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Abstract

We address questions that arise if a slurry containing liquid water is enclosed

in a ball of hot viscous vesicular magma ejected as a bomb in the context of

a Surtseyan eruption. We derive a mathematical model for transient changes

in temperature and pressure due to flashing of liquid water to vapour inside

the bomb. The magnitude of the transient pressure changes that are typically

generated are calculated together with their dependence on material properties.

A single criterion to determine whether the bomb will fragment as a result of

the pressure changes is derived. Timescales for ejection of water vapour from a

bomb that remains intact are also revealed.

Keywords: Surtseyan bombs, mathematical model, pressure transients,

fragmentation, steam escape times

1. Introduction

A driving purpose in volcanology is to better understand observations of ac-2

tive volcanoes and of the deposits that result from eruptions. This is particularly

so in the emergent field of Surtseyan eruptions, characterised by their unique4

bulk interactions between molten magma and large quantities of water. This

paper aims to inform the ongoing discussion of key mechanisms of Surtseyan6

eruptions by developing a transient mathematical model of heat and mass trans-
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port inside a Sursteyan bomb, assuming that a wet slurry inclusion has been8

encapsulated by a body of hot vesicular magma at the instant of ejection [1, 2].

Surtseyan eruptions take their name from their resemblance to the eruptions10

that formed the new island of Surtsey off the coast of Iceland in 1963 [1, 3, 4,

5, 6, 7]. Defined as shallow subaqueous explosive basaltic volcanic eruptions12

[8], Surtseyan eruptions are violent and are characterised by the ejection of

silent tephra jets, with bombs shooting out of each jet, trailing black comet-14

like tails that turn white as steam condenses [5]. Large bodies of water with

ready access to the vent surface, mix with ejected tephra that has fallen or16

slipped back into the top of the vent, to form a slurry that readily penetrates

molten vesicular magma [1, 9]. Textural studies [10, 2] provide evidence in18

tephra of intact bombs, highly vesicular and highly permeable, each containing

a number of inclusions. Each inclusion consists of material similar to that in20

the parent bomb, surrounded by a void space. Murtagh and White [10] note

that “many lapilli also contain previously formed pyroclasts as inclusions”, and22

noted evidence that “erupting magma entrained previously formed pyroclasts”.

One explanation for this morphology would be that the void space is associated24

with water that has vented during the ejection process, leaving the bomb intact.

Steam venting during ejection is also evidenced by the vapour trails observed26

behind bombs during ejection [5, 2].

The term bulk interaction steam explosivity, referring to water encapsulated28

by hot magma and prevented from escaping, is the third of the processes listed

by Kokelaar [9], for forming clasts in a basaltic volcano, that is, for rupturing30

magma. Kokelaar also argues that this process is a key ejection mechanism

in Surtseyan eruptions, causing “a violent and continuous expansion that is32

manifested as a jet of tephra”. Murtagh and White [10] also note in their

conclusions the important role played by magma-water explosivity in driving34

fragmentation throughout the Surtseyan eruption at Black Point volcano in

California. So it is perhaps surprising to consider, alongside of this violent36

explosivity associated with water-magma interactions, the possibility that there

is also a nonviolent interaction between ejected vesicular bombs and enclosed38
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slurry, evidenced by observations of steam trails and voids.

Given the observations noted above and in [2], our interest in this paper is fo-40

cussed on the interaction between bulk water enclosed as a slurry and the ejected

magma bomb containing it, and on the possibility that, and the conditions un-42

der which, the bomb does not rupture. We ignore the effects of distributed

water coming out of solution due to pressure decrease as magma rises, except44

to model the bomb as a porous medium, vesiculated by that process. We seek

a criterion for bomb rupture, and timescales for steam escape.46

1.1. Model Motivation

A calculation of the pressure increase consequent on instantaneously heating48

a small inclusion of liquid water from say 370 K at one atmosphere to 1200 K at

pressure P2, can be made by using the ideal gas equation PV = nRT . Note that50

for instantaneous heating, the volume V and the number of moles n of water

is the same before and after heating the water. T is the absolute temperature,52

and P is the pressure in Pa.

Since the number of moles of water in an inclusion of effective volume V54

is given by n = ρlV/M , where ρl is liquid density and M is the mass of one

mole of water, vaporising all of the liquid water affects pressure in two ways —56

the density ratio of liquid to vapour phase of water gives a higher number of

moles than starting with only vapour, by a factor of about 1000/0.6 ≈ 1700,58

and the temperature increase of the vapour phase from 370 K to 1200 K raises

the pressure by a factor of about three:60

nR

V
= constant =

P

T
≈ 1700× 105

370
=

P2

1200
.

The combination of increased number of moles and increased temperature, start-

ing at one atmosphere, gives P2 ≈ 550 MPa.62

Tensile strengths of small rock samples range up to 66 MPa for basalt [11,

p.83], and for vesicular basalt will be considerably less than this value, with64

shock tube experiments [12] indicating rupture at pressure differences ranging

from 2–30 MPa for hot (850◦C) and cold vesicular magmas with porosities66
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ranging from 0.05–0.8. Most of the samples with porosities above 0.2 ruptured

at less than 15 MPa. Koyaguchi et al. [12] calculate an effective tensile strength68

of 2.18 MPa for their samples from Unzen and Monserrat, with an error of about

±2 MPa, after correcting for the effect of porosity.70

Hence, instantaneous heating of an inclusion leads to pressure differences

that far exceed the expected tensile strength of the bomb containing them,72

yet intact bombs are routinely encountered. That is, if water is encapsulated

by hot magma and is prevented from escaping as steam, simple calculations74

indicate the magma will be ruptured. However, heating and flashing to steam

of enclosed liquid is not instantaneous, and enclosed high-pressure vapour can76

escape a vesicular bomb since it is effectively a porous medium. There is then a

race between the heating of liquid in an inclusion, and the escape of the vapour78

generated through the surrounding porous medium, that determines how large

a pressure difference is created. The pressures generated would be expected to80

depend on the thermal and transport properties of the magma bomb, and this

dependence is of interest, leading perhaps to a criterion for fragmentation of82

the bomb [13, 14], and a timescale for escape of the water if the bomb does

not fragment. These considerations provide the motivation for developing a84

mathematical model that gives the time-dependent pressure behaviour when a

liquid water inclusion is heated by a bomb.86

2. Mathematical Model

We model the transient heating of a single inclusion placed at the centre of88

a spherical ball of hot vesicular magma at the instant of ejection. The magma

and inclusion are treated as porous media. The inclusion is taken to be a sphere90

of radius R1, and the magma to have radius R2, as illustrated in Fig. 1. SI units

are used throughout unless stated. Observations suggest R2 values range from92

several millimetres to more than a metre. We will use 10 cm here for illustration

purposes.94

We consider the inclusion to be a slurry of ash and lapilli and water, and
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Figure 1: A sketch of the model of a spherical Surtseyan bomb with a spherical slurry inclusion

placed at its centre. The inclusion has radius R1. The bomb has initial temperature Tm and

radius R2. Not to scale.

that the water can escape the ball only by flowing as a vapour through the96

porous magma, but that the solid component of the slurry remains in place, as

observed in intact bombs. Initially the included water is assumed to be liquid98

at or near boiling point and at atmospheric pressure. The only other water

vapour present in our model is that in the vesicles in the surrounding magma,100

which has come out of solution as the rising magma cooled. The magma ball is

flying through the air at the head of a plume in a tephra jet, with its surface102

effectively at atmospheric pressure but very hot.

We model the heating of the inclusion by conduction from the surrounding104

hot magma, and we model the consequent flash to steam to obtain the pressure

transients as steam is generated at the inclusion and then flows out through106

the porous magma due to the pressure differences generated by heating. For

simplicity we separate the heating and flowing problems.108

2.1. Temperature Model

The radius of the slurry inclusion is assumed to be small enough that the110

initial temperature Tm of the surrounding magma does not change significantly

during the time that it is heating the enclosed water and solids. A temperature112

gradient between the surface of the inclusion at a time-varying temperature T
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and the hot magma is estimated by a heat balance approach, so that the rate114

of heat flow into the inclusion from the magma is

4πKR2
1

∂Tmagma

∂r
,

where K is the thermal conductivity of the hot magma, and Tmagma is the actual116

temperature of the surrounding magma, which varies with radial distance r and

time t. We approximate the temperature gradient in the magma by (Tm−T )/RT118

where RT ≈ 0.3R1. The thermal lengthscale RT is calculated in the Appendix,

and it depends on both sensible and latent heat changes.120

Then the rate of heat flow into the inclusion is estimated as

4πKR2
1

(
Tm − T
0.3R1

)
The spatial origin is taken to be at the centre of the inclusion, and time is zero122

at the instant of entrainment. We match the rate of change of internal energy

of the inclusion to the rate of heat flow into it,124

4

3
πR3

1ρcp
dT

dt
= 4πKR2

1

(
Tm − T
0.3R1

)
,

where ρ = φ1ρl + (1 − φ1)ρm is the effective density of the inclusion, φ1 is the

porosity of the inclusion, ρl is the density of liquid water, ρm is the density of126

solid magma, and cp is the effective heat capacity of the inclusion at constant

pressure (see the Appendix for more details). This effective heat capacity varies128

with temperature, and jumps at the boiling point of the liquid due to the specific

heat of vaporisation, but we take a constant effective value in order to simplify130

the thermal problem sufficiently to solve it separately from the pressure problem.

The temperature at the surface of the inclusion must then satisfy the equa-132

tion
dT

dt
=

10K

ρcpR2
1

(Tm − T ) ,

which has the solution134

T = Tm − (Tm − T0)e−αt ,
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where T0 is the initial temperature of the inclusion upon entrainment, and

α =
10K

ρcpR2
1

.

So our simple model has the temperature at the surface of the inclusion increas-136

ing and approaching the magma temperature, with a time-scale of 1/α.

2.2. Pressure Model138

Conservation of vapour mass in the surrounding hot magma can be expressed

as140

∂(φ2ρv)

∂t
= −∇ · (vφ2ρv) ,

where ρv is the density of vapour, φ2 is the porosity of the magma, and v is the

fluid velocity (bold font indicating a vector quantity) in the pores. This may142

be combined with Darcy’s law for the volume flux q (volume per unit area per

second) of a fluid through a porous medium,144

φ2v = q = − k

µv
∇p ,

where k is the permeability of the porous magma, p is the pressure of the water

vapour, and µv is the dynamic viscosity of the water vapour. Permeability and146

dynamic viscosity are taken to be constant here. Then we have

∂(φ2ρv)

∂t
= ∇ ·

(
kρv
µv
∇p
)
. (1)

The ideal gas law relates vapour density to vapour pressure:148

ρv =
pM

RTmagma

where R = 8.314 J K−1 mol−1 is the universal gas constant, and M is the molar

mass of water (kg mol−1). Equilibrium between vapour temperature and magma150

temperature is assumed. We again neglect changes in magma temperature,

setting Tmagma ≈ Tm. Then using the ideal gas law to replace vapour density152

in Eqn (1) gives a nonlinear diffusion equation for vapour pressure,

∂p

∂t
=

(
k

φ2µv

)
∇ · (p∇p) .
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The initial condition is taken to be that p(r, 0) = 0 , that is, that the partial154

pressure of water vapour in the vesicular magma is negligible. The total pressure

at the surface of the bomb may be assumed to be one atmosphere. The partial156

pressure of water vapour there can be up to one atmosphere, much smaller

than critical fragmentation pressures. Similarly, the boundary condition at the158

surface of the hot magma at r = R2 is assumed to also correspond to negligible

partial pressure of water vapour,160

p = 0 , r = R2

The other boundary condition to be applied is at the flashing front in the in-

clusion. This is considered in the following subsection.162

2.2.1. Flashing Front

The flow of heat to the inclusion vaporises the water there, providing a164

source of vapour that flows into the surrounding magma. We model this source

as a flashing front that propagates into the inclusion at a rate governed by a166

heat balance between the heat conducted to the inclusion from the surrounding

magma, and the latent heat required to move the flashing front some distance168

into the inclusion. This is a classic Stefan problem for propagation of a change

of phase.170

The amount of heat provided to the flashing front located at radius s(t) in

time ∆t by conduction from the hot magma is172

4πs2K
dT

dr
∆t .

We approximate dT/dr by (Tm − T )/RT and use our temperature solution to

obtain the following expression for the amount of conductive heat provided:174

4πs2K(Tm − T0)
e−αt

RT
∆t .

We neglect changes in sensible heat and heat loss due to vapour flowing outwards

from the flashing front. We assume that in time ∆t the flashing front advances a176

distance ∆s towards the origin. We match the conductive heat provided in time
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∆t with the heat required to vaporise the water in a spherical shell of thickness178

∆s,

4πs2∆s ρlφ1hvl

where hvl J kg−1 is the specific heat of vaporisation of water. Then, equating180

heat supplied to heat required, taking the limit as ∆t (and hence ∆s) approaches

zero, and noting that ṡ = lim∆t→0 ∆s/∆t, we obtain an expression for the182

inwards speed of the flashing front,

|ṡ| = K(Tm − T0)e−αt

0.3ρlφ1hvlR1
.

Starting with s = R1 at t = 0, this implies that184

s(t) = B(e−αt − 1) +R1 ,

where B/R1 is a Stefan number, and

B =
(Tm − T0)ρcpR1

3ρlφ1hvl
.

Hence flashing of liquid in the inclusion is completed when s = 0, that is, after186

t0 seconds, where

t0 = − 1

α
ln

(
1− R1

B

)
.

Note that for t0 to be a real number requires that the Stefan number B/R1188

be greater than one, that is, that the change in sensible heat at the inclusion

exceeds the latent heat required to vaporise all of the liquid in it. If for example190

the temperature of the surrounding magma is insufficient to completely vaporise

the liquid in the inclusion, then t0 has no real value since the flashing front never192

reaches the origin (s = 0).

2.3. Inner Boundary Condition194

The vapour pressure gradient in the magma at the flashing front resulting

from the generation of steam in the inclusion is then obtained by noting that the196

vapour generated must all flow outwards into the porous magma surrounding
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the inclusion. The mass of vapour generated per second over the entire flashing198

front is

−φ1ρl4πs
2ṡ ,

and the total mass flow rate of vapour that flows away from the flashing front200

into the magma is

−4πs2 kρv
µv
∇p .

Equating these and applying the ideal gas law gives202 (
k

φ2µv

)
p∇p =

RTmφ1ρlṡ

Mφ2
. (2)

This provides a flux boundary condition at the inner boundary r = s(t) between

the origin and R1, until t = t0 and there is no more liquid left in the inclusion.204

After time t0, the boundary condition at the origin is then(
k

φ2µv

)
p∇p = 0 . (3)

To summarise, the dimensional problem to solve is206

∂p

∂t
= D

1

r2

∂

∂r

(
pr2 ∂p

∂r

)
(4)

p = 0 , r = R2 (5)

Dp
∂p

∂r
=


RTmφ1ρlṡ
Mφ2

, t < t0

0, t > t0
, r = s(t) (6)

ṡ = −K(Tm − T0)e−αt

0.3ρlφ1hvlR1
(7)

α =
10K

ρcpR2
1

(8)

D =
k

φ2µv
(9)

t0 = − 1

α
ln

(
1− R1

B

)
(10)

B =
(Tm − T0)ρcpR1

3ρlφ1hvl
(11)

and the flashing front at r = s(t) begins at r = R1 � R2 and reaches zero in

time t0. Dp is the nonlinear diffusivity in this nonlinear Stefan diffusion problem208
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for vapour pressure, which has a moving boundary at the flashing front in the

inclusion.210

We now rescale and non-dimensionalize the problem, in order to identify key

parameters and timescales.212

3. Non-Dimensional Model

The model Eqns (4) to (11) are rescaled and non-dimensionalised by scaling214

pressure on the tensile strength pc of vesicular magma, scaling time on the time

t0 required to flash all of the included liquid to vapour, and scaling r and s on216

the radius R2:

p̃ =
p

pc
, t̃ =

t

t0
, r̃ =

r

R2
, s̃ =

s

R2
, D̃ =

t0pcD

R2
2

.

Note that typically the Fourier number αt0 ≈ 0.04, which is small enough that218

we can approximate e−αt0t ≈ 1 for t < 1, and the nondimensional flash front

speed then becomes constant, ṡ = −R1

R2
. We now have a simplified timescale for220

flash completion

t0 =
0.3φ1R

2
1ρlhvl

K(Tm − T0)
.

The tildes are dropped, to obtain222

∂p

∂t
=

D

r2

∂

∂r

(
pr2 ∂p

∂r

)
(12)

p(r, 0) = 0 , p(1, t) = 0 (13)

Dp
∂p

∂r
=

 −E , t < 1

0, t > 1
, r = s(t) (14)

s(t) =

 R1

R2
(1− t), t < 1

0, t > 1
(15)

E =
R1RTmφ1ρl
R2Mφ2pc

(16)

D =
0.3pchvlρlφ1kR

2
1

Kµv(Tm − T0)φ2R2
2

(17)

Our model is a nonlinear diffusion equation for p with diffusivity Dp and a

constant flux E at the flashing surface which is the moving boundary s(t). This224
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flux turns off at t = 1. The total mass flow rate of vapour out of the inclusion

reduces as s2 reduces in time, that is, like a quadratic in time, until it reaches226

zero at t = 1. The critical value of nondimensional pressure at which bomb

rupture is anticipated is if p reaches the value one somewhere inside.228

The nondimensional model Eqns (12) – (15) now depend on three parame-

ters, D, E, and R1/R2.230

Note that as R1 increases, the flux E increases near the origin. But dimen-

sionless diffusivity D also increases as R1 increases, so it is difficult to deduce232

pressure behaviour at the origin directly from these parameters. In the next

section, numerical solutions guide us to further helpful simplifications.234

3.1. Numerical Solutions — Fixed Flash Front

We use Matlab’s pdepe command to solve Eqns (12) – (15) . As a first step,236

we fix the value of dimensionless s = ε ≡ R1/R2, that is, we take a constant

flash position at the surface of the inclusion for the flash front, modelling the238

inclusion as delivering vapour to that fixed front for dimensionless time t0. This

delivers a larger total amount of vapour than in the actual model, since it does240

not take account of the reducing total area of the flashing surface, and pressure

values obtained at this fixed value of s then provide an upper limit on the actual242

pressure values for s(t)→ 0. This upper limit turns out to be very useful.

Typical values for constants and parameters used in numerical solutions244

unless noted otherwise are listed in Tables 1 and 2. Initial values for pressure

p, and the boundary value at r = 1, are all taken to be 1.0×105Pa in numerical246

simulations, rather than the zero value described above. This only affects later

computations of steam release curves.248

The numerical solutions reveal an interesting feature - the pressure at the

fixed surface of the inclusion quickly equilibrates, as illustrated in Fig. 2. This250

rapid equilibration is observed over a wide range of parameters, independently

of whether pressure changes are visible in graphs at r = 1 when t = 1, or not.252

The timescale for pressure to reach a steady value at the surface of the

inclusion is readily obtained, in a manner analogous to the exact solution in254
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Table 1: Physical constants used.

Constant Value Units

pc 2× 106 Pa

hvl 2× 106 J kg−1

ρl 1000 kg m−3

k 10−14 m2

K 2 W m−1 K−1

µv 3× 10−5 Pa s

M 18× 10−3 kg mol−1

R 8.314 J K−1 mol−1

Tm 1300 K

T0 300 K

φ2 0.4

φ1 0.4

R1 0.001 m

R2 0.1 m

Table 2: Derived dimensionless parameters and scales. These use the parameter values given

in Table 1.

Parameter Value

D 0.02

E 3

t0 0.12 s
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the book by Crank [15, p.32]. There an exact solution proportional to erfc(η)

is given for a linear diffusion equation with a point source of constant flux at256

the origin, in an infinite medium, which depends on the well-known similarity

variable η = r/(2
√
Dt ). That solution equilibrates when η ≈ 1, giving a258

timescale r2/(4D).

For our nonlinear problem, we can similarly take the source of vapour to be260

at the origin. In fact it is not possible to specify a boundary value or flux at

the origin in spherical coordinates. What is imposed is the correct total flux262

at some radius ε, which is taken to be arbitrarily close to the origin. We are

interested in early times when the solution may be approximated by a solution264

on an infinite domain. The lengthscale for the point of interest is r = ε.

Our model may be compared to a linear one by rewriting the diffusion equa-266

tion (12), by multiplying both sides by 2p and rearranging to obtain the form

∂p2

∂t
=
Dp

r2

∂

∂r

(
r2 ∂p

2

∂r

)
(18)

which is linear in the variable p2, provided that one uses an average pressure268

value p̄ in the diffusivity term Dp. This process is well-known in geothermal

reservoir literature, e.g. [16, 17, 18], where taking an average pressure is a good270

approximation.

The timescale ts for pressure changes at early times is then proportional to272

the ratio of lengthscale squared to diffusivity Dp̄,

ts =
ε2

4Dp̄
,

where p̄ is some average value of pressure, of order one for pressures of interest.274

Hence the condition for the pressure to equilibrate at the fixed flash front before

running out of steam is ts < 1, that is, ε2 < 4Dp̄. Values for D vary, but a276

typical small value for typical parameter values is 0.02, giving ε = R1/R2 < 0.3.

Most values of R1 that we consider are well below this value (0.3R2), since we are278

assuming little thermal impact on the surrounding magma due to flashing the

inclusion, implying that the timescale for pressure to equilibrate at the flashing280

front is typically much less than the time for the inclusion to boil dry.
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Figure 2: Numerical solutions to the nondimensional pressure equations, showing pressure

versus radius and time (all nondimensional). The flashing front is approximated by fixing it

at the initial radius of the inclusion. Parameters are as listed in Table 1.
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3.2. Numerical Results — Moving Flash Front282

The moving boundary problem may be solved numerically by following the

flashing front. We could do this by solving the fixed-front problem for a very284

short time, then updating the front position, re-meshing, and interpolating the

previous solution to provide new initial values for the next step. Note that an286

alternative approach is to specify the correct (reducing with time) total flux

−4πEs2(t) at some small fixed value of ε, rather than the constant flux −E288

at a variable flash front location. Then pressure values at radii less that s(t)

are ignored, and the maximum pressure is found by interpolating the pressures290

obtained to evaluate at r = s(t). The second approach, which corresponds to

the point source method for diffusion problems in porous media, is much faster,292

since it does not require re-meshing and interpolating. Both methods have been

compared and found to give the same results on [s(t), 1].294

The results are illustrated in Fig. 3. The most noticeable effect is that

the stable maximum pressure seen in the fixed boundary simulations is almost296

reached before the pressure at the flashing front reduces due to its movement

towards the origin. This reduces the maximum value only slightly from that in298

the fixed front simulations.

In both of these simulations, the maximum pressure computed numerically is300

observed to rise above one, which should rupture the surrounding rock, assuming

it has an effective tensile strength of 2 MPa. Increasing the permeability, as in302

Fig. 4, is one way to reduce the nondimensional maximum pressure so that it

never rises above the critical value of one. Increasing the radius of the inclusion304

from 1 mm to 1 cm, on the other hand, has a relatively small effect on the

maximum pressure, as may be observed by comparing Fig. 5 with Fig. 3.306

4. Steady-State Solutions

The rapid stabilisation of pressure at the surface of the inclusion means that308

the steady-state solution for pressure in the case of a constant and persistent

source of vapour at r = ε may be used to provide an approximation to the310
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Figure 3: Numerical solutions to the nondimensional pressure equations, showing pressure

versus radius and time (all nondimensional), when the flashing front is allowed to travel

towards the origin. The radial mesh, initial conditions, and the flashing front location s(t) is

tracked. Parameters are as listed in Table 1.
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Figure 4: Numerical solutions to the nondimensional pressure equations, showing pressure

versus radius and time (all nondimensional). The inner boundary moves with the flashing

front, as in the previous figure. The permeability is 10−12 m2. Other parameters are as in

Table 1.
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Figure 5: Numerical solutions to the nondimensional pressure equations, showing pressure

versus radius and time (all nondimensional). The inner boundary moves with the flashing

front. The radius of the inclusion is now 1 cm. Other parameters are as in Table 1.
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maximum value of pressure achieved there, even when the source reduces with

time and does turn off at t = 1. A steady state everywhere is not typically312

achieved by the time t = 1, as is evident in Fig. 2, but the value of pressure

at r = ε predicted by the steady-state solution will provide a fairly close upper314

bound to the actual pressure there, since it reaches a stable value relatively

quickly.316

The steady-state solution satisfies

D

r2

∂

∂r

(
pr2 ∂p

∂r

)
= 0

which implies that318

r2 ∂p
2

∂r
= c1

where c1 is a constant of integration. The steady solution is then

p2 = −c1
r

+ c2

and the constants are determined by the boundary conditions at r = ε (where320

the flux value is −E) and at r = 1 (where p = 0), so that the steady solution is

p2 =
2Eε2

D

(
1

r
− 1

)
. (19)

The value of pressure at r = ε is then given by322

p(ε)2 = F (1− ε) ,

where

F =
2Eε

D
.

This serves as a formula for the maximum pressure that is rapidly approached at324

the surface of the inclusion in this model. If it exceeds 1 in value, fragmentation

is predicted.326

4.1. Fragmentation Criterion

The crucial combination of parameters in the maximum pressure is328

F =
2Eε

D
=

7RTmK(Tm − T0)µv
Mp2

chvlk
,
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which is independent of R1 and R2, so that for ε � 1, the maximum pressure

is approximated by p(ε) =
√
F and this is independent of R1 and R2. This is330

consistent with our above observation, that increasing R1 from 1mm to 1cm has

little effect on maximum pressure.332

However, for larger values of R1, the more general formula

p(ε) =
√
F (1− ε)

is required, that is,334

p(ε) =

√
7RTmK(Tm − T0)µv

Mp2
chvlk

(
R2 −R1

R2

)
and pressure does vary more significantly with the ratio ε = R1/R2 when it is

of order one.336

The nature of the dependence on R1 is that the maximum pressure reached

decreases as R1 increases. This may be thought surprising, if one considers that338

increased R1 means more water to drive steam pressures upwards. But increased

R1 also means a shorter distance R2−R1 for steam to travel to escape from the340

magma, reducing pressure rise.

The fragmentation criterion is that p(ε) > 1, that is,342 √
7RTmK(Tm − T0)µv

Mhvlk

(
R2 −R1

R2

)
> pc . (20)

The full solution of the diffusion problem does depend on ε, as can be seen

by comparing Fig. 6 which has R1 = 1 cm (and R2 = 100 cm) with Fig. 2 which344

has R1 = 1 mm. Both have much the same values for the maximum pressure

at r = ε, but the second figure has almost reached steady state throughout by346

the time the steam source vanishes at t = 1.

It is also of interest that the fragmentation criterion does not depend on348

the porosity φ2 of the hot magma surrounding the inclusion. This may be

understood as due to the importance of the steady-state pressure solution, which350

is independent of diffusivity, together with the fact that the speed of the flashing

front depends on the temperature gradient driving it from the hot magma, but352

only on the porosity of the inclusion which is the source of liquid for flashing.
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Figure 6: Numerical solutions to the nondimensional pressure equations, showing pressure

versus radius and time (all nondimensional). The flashing front is frozen at its initial location,

the surface of the inclusion, which has dimensional radius 1cm. Other parameters are as in

Table 1.
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Note too the lack of dependence on φ1. An increased φ1 value slows the354

speed of the flashing front but increases the amount flashed. In the dimensional

problem (Eqns 6 and 7) it can correspondingly be seen that in the source term356

RTmφ1ρlṡ
Mφ2

the φ1 terms cancel exactly.

4.1.1. Travelling Flash Front358

The steady-state solution is altered slightly in a quasi-steady manner if we

solve for steady p on the moving interval [s(t), 1]. This gives360

p2(ε) =
2Es2

D

(
1

s
− 1

)
,

and in the limit as s(t) approaches zero,

p2(ε)→ 2Es

D
→ 0 .

This is consistent with the behaviour of numerical solutions seen in the previous362

section, in particular with the pressure behaviour at the moving flash front. The

steady solution predicts that as s moves towards zero (at a constant time rate),364

p varies as
√
s , as can be seen in Figs 5 and 3 as t→ 1.

4.2. Numerical Verification366

We tested the fragmentation criterion obtained from the steady-state solu-

tion, by comparing it with numerical solutions to the diffusion equation with a368

travelling flashing front. A number of maximum pressure values were computed

at the flashing front, for permeability ranging in powers of ten from 10−10 m2 to370

10−16 m2, and at each permeability using ten values of R1 from the list 0.001,

0.005, then stepping to 0.045 with step-size 0.005. These computed maximum372

pressures are compared with the theoretical steady state formula in Fig. 7, where

it can be seen that the steady-state approximate formula gives a good match374

on the log-log plot over a wide range of pressure scales. The linear plots show

that the more accurate numerical values of the maximum pressure can be as low376

as 75% of those predicted by the formula, and that the better approximations

correspond to larger inclusions and to larger permeabilities. That is, for small378
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permeability and small inclusions, the steady-state formula predicts maximum

pressures that are higher than observed in numerical simulations. For all of380

these plots, the initial and boundary pressures have been set to zero.

It is also clear from Fig. 7(a) that it is at a permeability between 10−13 and382

10−14 m2 that maximum pressure crosses the critical value of one, irrespective

of the value of R1.384

A comparison of numerical and theoretical maximum pressures over a per-

meability range that is narrowed to the range 10−14 m2 to 2×10−15 m2 appears386

in Fig. 8. The critical value of maximum pressure appears to be reached at

permeabilities near 2×10−14 m2, depending on R1. Rearranging Eqn (20) gives388

for small R1 the critical value of permeability for rupture,

kc =
7RTmK(Tm − T0)µv

Mhvlp2
c

≈ 3× 10−14 m2 .

which is close to our more careful result from numerical simulations.390

5. Steam Flow Times

Given the observations of plumes of steam trailing behind Surtseyan bombs,392

it is of interest to compute the time needed before steam begins to flow through

the outer surface of a bomb, and the time period before steam flow is almost394

exhausted.

The rate of flow of steam Q (kg s−1) out of the sphere r = R2 is given by396

Darcy’s law as

Q = −4πR2
2

(
kρv
µv
∇p
)

and using the ideal gas law this becomes, in dimensional terms,398

Q = −4πR2
2kM

µvRTm

(
p
∂p

∂r

)
.

If we non-dimensionalise as above, this becomes

Q = −4πR2kMp2
c

µvRTm

(
p̃
∂p̃

∂r̃

)
.

Pressure and its derivative are to be evaluated at the outer surface, r̃ = 1.400

It is clear that pressure must not be zero here, if Q is to be nonzero, so this
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Figure 7: Comparisons of numerical and theoretical maximum nondimensional pressures at

the flashing front in a magma bomb. Numerical results use a point source to give a moving

flash front, and cover permeabilities stepping from 10−10 m2 to 10−16 m2 evenly in log space

by dividing by ten, and close groupings of ten values for each permeability of inner radii R1

taking values 0.001 m, 0.005 m, stepping evenly then to 0.045m. Symbols indicate numerical

values and lines indicate equality when used. Higher maximum pressures correspond to lower

permeabilities. Pressure at r = 1 and initial pressure have been set to zero in these plots.

Other parameters are as in Table 1. Trends with decreasing permeability and increasing R1

are indicated in the last plot, showing the ratio of numerical to theoretical maximum pressures

for each case computed.
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Figure 8: A close-up view near the critical nondimensional pressure, of a Log-Log plot of

numerical vs theoretical maximum pressures (symbols). Permeabilities are 10−14 m2 (red

circles), 2×10−14 m2 (blue squares), 3×10−14 m2 (black diamonds), and 4×10−14 m2 (red

plusses). Each permeability has seven values of inner radii R1, 0.001 m, 0.005 m, 0.01 m,

0.02 m, 0.03 m, 0.04 m, and 0.05 m. As inner radii increase at a fixed permeability, the steady

state value of maximum pressure decreases. The critical value of pressure is indicated by the

dashed lines. Other parameters are as in Table 1.
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section uses p = pa at the outer surface. We calculate Q(t) using the numerical402

solutions obtained on the moving nondimensional domain [s(t)/R2, 1], for a

variety of parameter values.404

Solutions to the diffusion equation have the theoretical property that steam

immediately begins to flow out of the bomb, but at infinitesimally small rates406

initially. The more useful theoretical result is the time at which significant and

observable flow rates of steam begin, and the time at which they end. Hence408

we calculate times for 10%, 50% and 90% of the included water to escape the

bomb.410

We have written our pressure diffusion equation in a form that is semi-linear

in p2 (see Eqn (18)) which has a diffusivity Dp that depends on p. We use an412

average value p̄ for p in the diffusivity that is based on the steady-state solution.

We compute p̄ using Eqn (19) for p2, and we take the integral average:414

p̄ =

∫ 1

ε

pdr/(1− ε) =

√
2Eε2

D(1− ε)2

∫ 1

ε

√
1− r
r

dr

=

√
Eε2

2D(1− ε)2

(
2
√
r − r2 + sin−1(2r − 1)

)1

ε

=

√
Eε2

2D(1− ε)2

(π
2
− 2
√
ε− ε2 − sin−1(2ε− 1)

)
.

This becomes, for small ε,

p̄ ≈ π

√
Eε2

2D(1− ε)2
.

A dimensionless timescale is then given for the lengthscale 1− ε as416

τ =
(1− ε)2

Dp̄
=

(1− ε)3

επ

√
2

DE

Numerical results were used to find the dimensionless times when 10% and

90% of the total amount of water has flowed out of the bomb in vapour form.418

These are compared with τ values in Fig. 9, to determine whether τ is a good

measure of steam escape times.420

Referring to Fig. 9, it can be seen that at smaller values of τ , the timescale

that controls steam release is the time to flash all of the liquid to vapour, a422
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Figure 9: Plot of the dimensionless times for 10% (red circles) and 90% (black diamonds) of

the inclusion vapour to flow out of the bomb, versus the theoretical dimensionless timescale

τ . The solid line shows where the times would be equal to τ . The cases included here have

seven values of permeability stepping from 10−10 m2 to 10−16 m2 by dividing by ten. For

each permeability setting, there are five values of inner radii R1, taking values evenly spaced

from 0.01 m to 0.05 m. Other parameter values are as in Table 1.

28



dimensionless time of one. Hence the dimensional timescale for these cases is

given by t0. This is independent of τ , which is a timescale for diffusion through424

the magma, not a timescale for flashing. This corresponds to cases where the

diffusivity D is so large that vapour flows relatively quickly from the flashing426

front to the outer surface of the enclosing magma, and the time-limiting factor

is the time to flash the liquid to vapour.428

At larger values of τ there is a range of numerical times for a given value

of τ , and the trend of these numerical values is the same as that for τ . The430

value of τ is seen to provide an approximate lower limit on the 10% escape

times, and about ten times the τ value provides an estimate of the time for432

90% of the vapour to escape. The errors in these estimates are due largely to

approximating the average pressure value using the steady-state solution, but434

also to the simplification used that ε is small.

Converting τ to a predicted timescale τs for the time in seconds for most of436

the water to escape gives

τs =
(1− ε)3

επ

√
2

DE
t0 =

φ2

π

(
R2 −R1√
R1R2

)√
0.6µvMhvl

KkRTm(Tm − T0)
.

Another view of the numerically computed escape times is provided by438

Fig. 10. It can be seen that that for the higher permeability cases controlled

by the time for the inclusion liquid to flash to vapour, escape times have a440

wide range. Initial appearance of steam ranges from about two seconds for

the smallest inclusions in very permeable bombs, to about 50 seconds in tight442

bombs. Most steam has exited a bomb at times ranging from 20 seconds for

very permeable bombs to forty minutes for tight bombs assuming they have not444

ruptured. Generally, escape times increase as the square of the radius R1 due

to the dependence of the timescale t0 on R2
1.446

In order to clarify when the flash time dominates, and when the time for

vapour to diffuse through the surrounding bomb controls steam release times,448

plots which are restricted to permeabilities higher than the critical fragmen-

tation value k = 3×10−14 m2 for bombs of strength 2 MPa are presented in450

Fig. 11.
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Figure 10: Plots of the times in minutes for 10%, 50% and 90% of the inclusion vapour to

flow out of the bomb, versus an index for the case run. The upper plot is log-linear, and the

lower plot is linear. The cases included here have seven values of permeability stepping from

10−10 m2 (index 1–5) to 10−16 m2 (index 31–35) by dividing by ten. For each permeability

setting, there are five values of inner radii R1 increasing from left to right, taking values evenly

spaced from 0.01m to 0.05m. Other parameter values are as in Table 1.
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(a) Plot of the dimensionless times for 10% (red circles) and 90%

(black diamonds) of the inclusion vapour to flow out of the bomb,

versus the theoretical dimensionless timescale τ , for bombs that are

expected to remain intact. The solid line shows where the times

would be equal to τ .
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(b) Plot of the times in minutes for steam to escape, for bombs that

are expected to remain intact.

Figure 11: The cases included here are restricted to bombs which remain intact. There are

five values of permeability stepping from 10−10 m2 to 10−13 m2 by dividing by ten, then a

fifth value of 3×10−14 m2. For each permeability setting, there are five values of inner radii

R1, taking values evenly spaced from 0.01 m to 0.05 m. Other parameter values are as in

Table 1.
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6. Conclusions452

A nonlinear pressure diffusion equation has been derived that describes an-

ticipated pressure increases due to flashing of a liquid inclusion at the centre454

of a Surtseyan magma bomb. Numerical solutions and some analysis indicate

that, for a range of parameter values, the steady-state solution provides useful456

information about the maximum pressure difference generated by boiling.

Pressures inside the bomb are highest at the flashing front and decrease458

with distance from it. They increase rapidly with time at the flashing front.

Pressures reach their maximum value at times less than the time to boil all of460

the inclusion liquid provided that the inclusion has a radius that is less than

half of the bomb radius. Rupture is predicted for magma permeabilities less462

than about 10−14 m2, but this depends also on effective tensile strength and

other parameters that are quantified in the rupture criterion464 √
7RTmK(Tm − T0)µv

Mhvlk

(
R2 −R1

R2

)
> pc .

Noting that the two parameters whose variation from sample to sample might be

of most interest are permeability k and the size ratio ε = R1/R2, this criterion466

may be written in the form

k <
B

p2
c

(1− ε) (21)

where468

B =
7RTmK(Tm − T0)µv

Mhvl
.

This inequality graphs as the region below a straight line as illustrated in Fig. 12.

The graph has slope −B/p2
c and intercept B/p2

c . Using parameter values470

Tm = 1300 K, T0 = 300 K, and pc = 2 MPa gives

B

p2
c

≈ 3× 10−14 m2 .

The value 3×10−14 m2 gives a lower bound for permeability when the inclusion472

is negligibly small and bombs are to remain intact. Below this value fragmen-

tation is in general predicted by the mathematical model. Modifying this for474

larger values of R1 is easy using Fig. 12 or Eqn (21).
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Figure 12: Region in which fragmentation of a Surtseyan bomb is predicted, in terms of

permeability k vs relative inclusion size ε = R1/R2.

It is notable that the critical value of permeability given by the steady-state476

criterion (20) and the consequent approximate value obtained in the previous

section of k = 8×10−15 m2 for bomb fragmentation is less than the permeabil-478

ities of clasts measured by Schipper et al. [19], 10−10 m2 to 10−13 m2. This

measured range of permeabilities of intact bombs is consistent with our theo-480

retical critical value of about 10−14 m2, as the measured values are above the

critical value for fragmentation.482

We have assumed an effective tensile strength pc = 2 MPa. A reduction of

this by a factor of three would increase the critical permeability to the value484

10−13 m2, close to the minimum values measured by Schipper et al. [19].

Steam escape times are found to vary from two seconds to 40 minutes. They486

fall into two categories, one controlled by the relatively short time required

to flash the entrained liquid water, and the other controlled by the relatively488

long time required for steam to flow through the vesicular magma bomb. The

flashing-controlled cases have initial steam flows observable after about 2 sec-490

onds, and exhaustion of steam venting after about ten minutes. Reference to

Fig. 11 makes it clear that these cases also correspond mostly to those bombs492

which are not expected to fragment if pc = 2 MPa, with bombs near fragmenta-

tion beginning to show some correlation with the theoretical dimensionless time494
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τ . Other less permeable cases with some distance for the vapour to travel can

take up to 40 minutes to near exhaustion, and the initial appearance of vapour496

from these bombs may also be significantly delayed, with times ranging from

one minute to 20 minutes. However, these bombs are also the ones with low498

enough permeabilities that they should fragment, unless the bomb material is

stronger than 2 MPa.500

The timescale τs provides a useful indicator of how steam escape times de-

pend on magma properties, but only for bombs with such a small permeability502

that they are predicted to fragment. For bombs that our model predicts will

remain intact, with k > 3 × 10−14 m2, the timescale t0 is the relevant one504

for steam escape times, and this is controlled by the time required to flash the

inclusion to steam, not the negligibly small time for the steam to escape from506

the bomb.
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Appendix

An estimate is required for the thermal lengthscale RT , since we approximate564

the temperature gradient in the magma by (Tm−T )/RT . We approximate this

lengthscale by estimating how much heat is required to vaporise the liquid in the566

inclusion, initially at 293 K and vaporised at 373 K. The heat required to raise

the temperature of liquid by 80 K in the slurry ball with porosity φ1, density568

ρl = 1000, and specific heat clp = 4184 J kg−1K−1 is

Q1 =
4

3
πR3

1φ1ρlc
l
p80 ≈ 1.4× 106φ1ρlR

3
1 .

A similar calculation for the heat Q2 required to raise the temperature of the570

solid component of the inclusion gives Q2 ≈ 0.5Q1(1−φ1)/φ1. The heat required
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to vaporise at 373 K is greater:572

Q3 =
4

3
πR3

1hvlφ1ρl ≈ 9.5× 106φ1ρlR
3
1 ,

where hvl ≈ 2260 kJ kg−1 is the specific heat of vaporisation.

Hence an effective value for cp that applies up to the point that all of the574

liquid in the inclusion is vaporised can be estimated as about Q3/Q1 times the

value 4184 used above, that is, cp ≈ 3× 104 J kg−1K−1
576

The volume of magma in a shell of radius R1 +RT about the inclusion is

VT =
4

3
πφ2[(R1 +RT )3 −R3

1]

and the sensible heat due to a change of temperature of 900 K in this is set578

equal to Q1 +Q2 +Q3 to find RT :

900cmφ2ρmVT = Q1 +Q2 +Q3

where the thermal capacity cm = 840 J kg−1K−1, magma density ρm = 2800580

kg m−3, and magma porosity is φ2. This gives

(R1 +RT )3 ≈
[
1 + 1.2

φ1

φ2
+ 0.6

(
1− φ1

φ2

)]
R3

1 .

Using equal porosities in magma and inclusion with values of 0.4 then gives the582

estimate for thermal lengthscale

RT ≈ 0.3R1 .
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