(z) ={n € w / 3U € Up, with z € U};

M is separable and there is a sequence (Cp)pgcy of point-star-open
covers such that Npst(z,Cp) = {x} for each @ € M and for each
z,y € M and each n € w we have y € st(wz,Cpn) if and only if
z € st(y,Cn);

M is separable and there is a sequence (Cp)pcy of point-star-open
covers such that Mpst(z, Cp) = {z} for each # € M and for each
z € M and each n € w, ord(z, Cp,) is finite;

M is separable and hereditarily normal and there is a sequence (Cpn)ncw
of point-star-open covers such that Ny st(z, Cp) = {z} for each z € M;

M is separable and there is a sequence (Un ) ncw of families of open sets
{z} for each € M, and ord(z, Cp) is

countable for each € M and each n € w;

such that ﬁnec(m)st(x, Un)

M X M has a countable sequence (Up, : n € w) of open subsets, such
that for all (z,y) € M X M — A, there is n € w such that (z,z) € Up,
but (z,y) & Un;

For every subset A C M there is a continuous injection f : M — Y,
where Y is a metrisable space, such that f(A) N f(M — A) = &;

For every subset A C M there is a continuous f : M — Y, where Y is a
space with a quasi-regular-G g-diagonal, such that f(A)Nf(M—A) = &;

M is weakly normal with a Gg—diagonal;

M has a quasi.cg.diagonal and for every closed subset A C M there
is a countable family g of open subsets such that, for every = € A and
y € X — A, thereisa G € § with z € G,y € G;

M has a regular G g-diagonal;

is submetrisable;

is separable and monotonically normal;

X M is monotonically normal;

st

is monotonically normal and of dimension > 2 or M = or R;

8 ® ® R K

is extremely normal;
M has property pp;

every open cover of M has an open refinement V such that for every
choice function f : V — M the set f(V) is closed in M;

every open cover of M has an open refinement V such that for every
choice function f : V — M the set f(V) is discrete in M;

M is a point-countable union of open subspaces each of which is metris-
able;

M has a point-countable basis;

M is separable and M“ is a countable union of metrisable subspaces;
Cj. (M, R) is Polish;

Cj (M, R) is completely metrisable;

Cj (M, R) is second countable;

Cp (M, R) is a g-space;

Cj, (M, R) is Fréchet;

Cj. (M, R) is countably tight;

Cj, (M, R) is an Rg-space;

Cp (M, R) is cosmic;

Cj (M, R) is analytic;

Cp(M,R) has countable tightness;

Cp(M,R) has countable fan tightness;
Cp(M,R) is analytic;

Cp(M,R) is hereditarily separable;

Cp(M,R) (equivalently Cy, (M, R)) is separable;
[M, $] is first countable;

[M, $] is countably tight;

[M, $] is sequential.
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M is nearly metalLindelof;

M is Lindelof;

M is linearly Lindelof;

M is wq-Lindelof;

M is wyi-metaLindelof;

M is nearly linearly wi-metalindelof;
M is almost metaLindelof;

M is hereditarily Lindelof;

M is strongly hereditarily Lindelof;
M is an Ng-space;

M is cosmic;

every open k-cover of M has a countable k-subcover:;

M is an N-space;
M has a star-countable k-network:

M has a point-countable k-network;

M has a k-network which is point-countable on some dense subset

of M;

M is second countable;
M is hemicompact;

M is o-compact;

M 1s Hurewicz.



72. Cyx(M,R) is Polish;

73. Cyx(M,R) is completely metrisable;
74. Cx(M,R) is second countable;

75. Cx(M,R) is a g-space;

76. Cx(M,R) is Fréchet;

77. Cx(M,R) is countably tight;

78. Cx(M,R) is an Wy-space;

79. Cy(M,R) is cosmic;

80. Cx(M,R) is analytic;

81. C,(M,R) has countable tightness;

82. Cp(M,R) has countable fan tightness;
83. Cp(M,R) is analytic;

84. Cp(M,R) is hereditarily separable;
85. Cp(M,R) (equivalently Ci(M,R)) is separable;
86. [M, $] is first countable;

87. [M,$] is countably tight;

88. [M, §] is sequential.



X a topological space then

Cx(X) = all continuous real-valued functions, compact-open topology

C,(X) = all continuous real-valued functions, pointwise topology

Sample Preliminary Result: X a g-space:

C(X) analytic <= C,(X) analytic <= X o-compact and metrisable

Analytic means continuous image of a Polish space
(= continuous image of P)

q-space means each point admits a sequence (IN,;) of neighbourhoods
such that x,, € N,, implies (x,) clusters

manifold = first countable = ¢-space

A manifold M is metrisable
<= M is o-compact

SO
<= C}(M) analytic

<= C,(M) analytic



Y
o-compact

Y .
Hurewicz

No-space

: every open k-cover
- has countable k-subcover

Lindeléf

metal.indelof

locally compact
locally second countable
connected, locally separable
: regular, Fréchet

: regular, locally compact,
locally hereditarily separable
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A

secong countable

cosmic

N-space

point-countable
k-network

>

k-network
point-countable
on dense subset



M a manifold

Cip(M) Polish= - A
Ce(M )A analytic C(M) completely metrisable
B Cr(M) second countable C (M) metrisable
Cu(M) Ry Cw(M) Fréchet
C(M) cosmic Cr(M) w-tight

A: M is hemicompact, |
cosmic, k-space

B: M is o-compact, metrisable

C: M is Ny-space :

D: every open k-cover of M ; v
has a countable k-subcover C D



Op(M) COSINLLC = - A

C,(M) hereditarily separable

C,(M) separable Cy(M) w-tight

B Cy(M) w-fan tight

A: M is o-compact, metrisable

B: M is submetrisable ;

C: every finite power M" v
is Hurewicz C



X, a space, is:

e hemicompact if 3(K,), compacta, VK compact dn: K C Kp;

e Hurewicz if V(U, ), open covers, A(V,): UpenV, = X and V), is a
finite subfamily of U,, Vn;

e an Ny-space if it has a countable k-network, i.e. collection N: VK,
compact, YU, open, with K c U AN € N with K ¢ N C U;

e an N-space if it has a o-locally finite k-network;

e cosmic if it has a countable network, i.e. as for k-network but
replace K by a point;

e a k-space if A C X closed whenever A N K closed VK compact;
e [réchet if Vo € A I{x,) in A converging to x;

o w-tight if Vo € A 3B C A: € B and B countable;

o w-fan tight if Vo € Nyeu A, 3 finite B, C A, @ € Upew By

e submetrisable if the topology has a metrisable subtopology.

e A k-cover of X: a collection § of subsets with each compactum in
X a subset of some member of §.



