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Abstract

The freezing of water to ice is a classic problem in applied math-
ematics, involving the solution of a diffusion equation with a moving
boundary. However, when the water is salty, the transport of salt re-
jected by ice introduces some interesting twists to the tale. A number
of analytic models for the freezing of water are briefly reviewed, rang-
ing from the famous work by Neumann and Stefan in the 1800s, to
the mushy zone models coming out of Cambridge and Oxford since the
1980s. The successes and limitations of these models and remaining
modelling issues, are considered in the case of freezing sea-water in the
Arctic and Antarctic Oceans. A new, simple model which includes tur-
bulent transport of heat and salt between ice and ocean is introduced
and solved analytically, in two different cases — one that turbulence
is given by a constant friction velocity, and the other that turbulence
is buoyancy-driven and hence depends on ice thickness. Salt is found
to play an important role, lowering interface temperatures, increasing
oceanic heat flux, and slowing ice growth.

1 Introduction

The temperature at which sea-water freezes depends on its salinity. The
saltier the brine, the lower the freezing point. When salinity is above the
critical value of 24psu, the freezing point is below the temperature of maxi-
mum density, so that colder sea-water is heavier. Then cooler surface waters
are heavier and overturn, mixing a region of ocean down to a critical depth
(the pyncnocline). This region is cooled to near freezing, rather than just
the surface waters.
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When cold air causes open sea-water to begin to freeze, many small ice
crystals (frazil ice) form at the surface, stirred by wind, waves and currents
[10, 13, 6]. This may be further complicated by the formation of agglomera-
tions of crystals called pancake ice, which collide and raft. A large solid sheet
of ice is typically formed when a critical thickness of about 10cm is reached
[6]. Then those crystals that are oriented with the direction of most rapid
growth near vertical become predominant as the ice thickens.

Salt is rejected by growing ice as a dense brine, but the brine cannot
escape as rapidly as heat at the ice-ocean interface. This is due to the
diffusivity of salt being much less than thermal diffusivity. Then the very
cold salty interface leads to a cold fresher region nearby. As a consequence,
while the actual ice-ocean interface is at freezing point, the region below the
interface is below freezing point, creating an unstable situation — any ice
that protrudes into the supercooled region grows faster. This leads to the
dendritic growth of ice as fingers or plates down into the sea. These fingers
and plates then bridge across, trapping brine in the ice-brine mixture. This
constitutional supercooling causes the ice-ocean interface to be convoluted,
with a gradual transition from water to a mixture of liquid (brine) and ice
called a mushy zone [10, 7, 34, 35], rather than a sudden planar change from
liquid to ice.

Cold air drives the freezing process, and snow on top can complicate it
by decreasing conductive heat flow. There is radiative heat transfer between
atmosphere and ice. The ocean is relatively warm, with turbulent currents,
and in Antarctica near glacial ice shelves is occasionally slightly supercooled
with billows of small ice crystals present, to further complicate the picture.

2 Previous Models

Classic work by Neumann in the 1860s [3] and famously Stefan in 1891 [13]
was seminal in the early modeling of the growth of sea ice. The diffusion
equation, resulting from conservation of heat, is solved in one dimension with
a moving boundary between ice and ocean, in the case that the boundary
is sharp and heat transport from ocean to ice is negligible. The freezing
interface is found to move as the square root of time. Salt transport is
ignored.

Conservation of energy leads to the heat conduction equation for the
temperature T (t, z) of the ice (◦C), assuming the ice can be approximated
as a one-dimensional sheet with planar interfaces with air and ocean, z is
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elevation and t is time,

∂T

∂t
= D

∂2T

∂z2
, D ≡ ki

ρiCi
(1)

whereD is the thermal diffusivity of the ice (which averages about 10−6m2.s−1

over the temperature range -2 to -25◦C for an ice salinity of 5 psu), ρi ≈
910 kg.m−3 is the ice density, Ci its thermal capacity (J.kg−1◦C−1), and
ki ≈ 2.2 W.m−1.K−1 its thermal conductivity [14, 25, 26]. Trapped brine
means that Ci and D have a strong dependence on T [24, 25].

Boundary conditions used by Stefan and Neumann are that at the air-
ice interface z = 0 the ice temperature T0 is equal to the air temperature
Ta(t), and at the moving boundary z = −h(t) that is the ice-ocean interface,
the temperature is at freezing point Tf , and the latent heat removal that
advances the freezing front at ḣm.s−1 is caused by heat conduction upwards
to the colder air through the ice, so that

ρiLḣ = −ki
∂T

∂z

∣∣∣∣
−h+

, (2)

where L ≈ 3.3× 105 J.kg−1.K−1 is the latent heat of fusion for sea-water.
The air temperature oscillates, and these temperature variations pene-

trate sea ice at rates (and to effective depths) dependent on frequency, with
a phase velocity [3] estimated for constant diffusivity as 2D/δ m.s−1 where δ
is the penetration depth of the thermal wave. The slowest waves then pene-
trate with phase velocities 2D/h m.s−1, which is faster than the ice growth
rate estimated at ki(Tf − Ta)/(ρiLh) provided that

Tf − Ta < 2DρiL/ki ≈ 300◦ C .

For air temperatures encountered in Antarctica and the Arctic, this in-
equality is easily satisfied. Tf is about -2◦C depending on salinity, and Ta
during freezing ranges from this value to about -70◦C. This means that the
slowest penetrating thermal waves do travel much faster than the ice growth
rate. This does not mean that the temperature profile is always linear —
observations indicate otherwise, and the observed curvature of temperature
versus depth has been used to directly estimate the thermal conductivity of
sea ice [14, 25, 26]. However, oscillations also damp out as they penetrate,
with a damping factor of the order of exp(−

√
ω/(2D) z) [3], where ω is the

frequency of oscillation. Then, for example, an oscillation with period 40
days damps by a factor of e over a lengthscale of 1m, and smaller period
oscillations damp out over even shorter depths. This suggests that a running
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average of 40 days or so is a reasonable pre-treatment for air temperatures
— the ice effectively averages out rapid changes. Such a running average has
much less variability than the original air temperature.

For the purposes of calculating ice growth rate, a linear approximation
(that is, a steady-state solution to Equation 1) is often used to estimate the
average temperature gradient in the ice at the ice-ocean interface,

∂T

∂z
≈ Ta − Tf

h
,

and the Stefan problem becomes

ḣ =
ki
ρiLh

(Tf − Ta) . (3)

This integrates to give the Stefan solution

h2 =
2k

ρiL
θ ≈ 1.4× 10−8 θ , (4)

where θ ≡
∫ t

0
(Tf − Ta) dt is the number of degree-seconds of cooling. For a

constant air temperature θ is linear in time, so that h grows as the square
root of time. The Stefan solution is graphed in Fig. 2, alongside data and
later model results.

Stefan’s solution is generally regarded as giving an upper limit on ice
growth rate and thickness. Snow reduces heat flow, solar heating slows cool-
ing, and heat flow from ocean to ice slows cooling — these effects have been
ignored.

A more sophisticated boundary condition at the upper ice surface allows
for a thermal boundary layer in the air, or for a layer of snow, so that there
is a flux (or mixed boundary) condition,

∂T

∂z
= α(Ta − T0) , z = 0 , (5)

where α is a nonnegative heat transfer coefficient with units m−1, which
depends on snow thickness if snow is present [21, 12]. This results in

ḣ =
kα

ρiL(1 + αh)
(Tf − Ta) , (6)

which integrates to give

h2 +
2

α
h =

2k

ρiL
θ . (7)
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In the limit α → ∞, the mixed boundary condition reduces to Stephan’s
condition Ta = T0, and the solution for h reduces to the Stefan solution.
In general for positive α, ice growth is slower that the square root of time
Stefan behaviour, although for α = 40 m−1 the graphs practically coincide
(Fig. 2). Small α gives linear growth of h with θ, and zero α corresponds to
a perfectly insulated upper boundary, with no heat taken from the ice and
no ice generated.

An empirical fit [1] to the thickness of snow-free ice in Thule, Greenland,
illustrated in Fig. 1 to show the scatter of data points, used the same formula,

h2 + 0.051h = 0.775× 10−8 θ (8)

where h is in m, and θ is degree-seconds. See [22] for other empirical rela-
tionships.

Figure 1: Data and empirical fit to snow-free ice near Greenland, after An-
derson, 1961 [1]. (Reprinted with permission of the International Glaciological Society and Prof. Anderson)

Matching the coefficients of h in Equations 7 and 8 implies that α ≈
40 m−1. However, the constant term on the right-hand side of Equation 8
is not a good match with known values listed earlier in this paper. Fig. 2
shows a comparison between the empirical (data) thicknesses given by 8 and
our solution 7, using α = 40m−1. Our simple model (with up-to-date values
for ki, ρi, and L) predicts a faster growth of sea ice than is observed.

Reducing our ki value from 2.2 to 1.3 gives a good fit to the data (graphi-
cally indistinguishable from the fit that Anderson drew, Fig. 1), but this is at
the cost of almost halving the typical measured value of thermal conductivity
in sea ice [14]. A number of missing factors in the model could account for
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the misfit, including radiative heat transfer, heat flow from the ocean to the
ice (the oceanic heat flux), and the role played by the transport of salt. We
will consider the latter two mechanisms in the next Section.

Figure 2: A graph of ice thickness h in m versus degree-days of cooling θ,
comparing an empirical fit by Anderson [1] (circles), an empirical fit to data
from McMurdo Sound [27] (boxes), and Stefan’s solution and our simple
model 7 with α = 40, which both plot almost identically (solid line).

Also shown in Fig. 2 is a fit to sea ice thicknesses measured in McMurdo
Sound [27]. These grow slower initially than Anderson’s measurements, then
faster once the ice is about 1m thick. This may be related to the appearance
of a different ice crystal structure in the McMurdo ice [27] at this thickness,
possibly associated with the accretion of ice from a supercooled mixed oceanic
layer. Slow early solid ice growth may be due to heat transport from this
layer, as it is supercooled, and later faster growth of solid ice may be reaping
the benefit of small crystals of ice that are nucleated in the mixed layer,
rising to the solid ice interface and sticking there.

A very detailed vertical model of the heat conduction problem is solved
numerically by Maykut and Untersteiner [22]. They concentrate particularly
on the interface between atmosphere and ice, and on parameterisations of the
various mechanisms for heat exchange there, especially radiative transport.
Salt transport is not modelled, however, which may impact on heat transport
from the ocean.
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3 Salt Transport

Here we consider the importance of also modelling the transport of salt, for
the growth of sea ice. Salt alters the freezing point of sea-water, and salt
diffusivity is very different to thermal diffusivity.

Weber [32] considers the very early growth of sea ice, and includes salt
transport. He shows that the coupling between salinity and heat transport
cannot be neglected. His model, like that of Stefan, ignores heat transport
between ice and ocean. Salt transport to the ocean is modelled as diffusive.
The model is solved by a heat balance integral method, which uses a polyno-
mial approximation to the temperature and salinity profiles. Weber assumes
a small temperature drop across the ice, and takes the interface to be sharp
and smooth. Recent measurements and modelling suggest that all three of
these assumptions are violated in practice (e.g., [6]) in the early growth of
fresh polar sea ice.

Weber does find that including salt transport reduces ice growth rate,
because salt lowers the freezing temperature at the ice-ocean interface, and
for his thin ice this affects heat transport to the atmosphere. Furthermore,
ice growth rate in his model is proportional to the square root of time, for
constant air temperature. Weber notes that the rejected salt will lead to
convection, and that morphological instability and dendritic ice growth is
likely, invalidating the assumption of a flat interface between ice and ocean.

A similar approach is taken by Notz et al [23] in their modelling of the
formation of a false bottom under summer melt ponds in the Arctic. Their
model admits a similarity solution, since there are no external length or
time-scales, and interfaces grow as the square root of time.

3.1 Turbulent Transport

The turbulent transport of heat and salt in the general context of cooling a
binary alloy is modelled by Woods and Huppert [33]. They posit a boundary
layer beneath the ice, and flux terms depending on a Rayleigh number to the
power of one third. Various turbulent sub-models are considered, including
the formation of plumes or blobs of brine, and various relative rates of trans-
port of heat and salt are examined. Their mixed layer is of finite extent, and
may become supercooled. Small-time asymptotic analysis gives square-root
of time growth, which changes to linear in time behaviour later on, in the
limit of relatively slow salt transport.

A new simple model that extends the Stefan approach to include the tur-
bulent transport of heat and salt at the ice-ocean interface is now introduced
here and solved approximately. A linear temperature profile in the ice is as-
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sumed, with the surface of the ice at air temperature. Conservation of heat
and salt at the growing interface gives

ḣ =
ki(Tf − Ta)

ρiLh
− QT

ρiL
, (9)

and

ḣ =
QS

DS
, (10)

where DS = ρi(Si − Sw), and QT and QS are turbulent fluxes of heat and
salt.

We assume there is a thermal and saline boundary layer in the ocean next
to the ice with density ρw, temperature Tf , and salinity Sw. The average
salinity in the sea ice is Si. Units for salinity are parts per thousand, or gms
of salt per kg of brine. We assume that parts per thousand equates to the
same number as psu (practical salinity units).

The average salinity of sea ice and of the ocean, near the ice-ocean in-
terface, depend on how fast it is freezing. We model the variation of sea ice
salinity by taking the salinity of sea ice to be proportional to the (variable)
salinity of the sea-water near the ice (as in Schmidt et al, 2004), so that

Si = fSw , where f ≈ 0.14 ,

and hence,
DS = −Sw%i(1− f) ≈ −0.86Sw%i . (11)

Freezing point is approximated as [32]

Tf = −ASw , (12)

where A ≈ 0.054 ◦C/psu.
The turbulent flux terms for heat and salt are (using a simple model for

transfer between a region close to the ice with salinity and density Sw and
%w, to a well-mixed region further away):

QT = −CHu∗(Tf − Tm)%wCw , (13)

and
QS = −CSu∗(Sw − Sm)%m , (14)

where the constants Tm, %m, and Sm are temperature, density, and salinity in
a deeper, well-mixed ocean layer, Cw is the thermal capacity of that water,
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and CH ≈ 0.0058 is a turbulent transfer coefficient measured in the field[17].
A value for CS is here calculated from CH in the spirit of [16] as

CS = CH

(
Pr

Sc

)2/3

≈ 0.03CH ≈ 2× 10−4 .

Here, Sc= 2432 is the Schmidt number for salt in water (kinematic viscos-
ity divided by molecular diffusivity), and Pr= 13.4 is the Prandtl number
(kinematic viscosity divided by thermal diffusivity). This parametrisation of
the turbulent transport of salt and heat reflects the importance under ice
of a viscous sublayer, across which molecular properties are significant [16],
making the transport of salt comparatively slow.

We will use the simple average value for the friction velocity, u∗ ≈
0.015 m/s, as measured in the Weddell Sea in 1996 [17], and take the mixed
layer in the ocean to be at the freezing temperature for its salinity. Then our
variables are ice thickness h(t) and boundary-layer salinity Sw(t). Equating
the right-hand sides of Equations 9 and 10 gives a quadratic for Sw as a
function of h,

SaS
2
w + SbSw + Sc = 0 , (15)

where Sa ≡ CHu∗ρwCwA/L+kiA/(Lh), Sb ≡ CHu∗ρwCwTm/L+kiTa/(Lh)+
Csu∗ρm/0.86, and Sc ≡ −Csu∗ρmSm/0.86. With an eye on Equation 10, it
is useful to transform variables in Equation 15 as Y = Sw/(Sw − Sm). The
resulting quadratic in Y ,

YaY
2 + YbY + Sc = 0 , (16)

where Ya ≡ SaS
2
m + SbSm + Sc and Yb ≡ −(SbSm + 2Sc), has a solution that

is closely matched by taking the balance between the Y 2 and the Y terms,
giving a linear dependence on h,

Y ≈ Ta
ASm + Ta

+
u∗
ki

(
CHρwCwTm − CsρmL/0.86

ASm + Ta

)
h ≈ 1 + Y1h , (17)

where Y1 ≈ −780/Ta for air temperatures much less than Tf .
Then if the air temperature Ta is taken to be constant, Equation 10

integrates to give the solution

h2 + γ1h ≈
2ki
ρiL

θ , (18)

where γ1 ≡ 1.7ki|Ta|/(u∗CsρmL), and L ≡ L − 0.86CHρwCwTm

Csρm
. Using our

parameter values this becomes

h2 +
|Ta|
460

h ≈ 0.88× 10−8 θ , (19)
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which, using a range of air temperatures, Ta = −5 to −45◦C, gives a close
match to Anderson’s data as illustrated in Fig. 3.

The term γ1 reflects the effect of salt transport on ice growth, and vanishes
as Csu∗ → ∞ and salt transport increases. If Cs → ∞, then L → L and
Stefan’s solution is recovered. If Cs vanishes, h becomes linear in θ and also
vanishes.

Figure 3: Data from Anderson [1] (circles), Purdie et al [27] (boxes), and
our turbulent salt transport model 19 with Ta = −5◦C (upper curve) and
Ta = −45◦C (lower curve).

Note that salt transport has considerably reduced the modelled ice growth
rate. Other authors have noted the importance of including salt transport,
although in different contexts [23, 32] to the present one. Here, salt can be
understood to be a bottle-neck in the transport process, accumulating in our
model at the ice-ocean interface because it has a much smaller diffusivity
than heat. The heat balance is satisfied because the accumulation of salt
lowers the ice temperature there, and increases the oceanic heat flux to the
ice (commensurate with a slower growth rate).

The heat flux from the freezing interface to the air, and the heat flux
from the ocean to the freezing interface, are graphed in Fig. 4, assuming an
air temperature of -25◦C. These values compare well with measured values
in polar waters [17]. The oceanic heat flux is significant compared with the
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heat flux to the atmosphere, which is about 2.6 times the oceanic heat flux.
The ratio of oceanic and atmospheric heat fluxes is almost constant over

the ice thickness range 0.1–2 m. This is because both fluxes depend approx-
imately on the inverse of ice thickness h, the flux to air because the average
temperature gradient is inversely proportional to h, and the oceanic heat flux
because the salinity and hence the freezing temperature at the interface is
roughly inversely proportional to h.

Figure 4: Heat fluxes (W.m−2) from freezing ice-ocean interface to air (upper
curve) and from the ocean to that interface (lower curve), versus ice thickness,
for the turbulent transport model with constant friction velocity and an
air temperature of -25◦C. The net heat flux from the freezing front is the
difference between these two fluxes.

3.2 Buoyancy driven turbulence

The previous model used a constant friction velocity that reflected an average
turbulence environment consistent with field measurements. However, one of
the factors driving turbulent transport is the rejection of brine from growing
sea ice in turbulent plumes. Since brine is rejected more rapidly when ice is
growing faster, there is a coupling between friction velocity and ice growth
rate. Now we consider the effects of taking turbulent transport to be driven
entirely by brine rejection.

This may be modelled [2, 8, 19, 31] by taking u∗ =
√
Cd W∗, where

Cd ≈ 1.3 × 10−3 is the drag coefficient [9], and W∗ is the Deardorff or free
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convection velocity scale [5]. Turner [30] gives W∗ in terms of the buoyancy
flux

W 3
∗ = Bλ , (20)

where the buoyancy flux is B ≡ −g〈%′
ww

′〉
〈%m〉 (see also [18]), and 〈%′ww′〉 is the

average vertical flux (positive upwards in this paper) of random variations %′w
in fluid density at the ice-ocean interface, and 〈%m〉 is the mixed layer density.
The lengthscale used is [18] λ = κzi where κ = 0.4 is von Kármán’s constant.
The term zi is the thickness of the mixed layer, stirred by brine rejection
under the growing sea ice, and from measurements [11] is of the order of 50m
in mid-winter in McMurdo Sound. Fluid density depends mainly on salinity,
so that

d%w
dS
≡ %ws ≈ 0.81 kg/m3/psu

and %′w = %wsS
′
w. Then B ≈ −%ws g〈w′S′

w〉
〈%m〉 . The average vertical flux of salt

follows from our model, using Equation 10:

〈w′S ′w〉 = ḣ
DS
%w
≈ −0.86 ḣ Sw%i

%w
. (21)

Hence,

W 3
∗ = 0.86 %ws λgḣ

(
Sw%i
%m%w

)
. (22)

Then the friction velocity may be found in terms of salinity in the bound-
ary layer from the model equations, u∗ = C

3/4
d

√
b(Sw − Sm) and W∗ =

u∗/
√
Cd, where b ≡ λgCS%ws/(0.86 %w).

Equating the right-hand sides of Equations 9 and 10 then gives a quintic
in ∆S ≡

√
Sw − Sm . The physically realistic solution to this quintic is

approximated within 10% by matching the cubic and constant terms, to get
a linear relationship between ∆S and h−1/3. Substituting this back into
Equation 10 gives

ḣ ≈ ki|Ta|
ρiLγ3(h+ γ2h

1
3 )
, (23)

where

γ2 ≡

(
0.86 ki|Ta|

γ3CsρmLC
3/4
d

√
bSm

) 2
3

and

γ3 ≡ 1− 0.86CHρwCwTm
CSρmL

.
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This integrates for constant Ta, giving

h2 +
3

2
γ2h

4
3 =

2ki
ρiLγ3

θ . (24)

The term γ2 is of order C−1
s , so vanishes as salt transport increases, recovering

Stefan’s solution, and γ2 is singular as salt transport reduces to zero, giving
similar behaviour to the previous model which assumed constant u∗. The
solution given by Equation 24 is graphed in Fig. 5 for the case that air
temperature is -25◦C, and compared with data and the previous model.

Figure 5: Data from Anderson [1] (circles), Purdie et al [27] (boxes), a con-
stant turbulence salt transport model 19 with Ta = −25◦C (solid curve) and
a model with only buoyant plumes driving the turbulence (dashed curve) as
in Equation 24, also with Ta = −25◦C.

The modelled ice thickness when turbulence is driven by buoyancy is much
less than data and other models indicate. This is because of the assumption
that only buoyancy, from rejected brine plumes, drives turbulence under sea
ice. Typical values of u∗ obtained from this model are about one hundred
times smaller than the measured value 1.5× 10−2 m.s−1 used in the previous
model. This suggests that brine rejection plays a minor role in generating
turbulence in the mixed layer. So in this model, salt builds up at the ice-ocean
interface, lowering the temperature there. The result is a much increased
oceanic heat flux to the freezing interface, and hence a much reduced net
heat flux from it. Relatively more heat is removed from the oceanic mixed
layer, at the expense of the growth of the freezing front.
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Both turbulent salt flux models predict cooling of the oceanic mixed layer
by this mechanism, which may lead to supercooling. It is unclear how super-
cooling in the mixed layer is relieved — ice may grow in dendritic structures
from the interface, especially if supercooling is greater nearby, and/or ice
may grow from nucleation sites within the turbulent mixed layer. The latter
mechanism is a relatively efficient way to make ice, in the form of turbu-
lent billows of small ice crystals [11, 20] within the mixed layer, as this ice
does not immediately thicken the layer of solid ice. Hence heat flow to the
atmosphere is more rapid than if the ice does thicken this layer.

A dendritic response to supercooling means the interface between ice
and ocean is not planar but highly convoluted. One modelling approach to
this phenomenon is to approximate such a mushy zone as a porous medium
made of ice and brine, with a porosity and permeability that depend on
temperature [33, 34, 35, 36, 7]. The ice-ocean boundary is then warmer than
in the planar interface models with salt transport, and oceanic heat flux is
reduced.

4 Conclusions

The inclusion of salt transport is important when modelling the growth of
sea ice. A simple model for turbulent transport of salt and heat between ice
and ocean characterised by a constant friction velocity has been developed
and solved. In this model, the presence of salt at the ice-ocean interface
lowers the freezing temperature there, increasing the heat flux from the ocean,
and slowing down the growth of sea ice, to give an excellent match with
observations.

While the modelling of the growth of sea ice has come a long way since
the remarkable work of Neumann and Stefan, it still falls short of modern
understandings of ice structure and oceanic conditions. The constant friction
velocity model presented here does well in fitting Anderson’s classic data, and
is consistent with observed oceanic heat fluxes, but fails to explain changes
in ice crystal structure often seen in thicker sea ice [28, 29].

Mushy zone models are a good approach to modelling the dendritic growth
observed in supercooled waters, but do not address the question of which ice
growth mechanism will dominate in a supercooled ocean under sea ice —
dendritic growth from solid surface ice, or frazil growth from nucleation sites
within a turbulent oceanic mixed layer. Models addressing such frazil growth
will have to contend with the growth and breakage of a population of small
discs of ice with a size distribution [4], rising under buoyancy but stirred by
turbulence, stabilising the turbulence by buoyancy, and interacting with the
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temperature and turbulence fields and with the solid ice above.
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