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1 Introduction

The problem brought to MISG 2007 by BlueScope Steel is the formation of ‘ironed-in’ wrinkles
in thin steel-sheet products. This is found to occur in a number of environments, but typically
is observed in installations where steel sheet is passing over a large number of rollers, some of
which drive the sheet and hence provide a tension in the direction of motion. In general, the
defects arise sporadically, and only very infrequently. However, they can have a significant cost
both because of the loss of product and the difficulty associated with tracking down the cause
of the problem. The cause can sometimes be traced to roller misalignment or to metal sheet of
non-uniform thickness, for example.

Several different kinds of wrinkles are observed. One type of permanent wrinkle is similar to
the folds that are sometimes observed in newspaper printing, which follow a diagonal pattern
arising from the edge of a (usually misaligned) roller. The nature of these wrinkles, and the
mechanisms leading to their formation, are relatively well-understood in the literature (see e.g.
Hashimoto, 2007 and references therein). This work concentrates on a second kind of wrinkle
that occurs more often in practice in cold steel-sheet rolling and that arises in a fundamentally
different way. This second kind of wrinkle usually appears as a single thin ridge close to the
centre of the sheet and is more prevalent when convex rollers are used to alleviate mistracking
(convex rollers have greater radius near the centreline). The wrinkle may have a longitudinal
extent of tens of metres but a width of the order of twenty to thirty millimetres and a depth of
less than a millimetre. The ridge typically wanders in the lateral direction around the centre of
the sheet, as illustrated in Figure 1.

Figure 1: Example of a longitudinal wrinkle in flat steel, and a cross section illustrating typical
changes in thickness across the wrinkle.

Simple demonstrations with aluminium kitchen foil, as in Figure 2 show that a thin metal sheet
under longitudinal tension and with clamped ends will certainly support small amplitude elastic
wrinkles, elongated in the longitudinal direction, giving an appearance like corrugated roofing
steel. However, these wrinkles are not permanent and disappear when the applied tension is
reduced. Moreover, such wrinkles, discussed in the literature in a number of contexts (Cerda &
Mahadevan, 2003, Wong & Pellegrino, 2006a,b,c, Fischer et al, 2000), clearly require a locally
compressive field.
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Figure 2: Experiments producing wrinkles in tin foil by stretching lengthwise.

This group was asked to model the formation of longitudinal wrinkles in steel moving under
tension between rollers, and in particular:

1. to understand the mechanisms giving rise to local cross-plate compression, which is a
necessary prerequisite for initial wrinkle formation;

2. to develop a theoretical model describing the vertical deflection due to this compression;

3. to determine the mechanisms for the iron-on process as a wrinkle approaches a roller.

We use von Kármán’s weakly nonlinear equations for the moderately large deflection of thin,
initially flat, elastic plates to address the problem of how wrinkles are initiated under sufficiently
high longitudinal tension applied to the ends of a plate. If in addition the assumption is made
that the vertical deflections are very small, then the equations decouple and the in-plane stresses
in the plate obey a (linear) biharmonic equation, so that the stresses can be determined with-
out reference to any knowledge of the vertical deflections. The remaining problem is then to
determine the nature of the boundary conditions. The lateral boundaries of the plate are clearly
stress-free. The boundary conditions at the ends (at the rollers) are more problematic. Here
we make the simplifying approximation that the plate is clamped against movement in both
the longitudinal and lateral directions. The underlying assumption is that the friction in the
along-roller direction, due to the pressure imposed by the roller nip, is sufficient to prevent any
lateral motion there.

Under these conditions, numerical solutions of the biharmonic equation for the stresses reveal
a local cross-plate compressive stress quite close to each of the rollers. Furthermore, if a roller
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is convex, giving rise to a maximum in both the longitudinal and cross-plate tensions at the
centreline at the roller location, then there is a corresponding maximum in cross-plate compres-
sion at the centreline some distance from the roller. Thus proper consideration of the boundary
conditions provides an explanation for point 1 above.

The above findings explain how a maximum elastic deformation will be found near to the roller
location and at the centreline of the plate. However, in order to see a permanent distortion of the
plate, the elastic stresses must exceed the plastic yield limit, hence ‘setting in’ the distortion. For
this to happen the local radius of curvature of the distortion must be quite small: for thin steel
sheet we estimate that the vertical deflection divided by the lateral wavelength must be greater
than about 1/20. In order to determine this ratio, the full nonlinear von Kármán equations must
be solved iteratively in order to determine the vertical deflection over the plate, in particular at
the location of maximum compression.

A further question to be addressed is that although initiation of the ridge-like distortion is
apparently random (e.g. a roller is slightly out of alignment), once a distortion is initiated it
tends to continue over long lengths of material. One possible explanation for this is that a local
ridge in the plate when reaching the roller will lead to a modified tension at the roller that
in turn influences the compression upstream: this proposed effect can only be explored with
careful solution of the full governing equations with small perturbations in the roller boundary
conditions. This exploration is beyond the scope of the current work.

In sections 2, 3 and 4 we solve von Kármán’s equations for moderately large deflections of thin
elastic plates. Dynamic effects due to the motion of the plate and elastic (bending and in-plane)
waves, and transverse waves due to the tension will all be ignored. This assumption is discussed
more fully in section 6. In section 5 the use of energy methods (Mahadeven et al., 2003)
is discussed and compared with our results. Finally, in section 7, we describe a mechanism
explaining how these wrinkles may be ironed in due to plastic deformation when a wrinkled
section of the plate moves over an intermediate, single, freely rotating roller.

2 Mathematical formulation

It is observed that when long rectangular plates are subject to large tension in the length-wise
direction that lateral wrinkling of the plate occurs with the wrinkles aligned in the length-wise
direction. Since the velocities of in-plane and transverse elastic waves are large compared with
the transport velocity, we ignore the dynamic effects here.

We model this problem using the weakly nonlinear von Kármán equations. Let the plate have
uniform thickness h and width 2d, and let the distance between the rollers be 2!. We take
Cartesian axes (x, y, z) so that x, y lie in the plane of the middle surface of the undeformed
plate with x coincident with the central axis of the strip, and z in the direction perpendicular to
this plane, as illustrated in Figure 3. Let the displacement components of the deformed middle
surface in the x, y, z directions respectively be given by u, v,w. We use the equations in the
form given in Timoshenko and Woinowsky-Krieger (1959 p. 415) (see also Mansfield, 1989).
The stress function compatibility equation, and the transverse equilibrium equation, normal to
the middle surface, are respectively

∇4φ = −Eh

2
L(w,w), (2.1)
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Figure 3: Sketch of dimensions and axes for modelling strip deformation across rollers.

D∇4w = L(φ, w), (2.2)

where E is Young’s modulus, ν is Poisson’s ratio and the plate bending stiffness is given by
D = Eh3/12(1 − ν2).
The operators ∇ and L are defined as follows:

∇4 ≡
(

∂2

∂x2
+

∂2

∂y2

)2

, L(A,B) = A,xxB,yy − 2A,xyB,xy + A,yyB,xx ,

and the in-plane stress resultants are given in terms of the stress function φ by

Nxx =
∂2φ

∂y2
= φ,yy , Nyy =

∂2φ

∂x2
= φ,xx , Nxy = − ∂2φ

∂x∂y
= −φ,xy , (2.3)

where Nxx,Nyy and Nxy are forces per unit length. The middle surface strain/displacement
equations and in-plane stress resultant constitutive equations are as follows:

exx =
∂u

∂x
+

1
2

(
∂w

∂x

)2

=
1

Eh
(Nxx − νNyy) ,

eyy =
∂v

∂y
+

1
2

(
∂w

∂y

)2

=
1

Eh
(Nyy − νNxx) ,

exy = eyx =
1
2

(
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y

)
=

(1 + ν)
Eh

Nxy , (2.4)

where exx, exy and eyy are the strains.

2.1 Boundary Conditions

Equations (2.1) and (2.2) must be solved subject to boundary conditions, appropriate to the
problem, which will now be derived. The lateral edges at y = ±d are assumed to be free from
stress and moment. The derivation of the ‘free edge’ conditions for plate theory, which is due
to Kirchhoff, is given in Timoshenko and Woinowsky-Krieger (1959 p. 83). The conditions are
that the normal component of the bending moment and the effective shear must be zero on the
free edges, and the in-plane stress resultant must also vanish there. In this case the first two
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boundary conditions are

∂2w

∂y2
+ ν

∂2w

∂x2
= 0

∂3w

∂y3
+ (2 − ν)

∂3w

∂x2∂y
= 0





at y = ±d, (2.5)

and the zero in-plane tension on the boundary is

Nyy = φ,xx = 0, and Nxy = −φ,xy = 0 . at y = ±d. (2.6)

Here we assume that the plate is fully clamped at the rollers at x = ±!, which is the simplest
possible boundary condition for perfectly aligned rollers. This implies the following conditions
on the strains and displacements:

w =
∂w

∂x
= 0

v =
∂v

∂y
= 0

Nxx =
∂2φ

∂y2
= N0f(y)






on x = ±! (2.7)

where f(y) is a shape function with unit order of magnitude. To obtain the other boundary
condition at the rollers, the above boundary conditions are used to evaluate the strain eyy in
equations (2.4) and we obtain eyy = 0 = (Nyy − νNxx)/Eh on x = ±! so that

Nyy = φ,xx = νN0f(y) on x = ±! , (2.8)

where N0 is the magnitude of the tension applied to the plate between the rollers. Here we
take f(y) = 1 − y2, as is appropriate for convex rollers. This completes the formulation of the
problem.

2.2 Dimensionless equations

In order to construct a sensible non-dimensionalisation for these equations we note that the order
of magnitude of the strain in the x-direction caused by the tension N0 is N0/Eh so that the order
of magnitude of the in-plane displacements u, v will have a maximum value of (N0/Eh)d. From
the strain/displacement equations (2.3) we note that the contribution of the lateral displacement
w to the middle-surface strain suggests that to be significant the order of magnitude of w will
need to be (

√
N0/Eh)d. With this in mind we introduce the following dimensionless (barred)

variables:
(x̄, ȳ) =

(x, y)
d

, (ū, v̄) =
(u, v)

(N0/Eh)d
, w̄ =

w

(
√

N0/Eh)d
,

!̄ =
!

d
, N̄αβ =

Nαβ

N0
, φ̄ =

φ

N0d2
.

(2.9)

Note that as as all quantities will be dimensionless from now on the barred notation will be
dropped.
The dimensionless forms of equations (2.1) and (2.2) are

∇4φ = −1
2
L(w,w),

∇4w = λL(φ, w), (2.10)
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where

λ =
12(1 − ν2)N0d2

Eh3
(2.11)

is the non-dimensional tension applied to the plate.
Equations (2.4) become

exx =
∂u

∂x
+

1
2

(
∂w

∂x

)2

= φ,yy −νφ,xx ,

eyy =
∂v

∂y
+

1
2

(
∂w

∂y

)2

= φ,xx −νφ,yy ,

exy = eyx =
1
2

(
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y

)
= −(1 + ν)φ,xy . (2.12)

The dimensionless boundary conditions corresponding to (2.5) to (2.8) are obtained by setting
N0 = 1 in these equations.

3 Solution procedure

For moderate levels of tension N0 the plate will remain flat. The question is: at what level of
tension do wrinkles appear? Thus we solve the above system as a bifurcation problem for the
load parameter λ using an iterative numerical solution as follows.
Step one is to solve the following problem for φ(0) when w(0) = 0:

∇4φ(0) = 0, (3.1)

subject to the boundary conditions (2.6) and (2.8) (with N0 = 1).
Now solve the following eigenvalue problem to find the first approximation to the critical load
parameter λ(1) and the wrinkle pattern w(1),

∇4w(1) = λ(1)L(φ(0), w(1)), (3.2)

subject to boundary conditions (2.5) and (2.7) (with N0 = 1). Let the eigenfunction be nor-
malised to some (small) value max |w(1)(x, y)| = ε. This solution can now be used to initiate
the following iterative procedure.
At the nth iteration φ(n), w(n+1) satisfy the equations

∇4φ(n) = −1
2
L(w(n), w(n)), (3.3)

subject to boundary conditions (2.6) and (2.8) and

∇4w(n+1) = λ(n+1)L(φ(n), w(n+1)), (3.4)

subject to boundary conditions (2.5) and (2.7). This process is repeated for n = 1, 2, 3, · · · , until
convergence is achieved. The iteration is now repeated for a new value of ε and in this way the
bifurcation diagram showing λ as a function of ε can be constructed.

Equations (3.3) and (3.4) are solved by discretising using second order finite differences. With
xi = i∆, i = 1 . . . mx, yj = j∆, j = 1, . . . my, ∆ = 2/(my − 1), (so that mx/my = !) write
φ(n)

i,j = φ(n)(xi, yj) and w(n)
i,j = w(n)(xi, yj) and then the discrete form of (3.3) is

Dφ Φ(n) = −1
2
r(n). (3.5)
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Here Dφ is the mxmy × mxmy (sparse) banded matrix arising from the finite difference imple-
mentation of the biharmonic operator ∇4, Φ(n) ≡ φ(n)

i,j is the vector of unknown values of the
stress function φ at iteration n and r(n) is the vector corresponding to the finite difference form
of the term −L(w(n), w(n))/2. (Note that at each iteration n, w(n) is known, with w(0) = 0.) The
boundary conditions on φ, equations (2.6) and (2.8), are also discretised to second order, with
guard points added on each edge of the rectangular domain to allow straightforward treatment
of the condition φ,xy = 0 on y = ±d. Similarly the discrete form of (3.4) is

Dw w(n+1) = λB w(n+1), (3.6)

where w(n+1) ≡ w(n+1)
i,j is the vector of the unknown values of the vertical deformation w at

iteration n + 1, and where B is the sparse banded matrix for the discrete form of the operator
on the right hand side of (3.4), i.e.

B ≡ φ,(n)
xx

∂2

∂y2
− 2φ,(n)

xy
∂2

∂x∂y
+ φ,(n)

yy
∂2

∂x2
(3.7)

with φ(n) known for each n from (3.5). The sparse banded matrix Dw represents the biharmonic
operator ∇4 but differs from Dφ in that the boundary conditions (2.5) for w are included rather
than those for φ, again with the use of guard points. Equations (3.5) and (3.6) are solved using
MATLAB. At each iteration, the linear problem for Φ(n), equation (3.5) is inverted. When
n = 0, the right hand side r is zero except at boundary points. Once Φ(n) is known, the
eigenvalue problem (3.6) must be solved. In practice, it was found that rewriting (3.6) as

B w(n+1) =
1
λ

Dw w(n+1) = λ̂Dw w(n+1), (3.8)

and solving for λ̂ = 1/λ was more satisfactory than attempting to solve (3.6) directly. Equation
(3.8) is a generalized eigenvalue problem and B is not positive definite symmetric. Therefore
the inbuilt MATLAB sparse eigenvalue solver eigs.m cannot be used. However, the routine
ahbeigs.m (Baglama, 2007) solves this more general problem and was used for all results pre-
sented here. The four modes with smallest positive eigenvalue λ are those considered in the
remainder of this paper; these correspond to the largest positive values of λ̂. (Modes with
positive values of λ are those that arise when a plate is subject to longitudinal stretching; longi-
tudinal compression gives negative values of λ and buckling modes.) The iteration process must
be carried through to convergence for each value of the maximum absolute vertical deformation
ε and for each of the four eigenvalues corresponding to that value of ε. The convergence criterion
used was that the absolute relative change in the eigenvalue was less than 10−6. No difficulties
were obtained with lack of convergence in any of the cases treated here. However, we note that
more sophisticated methods for the determination of the eigenvalues have been used successfully
for the related buckling problem, where the plate is subjected to longitudinal compression (see,
for example, Chien et al, 2001, Dossou and Pierre, 2003 and Muradova, 2005). In particular, the
numerical results of Chien et al (2003) are consistent with the analytical results of Schaeffer and
Golubitsky (1979). These more advanced numerical techniques should also work for the plate
under tension problem considered in the present work. As all calculations use equal increments
in x and y, cases where the aspect ratio α = !/d are large require significantly more computa-
tional resources. In order to retain reasonable levels of accuracy in estimating the eigenvalues,
only values of α less than or equal to three are considered here. Explicitly using odd/even
symmetries for particular modes in both x- and y-directions and moving to a fully-compiled
language will allow the range of computation to be extended.
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4 Results

In this section we present results for the force distribution, eigenmodes of deformation and
corresponding eigenvalues for two specific cases, the first a square plate where the aspect ratio
α = 1 and the second an elongated plate, where α = 3, with the second case having more
relevance to the BlueScope steel problem.

(a) (b)

Figure 4: Transverse force per unit length Nyy for zero vertical deformation in the cases (a)
α = 1 and (b) α = 3 .

In Figure 4, surface plots of Nyy = φ,xx are shown for the case of zero vertical deformation, i.e.
corresponding to the solution of ∇4φ = 0. In Figure 4(a), where α = 1, we see a significant
region in the centre of the plate where Nyy is negative, corresponding to a region of compression.
In Figure 4(b), where α is much larger, the region of compression has split into two symmetric
regions near to the ends x = ±!, i.e. close to the rollers. This localisation of the compressive
forces presumably remains for larger values of α. These results confirm the presence of a signif-
icant compressive force just upstream from the downstream roller, as proposed at MISG2007.

Figures 5 and 6 show the first four eigenmodes of deformation at iteration n = 0, for α = 1 and
α = 3 respectively. These correspond to the linearised approximation where the amplitude of
w(x, y) is not known or equivalently the case of vanishing amplitude, i.e. ε = 0. These modes
are those with the four smallest positive values λ, which by (2.11) corresponds to those that first
arise under longitudinal tension N0 applied at the ends of the plate. In Figure 5, for the square
plate all modes are even in x, with the first and third modes odd in y and the second and fourth
even in y. The third and fourth modes have significantly larger eigenvalues (corresponding
physically to greater tension N0 ) but with half the transverse wavelength. Comparing these
results with Figure 6, we see corresponding modes for the elongated plate, but with deformation
more localised in the vicinity of the rollers, as expected from the stress distribution. Furthermore,
modes 3 and 4 are odd in x for the rectangular plate, rather than even. This occurs because the
ordering of the higher order modes changes as α is varied between 1 and 3.

We now consider solutions of the full nonlinear system, as discretised in equations (3.5) and
(3.6). It turns out that the structure of the eigenmodes of deformation is fairly insensitive to
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Figure 5: The eigenmodes corresponding to the four smallest positive eigenvalues λ for a square
plate, i.e. α = 1. The amplitude scale is arbitrary.

the magnitude of deformation ε, at least for the moderate amplitudes considered here, so that
the results displayed in Figure 5 and 6 can be viewed as holding across all values of ε. Thus we
present here only the variation of the eigenvalues λ with ε for different resolutions as determined
by the number of mesh-points mx, my in the x- and y-directions respectively. In all cases no
more than 6 iterations were required to obtain convergence for a given value of ε. Converged
results from a previous value of ε, e.g. ε = 0.5 are used as the starting iteration for the next
value of of e.g. ε = 0.55, in order to speed up the process. This also has the associated benefit
of ensuring that a particular mode is followed when the eigenvalues of two modes cross.

In order to improve the accuracy of the predictions presented here an extrapolation procedure
is used. As the finite difference approximations to the governing equations and the boundary
conditions are second order accurate we write

λn(ε) = λ∞(ε) +
λ1(ε)
m2

y
(4.1)

and then use results at two different values of my to find the two corresponding values of λ∞(ε)
and λ1(ε) for each ε. Convergence for the first and third modes for the case α = 3 is shown in
Figure 7, using calculations carried out with mx = 240,my = 80 and mx = 180,my = 60. The
relative errors clearly increase with mode number, but are of the order of 1% or less in the worst
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Figure 6: The eigenmodes corresponding to the four smallest positive eigenvalues λ for a rect-
angular plate with α = 3. The amplitude scale is arbitrary.

case at the highest resolution employed. Results for α = 1 are somewhat more accurate.

The variation of the eigenvalues with vertical amplitude is quite small, indicating that although
large values of applied end-tension are needed to excite deformation, small changes from these
values will lead to relatively large changes in amplitude.

Figure 8 shows the extrapolated eigenvalues λ∞ as a function of the vertical amplitude ε for
α = 1. These extrapolated results were found using results calculated with mx = my = 90 and
mx = my = 120. The modes clearly separate into two pairs, with the smaller eigenvalues of
magnitude around 1200, while the larger eigenvalues are nearly twice as large. As mentioned
earlier for each pair there is one mode that is odd in y while the other is even in y.
Figure 9, for α = 3, shows results for λ∞ similar to those displayed in Figure 8, determined as in
Figure 7. The smallest eigenvalues are now significantly larger than those found for the square
plate (nearly twice as big), indicating that greater tension is required to cause deformation in the
elongated plate case. Although the eigenvalues for the two higher modes are also greater than
for the square plate case, the difference between the values for the eigenvalues for the higher and
lower modes is significantly reduced. It is possible that as α → ∞ the eigenvalues will continue
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extrapolated λ
∞

mx=240, my=80
mx=180, my=60

Figure 7: Convergence of the eigenvalues for α = 3. The results for mx = 180, my = 60 are
shown dot-dashed (− ·−), the highest resolution results where mx = 240, my = 80 with a dashed
curve (- - -) and the extrapolated results λ∞ as a solid line (—).

to grow closer, or even cross, although this remains to be determined.

To see the relevance of these results for the BlueScope steel problem consider the following
approximate data (Dr Andrew Dixon, private communication). Typical values for the thickness
and depth of the thin sheet steel are h = 0.5mm and d = 0.5m respectively. Young’s modulus for
steel has the value E = 2×1011 N/m2 while typical applied end-stresses are of order of magnitude
N0/h = 107 N/m2. See Table (1) for a list of approximate values of relevant material properties.
Using these values in the relation (2.11) for λ gives λ = O(500) in practice. This is much less
than the critical values of over 2000 we calculate are needed for buckling. Thus significantly
greater tensions would have to be applied in a perfectly symmetric situation as considered here
to generate any significant distortion, as it appears the practical situation corresponds to large
values of α. However, if there is any asymmetry in the applied forces, due for example to
poor setup of equipment, it seems likely that deformation will arise at smaller applied tension.
This implies that when wrinkles are observed in practice, they are likely to be due to roller
misalignment, since our symmetric theory says tensions need to be four times the usual value
to get wrinkling. However, the problem of asymmetry due to roller misalignment is beyond the
scope of the present work and will be taken up in a subsequent paper where the parametric
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Figure 8: The four smallest positive eigenvalues λ∞ for a square plate (α = 1) as a function of
the maximum vertical deformation ε. The eigenvalues are determined using the extrapolation
procedure described in the text.

dependence of the eigenvalues on the degree of asymmetry will be explored.

If we assume for the moment that the applied end tension is sufficient to lead to plate deformation
then further we can ask whether the amplitude of vertical deformation would be sufficient to
cause plastic deformation. On geometric grounds it was proposed at MISG that curvature of
the plate would be sufficient to cause plastic deformation if the radius of curvature, say r is
less than the critical value rc = Eh/2σmax ≈ 15cm, where σmax is the yield stress for steel (see
Table (1) ). From Figures 5 and 6 we see that the wavelength in the y-direction is of order d/q
with (approximately) q = 3/4 for modes 1 and 2, and q = 1 for modes 3 and 4, where q is a
non-dimensional wavenumber. Using q = 3/4 and approximating the distortion of the plate as
approximately sinusoidal, the ratio of deformation to wavelength in the y-direction corresponding
to the critical radius of curvature rc is approximately 1/20. Therefore in dimensional variables
for plastic deformation we require (recall non-dimensional w is scaled by d)

1
20

≤ w

wavelength
= q

√
N0/Eh ε =

3
4

h

d

√
λ

12(1 − ν2)
ε , (4.2)
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Figure 9: The four smallest positive eigenvalues λ∞ for a rectangular plate (α = 3) as a function
of the maximum vertical deformation ε. The eigenvalues are determined using the extrapolation
procedure described in the text.

and we find that,using the same approximate data as above,

λ ε2 ≥ 6 × 104. (4.3)

For example, in Figure 9, where λ ≈ 2000 for the lower modes, we require ε ≈ 5 to allow for
plastic deformation and so provide permanent distortion. This corresponds to a dimensional
amplitude of

w = εd

√
N0

Eh
=

ε

2

√
106

2 × 1011
≈ 20 mm . (4.4)

Once such a transverse buckle has been created near the roller, we hypothesise that it undergoes
a process of ironing-in, thus creating a permanent wrinkle at the roller. This process is discussed
further in section 7.

5 An Energy Method

Cerda and Mahadevan (2003) study the wrinkling of a thin elastic sheet under tension, far from
onset, using the principle of inextensibility to provide a lateral compression, and a Lagrangian
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Table 1: Material Properties Used for Rolled Steel

line speed 3 m/s
distance between rollers 2! ≈10–20 m

roller radius R = 25 − 30cm
crown height of rollers 0.1 mm
roll location accuracy 1 mm

angle of misalignment of rollers up to 0.06◦

steel strip thickness h ≈ 0.3mm
steel strip width 2d ≈ 0.5m

Young’s Modulus E ≈ 2 × 1011Pa
Poisson’s ratio for steel νsteel ≈ 0.28

Poisson’s ratio for paper νpaper ≈ 0.01
flexural rigidity of steel D ≡ Eh3/(12(1 − ν2)) ≈ 0.49N.m

line tension N0/h = σ ≈ 10MPa
longitudinal stretching strain γ ≡ N0/(Eh)

yield stress for steel σmax ≈ 200MPa
coefficient of friction for steel µ ≈ 0.1

areal density of steel * ≈ 2kg/m2

energy development. They look for periodic solutions to the Euler-Lagrange equations, and
solve the resulting Sturm-Liouville problem to find the expressions

L =
√

4π!h

[3(1 − ν2)γ]
1
4

(5.1)

and

a =
√

2ν!h
[

16γ
3π2(1 − ν2)

] 1
4

(5.2)

for the wavelength L and amplitude a of the wrinkles, where the other symbols used here are as
defined in Table (1). Using ! ≈ 10m gives a ≈ 3mm and L ≈ 2m.
These are quite different results to those of the previous section. The analysis of Cerda and
Mahadevan does not consider the possibility that the steel does not buckle under smaller tensions
- it assumes that the lateral compression caused by the applied tension is matched by bending
energy across the sheet. That is, no bifurcation phenomenon is considered, and the sheet is
assumed to always buckle. The question addressed is how much it buckles, if energy is conserved.
Such an analysis might be considered to be more relevant in the presence of asymmetries, like
small misalignments of the rollers, which would reduce the critical parameter value at which
buckling occurs.

6 Waves On Steel

The group also considered the speeds of bending waves and compressional waves on and in steel,
compared with the typical operational linespeeds of the steel over the rollers. Bending waves
are governed by the balance

D
∂4w

∂x4
= −*

∂2w

∂t2
(6.1)
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where * is the areal density, about 2 kg/m2. Setting w = exp[i(kx − ωt)] where ω = 1/τ and τ
is the period of the waves, gives

k4D = ω2* ⇒ τ = L2

√
*

D
(6.2)

and hence the wavespeed is

c =
L

τ
≈ 1

L
(6.3)

since D ≈ *. Hence for wavespeed to be greater than the linespeed of 3 m/s, the wavelength
needs to be shorter than 1/3 m. These shorter bending waves can propagate upstream against
the flow of the steel. In particular, so can the waves predicted by the theory of Cerda and
Mahadevan discussed in the previous section.

Tensional wave speed may be estimated by balancing

N0
∂2w

∂x2
∼ *

∂2w

∂t2
(6.4)

which gives the wavespeed squared as

c2 ∼ N0

*
(6.5)

which leads to c ≈ 40m/s, which is much faster than linespeed. Hence tension changes propagate
rapidly compared with linespeed, and linespeed may be ignored when calculating stress fields as
in the first section.

7 Ironing in the Wrinkles

Here we consider whether the pressure on the steel as it goes around a roller is sufficient to
iron-in a wrinkle. To iron the wrinkle in, yield stress needs to be exceeded in the steel as it
passes over the roller. The coiling pressure gives a measure of the downward pressure that is
applied to a wrinkle. This is

P = σh/R ≈ 0.01 MPa , (7.1)

which is taken to act towards the roller axis as a force per unit length across the roller and which
also gives rise to a total uniform loading Pb towards the roller axis acting on the wrinkle. The
numerical value in equation (7.1) is found using the values given in Table (1).

First we use a very simplified model of the deformation shown in Figure 10(a) in order to
approximate the relation between the height a, the width of the wrinkle b and the contact
distance δ. We consider a strip of plate of unit width in the direction aligned with the roller axis
and approximate the deflection w(y) given by the triangular function shown in Figure 10(b).
Assuming symmetry of this triangular shape, the forces acting on the section AB of the plate
are shown in Figure 10(c). H = µP δ is the force due to the friction between the roller and the
section of the plate fully in contact with the roller.

Considering the moment equilibrium about the point B we obtain

Ha =
Pb

2
b

4
.
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Figure 10: (a) Sketch of a wrinkle wrapping around a roller with (b) the approximate deflection
w(y) and (c) the corresponding free body diagram.

After rearrangement
H = µP δ = Pb2/8a (7.2)

so that, with the friction coefficient µ = 0.1,

δ = 5b2/4a, (7.3)

which provides an approximate relation between a, b and δ.

We also have
2δ + b = 2d . (7.4)

Finally we require the critical lateral force per unit length Fc that is required to cause this buckle
in a plate. We will approximate this value by using the following result on plate buckling from
Timoshenko and Gere (1961), p.352,

m2Fc

π2b2D
=

(
m2

b2
+

n2

4!2

)2

where m is the lateral wavenumber, n is the longitudinal wavenumber, and 2! is the length of
the plate. Taking n = 0 and m = 1 gives the critical lateral force per unit length for buckling as

Fc =
π2D

b2
. (7.5)

For friction to provide enough lateral force to sustain the wrinkle of amplitude a as the sheet
passes over the free roller we require H > Fc, i.e. using equation (7.2) in equation (7.5) we find

H = µP δ ! Fc =
π2D

b2
. (7.6)
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Substituting for δ from equation (7.4) we obtain the cubic equation for the value of b at the
critical buckling load

b2(2d − b) =
2π2D

µP
, (7.7)

or
b2(0.5 − b) ≈ 0.01 (7.8)

using the numerical value of P given by equation (7.1) and the values of µ, d and D in Table (1).
The cubic in equation (7.8) has two positive roots, b ≈ 0.18m and b ≈ 0.45m, where the larger
value is near to the full strip width. For b between these two limits, friction can hold against the
critical lateral bending force, and the wrinkle is ironed-in as it passes over the roller. Hence if
the contact length between roller and steel is in the range 160mm ! δ ! 25mm, there is enough
friction to hold the steel edges in place and prevent the wrinkle from disappearing. The smallest
wrinkle width that can be supported according to this model is about b = 175mm across. This
is significantly larger than the measurement shown in Figure 1. However, it appears that the
pressure induced by the longitudinal stress at the wrinkle as it wraps around the roller gives a
much larger value for P than that used here, so providing a much smaller critical value for the
smallest wrinkle width b that can be supported (Dixon, 2007) and correspondingly a value more
closely in accord with observations.

The corresponding amplitude of the wrinkle for this range of b (or equivalently δ) can be esti-
mated. Returning to equation (7.2) we have

a = b2/(8µδ) = b2/(4µ(2d − b)) . (7.9)

Therefore, according to this balance between downward pressure and friction the smallest wrinkle
amplitude a that can be supported is about 250mm when b = 180mm. The amplitude a increases
monotonically as b is increased. This large value of the amplitude is clearly physically unrealistic,
but again is very significantly reduced if the enhanced pressure proposed by Dixon (2007) is used.

8 Conclusions

The formation of longitudinal wrinkles in thin steel sheet can be identified with the modes of
deformation occurring when a thin plate is placed under sufficiently large longitudinal tension.
Solving the biharmonic equation describing the stress distribution in a rectangular plate, with
free transverse edges and and applied stress at the ends corresponding to that for convex rollers,
shows that a local compressive in-plane stress is produced transverse to the plate. In response
to this compressive stress wrinkles aligned in the longitudinal direction may arise, depending on
the magnitude of the applied tension. However, the critical stress for wrinkles to initiate is about
four times the stress we predict in the BlueScope Steel setup, suggesting that any longitudinal
wrinkles observed are due to asymmetries from, say, misalignment of rollers or damaged roller
surfaces.

The zeroth order approximation to the full von Kármán plate bending equations gives rise to
a linear eigenvalue problem for the applied longitudinal tension, with any particular eigenvalue
giving the critical (non-dimensionalised) applied force above which the corresponding eigenmode
of vertical deformation will arise. However, this linearised problem does not give any information
about the amplitude of vertical deformation. In order to determine the amplitude, the nonlinear
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von Kármán equations must be iterated. This process results in generally small changes in the
stress distribution in the plate and the form of the corresponding modes of vertical deformation
as compared to the linear case.

As the eigenvalues are found to vary quite slowly with the vertical amplitude, the physical con-
clusion is that if the applied tension is sufficient to excite a particular mode, then the amplitude
of deformation may be quite significant for small changes in applied tension above critical. The
expression (4.2) indicates that local plastic deformation may be observed if the longitudinal
tension is sufficient to cause wrinkling distortions. In particular, this is expected to occur at the
point where maximum deformation is observed. This will occur at the mid-line of the plate for
the low-order mode even in y (mode 2 in Figures 5 and 6).
According to the model used in section 7, only quite wide, large amplitude wrinkles can be
ironed-in at the roller. In order to provide a mechanism for the formation of unwanted permanent
distortions of sheet metal as observed in practice in some cases, significantly greater local pressure
at the wrinkle is required. One proposed mechanism for this is the enhanced longitudinal stress
at the wrinkle as it passes over the roller, as discussed in Dixon (2007).
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