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Abstract The distinctions between the two forms of procedural data ab-
straction — abstract data types and objects — are well known. An abstract
data type provides an opaque type declaration, and an implementation that
manipulates the modules of the abstract type, while an object uses procedu-
ral abstraction to hide an individual implementation. The object-capability
model has been proposed to enable object-oriented programs to be written
securely, and has been adopted by a number of practical languages includ-
ing JavaScript, E, and Newspeak. This chapter addresses the questions: how
can we implement abstract data types in an object-capability language? and,
how can we incorporate primitive concrete data types into a primarily object-
oriented system?

0.1 Introduction

Objects and abstract data types are not the same thing, and neither one is a varia-

tion of the other. They are fundamentally different and in many ways complemen-
tary.

On Understanding Data Abstraction, Revisited,
William Cook [3].

William Cook’s “On Understanding Data Abstraction, Revisited” [3] em-
phasises a dichotomy between abstract data types, on one hand, and objects
on the other.

Based on facilities originating in Alphard [28] and CLU [10], Cook defines
an Abstract Data Type (ADT) as consisting of “a public name, a hidden
representation, and operations to create, combine and observe values of the
abstraction”. The identification of a “public name” emphasises the fact that
ADTs are not first class — certainly ADTs are not first class in most subse-
quent modular programming languages [2, 11, 26, 27]. An ADT has a hidden
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representation: this representation is not of the (non-first-class, singleton)
ADT itself, but of the instances of the ADT — the values of the abstrac-
tion that are manipulated by the ADT’s operations. ADTs encapsulate their
implementations using type abstraction: all the instances of an ADT are in-
stances of the same (concrete) type, and the language’s (static) type system
ensures that the details of the instance’s implementations cannot be accessed
outside the lexical scope of the ADT’s definition. The exemplary ADTs are
generally stacks, queues, lists, but crucially numbers, strings, and machine
level values can also be modelled as ADTs.

In contrast, objects are essentially encapsulated individual components
that use procedural abstraction to hide their own internal implementations
[3]. “Pure” objects do not involve a hidden type, or indeed any form of
type abstraction: rather an object is a self-referential record of procedures.
Whereas ADTs are typically supported in statically typed languages (because
they depend on type abstraction), objects are as common in dynamically
typed languages as in statically typed languages.

According to Cook, ADTs and objects have complimentary strengths and
weaknesses. Objects are organised around data, so it is easy to add a dif-
ferent representation of an existing interface, and have that implementation
interoperate with every other implementation of that interface. On the other
hand, it is easier to add a new operation to an ADT, but hard to change an
ADT’s representation.

A crucial difference, however, is that ADTs offer support for what Cook
calls “complex operations”: that is, operations that involve more than one
instance. Complex operations may be low-level, such as arithmetic operations
on two machine integers, or higher level operations, such as calculating the
union of two or more sets, or a database style join of several indexed tables.
The distinguishing factor is that these operations are complex in that im-
plementations must “inspect multiple representations” i.e. representations of
other instances. [3]. Complex operations are easy to support with ADTs: all
the instances of the ADT are encapsulated together in the ADT, and the code
in the ADT has full access to all the instance’s representations. In contrast,
pure object-oriented programming does not support complex operations: each
object is individually encapsulated and only one instance’s representation can
be accessed at any time.

This is particularly the case in object-capbility systems — pure object-
oriented systems designed for security. Following Butler Lampson [9], Miller
[13] defines the key design constraint of an object-capability system: “A direct
access right to an object gives a subject the permission to invoke the behaviour
of that object”. A programming language or system that grants one object
privileged access to the representation or implementation of another object
does not meet this criterion.

This, then, is the first question addressed by this chapter (and the work-
shop paper that preceeded it [21]): how can we implement Abstract Data
Types, in pure object-oriented languages with object capabilities, while still
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permitting complex operations across multiple instances? The key design
question is: how do we model the boundary between the protected outside
interface of an ADT and the shared inside implementation, and how do we
manage programs that cross that boundary? [5, 12, 14, 15, 17, 18]

Then, we take our discussion further and propose a way to support primi-
tive/concrete data types in a fully object-oriented language in the later part
of this chapter.

0.2 Mint as an Abstract Data Type

Let us consider the well known Mint/Purse (or Bank/Account) example
[12, 13, 15] used in the object capability world. A Mint (a Bank) can cre-
ate new Purses (Accounts) with arbitrary balances, while a purse knows its
balance, can accept deposits from another purse, and can also sprout new
empty purses. Figure 0.1 shows the interface of the Mint/Purse example as
an Abstract Data Type. Here, makePurse creates a new purse with a given
balance, deposit transfers funds into a destination purse from a source purse,
and balance returns a purse’s balance. We also have an auxiliary operation
sprout that makes a purse with a zero balance.

1. makePurse(Number) −→ Purse

2. deposit(Purse, Number, Purse) −→ (Purse, Purse, Boolean)

3. balance(Purse) −→ Number
4. sprout −→ Purse

Fig. 0.1 Mint/Purse Abstract Data Type

Figure 0.2 shows how one can define the type’s behaviour axiomatically.
These axioms reduce the ADT to a normal form where each purse is just cre-
ated by makePurse with its balance. The nature of the Mint/Purse design
as an ADT is shown by the deposit method which must update the balances
of both the source and destination purses. As we will see, this is a key diffi-
culty when implementing the Mint/Purse system in a pure object-capability
language, because such a language cannot permit methods to access the rep-
resentation of more than one object [3].

This description of Mint/Purse as an ADT obscures a couple of important
issues. The first of these is that some of the operations on the ADT are
more critical than others: notably that makePurse operation “inflates the
currency” [15], that is it increases the total amount of money in the system —
i.e. the overall sum of all the balances of all the ADT’s purses. This operation
must be protected: it should only be invoked by components that, by design,
should have the authority to create more money. The other operations can
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1. deposit( makePurse(D), A, makePurse(S) ) = true ;

(makePurse(D + A), makePurse(S −A), true) (A > 0) ∧ (S >= A)
2. deposit( makePurse(D), A, makePurse(S) ) = true ;

(makePurse(D), makePurse(S), false) (A <= 0) ∨ (S < A)

3. sprout ; makePurse(0)
4. balance(makePurse(N)) ; N

Fig. 0.2 Mint/Purse Axioms

be called by general clients of the ADT to transfer funds between purses but
not affect the total money in the system.

This is why there is the auxiliary sprout operation which also creates
a new purse, but which does not create additional funds — even though
the semantics are the same as makePurse(0). In an object-oriented system,
particularly an object-capability system, this restriction can be enforced by
ensuring that the makePurse operation is offered as a method on a distin-
guished object, and access to that object is carefully protected. Languages
based on ADTs typically use other mechanisms (such as Eiffel’s restricted
imports, or Modula-3’s multiple interfaces, C++’s friends) to similar effect.
These approaches are rather less flexible than using a distinguished object,
as typically they couple the ADT implementation to concrete client modules
— on the other hand, the extra object adds complexity to an object-oriented
system’s design.

The second issue is that, in an open system, particularly in an open dis-
tributed system, programs (and their programmers) cannot assume that all
the code is “well behaved”. This is certainly the case for a payments system:
the point of a payment system is to act as trusted third party that allows one
client to pay another client, even though the clients may not trust each other;
one client may not exist at the time another client is written. In that sense,
the notion of an “open system” as a system is, at best, ill-defined: where new
components or objects can join and leave a system dynamically, questions
such as what is the boundary of the system, which components comprise the
system at any given time, or what are the future configurations of the system
are very difficult to answer.

The question then is: how best can we implement such an ADT in a pure
object-oriented language, particularly one adopting an object-capability secu-
rity model, within an “open world”: where an ADT may have to interoperate
with components that are not known in advance, and that cannot be trusted
by the ADT?
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0.3 Implementing the Mint

We now try and answer that question, considering a number of different de-
signs to support ADTs in object-oriented languages. We will present various
different Grace implementations of the “Mint and Purse” system ubiquitous
in object-capability research [15] to illustrate different implementation pat-
terns.

0.3.1 Sealer/Unsealer

Our first implementation is based on the “classic” Mint in E, making use
of sealer/unsealer brand pairs [15]. The sealer/unsealer design encodes the
Mint/Purse ADT into two separate kinds of objects, Mints and Purses (see
figure 0.3). The Mint capability (i.e. the Mint object) must be kept secure
by the owner of the whole system, as it can create funds. On the other hand,
Purses can be communicated around the system: handing out a reference to
a Purse risks only the funds that are deposited into that purse, or that may
be deposited in the future.

type Mint = interface {
purse(amount : Number) −> Purse
}

type Purse = interface {
balance −> Number
deposit(amount : Number, src : Purse) −> Boolean
sprout −> Purse
}

Fig. 0.3 Mints and Purses

This design is based on brand pairs [16, 15]. Brand pairs are returned
from the makeBrandPair method, which returns a pair of a sealer object and
an unsealer object. The sealer object’s seal method places its argument into
an opaque sealed box: the object can be retrieved from the box only by
the corresponding unsealer’s unseal method. The sealer/unsealer pairs can be
thought of as modelling public key encryption, where the sealer is the public
key and unsealer the private key (see Figure 0.4).

We can implement these two types using two nested Grace classes, (see
figure 0.5, which follows the nesting in the E implementation [15]). The outer
class implements the Mint type, with its purse method implemented by the
nested class purse. Thanks to the class nesting, this implementation is quite
compact. The Mint class itself is straightforward, holding a brandPair that will
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type Sealing = interface {
makeBrandPair −> interface {

sealer −> Sealer
unsealer −> Unsealer
}
}

type Sealer = interface { seal(o : Object) −> Box }

type Unsealer = interface { unseal(b : Box) −> Object }

type Box = interface { }

Fig. 0.4 Brand Pairs

be used to maintain the integrity of the ADT, i.e. the whole Mint and Purse
system. Anyone with access to a mint can create a new purse with new funds
simply by requesting the purse class. (Grace doesn’t need a new keyword to
create instances of classes — just the class name is enough.) There is a sprout

method at the end of the purse class so that clients with access to a purse (but
not the mint) can create new empty purses (but not purses with arbitrary
balances).

The work is all done inside the purses. Each purse has a per-instance
private variable balance, and a deposit method that, given an amount and a valid
source purse which belongs to this Mint/Purse system (i.e. which represents
an instance of this ADT) adjusts the balance of both purse objects to perform
the deposit. The catch is that the deposit method, here on the destination
purse, must also modify the balance of the source purse. In a system that
directly supported ADTs (such as many class-based OO languages [3]) this
is simple: the balance fields would be per-class private and the deposit method
could just access them directly (see figure 0.6).

This is not possible in an object-capability language because objects are
encapsulated individually. The brokenDeposit method could only work if each
purses’ balance field was publicly readable and writeable: but in that case,
any client could do anything it wanted to any purse it could access. Rather,
in this design, the decr and getDecr and deposit methods, and the sealer/un-
sealer brandPair, collaborate to implement deposit without exposing their
implementation beyond the boundary of the ADT. First, the decr method
can decrease a purse’s balance: this method is annotated as confidential, that
is, per-instance private. Second, the public getDecr wraps that method in a
lambda expression “{ amt −> decr(amt) }” and then uses the brandPair to seal
that lambda expression, putting it into an opaque box that offers no inter-
face to any other object. Although getDecr is public, meaning that it can be
called by any object that has a reference to a purse, an attacker does not gain
any advantage by calling that method, because the result is sealed inside the
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class mint −> Mint is public {
def myMint = self
def brandPair = sealing.makeBrandPair

class purse(amount : Number) −> Purse {
var balance := amount

method decr(amt : Number) −> Boolean is confidential {
if ((amt < 0) || (amt > balance)) then {

return false }
balance := balance − amt
return true }

method getDecr
{brandPair.sealer.seal { amt −> decr(amt) } }

method deposit(amt : Number, src : Purse) −> Boolean {
if (amt < 0) then { return false }
var srcDecr
try { srcDecr := brandPair.unsealer.unseal(src.getDecr) }

catch { −> return false }
if (srcDecr.apply( amt )) then {

balance := balance + amt
return true }

return false }

method sprout { purse(0) }
}
}

Fig. 0.5 Sealer/Unsealer based Mint

method brokenDeposit(amt : Number, src : Purse) −> Boolean
{ if ((amount >= 0) && (src.balance >= amount))

then {
src.balance := src.balance − amount
balance := balance + amount
return true

} else {return false}
}

Fig. 0.6 ADT Deposit Method (per-class private)
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opaque box. Finally, the deposit method will use the matching unsealer from
the same brand pair to unseal the box, and can then invoke the lambda
expression to decrement the source purse. This remains secure because each
instance of the mint class will have their own brand pair, and so can only
unseal their own purses’ boxes — the unseal method will throw an exception
if it is passed a box that was sealed by a different brand pair.

0.3.2 Generalising the Sealer/Unsealer

The previous section’s Mint/Purse design works well enough for, well, purses
and mints, but sealing a single lambda expression only works when there is
just one operation that needs to access two (or more) instances in the ADT.
We can generalise the sealer-unsealer design by sealing a more capable object
to represent the instances of the ADT.

In this design, we have an ExternalPurse that offers no public methods, and
an InternalPurse that stores the ADT instance data, in this case the purse’s
balance (see figure 0.7).

type ExternalPurse = interface { }

type InternalPurse = interface {
balance −> Number
balance:= ( n : Number )
}

Fig. 0.7 External and Internal Purse Interfaces

Because the external purses are opaque, we need a different object to
provide the ADT operations — effectively to reify the ADT as a whole.
Rather than making requests to the ADT instance objects directly (“dst.

deposit(amt, src)”) we will pass the ADT instances to the object reifying the
ADT, e.g.:

mybank.deposit(dstPurse, amt, srcPurse)

In fact, to deal with the difference in privilege between creating new purses
containing new money, versus manipulating existing purses with existing
money, this design needs two objects: an Issuer that presents the main in-
terface of the ADT, and which can be publicly available, and a Mint that
permits inflating the currency, and consequently must be kept protected (see
figure 0.8).

These interfaces can be implemented with a generalisation of the basic
mint design (see figure 0.9). Each mint again has a brand pair, and auxiliary
(confidential) methods to seal and unseal an InternalPurse within an opaque
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type Issuer = interface {
balance(of : ExternalPurse) −> Number
deposit(to : ExternalPurse,

amount : Number,
from : ExternalPurse ) −> Boolean

sprout −> ExternalPurse
}

type Mint = interface {
purse(amount : Number) −> ExternalPurse
issuer −> Issuer
}

Fig. 0.8 Splitting the Issuer from the Mint

sealed box: these boxes will be used as the ExternalPurse objects. A new inter-
nal purse is just a simple object with a public balance field; an external purse
is just an internal purse sealed into a box with the brand pair. Implement-
ing the ADT operations is quite straightforward: any arguments representing
accessible proxies for ADT instances (external purses) are unsealed, yielding
the internal representations (internal purses) and then the operations imple-
mented directly on the internal representations. An invariant of this system,
of course, is that those internal representation objects are confined with the
object reifying the whole ADT, and so can never be accessed outside it.

0.3.3 Hash table

A similar design can employ a hash table, rather than sealer/unsealer brand-
pairs to map from external to internal representations (see figure 0.10). This
has the advantage that the external versions of the ADT instances have to
be the sealed boxes themselves, and can offer interfaces so that they can be
used directly as the public interface of the ADT. This means we do not need
to split the ADT object into two objects to distinguish between a public
interface (“Issuer”) and a private interface (“Mint”).

The implementation of this design (in figure 0.11) is more straightforward
than the sealer/unsealer design (figure 0.9). The mint class contains a map
(here instances) from external to internal purses; we also have a couple of helper
methods to check if an (external) purse is valid for this mint, and to get the
internal purse corresponding to an external purse.

To actually make a new purse, the mint makes a pair of objects (one internal
and one external purse) stores them into the instances map, and returns the
external purse. As in the sealer/unsealer based design, here the Mint object
reifying the ADT must still offer methods implementing the ADT operations.
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class mint −> Mint {

def myBrandPair = sealing.makeBrandPair

method seal(protectedRep : InternalPurse) −> ExternalPurse
is confidential { myBrandPair.sealer.seal(protectedRep) }

method unseal(sealedBox : ExternalPurse) −> InternalPurse
is confidential { myBrandPair.unsealer.unseal(sealedBox) }

method purse(amount : Number) −> ExternalPurse {
seal( object { var balance is public := amount } ) }

def issuer is public = object {

method sprout −> ExternalPurse { purse(0) }

method balance(of : ExternalPurse) −> Number {
return unseal(of).balance}

method deposit(to : ExternalPurse,
amount : Number,
from : ExternalPurse) −> Boolean {

var internalTo
var internalFrom
try {

internalTo := unseal(to) // throws if fails
internalFrom := unseal(from) // throws if fails

} catch { −> return false }

if ((amount >= 0) && (internalFrom.balance >= amount))
then {

internalFrom.balance := internalFrom.balance − amount
internalTo.balance := internalTo.balance + amount
return true
} else {return false}

}
}
}

Fig. 0.9 Generalised Sealer/Unsealer based Mint

These operations are by the external purses to implement the ADT: they
cannot generally be used by the ADT’s clients as the reified ADT object
(the mint) can inflate the currency by creating non-empty purses, so that
capability must be kept confined.

The internal purse implementation is also straightforward. We could have
used just objects holding a balance field, or even stored the balance directly in
the map, but here we add some additional behaviour into the representation
objects (see figure 0.12).
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type ExternalPurse = interface {
balance −> Number
deposit(amount : Number, src : ExternalPurse) −> Boolean
sprout −> ExternalPurse
}

type Mint = interface {
purse(amount : Number) −> ExternalPurse
deposit(to : ExternalPurse,

amount : Number,
from : ExternalPurse) −> Boolean

balance(of : ExternalPurse) −> Number
sprout −> ExternalPurse
}

type InternalPurse = interface {
balance −> Number
balance:= (Number) −> Done
deposit(amount : Number, src : ExternalPurse) −> Boolean
}

Fig. 0.10 Interfaces for Hash Table based Mint

Finally, the externalPurse class implements the ADT instances — the public
purses — as “curried object” proxies that delegate their behaviour back to
the mint object that represents the whole ADT. Here we give the external
purses their mint as a parameter: this would work equally well by nesting the
external purse class within the mint (see figure 0.13).

0.4 Owners as Readers

In earlier work we have argued that an owners-as-readers discipline can pro-
vide an alternative formulation of ADTs [22]. Owners-as-readers depends on
object ownership rather than type abstraction to encapsulate the implemen-
tations of the ADT instance [23]. In this model, all the instances are owned
by an additional object that reifies the whole ADT, and the ownership type
system ensures that they can only be manipulated within the scope of that
object. Where owners-as-readers differs from other ownership disciplines is
that other objects outside the ADT can hold references to the ADT instance
objects, but those outside references appear opaque, and any requests on
those objects from outside raise errors.

A range of ownership systems can be characterised as providing an owners-
as-accessors discipline [20, 7, 25, 8, 4]: we have discussed these in more detail
elsewhere [22]. Owners-as-readers systems clearly do not meet the key re-
quirement of an object-capability system, precisely because owned objects
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class mint −> Mint {

def instances = collections.map[[ExternalPurse,InternalPurse]]

method valid(prs : ExternalPurse) −> Boolean
{ instances.contains(prs) }

method internal(prs : ExternalPurse) −> InternalPurse
{ instances.get(prs) }

method purse(amount : Number) −> ExternalPurse {
def ext = externalPurse(self)
def int = internalPurse(amount)
instances.put(ext, int)
return ext
}

method deposit(to : ExternalPurse,
amount : Number,
from : ExternalPurse) −> Boolean {

if ((valid(to)) && (valid(from))) then {
return internal(to).deposit(amount, internal(from))}

return false
}
method balance(prs : ExternalPurse) −> Number
{ internal(prs).balance }

method sprout −> ExternalPurse {purse(0)}
}

Fig. 0.11 Hash table based Mint

class internalPurse(amount : Number) −> InternalPurse {
var balance is public := amount
method deposit(amount : Number, src : InternalPurse)

−> Boolean
{ if ((amount >= 0) && (src.balance >= amount)) then {

src.balance := src.balance − amount
balance := balance + amount
return true }

return false
}

}

Fig. 0.12 Internal Purse for Hash Table based Mint
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class externalPurse(mint' : Mint) −> ExternalPurse {
def mint = mint'
method balance {mint.balance(self)}
method sprout −> ExternalPurse { mint.sprout }
method deposit(amount : Number, src : ExternalPurse)
−> Boolean { return mint.deposit(self, amt, src) }

}

Fig. 0.13 External Purse for Hash Table based Mint

are opaque outside their owners — although they would meet the following
modified criterion: “A direct access right to an object gives a subject the per-
mission to invoke the behaviour of that object from inside that object’s
owner”.

The resulting design is most similar to the sealer/unsealer version, because
outside the mint ADT the internal purses are opaque. This means clients
need to interact with the object reifying the ADT, and so we must split that
object to separate the privileged capability (again, Mint) from the general
capabilities to use the rest of the ADT operations (again, Issuer). On the
other hand, we do not need an explicit split between internal and external
purses (see figure 0.14).

type Mint = interface {
purse(amount : Number) −> Purse
issuer −> Issuer
}

type Issuer = interface {
balance(of : Purse) −> Number
deposit(to : Purse,

amount : Number,
from : Purse) −> Boolean

sprout −> Purse
}

type Purse = interface {
balance −> Number
balance:= ( n : Number )
}

Fig. 0.14 Interfaces for Owners-as-Readers based Mint

Implementing this really should be straightforward by now. We make a
purse class that only holds a balance: crucially that class is annotated is owned.
The main ADT operations are defined inside the issuer object — the meth-
ods implementing these operations can just access the owned purse objects
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directly because they are within the mint: the owners-as-readers constraint
ensures that the purses cannot be accessed from outside the ADT’s boundary
(see figure 0.15).

class mint −> Mint {

class purse(amount : Number) −> Purse is owned {
var balance is public := amount
}

def issuer is public = object {

method sprout −> Purse { purse(0) }

method deposit(to : Purse is owned, amount : Number,
from : Purse is owned) −> Boolean {

if (
(amount >= 0) && (from.balance >= amount))

then {
from.balance := from.balance − amount
to.balance := to.balance + amount
return true
} else {return false}

}

method balance(of : Purse is owned) −> Number {
return of.balance}

}
}

Fig. 0.15 Owners-as-Readers based Mint

From the perspective of the owners-as-readers design, we can consider that
both the sealer/unsealer or the map-bgased designs embody an ad-hoc form
of ownership: in both cases there are internal capabilities — the internal
purses — that must be confined within the ADT implementation, and the
ownership — the control of the ADT’s boundary — is embodied in the seal-
er/unsealer’s brand-pair, or in the map from external to internal purses: here
that ownership is supported directly in the programming language.

We can also speculate on whether there is an obvious way to provide a
public ADT interface via the purses, rather than again requiring operations
to be addressed to the object reifying the ADT (here the Issuer and the Mint.
The answer is both yes and no: yes, because a language could e.g. distinguish
between ADT-public and ADT-private operations on those instance objects,
and no, because that takes us right back to ADT oriented languages with
per-class access restrictions, that is, right away from the object-capability
model.
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0.5 Primitive Data Types

Object-oriented languages must also integrate another type of data item into
their object models. Machine-level primitive types such as integers, floating
point numbers, Booleans, may be provided directly by the underlying CPU;
other types such as Strings or Symbols that be implemented directly by a
virtual machine. Different languages tackle this problem in different ways:

• C++ & Java objects and primitives are in different universes. The lan-
gauges’ static type systems ensure primmitives and objects cannot be
mistaken for each other — although different types of conversions can be
applied to “box” a primitive into an object, and “unbox” it as necessary.

• Smalltalk objects have a primitive part and an “object-oriented” part [6].
The primitive part stores e.g. the value of a number as a primitive double,
while the object-oriented part holds the objects’ variables and methods
Objects’ method’s bodies can designate virtual machine primitive oper-
ations that should be invoked using data stored in the objects’ primitive
parts

• Self objects also have a primitive part and an object-oriented part (the
same data model as Smalltalk) [24]. In Self, primitive code is invoked by
syntactically differentiated messages (requests, method calls) rather than
by designated method bodies.

• Newspeak objects again have primitive and object-oriented parts, but
primitive code is invoked via a VM proxy object, rather than distin-
guished methods or messages [1].

0.5.1 External Primitives

Figure 0.16 shows the kind of code Newspeak uses to invoke operations on
primitive objects (albeit expressed using Grace syntax). A request on integers
(“1 + 2”) resolves to one of these method definitions, resulting in a request
such as (“vm.addInteger(1,2)”) to the vm object that reifies the virtual machine.

class integer { // construction is magic

method +(other : Number) { vm.addInteger(self, other) }
method −(other : Number) { vm.subtractInteger(self, other) }
method ∗(other : Number) { vm.multiplyInteger(self, other) }
method /(other : Number) { vm.divideInteger(self, other) }
method prefix− { vm.negateInteger(self) }
}

Fig. 0.16 Newspeak Primitive Invocations via VM Proxy
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The key here is to compare the code for integers in figure 0.16 with the
code for the external purses in the mint implemented with a hashtable in
figure 0.13. Both of these figures exhibit the same pattern: a method is called
on an “instance object” — generally a method that takes more than one
instance to implement a complex operation and the reciever and arguments
to that message are passed in to a third party (the mint or vm proxy) which
effectively retrieves the data and executes the operation.

This model certainly makes the route to invoke VM primitives clear — and,
in accordance with Newspeak’s pure object-object design, does so without
any language support for primtive methods or messages. This model is still
asymmetric, however: although the behaviour is moved out of the objects,
the primitive data still remains in their primitive parts. This is most obvious
when asking how instances of the integer class in figure 0.16 are created —
the answer is: they have to be created by the VM or language implementation
itself, either from literals in the source code or operations on other integers
or other primitive types.

0.5.2 Object-as-Readers Primitives

Perhaps the cleanest model is to follow William Cook’s distinction between
objects and ADTs to its logical conclusion [3]. We can treat all low-level
primitive types as (interlinked) sets of ADTs provided by the VMs — rather
than objects. Individual instances of these ADTs offer no methods in their
own rights, not even equality. To other code, they are opaque ’magic cookies’
that can be stored in object’s fields, stored in variables, passed as arguments,
but that offer no behaviour themselves: the only way to operate on the in-
stances is to pass them into the vm or another object reifying the ADT, as
in the code in figure 0.17.

Behaviour for these ADTs is again provided by a vm object — or, perhaps,
a set of singleton objects one per ADT. The methods e.g. on the vmIntegerADT

class take and return those magic cookies, which cannot be manipulated any
other way. All the language-level behaviour for primitives is then written as
normal code that manipulates the magic cookies. In figure 0.17, the integer
class can be written in completely normal code, again as in figure 0.17.

This design results in a clear interface to the VM ADTs, a clearer data
model — as objects are either all primitive, or all language-level objects, but
with nothing in between. There is also a clear interface to the VM support
for the primitive types — the interface supported by objects like vmIntegerADT

module object. Other information or behaviour can be added in to the wrap-
per classes — perhaps to add provenance infomation, or taint tracking —
without affecting the interface to the underlying ADT.

This model need not necessarily be slower or more memory intensive
than one based on primitive parts and inheritance. Raw CPUs, and high-



0.5 Primitive Data Types 17

class integer(cookie' : VmInteger) −> Number { // construction is normal

def cookie is public = cookie'

method +(other : Number) −> Number {
integer(vmIntegerADT.addInteger(cookie, other.cookie))}

method −(other : Number) −> Number {
integer(vmIntegerADT.subtractInteger(cookie, other.cookie))}

method ∗(other : Number) −> Number {
integer(vmIntegerADT.multiplyInteger(cookie, other.cookie))}

method /(other : Number) −> Number {
integer(vmIntegerADT.divideInteger(cookie, other.cookie))}

method prefix− −> Number {
integer(vmIntegerADT.negateInteger(cookie)) }

}

Fig. 0.17 Objects-as-Readers Primitive Invocations

performance VMs both end up implementing primitive types by allocating
implementation fields in the representation of the object. This is as true for a
machine code implementation as it is for an implementaiton in a higher level
VM or even a translation to a dynamic langauge such as Javascript.

0.5.3 Primitives for All Objects

The remaining issues is that in many object-oriented languages, all objects
are to some extent primitive objects. Just as class Object in Smalltalk or
Java provides language level methods that apply to all objects, so it also
relies on a small number of primitive methods that also apply to all objects.
In these object models, we can consider that — conceptually — each object
has a primitive data part that can be thought of has holding its identity (at
least), perhaps also its class, lock, type, etc. Again, as with other kinds of
primitives, primitive behaviours can be invoked by an appropriate mechanism
to access that primitive data part. Because every object has that primitive
data, those primitives apply to all objects. Figure ?? shows how this could
be implemented in the explicit-ADT style.

This design, though, gives object an identity-based hash, and identity-
based equality whether they want it or not — e.g. “functional” objects (bas-
cialy records) may not want this equality; a proxy may want both identity
and hash code to be delegated to the object they are proxying.

Time, then, to go to one last remove. Figure 0.19 shows an abstractEquality

trait that defines a suite of “left-handed” equality operators in terms of two
abstract operations, isMe and hash [19]. Objects can either provide those op-
erations directly, or if they do want identity semantics, they can additionally
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class graceObject −> Object {

def cookie is public = vmObjectADT.newUniqueIdentity

method ==(other : Object) −> Boolean
{ boolean( vmObjectADT.eq(cookie, other.cookie) ) }

method hash −> Number
{ integer( vmObjectADT.hash(cookie) ) }

method synchronized (block : Block[Done]) −> Done
{ with (vmObjectADT.lock(cookie).acquire) do (block) }

}

Fig. 0.18 Identity ADT at the Top of the Hierarchy.

inherit from the identityEquality trait shown in figure 0.20 which provides a
ready-made identity-based implementation.

trait abstractEquality {
method ==(other) { isMe(other) }
method !=(other) {! (self == other) }
method hash { identityHash }

method isMe(other) is required { }
method identityHash is required { }
}

Fig. 0.19 Abstract Equality Trait

trait identityEquality {
use equality

def cookie is public = vmObjectADT.newUniqueIdentity

method ==(other : Object) −> Boolean
{ boolean( vmObjectADT.eq(cookie, other.cookie) ) }

method hash −> Number
{ integer( vmObjectADT.hash(cookie) ) }

}

Fig. 0.20
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0.6 Conclusion

In this chapter we have considered issues in designing and implementing ab-
stract data types in purely object-oriented systems, and in object-capability
systems in particular. We show how primitive instances can be treated as
abstract data types in object-oriented systems, and extend that treatment to
encompass even explicit object identity.

The first design we considered used sealer/unsealer brand pairs to encap-
sulate the ADT’s shared state, but kept that state within the individual purse
objects. The code that implemented the system is also primarily in the purses
— a mint object primarily exists to provide a separate capability to inflate
the currency.

Our second design also encapsulates the ADT implementation using seal-
er/unsealer pairs, but generalises the design, to split each logical purse into
two different capabilities, that is, into two separate objects, one of which is
accessible from outside the ADT, and the second accessible only from inside.
In this design, the external purse objects are opaque, so in effect we also split
the mint object representing the whole ADT into an unprivileged Issuer, and
the privileged Mint.

Our third design retains the split between internal and external purses,
but uses a hash table rather than sealer/unsealer brand pair to provide the
encapsulation boundary. This has the advantage that the external purses do
not have to be the sealed boxes, and so we can return to a more “object-
oriented” style API, where clients interact with the purse objects directly,
rather than via the issuer object; this means we no longer need to split the
mint capability. The catch, of course, is that this is probably the most complex
design that we consider in this chapter.

Our last design revisits our owners-as-readers encapsulation model, which
tries to build in minimal support for ADTs in a dynamic, object-oriented set-
ting. This is the smallest implementation, because owners-as-readers renders
the purses opaque outside the ADT, and so the purse objects no longer need
to be split in any way. On the other hand, because the purses are opaque
to all the clients of the system, we again need an issuer offering the classic
ADT-style interface.

Finallly, we show how primitive objects, and primitive operations across
all objects can be encompassed within these designs.

We note that aliasing issues arise pervasively in these object-capability
implementations. Wherever we have to split objects to divide public and pri-
vate capabilities (i.e. those capabilities on the inside and outside of the ADT’s
boundaries) then there will be an implicit aliasing relationship between those
objects. These designs also involve confinement or ownership relationships,
implicitly or explicitly, in that the internal object-capabilities must not be
accessible from outsides.

As with much object-capability research, we have once again tackled the
mint/purse system. The abstract data type perspective can explain why this
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example is so ubiquitous: because the mint/purse system is about as simple
an abstract data type as you can get: the data held in each ADT instance is
just a single natural number. We hypothesise that many of the examples used
in object-capability systems may be better modelled as ADTs, rather than
objects, and that much of the difficulty in implementing those examples in
object-capability systems stems directly from this incompatibility in under-
lying model. We hope the object-capability designs that we have presented
here, however, should be able to cope with a range of more complex abstract
data types.
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