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Abstract

Recent experimental work has shown that when a vertical column of rock
under large pressure is suddenly depressurised, the column can ‘explode’ in a
structured and repeatable way. The observations show that a sequence of hor-
izontal fractures forms from the top down, and the resulting blocks are lifted
off and ejected. The blocks can suffer secondary internal fractures. This exper-
iment provides a framework for understanding the way in which catastrophic
explosion can occur, and is motivated by the corresponding phenomenon of
magmatic explosion during Vulcanian eruptions. We build a theoretical model
to describe these results, and show that it is capable of describing both the
primary sequence of fracturing, and the secondary intra-block fracturing. The
model allows us to suggest a practical criterion for when such explosions occur:
firstly, the initial confining pressure must exceed the yield stress of the rock,
and secondly, the diffusion of the gas by porous flow must be sufficiently slow
that a large excess pore pressure is built up. This will be the case if the rock
permeability is small enough.
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1 Introduction

Depending on magma composition and evolution, explosive volcanic eruptions mani-
fest themselves in a broad variety of activity ranging from mild Strombolian eruptions
and Hawaiian fire fountaining to vigorous Vulcanian and Plinian eruptions. The range
of different types of explosive eruption is mirrored in the variety of their trigger mech-
anisms. Vulcanian-style eruptions are typically caused by the sudden unplugging of
a sealed volcanic vent. The consequent depressurisation of the underlying magma
generates stresses in the vesicular magma and may initiate further volatile exsolu-
tion; if the magma is sufficiently viscous, the gases are not able to escape from the
pressurised vesicles, thus adding further stress to the magma which can cause brittle
rupture of the magma itself, resulting in an explosive eruption.

It is this fragmentation of magma which distinguishes explosive volcanic eruptions
from the more quiet effusive form of volcanic activity. Hence the conditions leading to
magma fragmentation as well as the fragmentation process itself are key points for the
understanding of the dynamics of volcanic eruptions. So far various models have been
proposed for fragmentation, based on investigations of deposits of explosive eruptions,
theoretical models and laboratory experiments. Early models mentioned magma dis-
ruption by bubble coalescence as the main mechanism (Verhoogen 1951). However,
McBirney and Murase (1970) and Sparks (1978) demonstrated that coalescence is
unlikely to be the leading fragmentation mechanism for highly viscous magmas, al-
though possibly applicable for eruptions of low viscosity magmas. Basically two main
groups of processes leading to fragmentation can be discriminated:

1. Fragmentation due to rapidly accelerating two phase flow.

In this case the driving force for expansion and acceleration is derived from vesic-
ulation and bubble growth. High strain rates within the magma cause the fragmen-
tation, either due to instabilities in the fluid (ductile) or by brittle fracture. Low
viscosity magma is likely to fragment by fluid instabilities resulting in Hawaiian fire
fountains or Strombolian bubble bursts. Fragmentation by brittle fracture due to
high strain rates may be important for Plinian eruptions of higher viscous magma
(Dingwell and Webb 1989, Gilbert and Sparks 1998, Papale et al. 1998, Papale 1999,
Cashman et al. 2000).

2. Fragmentation of vesicular magma due to rapid decompression.

Here, gas overpressure builds up in the vesicles of the magma, mainly depending on
melt properties as viscosity, volatile content, and diffusivity as well as the overburden
pressure. Rapid decompression of the vesicular magma can be triggered by the sudden
removal of an edifice (e. g., dome collapse or landslide) or by ejection of a plug from
the conduit. A pressure gradient is built up at top of the magma body between the
pressurized gas in the vesicles and the low pressure area behind the unloading wave.
At a certain pressure differential, the tensile strength of the magma is overcome and
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brittle disruption of the upper layer within the vesicular magma will occur. Now a
newly formed free surface is exposed to low pressures and again a pressure gradient
is built up, leading to the fragmentation of the next layer. Thus, a layer by layer
fragmentation process (a fragmentation wave) moves downwards into the magma
(Alidibirov and Dingwell 1996, 2000, Scheu et al. 2008). Calculations demonstrate
that the fragmentation wave velocity should be far slower than the speed of sound.
This was confirmed subsequently experimentally, with values ranging from 2 to 110
m s−1 (Kennedy et al. 2005, Scheu et al. 2006). This fragmentation process plausibly
accounts for the eruption style of most silicic events, e. g., for lateral blasts and
Vulcanian to sub-Plinian eruptions. It may further contribute to Plinian eruptions
of silicic magma, most likely in combination with the other mechanism mentioned
above.

Layer by layer fragmentation is nowadays widely accepted as being the predomi-
nant fracturing process caused by rapid decompression (Cashman et al. 2000, Melnik
2000, Ichihara et al. 2002, Namiki and Manga 2005, Scheu et al. 2006, Scheu et al.
2008).

Several physical models have been proposed accounting for the stress distribution
caused by pressurized gas within the vesicles of a magma body. McBirney and Murase
(1970) used elasticity theory and the Griffith theory of fracture. More recent models
are based on the stress distribution of thin-walled spheres (Alidibirov 1994) or thick-
walled spheres (Zhang 1999). Based on laboratory experiments, Spieler et al. (2004)
linked overpressure and porosity in an empirical fragmentation criterion. Compara-
tive studies of these models, including comparisons to experimental data sets, showed
that none of the approaches fit the entire range of data accurately enough, leading
to the suggestion that the process is intrinsically more complex (Spieler et al. 2004,
Koyaguchi et al. 2008). Koyaguchi et al. (2008) added the Griffith theory of crack
propagation to the models of Zhang (1999) and Koyaguchi and Mitani (2005), and
thus was able to reproduce satisfactorily not only the threshold for magma fragmen-
tation, but also its propagation speed (Scheu et al. 2006).

Our aim in this paper is to describe a mathematical model based on first principles
of mass and momentum conservation which can explain the experimental results. In
principle, this will provide a theoretical framework for the subsequent investigation of
the more realistic situation which occurs in an actual volcanic vent. The experimental
setup is described in the following section.

2 Experimental investigations

Experimental setup

To investigate the fragmentation of porous magma induced by rapid decompression,
Alidibirov et al. (1994) designed a vertical shock tube apparatus. This was improved
and modified several times to suit different scientific problems (Spieler et al. 2004,
Scheu et al. 2006, 2008a,b), yet the basic principle remains the same: a cylindrical
sample (in this study 12 mm radius and 60 mm length) of a porous volcanic rock is
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glued into a sample holder and placed in an autoclave. A set of diaphragms separates
the autoclave from a large chamber at atmospheric pressure. The autoclave with the
sample inside is slowly pressurized with nitrogen gas. After an equilibration time,
rapid decompression is triggered by a systematic failure of the diaphragm system.
When the rarefaction wave reaches the sample a pressure gradient starts to build up
in the sample leading to disruption of the sample and ejection of the fragments (above
the fragmentation threshold) or to permeable degassing of the entire sample (below
the fragmentation threshold).

Figure 1 depicts the specific setup used for this study, which was optimized for
visual observation (Scheu et al. 2008a). The autoclave as well as the sample holder
were manufactured out of plexiglass, and all experiments were performed at ambient
temperature. Special care was taken to use a transparent glue neither obscuring the
view nor changing the appearance of the sample. Three pressure sensors monitor the
gas pressure evolution within the autoclave (above the sample), at the side of the
sample as well as directly below it. A high speed video camera (Photron Fastcam)
records the experiment at a rate of 10,000 frames per second.

In these experiments magma is represented by a sample of porous volcanic rock.
The use of rock to represent magma can be justified by the rapidity of the decom-
pression. On the millisecond timescale of these experiments, magma behaves like
a brittle solid rather than a viscous liquid (Dingwell 1996). When the autoclave is
decompressed the sample remains pressurized for a certain time due to the gas in its
open pore space, causing it to fragment.

Experimental results

In a series of experiments, different glues were tested to ensure optimal experimental
conditions. The chosen glue, a special superglue, does not penetrate into the sample
and is applied to the entire inner surface of the sample holder. The glue is brittle and
only just strong enough to hold the sample in place against the pressure difference
developed between its top and bottom when the autoclave is decompressed. If no glue
is used, the entire sample is propelled upwards by compressed gas ejected from its
base but shows a similar pattern of fractures. If the glue holds the sample in place too
strongly, the sample fractures internally leaving a shell of rock attached to the sleeve.
In both these cases it is more difficult to observe the fracture pattern developing.

Figure 2 shows snapshots of a fragmenting sample recorded by a high speed camera
at 10,000 frames per second. These indicate that fragmentation starts at the top of
the sample and continues downwards. Two types of fractures are observed. The first
type is fracture of the glued column, and usually occurs within the upper third of the
sample. The fractures are parallel to the sample surface and dissect the entire sample
into discs (layers). Crystals, large pores and preexisting small cracks may cause a
slight deviation from this fracture pattern. The second type is internal fracturing
of an expelled fragment. After a disc is ejected, further fracturing may be observed
during ejection. This consecutive fracturing often leads to an entire disaggregation of
the sample into ash and small blocky fragments.

A more complicated picture of the second type of fracture is revealed by figure
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Figure 1: Shock tube based apparatus for magma fragmentation. The sample is
glued to a holder, placed inside the autoclave and slowly pressurized using nitrogen
gas. The autoclave is decompressed by opening the diaphragms at the top. Pressure
sensors measure the resulting decline of gas pressure with time, while a high speed
video camera captures the sequential fracturing of the rock.
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(a) 0 ms (b) 0.3 ms (c) 1.1 ms (d) 2.4 ms

Figure 2: Individual frames from a movie taken by a high speed digital camera during
a typical rock fragmentation experiment. (a) Before depressurization of the autoclave
has taken place. (b) 0.3 ms after decompression commenced, the upper part of the
sample has fractured. (c) After 1.1 ms fractures have occurred throughout the sample.
(d) By 2.4 ms the rock has disintegrated.

3, which gives the locations of the upper and lower surfaces of cracks as a function
of time. Slices of rock are ejected from the upper part of the remaining sample, but
these slices can break into two or more discs, exhibiting layered fractures while in flight
before they shatter into small pieces. This fracturing behaviour was systematically
observed in the higher pressure experiments, and cannot be explained by the existing
models of layer-by-layer fragmentation previously mentioned. Thus a comprehensive
mathematical model of this process must be able to account for both these types of
fracture.

3 A mathematical model of fragmentation

We consider the column of rock to be an elastic porous medium, and as such the
basic theory for deformation of the medium is that given by Biot (1956, 1962). The
gas can flow through the porous rock, and we suppose the rock fractures if the gas
pore pressure exceeds the stress in the solid matrix by a yield stress σY . When
the pressure is lowered at the surface of the sample, the solid stress is lowered very
rapidly, while a decompression wave propagates downwards through the pore space.
It is the resulting excess pore pressure which can cause fracturing of the sample.
In our theoretical discussion, we will describe the way in which sequential primary
fracturing can occur, and also how secondary fracture within separated blocks can
occur. A distinction that we will make is between experiments where the sample is
glued to the container, and those where it is not. In the latter, we generally find (as is
observed) that the column lifts off the base initially, before subsequently fracturing.
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Figure 3: Graph showing the initiation and progress of cracks in a typical sample.
(This is from the same experiment as that shown in figure 2.) The uppermost line
shows the height of the top of the sample as a function of time; pairs of lines show
the heights of the upper and lower surfaces of cracks; the lowermost line is the height
of the base of the sample.

We interpret this as being due to a primary fracture at the base (where the yield
stress is zero), followed by subsequent secondary fracture. If the sample is glued,
then we suppose that a wall friction acts on the sample due to the glue, and this
allows the possibility for primary internal fracturing. In the model which follows, we
describe the elastic displacement of the rock and the turbulent porous flow of the
(adiabatically compressible) gas through the rock, allowing for poroelastic effect of
the gas pressure on the rock deformation.

In Biot’s (1956) theory, the solid displacement is denoted u, while the displacement
of the pore fluid is denoted U. The solid strain tensor is denoted eij, so that

eij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

, (3.1)

and the dilatations of solid and fluid are defined by

e = ekk = ∇.u, ε = ∇.U. (3.2)

Biot’s equations for the stresses are then

(1 − φ)σS
ij = 2Neij + [Ae + Qε]δij,

−φp = Qe + Rε, (3.3)
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where N , A, Q and R are four elastic constants; A and N are equivalent to Lamé
constants for the solid matrix, and Q and R are associated with the deformability of
the pore space and the pore fluid. Note that by eliminating ε, we can write (3.3)1 in
the form

(1 − φ)σS
ij = 2Neij + [Be − αp]δij, (3.4)

where

B = A −
Q2

R
, α =

φQ

R
. (3.5)

(Biot writes the stress in the solid in the form σij = (1 − φ)σS
ij.)

For small displacements, the velocity of the pore fluid is defined by

v =
∂U

∂t
. (3.6)

Biot then poses conservation of momentum equations for the pore fluid and the ma-
trix, which can be written in the form

ρfφvt = −φ∇ p − A − D,

ρs(1 − φ)utt = (1 − φ)∇.σS + A + D, (3.7)

where A and D are added mass and interfacial drag terms, taken by Biot in the form

A = ρa
∂

∂t
(v − ut) , D = b (v − ut) . (3.8)

The subscripts t denote time derivatives, here and subsequently. ρa is an added mass
coefficient having units of density, and b is an interfacial drag coefficient. We discuss
suitable forms for these coefficients below.

The model is completed by the addition of conservation of mass equations,

(ρfφ)t + ∇. (ρfφv) = 0 (3.9)

for the pore fluid, and

{ρs(1 − φ)}t + ∇. {ρs(1 − φ)ut} = 0 (3.10)

for the solid, together with an equation of state for the pore fluid, which in the present
case we take to be the perfect gas law,

ρf =
Mp

RT
, (3.11)

and an energy equation for the gas, which we take to be the adiabatic equation

dT

dp
=

1

ρfcp
, (3.12)

where cp is the specific heat at constant pressure.
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The provenance of the conservation of mass of solid is a curiosity, since in the
elastic description of the solid matrix, mass conservation is not generally considered.
In fact the elastic description implicitly assumes small strains and essentially con-
stant porosity, and we can interpret (3.10) as simply stating that φ is approximately
constant. We shall thus not consider this equation further.

We now consider the specification of the coefficients ρa and b. The added mass
coefficient commonly takes the form

ρa = φCV Mρc (3.13)

in dispersed two-phase flows (Robinson et al. 2008), where φ is the volume fraction
of the dispersed phase, ρc is the density of the continuous phase, and CV M is an O(1)
number. An example would be the bubbly flow of gas bubbles in a liquid phase, where
ρc is the density of the liquid. The added mass force arises through the existence of
relative motion between the phases. Because the liquid has to get round the gas
bubbles, its corresponding deformation implies that ρa ∼ ρc. In the present case,
the relative motion of solid and pore gas is accommodated by deformation of the gas
phase (both phases are continuous, i. e., connected), and therefore we suppose that
ρa is given by

ρa = (1 − φ)CV Mρf , (3.14)

with CV M = O(1).
The drag coefficient b is most simply determined through analogy with Darcy’s

law. If we ignore the (usually small) acceleration terms in (3.7)2, then (bearing
in mind that the Darcy flux is φ (v − ut)), we see that Darcy’s law is obtained by
choosing

b =
ηfφ2

k
(3.15)

(Biot 1956), where k is the permeability. In the present situation, the pore gas flow
is sufficiently rapid that the Ergun equation may be appropriate. One form of this
which caters for both Darcy (laminar) and Ergun (turbulent) forms is the Forchheimer
equation

∇p =
ηfV

k
+

ρfcF |V|V√
k

(3.16)

(Nield and Bejan 2006), where in the present context V = φ (v − ut), and cF is an
O(1) coefficient. The second term is dominant if the pore Reynolds number is large,
i. e.,

ρf

√
k|V|

ηf
$ 1, (3.17)

and we anticipate that this is the case. It is then appropriate to define, equivalently
to (3.16),

b =
ηfφ2

k

[

1 +
ρfcF

√
k |V|

ηf

]

. (3.18)
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One-dimensional model

Since the experimental results are in essence one-dimensional, we suppose that the
variables depend only on the vertical coordinate z, where the initial sample lies in
0 < z < l. The vertical solid displacement is denoted w, the vertical component of the
solid stress σS

33 is denoted σ, and the vertical velocity of the pore gas is denoted v. A
complication arises depending on whether the sample is glued to, or otherwise pressed
against, the sample holder. In this case it is appropriate to prescribe a wall friction F .
Strictly this renders a one-dimensional model inexact, although for long thin samples,
cross-sectional averaging will still lead to a one-dimensional model. Here we simply
allow for side-wall friction by the addition of a friction term to the solid momentum
equation. The equations describing the flow then take the form

ρs(1 − φ)wtt = (1 − φ)σz + A + D − F,

ρfφvt = −φpz − A − D,

(1 − φ)σ = Ewz − αp,

A = (1 − φ)CV Mρf (vt − wtt) ,

D =
ηfφ2

k
(v − wt) +

ρfcF φ3

√
k

|v − wt| (v − wt) ,

(ρfφ)t + (ρfφv)z = 0,

ρf = ρ0

(

p

p0

)1/γ

, (3.19)

where

E = B + 2N, γ =
Mcp

Mcp − R
, (3.20)

and ρ0 and p0 are reference values of gas density and pressure. As before, subscripts t
denote time derivatives, while subscripts z denote space derivatives. We suppose the
wall friction term is given by

F =
µg(w − w0)

2πRdg
, (3.21)

where µg is the shear modulus of the glue, dg is the glue thickness, R is the sample
radius, and w0(z) is the initial displacement of the sample (this may be non-zero
because we take as reference state the unstressed sample before it is pressurised).

The model is augmented by initial conditions

wt = v = 0, −σ = p = p0 at t = 0. (3.22)

Suitable boundary conditions are to prescribe solid and fluid stress at the surface,
and zero displacement at the base, thus

−σ = p = pc at z = l,

v = w = 0 at z = 0. (3.23)

The pressure in the chamber at the surface of the sample, pc, is a function of time
which decreases from its initial value p0. The dynamics of this decrease depend on
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the rate of escape of gas from the roof of the chamber. In fitting the experimental
data, we use an exponential of the form

pc = exp(−t/tc). (3.24)

More general forms could be adopted, but (3.24) points out the importance of the
chamber relaxation time scale tc, which has an important part to play in the dynamics.
Just as with a champagne cork, if the pressure decreases sufficiently slowly, the gas
will be able to escape without fracturing the rock.

To describe the mechanism of fracture, we follow precepts first put forward in the
context of soil mechanics. The total stress on the rock is the weighted sum of the
stresses on rock grains and pore space, thus

σtot = (1 − φ)σ − φp, (3.25)

and the effective stress is

σeff = σtot + p = (1 − φ)(σ + p). (3.26)

We hypothesize that fracturing occurs if the effective stress exceeds a yield stress
(1− φ)σY , weighted by the solid volume fraction (1− φ), to indicate the dependence
of yield on the number density of intergranular bonds. Fracturing of the sample thus
occurs if

p + σ > σY , (3.27)

and in this case the boundary conditions in the fractures will be modified, as described
later.

Non-dimensionalisation

We scale the variables as follows:

ρf ∼ ρ0, σ, p ∼ p0, z ∼ l, t ∼ t0 =
l

v0

, w, w0 ∼ w̄ =
p0l

E
,

v ∼ v0 = k1/4

(

p0

φρ0cF l

)1/2

, D ∼
φp0

l
, A ∼

ρ0v2
0

l
, (3.28)

so that in dimensionless form (using the same letters to denote the dimensionless
variables1), we have the dimensionless model

ε(1 − φ)wtt = (1 − φ)σz + νA + D − λ (w − w0) ,

νφp1/γvt = −φpz − νA − D,

(1 − φ)σ = wz − αp,

A = (1 − φ)CV Mp1/γ (vt − δwtt) ,

D =
(v − δwt)

RepcF
+ φp1/γ |v − δwt| (v − δwt) ,

(

p1/γ
)

t
+

(

p1/γv
)

z
= 0, (3.29)

1The notation z ∼ l, for example, is an abbreviation for the process of writing z = lz∗, substi-
tuting into the model, and then in the resulting dimensionless equations, omitting the asterisks on
the starred variables.
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where the dimensionless parameters are

ε =
ρsv2

0

E
, ν =

ρ0v2
0

p0

, λ =
µgl2

2πRdgE
,

δ =
p0

E
, Rep =

ρ0v0

√
k

ηf
; (3.30)

α was defined in (3.5), and is presumed to be O(1).

Symbol Meaning Typical value
cF Ergun coefficient 0.5
dg glue thickness 0.8 mm
E elastic constant 1011 Pa
k permeability 10−12 m2

l sample length 0.06 m
p0 initial pressure 10 MPa
R sample radius 1.2 cm
tc chamber relaxation time scale 1 ms
γ specific heat ratio 1.4
ηf gas viscosity 1.75 × 10−5 Pa s
µg glue shear modulus 109 Pa
ρ0 gas density 115 kg m−3

ρs solid density 2.6 × 103 kg m−3

σY yield stress 2 MPa
φ porosity 0.4

Table 1: Typical values of the physical parameters of the model. The gas properties
are those of nitrogen at room temperature.

To estimate the values of these parameters, we use the values in table 1. From
these, we compute the scales of the model, shown in table 2, and hence we compute
typical values of the dimensionless parameters, as indicated in table 3.

Scale Typical value
t0 22 ms
v0 2.7 m s−1

w̄ 0.6 × 10−2 mm

Table 2: Typical values of the derived scales of the model.

The parameters ε, ν and δ are all small, and the Reynolds number Rep is moder-
ately large. We therefore neglect terms of order Re−1

p , ν and δ, but retain temporarily
the singular term εwtt, which is instrumental in describing the elastic waves which
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Parameter Typical value
a 22
p∗ 0.12

Rep 17.7
δ 10−4

ε 1.9 × 10−7

λ 0.6
ν 0.8 × 10−4

Table 3: Typical values of the derived parameters of the model.

might propagate through the sample. The resultant model reduces to

ε(1 − φ)wtt = wzz − βpz − λ (w − w0) ,

p1/γ
t +

(

p1/γv
)

z
= 0,

−pz = p1/γ|v|v, (3.31)

where
β = φ + α, (3.32)

and β = O(1). By eliminating v, we find that the pore gas pressure satisfies the
nonlinear diffusion equation

∂p1/γ

∂t
=

∂

∂z

(

∣

∣

∣

∣

p1/γ

pz

∣

∣

∣

∣

1/2
∂p

∂z

)

. (3.33)

This can also be written in terms of the scaled gas density ρ = p1/γ, which provides
the simpler equation for numerical purposes,

∂ρ

∂t
=

∂

∂z

(

∣

∣

∣

∣

γργ

ρz

∣

∣

∣

∣

1/2 ∂ρ

∂z

)

. (3.34)

The dimensionless pressure in the chamber above the sample is also denoted as
pc(t), and our choice of exponential in (3.24) yields the dimensionless form

pc = exp(−at), (3.35)

where

a =
t0
tc

=
l

v0tc
. (3.36)

Initially, the sample is at rest, the chamber pressure pc = 1 and this is also the initial
pore pressure and solid stress through the sample. Up until the time when the sample
lifts off the base, we take the solid displacement and gas flux to be zero at the base.
At the surface of the sample, both solid stress and gas pressure equal the chamber
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pressure. Thus suitable initial and boundary conditions for the sample displacement
and gas pressure, up until fracture or lift off occurs, are

w = w0 = −(1 − β)z, wt = v = 0 at t = 0, (and − σ = p = 1),

pz = w = 0 at z = 0,

p = pc, wz = −(1 − β)pc at z = 1. (3.37)

The fracture criterion (3.27) can be written in the dimensionless form

wz + (1 − β)p > p∗, (3.38)

where

p∗ =
(1 − φ)σY

p0

. (3.39)

The quantity (1 − β) represents the initial compressive displacement (at the sur-
face) of the sample due to the imposition of the initial chamber pressure, with β < 1
representing a compression, and β > 1 representing inflation. Mainly for simplicity,
we assume that β = 1, and in this case we have

w = w0 = 0 at t = 0, wz = 0 at z = 1. (3.40)

The relaxation and fracture parameters a and p∗ are given in table 3; typically a is
large and p∗ is small. The consequences of these estimates are that diffusive relaxation
of the pore gas pressure is relatively slow, and the fractures occur relatively close to
each other in the sample. In the following sections we describe the nature of the
solutions to these equations.

Primary fracture

The basic picture we have of what happens following release of the chamber pressure
is as follows. The surface pressure at z = 1 decreases (over a time scale of O(1/a)),
and as it does so the pore pressure profile p decreases also, propagating a wave down
into the sample. At the same time, the solid stress relaxes quasi-statically, since
the acceleration term is small. To get an indication of the behaviour of the solid
displacement w, we can reason as follows. Neglecting ε and taking β = 1, (3.31)1

implies
wzz − pz − λw ≈ 0, (3.41)

representing force balance in the rock. At early times, the pore pressure has only
changed near the surface, and its gradient with z is large; thus wzz is larger than λw,
so that approximately w = w̃, where

w̃z = p − pc, w̃ =

∫ z

0

(p − pc) dz. (3.42)

Consulting (3.42), we see that w̃z is a monotonically decreasing function of z, and
thus the fracture criterion (3.38) is first satisfied at the base z = 0 when p− pc > p∗.
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In particular, without glue (when λ = 0), the model predicts initial lift off at the
sample base.

An approximate correction to (3.42) at early times, or when λ is small, is given
by

wz ≈ p − pc − λ

∫ 1

z

w̃ dz (3.43)

representing the solid strain in the rock. Since w̃ is a monotonically increasing function
of z, we see that wz increases with z near the base (where pz ≈ 0) and then decreases
near the surface (where pz is large). Thus wz reaches p∗ first at an interior point
below the surface, as observed.

Attenuation

In the above description, we have assumed a quasi-static elastic response of the sample
based on the small value of ε. At closer inspection, this seems risky, since the general
solution of (3.31)1, given pz, will be the sum of the particular quasi-static solution,
together with a pair of high speed elastic waves which propagate up and down the
sample. The consequent rapid fluctuations in w might then be expected to lead to
rapid disintegration of the sample without the ordered top-down sequence which is
observed. In fact, so long as the surface pressure decreases over a time scale greater
than O(

√
ε), thus explicitly if

a
√

ε ' 1, (3.44)

we can see that the quasi-static displacement profile not only satisfies the boundary
conditions, but also the initial conditions. A simple analogous problem is the forced
oscillator equation

εẅ + w = R(t), (3.45)

where it is known (Fowler and Kember 1996) that the slowly varying solution w ∼ R(t)
is accompanied by free oscillations ∝ exp(±it/

√
ε) of exponentially small amplitude.

On this basis, we expect the accompanying elastic waves here to have negligible
amplitude. This conclusion would not be true if the surface pressure were ramped
down instantaneously (or very rapidly). Attenuation is present in the model through
the terms of O(ν) and O(δ), but is not operative over the short time scales of the
experiment.

Explosion

Once an initial fracture has formed, either in the interior or at the base of the sample,
the separated block can lift off. In this second phase of the motion, we suppose that
the glue is also fractured, so that there is no longer any resistive traction at the
walls. After separation, the gas flow within the separated blocks is still described
by the previous model equations, but we must now consider the evolution of the
crack widths. In addition, we address the issue of secondary fragmentation within
the separated blocks. Suppose during the experiment we have a sequence of fractures
formed at z1, z2, . . ., where the fracture at zi opens into a crack whose upper and lower
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surfaces are denoted z+
i , z−i . The (dimensional) gas flux into the crack is φ(v−wt), and

therefore conservation of gas mass in the i-th crack yields the dimensional equation

d

dt

[

ρi

(

z+
i − z−i

)]

= − [ρiφ (v − wt)]
+

−
, (3.46)

where ρi is the gas density in the i-th crack. This equation determines the gas density,
and thus the pressure, in the crack.

To render the equation dimensionless, we scale the variables as before, and in
addition we scale the crack boundaries as

z±i ∼ l; (3.47)

this leads to the dimensionless form of (3.46),

d

dt

[

ρi

(

z+
i − z−i

)]

= − [ρiφ (v − δwt)]
+

−
, (3.48)

where ρi = p1/γ
i .

In the i-th block (z+
i , z−i+1), it is appropriate to put

w =
z+

i

δ
+ W (3.49)

(i. e., the displacement is relative to the base of the block), and then the crack width
equation (3.48) becomes

d

dt

[

ρi

(

z+
i − z−i

)]

= − [ρiφ (v − żi − δWt)]
+

−
, (3.50)

bearing in mind that we may take ż+
i = ż−i+1. In addition, the momentum equation

(3.31)1 can be written

ε

δ
(1 − φ)z̈+

i + ε(1 − φ)Wtt = (1 − φ)σz − φpz. (3.51)

Ignoring the displacement acceleration term (but not the block acceleration term),
and bearing in mind that the total stress σtot = (1 − φ)σ − φp = −pi at the i-th
crack, we see that integration of (3.51) over the block leads to the approximate block
acceleration equation

ε

δ
(1 − φ)liz̈

+
i ≈ pi − pi+1, (3.52)

where li = z−i+1 − z+
i is the (constant) length of the i-th block. If the i-th fracture

forms at z = zi at time t = ti, then the initial conditions for (3.52) are

z+
i = zi, ż+

i = 0 at t = ti. (3.53)

In summary, the gas pore pressure in the blocks continues to satisfy (3.33), with
the boundary conditions that

p = pi at z = z+
i , p = pi+1 at z = z−i+1. (3.54)
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The crack pressures are determined by solving (3.50), which takes the approximate
form

[zi]
+

−

d

dt

(

p1/γ
i

)

=

[

φ

∣

∣

∣

∣

p1/γ

pz

∣

∣

∣

∣

1/2

pz − (1 − φ)p1/γ
i żi

]+

−

, (3.55)

and the block motion is determined by solving (3.52).
When the fracture criterion (3.27) is written dimensionlessly, it becomes

(1 − φ)(σ + p) > p∗; (3.56)

this is identical to (3.38), but the form above is more useful within the blocks. Since
in the blocks we have, from (3.51),

(1 − φ)σ − φp + pi ≈
ε

δ
(1 − φ)z̈+

i

(

z − z+
i

)

= (pi − pi+1)

(

z − z+
i

li

)

, (3.57)

the criterion for secondary fracture within the blocks is simply

p − p̄(z) > p∗, (3.58)

where

p̄(z) = pi+1

(

z − z+
i

li

)

+ pi

{

1 −
(

z − z+
i

li

)}

(3.59)

is the linear profile joining the pressures at the top and bottom of the block.
When an internal fracture is generated at zi, then pi > pi+1, and, since ε/δ ∼ 10−3,

the block accelerates rapidly upwards. As it does so the crack pressure decreases
according to (3.55), and we surmise that pi rapidly approaches pi+1, and the block
speed reaches a constant, as is observed in the experiments.

The physical mechanism for this relaxation is akin to that of the removal of a
piston from a tube. The necessity to fill the expanding void in the crack causes an
effective suction which acts as a drag on the ascending block. Mathematically, we can
provide some insight into this by consideration of (3.55). Considering for simplicity
the case of the first fracture, where i = 1, z−1 is constant, and pi+1 = pc is prescribed,
we may write (3.55) in the form

d

dt

[

z1−φ
1 p1/γ

1

]

=
φf

zφ
1

, (3.60)

where f is the porous gas flux from the adjacent blocks into the expanding crack.
A simple idea of how f depends on the crack pressure p1 follows from elementary
consideration of the way in which diffusion operates in the rock. As p1 reduces, the

flux to the crack will increase, thus
∂f

∂p1

< 0. (Of course it is more complicated than

this: f will also decrease with time, as the diffusive boundary layers grow into the

blocks.) Assuming this, then (3.52) suggests
∂f

∂z̈1

< 0. Blithely ignoring exponents

and other detail, the structure of (3.60) is thus

d

dt
[z1p1] ∼ −z̈1, (3.61)
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whence, loosely,
z1p1 ∼ A − ż1, (3.62)

and substituting back into (3.52) yields

ε

δ
(1 − φ)l1z1z̈1 ∼ A − ż1 − pc, (3.63)

which would indicate a damped, possibly oscillatory, approach to the equilibrium
where p1 = pc. This damping is found in our numerical results, as well as being
implicit in the experimental results.

After (rapid) equilibration, pi ≈ pi+1, and the crack pressures will all decrease
with the surface pressure pc. Further internal fractures in the blocks may then occur,
according to (3.58) and (3.59), if p − pc > p∗, while fracture in the lowest (attached)
block mimics the initial primary fracture.

4 Numerical results

Equations (3.33) and (3.41) together with the associated initial and boundary condi-
tions have been solved numerically using Matlab to determine the solid displacement
w and gas pore pressure p. The gas diffusion equation (written as (3.34) for the
density) was solved using small time steps and the pdepe solver for a glued-down
sample of rock, and the boundary value problem (3.41) for w in the glued-in piece
was solved for by using a Green’s function approach. Then the fragmentation criterion
was checked at each time step.

After fragmentation had occurred, the equations (3.52) and (3.55) for the evolution
of gap size and pressure were solved using the Runge-Kutta ode45 solver, again with
small time steps, and the gas fluxes from adjacent rock segments were calculated as
required by ode45. The process was continued, checking for further fracture in every
piece of rock at every time step, and increasing the number of coupled differential
equations to be solved each time a new break was detected.

Parameter values are essentially as given in table 1, but with slightly different
values of φ and σY , as noted in the caption to figure 4. The value of φ is that
appropriate for the experimental data in figure 3.

Figure 4 shows the evolution with time using snapshots of the gas pore pressure
p and the solid compressive stress −σ. As the surface pressure at 60 mm lowers,
a diffusive boundary layer profile (solid line) of the gas pressure migrates into the
column. The compressive stress in the solid responds quasi-statically, and according
to (3.29) and (3.43), is given (approximately, if λ is small) by

pc + σ ≈
φ

1 − φ
(p − pc) ; (4.1)

since
φ

1 − φ
≈ 1, this can be seen in the first panel in figure 4. The slight minimum in

the solid stress is due to the non-zero value of λ. Consequently, fracture first occurs
near this minimum, as shown in the second panel, where, immediately following
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Figure 4: Gas pore pressure p (solid lines) and solid compression −σ (dashed lines). (a)
t = 0.07 ms: just before the first fracture at t = 0.08 ms, z = 48 mm, when p− (−σ) = σY ;
(b) t = 0.085 ms: just after the first fracture; (c) t = 0.205 ms: just before the second
fracturing event at t = 0.215 ms, when both a primary and a secondary fragmentation
occur in the same time step at z = 31 and 55 mm respectively; (d) t = 0.220 ms: just
after this double fragmentation event; (e) t = 1.39 ms: after multiple primary, secondary
and liftoff fragmentations. Note the different scales on the final plot, reflecting the overall
lowering of pressures after so much time, and the level regions which are the expanding
gas-filled gaps between ejected rock fragments. Parameter values used in solving (3.33)
and (3.41) are those in Table 1, with the exceptions that σY = 1 MPa, p0 = 6 MPa, and
φ = 0.48, the latter two chosen to reflect known quantities in the experimental results of
figures 2 and 3. In addition we have taken β = 1. The corresponding values of t0 and p∗

are t0 = 32.2 ms and p∗ = 0.087.
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Figure 5: Primary and secondary fractures in the simulation corresponding to figure
4. This figure can be compared with figure 3.

fracture, the solid stress in the basal part of the column relaxes rapidly towards
the gas pore pressure, which is still aproximately pc. Continued diffusion of the gas
pressure draws down the pressure in the ejected block, while the pressure and stress
profiles in the basal column repeat their evolution as in panel one. This process
repeats itself, as indicated in panels four and five, causing a sequence of fractures and
consequent ejection of the blocks. Figure 5 shows the consequent pattern of fractures,
plotted similarly to figure 3, to which it can be (favourably) compared.

5 Discussion

In our model, fragmentation is largely controlled by two quantities. The first of
these is the yield stress σY . As indicated by (3.39), if this is less than the initial
confining pressure, then fragmentation is likely, providing the contained gas cannot
escape sufficiently rapidly. In the experiment, the time scale for gas escape is t0, and
this is determined through the gas pore velocity scale v0, defined in (3.28). Thus for
low permeability, v0 is low, t0 is high, and in this case fragmentation is likely to occur.

While our model is designed to simulate the fragmentation experiments, which
are themselves designed to provide insight into explosive volcanic eruptions, it is
less easy to draw theoretical conclusions which can be applied to volcanic processes.
In the experiment, the rock is already vesicular and porous when depressurisation
commences.

However, this might not always be the case in volcanic eruptions. At an eruption,
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the sudden depressurisation by the removal of an overburden or volcanic plug can
cause volatile exsolution to a very different extent, depending on the amount of de-
pressurisation and on magma properties such as viscosity, diffusivity and volatile dis-
equilibrium. For instance, at sustained Plinian-type eruptions an equilibrium can be
assumed between magma ascent and depressurisation-driven volatile exsolution. This
results in a highly vesicular magma; consequently, magma disintegration (fragmenta-
tion) can occur, if the stresses generated in the melt phase by the vesiculation-driven
expansion exceed the yield strength of the magma.

A completely different picture can be drawn for the typically short-lived Vulcanian-
style eruptions. Here the erupting magma is commonly highly viscous and, given the
usually short time scale between plug removal and the consequent initiation of sudden
depressurisation and explosive ejection of the magma, minor additional volatile ex-
solution driven by the rapid depressurisation will occur. The laboratory experiments
described and modelled here bear most resemblance to the latter eruption style. Still,
details of the fracturing process in the volcanic situation are assumed to be some-
what different to that in the experiment, and the details of the model will thus also
be necessarily different.

Even if we restrict our attention to the present experiment, there are issues in our
model which are at least questionable. The precise form of the interphasic drag terms
used in (3.16) are based on experimental results obtained under steady equations.
In the present case, it is likely that inertial effects may be important (Chojnicki et

al. 2006), and if, for example, we introduced an inertial term proportional to
∂V

∂t
into (3.16), the resulting model (3.33) for p would become hyperbolic rather than
parabolic. It seems unlikely that this would substantially alter the results, however.

The wall friction term (3.21) was introduced into the model because without it,
the model always predicted initial lift off at the base of the column. And indeed, this
is what is seen, since if the rock is not glued in place, then indeed basal lift-off occurs
first. Initial efforts to model the effect of the wall glue used a viscous formulation,
but it is thought that the elastic form better suits the resistance prior to rupture.
That is to say, once the rock ruptures, the glue, having less strength, ruptures also,
and offers no further resistance. We have chosen a value of the glue shear modulus
indicating its weaker strength, and comparable to typical values for polymer glues.

An issue of interest concerns the robustness of the results we have obtained. Al-
though more detailed explorations will be conducted in future work, we can state that
the model fits the experimental results both qualitatively and quantitatively without
the need for special choices of parameters. The results obtained depend in their quan-
titative predictions on the choice of the parameters β, λ, p∗ and a. While values of β
and λ are open to doubt, the choices presented here were in fact our original choices.
The same applies to the choice of yield stress σY . Variation of these parameters does
vary the results, but not to any marked degree.
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6 Conclusions

We have constructed a mathematical model of the fragmentation process in the exper-
iments described by Spieler et al. (2004). In our model, the rock is elastic and subject
to a fracture criterion which depends on the local effective tensile stress in the rock.
Following a fracture, the ejected fragment is expelled by the acceleration applied by
the higher gas pressure below the fragment. However, the expulsion of the fragment
and consequent widening of the fracture beneath requires that the pore gas be sucked
from the fragment to fill the expanding fracture, and this suction causes a deceleration
of the ejected fragment. Because the gas depressurisation wave propagates relatively
slowly, the effective tensile stress reaches a maximum at a finite depth in the sample,
and thus fracturing occurs first at finite depth. As each fragment is ejected, the crack
pressure rapidly decreases towards the surface pressure, and the process is repeated.
In addition, secondary fracture can occur within the ejected samples.

All of this behaviour is seen in the laboratory experiment, and our numerical
solutions of the model indicate good qualitative and quantitative agreement with the
experiments. In future work we will explore in more detail how the numerical results
compare to the range of experimental results, and in particular whether some simple
rules of thumb, for example concerning fracture threshold porosity, can be deduced
from the model, and we will also explore whether yet simpler representations of the
model solutions can be found in certain parameter régimes.
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