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THE PROBLEM

Given:

X = a reflexive, smooth, strictly convex Banach space

X∗ = the dual of X

A : X → 2X
∗
a monotone point-to-set operator

Ω = a nonempty closed convex subset of Dom(A)

f ∈ X∗

Find a solution for the inclusion

f ∈ Ax, x ∈ Ω

or, alternatively, of the variational inequality

hAx− f, z − xi ≥ 0, ∀z ∈ Ω.



THE DIFFICULTY

Problems like that may happen to be ill-posed in the sense
that they may have no solution, or may have infinitely
many solutions and/or small data perturbations may lead
to significant distortions of the solution set.

More often than not the problem data A, f and Ω are
given and/or computable by approximations Ak, f

k and
Ωk, respectively.

Ill-posedness makes solving the perturbed inclusion or
variational inequality of little use since there is no guar-
antee that the solution we find will be close to a solution
of the original problem we are supposed to solve.



A REGULARIZATION TECHNIQUE

[Tikhonov, A.N., Regularization of incorrectly posed prob-
lems, Soviet Mathematics Doklady, 4, 1963, 1035-1038.]

Consider the perturbed inclusion

fk ∈ (Ak + αkJ
µ)x, x ∈ Ωk

and, respectively, the perturbed variational inequalityD
(Ak + αkJ

µ)x− fk, y − x
E
≥ 0,∀y ∈ Ωk,

where

Jµ : X → X∗ is the duality mapping of gauge µ

αk is a positive real number.



FACTS

* (Rockafellar) If Ak is maximal monotone, then the per-
turbed inclusion as well as the perturbed variational in-
equality have unique solution xk, no matter how αk > 0

is chosen.

* (A-B-R) If Ak is monotone and s-w-demiclosed, then
the perturbed inclusion as well as the perturbed varia-
tional inequality have unique solution xk, no matter how
αk > 0 is chosen.



THE BILLION $ QUESTION

Suppose that A is monotone and s-w-demiclosed. We
would like to know whether, and under which conditions
concerning the problem data, the solution xk of the per-
turbed inclusion/variational inequality approximates a so-
lution of the original inclusion/variational inequality. Ob-
viously, the quality of the approximation xk will depend
on the quality of the approximative data which impacts
upon the type of stability we can ensure for the regular-
ization process.

"We would like to emphasize that this method [of approx-
imating solutions of the original problem], often used to
demonstrate regularity of solutions, may sometimes be
used to attain their existence when the assumptions of
general [existence] theorems do not apply."

Cf. [D. Kinderlehrer and G. Stampacchia: An Intro-
duction to Variational Inequalities and their Applications,
1980, p. 105]
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V.I.: THE MAX MONOTONE CASE

Assumption (A):

There exist sequences of positive real numbers hk, δk, σk
such that

lim
k→∞

δk + σk + β(hk, σk)

αk
= 0

and there exist 3 bounded on bounded sets functions
a1, a2, a3 : X → R which satisfy the following condi-
tions:

(I)
°°°f − fk

°°°∗ ≤ (const.)δk;
(II) ∀x ∈ Ω, dist∗(x,Ωk) ≤ a1(x)σk;

(III) ∀w ∈ Ωk, dist∗(w,Ω) ≤ a2(w)σk;

(IV ) ∀x ∈ Ω,∀u ∈ Ax, ∃zk ∈ Ωk :

dist∗(u,Akzk)) < a3(u)β(hk, σk).



THEOREM (A-B-R 2001): If A is max monotone and if
there is a sequence of approximative data (Ak, f

k,Ωk)

with Ak max monotone such that assumption (A) holds,
then the variational inequality

hAx− f, y − xi ≥ 0,∀y ∈ Ω,

has at least one solution and the sequence
n
xk
o
k∈N of

solutions of the corresponding variational inequalitiesD
(Ak + αkJ

µ)x− fk, y − x
E
≥ 0,∀y ∈ Ωk,

converges strongly to the minimal norm solution of it.



VI: THE MONOTONE CASE

Assumption (B)

(I) The sets {Ωk}k∈N have nonempty intersection and
converge in Mosco’s sense to the set Ω and

Ωk ⊆ Int (DomA) ∩ Int (DomAk) ;

(II) There exists a sequence of positive real numbers
{αk}k∈N which converges to zero and has the next two
properties:

(i) ∀k ∈ N:
°°°fk − f

°°°∗ ≤ (const)αk;
(ii) There exist two functions p, q : X → R+ which are
bounded on bounded sets and such that, for each k ∈ N,
and for any x ∈ Ωk we have that

(ii− 1) If ζ ∈ Ax, then dist∗(ζ,Akx) < q(x)αk;

(ii− 2) If ξk ∈ Akx, then dist∗(ξk,Ax) ≤ p(x).



THEOREM (A-B-R 2003): If A is monotone and s-w-
demiclosed, if there exists a sequence of approximative
data (Ak, f

k,Ωk) withAk monotone and s-w-demiclosed
such that assumption (B) holds, and if [we pay the fol-
lowing price]:

For any real number β > 0, the set

Lβ(A) := {x ∈ X : kξk ≤ β kxk , ∀ξ ∈ Ax}

is bounded,

then the variational inequality

hAx− f, y − xi ≥ 0,∀y ∈ Ω

has solutions and the sequence
n
xk
o
k∈N of solutions of

the corresponding variational inequalitiesD
(Ak + αkJ)x− fk, y − x

E
≥ 0,∀y ∈ Ωk,

converges to the minimal norm solution of it.

Note: The boundedness condition holds for strongly co-
ercive operators.



INCLUSIONS: THE MAX MONOTONE
CASE WITH UNIFORM CONVERGENCE ON

BOUNDED SETS

Assumption (C)

There exist the sequences of positive real numbers αk δk
and hk and the continuous functions a, g, ζ : R+→ R+
such that αk → 0, ζ is nondecreasing with ζ(0) = 0,

lim
k→∞

δk + ζ(hk)

αk
= 0

and such that

(I)
°°°f − fk

°°° ≤ (const)δk
(II) ∀x ∈ Ω, ∃x0 ∈ Ωk :°°°x− x0

°°° ≤ a(kxk)hk;
and

∀y ∈ Ax : dist∗(y,Akx
0) ≤ g(kyk∗)ζ(hk).



THEOREM (A-B-R 2001): If A is max monotone and
if there exists a sequence of approximants (Ak, f

k,Ωk)

such that assumption (C) holds, then the inclusion

f ∈ Ax, x ∈ Ω

has solutions, the sequence
n
xk
o
k∈N ⊂ X given by

xk = (Ak + αkJ
µ)−1fk,

is well defined and it converges strongly to the minimal
norm solution of it.



INCLUSIONS: THE MAX MONOTONE
CASE WITHOUT UNIFORM

CONVERGENCE ON BOUNDED SETS

Theorem (A-B-K 2002). Suppose that there exists a
sequence of positive real numbers {αk}k∈N which con-
verges to zero and a sequence of approximants (Ak, f

k)

with Ak maximal monotone such that

w − limGraph (Ak) ⊆ Graph (A)

and fk
w→ f. If for each v ∈ A−1f, there exists a

sequence
n
vk
o
k∈N which converges strongly to v in X

and such that

0 ∈ s− lim 1

αk

h
Akv

k − fk
i
,

then the inclusion has solutions, the sequence

xk = (Ak + αkJ
µ)−1fk

is well defined and converges weakly to the minimal norm
solution of it.



AN EXAMPLE

This example illustrates the max monotone case with

UNIFORM CONVERGENCE ON BOUNDED SETS

It shows the degree of stability of the regularization
method

Take the inclusion f ∈ Ax in X = R2 with Ω ⊂ R2

being the closed convex cone determined by the lines of
equations x2 = q1x1 and x2 = q2x1, where 0 < q1 < q2
are constants and the operator A : Ω→ R2 is given by

Ax =

⎧⎪⎨⎪⎩
Bx if x ∈ Int(Ω),
{Bx+ λ(q1,−1) : λ ≥ 0} if x2 = q1x1,
{Bx+ λ(q2,−1) : λ ≥ 0} if x2 = q2x1.

where B : R2 → R2 is the linear positive semidefinite
operator

Bx =

Ã
1 2
2 4

!
x.

A is maximal monotone.



For each h ∈ (0, 1] consider a closed convex cone Ωh ⊂
R2 determined by the lines x2 = q1(h)x1 and x2 =

q2(h)x2, where q1 < q1(h) < q2 < q2(h) <∞. Define
the operator Bh : Ωh→ R2 by

Bhx =

Ã
(1 + h)2 2 + h
2 + h 4 + h

!
x,

Bh is positive semidefinite.

The operator Ah : Ωh→ R2 given by

Ahx =⎧⎪⎨⎪⎩
Bhx x ∈ Int(Ωh)
{Bhx+ λ(q1(h),−1) : λ ≥ 0} x2 = q1(h)x1
{Bhx+ λ(q2(h),−1) : λ ≥ 0} x2 = q2(h)x1

is maximal monotone too.

If there exists a constant c0 > 0 such that for any h ∈
(0, 1] we have

max (|q1 − q1(h)| , |q2 − q2(h)|) ≤ c0h,

then the operators A and Ak := A1/k defined above
satisfy the assumtion (C)



Figure 1: The domains of the given and of the perturbed
operators



Computational experiments

DATA

µ(t) = t

q1 = 0.25

q2 = 0.5

f = (3, 6)T

The minimal norm solution is

x∗ =
³
9
5,
3
5

´T
with kxk ≈ 1.89 4.

APPROXIMANTS

fk =
³
3 + 0.5k−2, 6− 0.5k−2

´T
Ωk = B1/k(Ω)



The procedure

xk = (A1/k + k−1Jµ)−1
Ã
3 + 0.5k−2

6− 0.5k−2

!

gives

k xk dist. to x∗

1 (. 214 26, . 80954) 1.5995
10 (.498 03, 1.217) 1. 4408
100 (.595 92, 1.199) 1.3448
1000 (1. 800 3, 0.599 83) 3. 448 2× 10−4



An application

Consider the following optimization problem:

(P ) Minimize F (x) subject to x ∈ Ω.

represented in the inclusion form

(P 0) Find x ∈ X s.t. 0 ∈ Ax, with A = ∂F +NΩ.

Presume that the function F and the set Ω can not be
exactly determined and that, instead, we have sequences
of approximations of them described as follows:



F Fk : X → (−∞,+∞], (k ∈ N) , are convex, l.s.c.
functions such that

DomF ⊆ DomFk, ∀k ∈ N,

and which approximates F in the following sense:

Condition (A). There exists a continuous function c :

[0,+∞) → [0,+∞) and a sequence of positive real
numbers {δk}k∈N such that limk→∞ δk = 0 and

|Fk(x)− F (x)| ≤ c(kxk)δk,

whenever x ∈ DomF and k ∈ N.



F Ωk, k ∈ N, are closed convex nonempty subsets of
Int (DomF ) , which approximate the set Ω in the follow-
ing sense:

Condition (B). The next two requirements are satisfied:

(i) For any y ∈ Ω there exists a sequence
n
yk
o
k∈N

which converges strongly to y in X and such that yk ∈
Ωk for all k ∈ N;

(ii) If
n
zk
o
k∈N is a sequence in X which is weakly con-

vergent and such that for some subsequence
n
Ωik

o
k∈N

of {Ωk}k∈N we have zk ∈ Ωik for all k ∈ N, then
there exists a sequence

n
wk
o
k∈N contained in Ω with

the property that

lim
k→∞

°°°zk −wk
°°° = 0.



For each k ∈ N, we associate to problem (P) the problem

(Pk) Minimize Fk(x) s.t. x ∈ Ωk,

which can be solved by finding solutions of the inclusion

(P 0k) 0 ∈ Akx
k, where Ak := ∂Fk +NΩk

.

Let

xk := (Ak + αkJ
µ)−1(0), where αk → 0+.

xk is solution to the regularized problem

(Qk) Minimize Fk(x) + αkφ (kxk) s.t. x ∈ Ωk.

(1)
NOTE: By contrast to problem (Pk) which may have
infinitely many solutions, the problem (Qk) always has
unique solution. Moreover, by choosing µ(t) = t one
ensures that the objective function of (Qk) is strongly
convex and, therefore, the problem (Qk) may be better
posed and easier to solve than (Pk).



A consequence of Thm. A-B-K-2002 above:

Theorem (A-B-K). Suppose that conditions (A) and
(B) are satisfied. If there exists a sequence {αk}k∈N
of positive real numbers converging to zero such that for
each optimal solution v of (P ), there exists a sequence
{vk}k∈N with the properties that vk ∈ Ωk for all k ∈ N
and

lim
k→∞

°°°vk − v
°°° = 0 (2)

= lim
k→∞

α−1k kPr∂Fk(vk)+NΩk
(vk)(0)k∗,

then the sequence {xk}k∈N converges strongly to the
minimal norm solution of the optimization problem (P ).

Condition (c) in itself is difficult to verify but there
are simpler conditions which imply it. For instance,



...we have the following surogates for condition (2):

♣...there exists {vk}k∈N s.t. vk ∈ Ωk, (∀k ∈ N) and

lim
k→∞

°°°vk − v
°°° = 0 = lim

k→∞
α−1k kPr∂Fk(vk)(0)k∗.

♣...there exists {vk}k∈N s.t. vk ∈ Ωk, (∀k ∈ N) and

lim
k→∞

°°°vk − v
°°° = 0
= lim

k→∞
α−1k kPrTΩk(vk)

³
−∇Fk

³
vk
´´
k∗.

♣...there exists {vk}k∈N s.t. vk ∈ Ωk, (∀k ∈ N) , and

lim
k→∞

α−1k k∇Fk(vk)−∇F (v)k∗ = 0.


