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ABSTRACT. An α-coloring ξ of a structure S is distinguishing if there are no nontrivial
automorphisms of S respecting ξ. In this note we prove several results illustrating that
computing the distinguishing number of a structure can be very hard in general. In con-
trast, we show that every computable Boolean algebra has a 0′′-computable distinguish-
ing 2-coloring. We also define the notion of a computabile distinguishing 2-coloring of
a separable space; we apply the new definition to separable Banach spaces.

We study distinguishing numbers of computable structures and computable sepa-
rable spaces. The distinguishing number of a structure is defined as follows. An α-
coloring, where α ≤ ω, of a structure S is a function from the domain of S into a set
of size α. An α-coloring ξ is distinguishing if there are no nontrivial automorphisms
of S respecting ξ: i.e. if f is a nontrivial automorphism of S , then there is an ele-
ment a ∈ S with ξ( f (a)) 6= ξ(a). The distinguishing number of a countable structure
S is the least α ≤ ω such that S has a distinguishing α-coloring. The idea is that
the distinguishing number of a structure gives a new measure of the complexity of the
structure. Distinguishing numbers have been extensively studied in combinatorics. Al-
bertson and Collins [1] introduced the notion for finite graphs, and [16] studied distin-
guishing numbers of infinite graphs. For example, the random graph has a distinguish-
ing 2-coloring [16]. For more results in combinatorics, the reader is referred to, e.g.,
[17, 23, 13].

How hard is it to decide whether the distinguishing number of a given algebraic
structure is equal to 2? Also, how difficult is it to compute theα-coloring of a given struc-
ture? Miller, Solomon, and Steiner [20] initiated the study of computability-theoretic as-
pects of distinguishing colorings. They mainly restricted themselves to trees. The main
purpose of this note is to extend the approach from [20] to arbitrary algebraic structures
and also define the notion of a computable coloring for separable spaces. To do that,
we apply the tools of computable structure theory [12, 2] and computable analysis [24].
To keep the note as brief as possible, we shall not give any detailed explanation or moti-
vation here. We only note that the questions raised above can be viewed as computable
classification problems. See surveys [14, 21, 10] for more about applications of com-
putability to classification problems, and see [8, 9, 5, 19] for several recent results into
this direction.

In Subsection 1.1 we prove that, for any computable ordinal α, there is a computable
structure S with distinguishing number 2, which does not have 0(α)-computable distin-
guishing 2-colorings. In Subsection 1.2, we prove that the index set of structures having
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distinguishing number 2 is both Σ1
1-hard and Π1

1-hard. Since the results are fully rela-
tivizable, the results of the first two sections give a strong evidence that the distinguish-
ing coloring problem does not have any tractable solution for countable structures. In
contrast with this “anti-structure” result (in the sense of [14]), in Subsection 1.3 we prove
that every computable Boolean algebra has a 0′′-computable distinguishing 2-coloring;
we leave open whether 0′′ is sharp. In Section 2 we introduce the notion of a com-
putable distinguishing 2-coloring for a separable space. We apply the new notion in
Subsection 2.2 where we prove that every Banach space that has a strongly computable
Schauder basis (to be defined) has a computable distinguishing 2-coloring. In each of
these subsections we also state open problems, some of which seem to be rather chal-
lenging.

1. COLORING COUNTABLE ALGEBRAIC STRUCTURES

1.1. The complexity of distinguishing colorings. Recall that a computable presenta-
tion of a countably infinite algebraic structure A is a structure B ∼=A upon the domain
of natural numbers ω such that the operations and relations on B are (uniformly and
Turing) computable. In this section, we show that for a computable structure S , the
complexity of an optimal distinguishing coloring cannot be bounded in the hyperarith-
metical hierarchy.

Given a graph G , we define a new graph Double(G): Every node v of G is replaced by
two nodes v[0] and v[1]. Nodes v[i ] and w[ j ] are connected by an edge in Double(G) if
and only if there is an edge from v to w inside G . It is not hard to prove:

Lemma 1.1. Let G be a graph.

(a) For a node v ∈G, the map

fv (x) =
{

v[1− i ], if x = v[i ],

x, otherwise,

is an automorphism of the structure Double(G). Hence, if ξ is a distinguishing
coloring of Double(G), then ξ(v[i ]) 6= ξ(v[1− i ]).

(b) Suppose that ξ : Double(G) → {0,1} is a distinguishing 2-coloring of Double(G).
Then for i ∈ {0,1}, the substructure Hi ≤ Double(G) on the domain {x : ξ(x) = i }
is isomorphic to G.

(c) Suppose that ξ : G → {1,2, . . . ,n} is a distinguishing n-coloring of G. Then the
map

ξDouble(v[i ]) =
{
ξ(v), if i = 0,

ξ(v)+n, if i = 1,

is a distinguishing 2n-coloring of Double(G).

Theorem 1.1. For every computable ordinal α, there is a computable structure S with
distinguishing number 2, which does not have 0(α)-computable distinguishing 2-colorings.

Proof. The language of S contains unary predicates Rn , n ∈ω, and one binary predicate
Q. For e ∈ ω, the predicate Re forms the e-th box inside S . This box is intended to

witness that the function ϕ0(α)

e cannot be a distinguishing 2-coloring of S . Beforehand,
we add elements ae , be , and ce inside the e-th box.

Without loss of generality, one may assume that α > ω and α = 2β+ 1. For conve-
nience, we interpret 0 as “red” and 1 as “blue”. By employing the technique of pairs of
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computable structures [3] (see, e.g., Theorem 3.1 of [4] for a similar argument), we build
computable sequences (Ae )e∈ω, (Be )e∈ω, and (Ce )e∈ω with the following properties:

(i) If some of the values ϕ0(α)

e (ae ), ϕ0(α)

e (be ), or ϕ0(α)

e (ce ) is undefined or some of
these values does not belong to {0,1}, then Ae

∼=ωβ, Be
∼=ωβ ·2, and Ce

∼=ωβ ·3.
(ii) Assume otherwise. Then:

(a) Ae is isomorphic to ωβ · 4 if ϕ0(α)

e (ae ) = ϕ0(α)

e (be ) or ϕ0(α)

e (ae ) = ϕ0(α)

e (ce ) 6=
ϕ0(α)

e (be ). Otherwise, Ae
∼=ωβ.

(b) Be is isomorphic to ωβ · 4 if ϕ0(α)

e (ae ) = ϕ0(α)

e (be ) or ϕ0(α)

e (be ) = ϕ0(α)

e (ce ) 6=
ϕ0(α)

e (ae ). Otherwise, Be
∼=ωβ ·2.

(c) Ce is isomorphic to ωβ ·4 if ϕ0(α)

e (ae ) 6=ϕ0(α)

e (be ). Otherwise, Ce
∼=ωβ ·3.

Inside the structure S , we put the graphs Double(Ae ), Double(Be ), and Double(Ce )
into the e-th box. We add an edge between ae and every element of Double(Ae ). We
note that by Lemma 1.1, the structure Double(Ae ) has a distinguishing 2-coloring. Treat
be and Double(Be ), ce and Double(Ce ) in a similar way.

It is not difficult to show that the structure S is not rigid. Moreover, there is a dis-
tinguishing 2-coloring of S : For every e, the e-th box contains at most two isomor-
phic “double graphs” — e.g., suppose that Ae

∼= Be 6∼= Ce . Then the desired coloring
can be defined as follows. Choose arbitrary distinguishing 2-colorings of Double(Ae ),
Double(Be ), and Double(Ce ). After that, the node ae is colored blue, be is colored red,
and for ce one can assign any color.

Aiming for a contradiction, assume that ϕ0(α)

e is a distinguishing 2-coloring of S .

Then there are at least two nodes from the set {ae ,be ,ce } such that ϕ0(α)

e colors them

in the same color; say, ϕ0(α)

e (be ) =ϕ0(α)

e (ce ) = 0.

Ifϕ0(α)

e (ae ) = 0, then by Lemma 1.1.(b), each of the graphs Double(Ae ) and Double(Be )
can be decomposed in a red copy of ωβ ·4 and a blue copy of ωβ ·4. Note that both ae

and be are colored red. Thus, one can recover a color preserving automorphism of S ,
which maps Double(Ae ) onto Double(Be ).

If ϕ0(α)

e (ae ) = 1, then a similar argument shows that there is a color preserving auto-
morphism mapping Double(Be ) onto Double(Ce ). We obtained a contradiction, hence,
no 0(α)-computable function can be a distinguishing 2-coloring for the structure S . �

1.2. Index sets.

Theorem 1.2. The index set of computable structures with distinguishing number 2 is
both Σ1

1-hard andΠ1
1-hard.

Proof. First, we establish the Σ1
1-hardness. In order to do this, we prove the following:

Lemma 1.2. Let L be a computable linear order such that every block of L is infinite.
Then there is a 0′-computable distinguishing 2-coloring of L .

Proof. We write a ≺ b if b is an immediate successor of a inside L . We define our col-
oring as follows. At stage 0, pick the element 0 of L , and find three elements a ≺ b ≺ c
such that 0 ∈ {a,b,c} (using the 0′-oracle to find successors). Both a and c are colored
red, and b is colored blue.

At stage s > 0, use the oracle to find s +3 immediate successors n0 ≺ n1 ≺ ·· · ≺ ns+1 ≺
ns+2 such that s ∈ {n0,n1, . . . ,ns+2}. If any of these elements is already colored, then
simply color all of these s +3 elements red, except those which are already colored. If
none of these elements is already colored, then color n0 and ns+2 red, and color the
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intervening elements n1, . . . ,ns+1 blue, creating a sequence of exactly s +1 consecutive
blue elements in L . This completes stage s.

Clearly this construction gives a 0′-computable 2-coloring of L . Moreover, within
L , every block contains at least one sequence of finitely many blue elements with red at
each end, created at the first stage at which the construction encountered an element of
this block. However, no two of these sequences have the same length, since no two were
created at the same stage. Therefore, no automorphism can map any block to a different
block and still respect the coloring. Furthermore, a similar argument shows that if an
automorphism respects the coloring, then every ζ-block must stay fixed. Therefore, the
only automorphism respecting the coloring is the identity. �

Let S be aΠ1
1 set. There exists a computable total function f such that, for all n, f (n)

is the index of a computable linear order Ln with

(1) Ln
∼=

{
some α<ωC K

1 , if n ∈ S,

ωC K
1 · (1+η), if n 6∈ S.

Any ordinalα has distinguishing number 1. By Lemma 1.2, the Harrison orderωC K
1 ·(1+

η) has distinguishing number 2. Therefore, our index set is Σ1
1-hard.

Now we show that the index set isΠ1
1-hard. For the sequence (Ln)n∈ω from (1), define

Mn = Double(Ln). If n ∈ S, then Ln is isomorphic to an ordinal. By Lemma 1.1, the
structure Mn has distinguishing number 2.

Suppose that n ∉ S. Let M =Mn , and let ξ : M → {0,1} be a distinguishing 2-coloring.
Consider the substructure A of M on the domain {a : ξ(a) = 0}. By Lemma 1.1.(b), the
graph A is isomorphic to the Harrison order. Fix a nontrivial automorphism g of A .
Define D(v[i ]) := v[1− i ]. Then the map

g∗(x) =
{

g (x), if x ∈A ,

D(g (D(x))), if x ∉A ,

is a nontrivial automorphism of M , which respects ξ. Therefore, M has no distinguish-
ing 2-colorings, and our index set isΠ1

1-hard. �

Problem. What is the exact (optimal) complexity of the 2-coloring problem in the ana-
lytic hierachy?

1.3. Boolean algebras. In contrast to Theorem 1.1, computable structures from some
familiar classes admit distinguishing colorings of fairly low arithmetical complexity. We
illustrate this by the following:

Theorem 1.3. Any computable Boolean algebra B has a 0′′-computable distinguishing
2-coloring.

Proof. Without loss of generality, we assume that B is infinite. We build a generating
tree T for B such that T is 0′′-computable (a detailed exposition of the generating trees
technique can be found in [15]). The desired coloring ξ is defined as follows:

(a) If a node from T has precisely two children a,b, and both a and b are atoms of
B, then color a red and b blue.

(b) All other nodes from T are colored red. All elements from B\T are colored blue.

Let f be an automorphism of B, which respects our coloring. If a is a generator (i.e., an
element of T ), then f (a) is also a generator. The construction of T will ensure that f (a)
equals a. Since every element of B is a finite sum of generators, we deduce that f is the
identity map.
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We build T as a subtree of ω<ω. For a ∈B, let cr(a) = card({x : x ≤B a}).
If a is a sum of n ≥ 2 atoms of B, then its fishbone is the following tuple of elements.

For n = 2, put fb(a) := (b,c), where b <N c are the atoms below a. For n ≥ 3, define
fb(a) := (b, a \ b, fb(a \ b)), where b is the ≤N-least atom below a. Every fishbone is asso-
ciated with a finite tree in a natural way: For n = 2, its root a has two children b and c.
For n ≥ 3, the root a has two children b and a \ b; and a \ b serves as the root of an ad-
joined tree corresponding to fb(a\b). It is clear that there is no nontrivial automorphism
of a fishbone tree, which respects the coloring described above.

At stage 0, we put the element 1B as the root of T . Choose an element a 6∈ {0B ,1B}.
One may assume that 22 ≤ cr(a) ≤ cr(a). Here a denotes the complement of a. We add
a and a as the children of 1B .

For k ≥ 2, define r (k) = 2+3+ ·· · + (k +1). Using the 0′′-oracle, check whether a is
a sum of finitely many atoms. If a is a sum of n atoms, then adjoin the fishbone tree
corresponding to fb(a) under 1B . Split a into three parts b0,b1,b2 such that for each i ,
we have cr(bi ) ≥ 2r (4). Put all bi as children of a.

If cr(a) = ω, then split a into 2 parts (they will be children of a) and a into 3 parts
(children of a). We require that for each of these parts u, we have cr(u) ≥ 2r (4). In both
cases, it is clear that the elements a and a are not automorphic as elements of the tree.

At stage s > 0, we look at each element a of the tree such that a does not have children
and a is not an atom. Note that each of the siblings of a also has these properties. Let v
be the parent of a, and let b0,b1, . . . ,bk be all children of v . The previous stage ensured
that for each i , cr(bi ) ≥ 2r (k+2), and at least one of bi satisfies cr(bi ) =ω.

If bi is a sum of m atoms, then we split bi into (i +2) parts c0, . . . ,ci+1 (the children
of bi ) such that cr(c j ) = 2 j+2 for j ≤ i , and add the fishbone trees corresponding to all
c j under bi . If cr(bi ) = ω, then we split bi into (k + 3) parts d0,d1, . . . ,dk+2 such that
cr(d j ) ≥ 2r (k+4) for each j . This kind of procedure ensures that the elements bi , i ≤ k, of
the tree are pairwise not automorphic. Moreover, all c j are pairwise not automorphic.

Consider the coloring ξ of B discussed in the beginning. Let f be an automorphism
of B respecting ξ. Then f � T is an automorphism of T . A nontrivial automorphism of
T can only switch a pair of atoms a and b described in the condition (a) above. This
implies that the coloring ξ is distinguishing. �

We do not know if the estimate 0′′ is sharp. Note that if B is an atomless Boolean
algebra, then the proof of Theorem 1.3 produces a computable 2-coloring of B.

Problem. Does every computable Boolean algebra possess a computable distinguish-
ing coloring?

2. COLORING SEPARABLE SPACES

2.1. The definition of a computable 2-coloring for a separable space. Let M = (M ,d)
be a metric space and κ be a cardinal. We follow [6] and define the distinguishing num-
ber of M as the least cardinal κ such that M has a distinguishing κ-coloring, up to
surjective isometry. For simplicity, in this section we focus on the case when κ= 2.

Recall that a computable presentation of a Polish metric space M is a countable met-
ric space X = (ω,d) such that d(i , j ) is a real uniformly computable in i , j , and the com-
pletion X ∼=M , where ∼= stands for isometric isomorphism1. A Cauchy name of a point
a ∈M is a sequence (in)n∈ω in X such that d(a, in) < 2−n . A point is computable if it has

1For a finite metric space we also allow the domain to be an initial segment of ω. We allow d(i , j ) = 0 in
X = (ω,d); a standard trick can be used to remove repetitions.
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a computable Cauchy name. Let X , Y be computable presentations of Polish metric
spaces. A map F : X → Y is computable if there is a Turing functional Φ such that, for
each x in the domain of F and for every Cauchy name χ for x, (Φχ(n))n∈ω is a Cauchy
name for F (x). Note that we do not require the Cauchy names to be necessarily com-
putable. It is well-known that computability of F implies that F is continuous; e.g., [24].

The first, naive attempt to define computable 2-coloring says that the coloring func-
tion ξ : M → {0,1} is computable. In particular, if ξ : M → {0,1} is computable then then
ξ−1(0)tξ−1(1) must be a partition of M into its clopen components. For a connected
M , this is vacuously impossible unless one of the ξ−1(i ) is empty. Even for spaces which
are not connected, the condition “ξ−1(i ) is clopen” seems too strong.

We therefore abandon this idea. Instead, we put computability-theoretic conditions
on the sets ξ−1(i ), as follows. Let X be a computable presentation of M . Recall that an
open subset L of M isΣ0

1 or c.e. (with respect to X ) if there is a a computably enumerable
set W such that L = ⋃

〈i ,r 〉∈W Br (i ), where Br (i ) = {x : d(i , x) < r } is the basic open ball
centered in i and with radius r ∈ Q. A closed set C is Π0

1 if M \ C is Σ0
1. A closed set

C is computable if it is Π0
1 and additionally it contains a sequence (xi )i∈ω of uniformly

computable points such that its completion is equal to C .
We return to colorings of a metric space M . Most common separable metric and

normed spaces have a natural computable presentation. We fix such a computable
structure X on M .

Definition 1. A distinguishing 2-coloring ξ : M → {0,1} is computable if ξ−1(0) is a com-
putable closed subset of M .

2.2. Coloring separable Banach spaces. We test the new notion to separable Banach
spaces. For the theory of computable Banach spaces, see [22]. For a Banach space, on
top of computability of the metric induced by the norm, we also require that the stan-
dard operations of addition and scalar multiplication are computable with respect to
this metric induced by the norm. This extra assumption about computability of the
operations cannot be dropped even for the space C [0,1]; see [18]. However, every com-
putable Banach space is still a computable Polish space, thus Definition 1 does not have
to be adjusted.

Let B be a Banach space. A sequence (en)n∈ω of elements of B is a Schauder basis
of B if for any element v ∈ B , there is a unique sequence of scalars (αn)n∈ω such that
v = ∑∞

n=0αnen . In a computable Banach space B , we say that a Schauder basis (en)n∈ω
of B is strongly computable if the sequence (en)n∈ω is uniformly computable and fur-
thermore there is a computable procedure B → Rω which, on input x ∈ B , outputs a
sequence of real numbers (αi ) such that x = ∑

i αi xi . (Here Rω is the standard com-
putable presentation of the ω -dimensional Hilbert space.)

Theorem 2.1. Let B be a real computable Banach space with a strongly computable
Schauder basis. Then B has a computable distinguishing 2-coloring (as a metric space).

Proof. Let (ei )i∈ω be a strongly computable Schauder basis of B . We color the following
set of elements from B red:

U = {0}∪ {ei , (i +2)ei : i ∈ω};

and all other elements are colored blue.
We claim that the set U is closed. Indeed, suppose that a sequence (vn)n∈ω of distinct

elements from U converges to some w ∈ B . For m ∈ω, consider the projection operator
Pm :

∑∞
k=0αk ek 7→∑m

k=0αk ek . For almost all vn , we have Pm(vn) = 0. Since the operator
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Pm is continuous, we obtain Pm(w) = 0. Therefore, we deduce that w = 0 ∈U . Further-
more, we claim that U is a computable closed set. To see why, fix the computable map
s : B → Rω witnessing strong computability of the Schauder basis (en)n∈ω. Then B \U is
equal to the pre-image under s of the effectively open set{

v̄ = (vi ) ∈ Rω :
(∃i 6= j vi 6= 0& v j 6= 0

) ∨ (∃i vi ∉ {1, i +2}
)}

.

It follows that U isΠ0
1. Since the sequence (en)n∈ω is uniformly computable by assump-

tion and the operations on B are computable, we conclude that the set U = {0}∪ {ei , (i +
2)ei : i ∈ω} is a computable closed set.

Now we show that our 2-coloring is distinguishing. Suppose that F is a surjective
isometry of B , which respects the coloring. Since B is a real normed space, the Mazur–
Ulam Theorem implies that there is a linear map L : B → B such that F (x) = L(x)+F (0)
for all x.

Since F respects the coloring, we have F (0) ∈ U . Assume that F (0) = mei for some
i ∈ω and m > 0. For every j ∈ω, we have

F (e j ) = L(e j )+F (0) = L(e j )+mei ∈U ;

hence, L(e j ) = q j er j −mei for some q j ,r j ∈ ω. Since F is a bijection, one can choose j
such that r j 6= i . On the other hand, we obtain

F (( j +2)e j ) = ( j +2)L(e j )+mei = ( j +2)q j er j −m( j +1)ei 6∈U ,

which contradicts the coloring preservation. Therefore, we deduce that F (0) = 0, and F
itself is a linear map.

By employing the linearity of F , it is not hard to show that F (ei ) = ei for all i ∈ω. Let
x be an arbitrary element from B . Consider its decomposition x =∑∞

n=0αnen . Then we
have

d
(
x,

k∑
n=0

αnen

)
= d

(
F (x),F

( k∑
n=0

αnen

))
= d

(
F (x),

k∑
n=0

αnen

)
−→

k→∞
0.

Therefore, F (x) = x, and F is the identity map. �

Many common spaces such as C [0,1] and `n satisfy Theorem 2.1. Nonetheless, not
every Banach space possesses a Schauder basis; see, e.g., [11]. In fact, the existence of
such a space had been an open problem for quite some time. On the other hand, we
conjecture that there is a computable Banach space that admits a Schauder basis but
has no computable presentation with a strongly computable Schauder basis. Note that
Bosserhoff [7] constructed a computable Banach space with a Schauder basis, which
does not have a computable Schauder basis.

Problem. Is there a Banach space with no distinguishing 2-coloring or at least with no
computable 2-coloring.

More generally, the problem below is wide open.

Problem. Investigate the computability-theoretic content of the coloring problem for
Polish metric and separable Banach spaces.

Finally, we wonder whether Definition 1 can be naturally extended to the case of
more than 2 colors.
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