
Panel
Designing the Next Educational Programming Language

Andrew Black
Portland State University

black@cs.pdx.edu

Kim. B. Bruce
Pomona College, CA
kim@cs.pomona.edu

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Abstract
Object-oriented programming is widely taught in introduc-
tory computer science courses, however no existing object-
oriented programming language is “the obvious choice” for
a teaching language. This makes it harder to transfer skills,
techniques, and teaching materials between courses and be-
tween institutions, and leaves employers uncertain what they
should expect new graduates to know. We believe that the
object-oriented programming languages community should
take this opportunity to work together to select, shape, or
design the next educational programming language, and pro-
pose a set of principles that the language should follow. The
purpose of this panel is to start a dialog with the educational
community to refine these principles and to consider next
steps.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: General

General Terms Object-oriented Programming, Language
Design Principles

Keywords design, teaching, introductory programming

1. Introduction
In the 1980s, computer science and software engineering
programs worldwide benefited from a surprising unanim-
ity in their choice of programming language: Pascal. This
unanimity benefited students and teachers, who were able to
transfer their skills and techniques between institutions, and
to use textbooks from a wide variety of sources. It was also
of benefit to employers, who were able to rely on graduates
having a shared basis in programming, and researchers, who
had a lingua franca for presenting programs and their de-
signs, analysis, and execution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward! 2010 Educators’ Symposium October 2010, Reno–Tahoe, Nevada, USA
Copyright c© 2010 ACM [to be supplied]. . . $10.00

With the wide acceptance of object-orientation, the choice
of introductory language became much less clear. Smalltalk,
the obvious choice, was at first far too resource-intensive
for an educational environment. Educators had to choose
between “toy” languages (like Budd’s Little Smalltalk [2])
and proprietary extensions like Object Pascal and Objective
C. Just when Smalltalk became a feasible choice, Java and
C++ appeared on the scene, further fragmenting the educa-
tional community. Java remains the most popular choice, but
it is now a large and complex language with many features
for supporting professional software engineering, and bear-
ing the scars of 15 years’ evolution. New languages such
as C! and Scala have benefited from what we have learned
from Java, but they too are large languages, also designed to
support professional practice, and retain duplicative features
for backwards compatibility with C++ or Java. Some in-
stitutions are adopting Python as a first language; however,
others are wary of an introductory language that lacks dec-
larations for data fields and a static type system. Scheme,
Haskell, ML, GBeta, Smalltalk, and C++—to name but a
few—have been or are being used as introductory languages
in particular contexts, but none has gained the widespread
acceptance of Pascal or Java.
The programming languages community has success-

fully addressed this problem in the past. In the 1950s, there
were a large number of attempts to produce an “algorith-
mic language”: these attempts were unified and gave rise to
ALGOL-60 [13, 14]. In the 1980s, functional programming
languages were similarly diverse: these differences were re-
solved by designing Haskell [9]. In the 1990s there was
at least one attempt to produce an object-oriented teaching
language, Blue [10, 11], but it did not succeed, partly be-
cause many faculty wanted to use an “industrial-strength”
language in their courses, and at that time Java seemed like
a viable alternative. Given the last 20 years experience using
C++, Java, and other “real” languages for teaching, per-
haps it is time to reconsider and instead create a language
designed for novices?

2. Principles
We have yet to begin sketching a language design. Instead
we propose the following principles to guide the selection or
design of the next educational programming language.

Paradigm The language should support object-oriented
programming, because object-oriented languages are widely
used in teaching, practice, and research. The language
should use garbage collection, because machine-level issues
such as storage management are a distraction for novices
and should not intrude on teaching introductory program-
ming [11?]. The language should have a purely functional
subset, because the functional style is becoming increasingly
important in teaching programming [6] and functions oper-
ating on immutable objects make it much simpler to support
concurrency and distribution [5, 7].

Simplicity The language should be simple to learn and
simple to use. The language should provide one “fairly clear
way” to do most things. Like Modula-3, the language spec-
ification should follow C.A.R. Hoare’s fifty-page rule [4].
The language should not build-in features that can be satis-
factorily added through libraries [1].

Teaching Language The primary goal for the language
is introductory teaching, covering at least the first year of
study: program design, data structures, and algorithms. Ide-
ally, the language should also be suitable for teaching in-
termediate topics also: software craft, personal development
practices, and software design. If the language finds more
advanced uses and employment outside the classroom, that
will strengthen the argument to use it for teaching; however,
advanced use is not a primary design goal.

Language Levels The language should support progres-
sive teaching strategies, which use language subsets and ex-
tensions that can be matched to students’ experience [6].
For example, one course could start with top-level functions,
adding objects, types, mutable state, failure handling, and
modules in separate language components. Teaching subsets
can also allow error messages to be tailored to suit different
levels of experience with the language.

Adaptable The language should support a range of curricu-
lum approaches, including at least objects-first, imperative-
first, functions-first, and breadth-first. Particularly because
pointers are difficult to learn, the language must support a
clear model of object references.

Best Practice The language should capture current best
practice in programming and program design. Where pos-
sible, common bugs (i.e., those typically illustrated in in-
troductory programming classes, or detected by findbugs)
should be prevented by design.

Unsurprising The features of the language should be un-
surprising. To quote C.A.R. Hoare again: “the job of the lan-
guage designer is consolidation” [8]. As much as possible,

programmers literate in two or more current industrial lan-
guages should be able to guess the meaning of code in the
new language.

Evidence As far as possible, the design of the language
should be based on evidence about features of existing lan-
guages— empirical results, formal studies, and teaching ex-
perience.

Ease of Implementation A graduate student should be
able to construct a simple implementation of the language
in six months. An experienced team should be able to con-
struct an optimized, robust implementation in less than a
year. Language implementations may be interpreted, com-
piled statically, or compiled dynamically.

Type System The language should be strongly typed: that
is, there should be no unchecked run-time type errors. The
language should support teaching with both static and dy-
namic type systems [3]. The execution of the language
should not depend on a program’s static types.

Formal Semantics The language should lend itself to rea-
soning about programs, and potentially to verification, es-
pecially as verification and checking technology makes its
way into introductory IDEs. For these reasons, the language
should have a well-defined formal semantics.

Portable The language and libraries should be independent
of implementation technology and infrastructure. The next
language should be able to be used on Unix/Linux, Win-
dows, Mac OS X, and directly over the web. Most likely
the language should run on top of common existing virtual
machines (JVM, CLR, JavaScript).

Concurrency and Parallelism The language must sup-
port teaching concurrent and parallel programming, without
mandating one particular approach. As a minimum, the lan-
guage must support teaching message passing and shared
memory concurrency, perhaps in different extensions.

Development Environment The language must be sup-
ported by novice-friendly development environments (such
as BlueJ or Racket) and good debuggers.

Graphics and Multimedia The language should support
programming with graphics and multimedia, and event-
driven programming. Several teaching approaches rely on
graphics and multimedia programming; they are also impor-
tant application areas in their own right.

Software Engineering The language should support teach-
ing good software engineering practices. This means that the
language will need some support for software modularity,
for handling failure, and for programming to interfaces. The
language should provide explicit support for preconditions,
postconditions, and invariants that would be automatically
checked during (or before) program execution.

Performance Model The language should support a sim-
ple performance model for simple programs. The language
must be able to support teaching students “how to predict,
control, and/or explain the performance of their programs”
[12].

Efficiency Efficiency is not a concern of this language
design.

3. Call to Action
We call on the object-oriented programming language com-
munity to design a new language to meet this need.
We invite the community to bring together a relatively

small group to investigate features to be included, and to
solicit feedback on the language as the design progresses.
We believe that, to promote and maintain a coherent vision,
the core language design must remain vested in a small
group. However, the language design process should be as
open and transparent as possible, and the resulting language
specification should be vested in the community.

4. Panel
Members of the panel will lay out the need for an educa-
tional programming language designed for teaching novices
object-oriented programming, and trace the history of earlier
attempts to design educational languages. The panel will fo-
cus on many of the principles that have been agreed to and
why they are important for an educational language, as well
as how the language design will proceed.

Supporters
In addition to the three authors of this document, the follow-
ing people support this effort.

• Gilad Bracha, Ministry of Truth.
• John Boyland, University of Wisconsin-Milwaukee.
• Sophia Drossopoulou, Imperial College, London.
• Susan Eisenbach, Imperial College, London.
• Michael Kölling, The University of Kent.
• Doug Lea, SUNY Oswego.
• Jan Vitek, Purdue.

References
[1] A. P. Black, E. Jul, N. Hutchinson, and H. M. Levy. The de-

velopment of the Emerald programming language. In History
of Programming Languages III. ACM Press, 2007.

[2] T. Budd. A Little Smalltalk. Addison-Wesley, 1987.
[3] L. Cardelli. Handbook of Computer Science and Engineering,

chapter Chapter 103: Type Systems. CRC Press, 1997.
[4] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow,

and G. Nelson. Modula-3 reference manual. Technical Report
Research Report 53, DEC Systems Research Center (SRC),
1995.

[5] J. Dean and S. Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113,
2008.

[6] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi.
How To Design Programs. MIT Press, 2001.

[7] B. Goetz, T. Peierls, J. Block, J. Bowbeer, D. Holmes, and
D. Lea. Java Concurrency in Practice. Addison Wesley
Professional, 2006.

[8] C. Hoare. Hints on programming language design. Technical
Report AIM-224, Stanford Artificial Intelligence Laboratory,
1973.

[9] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of
Haskell: being lazy with class. In History of Programming
Languages III, pages 12–1–12–55. ACM Press, 2007.

[10] M. Kölling and J. Rosenberg. Blue — a language for teaching
object-oriented programming. In ACM Conference on Com-
puter Science Education (SIGCSE), 1996.

[11] M. Kölling, B. Koch, and J. Rosenberg. Requirements for a
first year object-oriented teaching language. In ACM Confer-
ence on Computer Science Education (SIGCSE), 1995.

[12] D. Lea, D. F. Bacon, and D. Grove. Languages and perfor-
mance engineering: Method, instrumentation, and pedagogy.
In SIGPLAN Workshop on Programming Language Curricu-
lum, 2008.

[13] P. Naur. The European side of the development of ALGOL.
In History of Programming Languages I, pages 92–139. ACM
Press, 1981.

[14] A. J. Perlis. The American side of the development of AL-
GOL. In History of Programming Languages I, pages 75–91.
ACM Press, 1981.

