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Abstract Steel becomes brittle during the cold rolling process which is used to
produce sheet metal. Heat treatment (annealing) is required to release stresses and
reform the crystalline structure. The 2008 Mathematics-and Statistics-in-Industry
Study Group in Wollongong (MISG08) modelled the approach used by New Zealand
Steel for which steel coils are heated in a batch annealing furnace. Determining the
temperature within each coil is complicated by height-dependent gaps within the
coils. Deciding on suitable boundary conditions for the outside of the coils provides
a further challenge. Having made reasonable assumptions, a linear model has been
found to be sufficient for modelling the heating process and allows the cold point in
the steel coil to be established.

1 Introduction

Manufactured steel becomes brittle during cold rolling to produce sheet metal. An-
nealing reforms the crystal structure. Initially, coiled metal strips are heated to a
high temperature (∼ 700◦C). This temperature is then maintained for several hours.
The time required for the initial heating is determined by the part of the coil that
is slowest to heat. To minimise the heating time this point needs to be found and
the time for it to reach the desired temperature obtained. Simple and accurate mod-
els that incorporate different coil properties will allow this process to be optimised
reducing heating costs and avoiding poorly annealed steel that needs reprocessing.
In Auckland, New Zealand Steel use a Uniflow Annealing System (UAS) furnace.
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Steel coils, typically nine in a horizontal square formation, are placed on their ends
with their axes aligned vertically on top of a ventilated steel platform. The platform
is moved into the furnace. The coils are heated directly by radiant burners spread
across the ceiling of the furnace. Additional burners along the sides are shrouded
and do not directly heat the coils. The gas within the furnace is an inert mixture
of nitrogen (93% by volume) and hydrogen. Circulating this gas provides indirect
heating. Experimental data for the furnace are limited because there are practical
difficulties in taking measurements.

A full account of the work of MISG08 is given in [1]. Some further consideration
of the problem is presented in [2]. In the following, we summarise the model for the
process.

2 Modelling the Steel Coils

We model each individual coil as a continuous vertical hollow cylinder with anisotropic
(position and direction dependent) thermal conductivity. Vertically, conduction is in
the axial z direction, in individual coil layers, and the conductivity kz [J/m/s/K] is
taken to be that of steel ks. Conductivity in the radial r direction will be lower due
to gaps between layers of the metal. For the present we shall assume that there is an
effective radial conductivity kr. This is considered further in the next section.

Temperature T = T (r,z, t) [K] is governed by
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where cp [J/kg/K] and ρ [kg/m3] are the heat capacity and density of steel, respec-
tively. Table 1 lists appropriate dimensions and properties. Initially T = T0. It is pre-
sumed that the ventilated platform will reach furnace temperature extremely quickly.
The coils heat by radiation, conduction and convection. Heating of each coil’s flat
surfaces (the ends z = 0,L) is very effective due to radiation from the heaters above
and conduction from the ventilated platform below. These surfaces are expected
to rapidly assume furnace temperature Tg. (The limited experimental data partially
confirm this [1].) Curved surfaces r = a,b are heated by convection (Newton’s Law
of Cooling) leading to the boundary condition kr∂T/∂ r =±H(T −Tg), where H is
the heat transfer coefficient. A number of approaches for estimating the value of H

have been considered, however, for the units used here, they all give values in the
range 3-5 [1].

The concept of mean action time [3] can be used to allow for changing ther-
mal capacity cp and conductivity ks with rising steel temperatures. This has been
considered [1] but is not discussed further here.
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Table 1 Typical Steel, Coil and Furnace Properties

steel density ρ 7854 kg/m3 at 300K
steel thermal conductivity ks 60.5–30 W/m/K at 300K–1000K
steel thermal capacity cp 434–1169 J/kg/K at 300K–1000K
steel strip thickness 0.4–3 mm
steel strip width L 700–1500 mm
coil mass 10–20 tonnes
coil inner diameter a 508 mm
coil outer diameter b 1.5 m
gas thermal conductivity kg 0.06 W/m/K
furnace circulation 800 m3/minute
platform mass 37 tonnes
furnace dimensions 6.5 × 6.5 × 4 m3

3 Radial Conductivity

Coils can be modelled as concentric annular cylinders of metal separated by hot gas
[4,5]. This approximates the different mechanisms of heat transport (direct contact,
gaseous diffusion, and radiation) between layers of the coil [6–8]. The effective
conductivity across the layers can be taken to be

keff ≈
ds +dg

ds

ks
+

dg

kg

(2)

where ds and dg are the thicknesses of the steel and gas layers. This expression
is exact for the steady state and the limit of infinite layers [9] and is a reasonable
model here. A potential complication is vertical variation of the gaps, as a rolled
steel strip has a crown: it is thinner at the edges than the middle. Examples at 1000
K suggest that in the central 3/4 of the coil by height (middle of the strip), the radial
conductivity kr is about 1/2 to 3/4 that of steel ks. This rapidly decreases towards
the flat ends where thinning due to the crowning occurs [1]. However, as the ends
are heated very effectively from above and below this has little effect. Potentially,
radial conductivity kr is also radially dependent due to coil tension and differential
expansion during heating, although these effects are thought to be small.

4 Linear Solution

If the coil is assumed homogeneous, but with anisotropic heat conductance with
constant conductivities kr, kz, then separation and Sturm-Liouville Theory lead to
a solution for the temperature T [1, 2]. (The solution for the purely radial case is
stated on page 530 of [10].)

First, the heat transfer equation (1) is rewritten more simply as
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The diffusivities Dr = kr/(ρcp), Dz = kz/(ρcp) are assumed constant. The system is
rescaled: using the typical values t = t0,r = b,z = L,T = Tg, so that r = br

∗, z = Lz
∗,

t = (ρcpL
2/kz)t∗, u = (T −Tg)/(T0 −Tg), where r

∗,z∗, t∗,u are non-dimensional.
Relative diffusivity D = krL

2/kzb
2, the ratio of original lengths α = a/b, and h =

Hb/kr. There is a choice of two obvious time scales t0, using either Dr or Dz. For the
problem of interest they are of similar magnitude and it is unclear which dominates.
Hence, without loss of generality, t0 = L

2/Dz is assigned. The ∗ notation is dropped
for convenience. The new system is
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This equation now represents the non-dimensional cooling of a unit cylinder from
an initial temperature of unity to a surrounding temperature of zero. Separating vari-
ables as u(r,z, t) = R(r)Z(z)T (t), a series solution can be found with Bessel func-
tions
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and are found numerically. Coefficients Amn and functions Cm(r) are given by
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, Cm1 ≡ J1(λmr)+BmY1(λmr). (9)

5 Further Modelling of Radial Conductivity

Further modelling [1] has allowed for height dependent radial conductivity kr(z)
due to crowning. Using the finite difference method, numerical simulations were
conducted with realistic values. These confirmed the linear solution and found only
very modest differences when variation in radial conductivity was introduced. The
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linear model seems sufficiently accurate here. The dominant heating occurs at the
ends of the coils and this is unchanged.

Purely radial simulations indicate that the Newtonian boundary condition is the
main restriction on radial heat flow rather than conductivity rates within the coil.
If curved sides were heated more directly then the cold point’s heating time would
reduce [2].

The leading eigenfunction associated with eigenvalues λ1 and π dominates the
linear model. Consequently, time dependence is governed by the decay of

e−(Dλ 2
1 +π2)t . (10)

At the cold point, in scaled units, z = 1/2 and r = rc where rc is given by the
extremum of the function C1(r). As illustrated in Fig. 1 the coil’s cold point is closer
to the inner curved surface due to its smaller surface area (and hence heat flux).
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Fig. 1 A contour plot of scaled temperature for a cross-section of a model coil during heating. The
cold spot (white) is nearer the inside of the coil (r = 1/3). Note the curved surfaces (on the sides)
are still approaching the surrounding gas temperature (black).
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6 Conclusions

We have presented a simple model of the heating process for a steel coil during
annealing. The model illustrates that a major constriction is the slow transport of
heat through the sides of coils. The linearised model seems adequate for calculations
and itself tends to be dominated by a leading eigenvalue term.
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