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Abstract

We define the Scott complexity of a countable structure to be the least complexity of
a Scott sentence for that structure. This is a finer notion of complexity than Scott rank:
it distinguishes between whether the simplest Scott sentence is Σα, Πα, or d−Σα. We
give a complete classification of the possible Scott complexities, including an example
of a structure whose simplest Scott sentence is Σλ+1 for λ a limit ordinal. This answers
a question left open by A. Miller.

We also construct examples of computable structures of high Scott rank with Scott
complexities ΣωCK

1 +1 and d−ΣωCK
1 +1. There are three other possible Scott complexities

for a computable structure of high Scott rank: ΠωCK
1

, ΠωCK
1 +1, ΣωCK

1 +1. Examples
of these were already known. Our examples are computable structures of Scott rank
ωCK1 + 1 which, after naming finitely many constants, have Scott rank ωCK1 . The
existence of such strutures was an open question.

1 Introduction

Scott [Sco65] showed that for a countable language L every countable structure can be
described up to isomorphism among countable structures by a sentence of the infinitary
logic Lω1ω. Such a sentence is called a Scott sentence of the structure. The standard proof
uses back-and-forth relations and the key step is to show that for each countable structure
A there is an ordinal α such that any two tuples which are α-back-and-forth-equivalent are
actually in the same automorphism orbit. The least such α is a measure of the internal
complexity of the structure and is one definition of the Scott rank of the structure.

Annoyingly, there are many similar but non-equivalent definitions of Scott rank in the
literature, most of which agree up to a small factor. In an attempt to standardize the notion
of Scott rank, Montalbán introduced a definition which connects the internal complexity of
the automorphism orbits with the external complexity of describing the structure via a Scott
sentence. Scott sentences, as with all formulas of Lω1ω, can classified up to equivalence by
the number of quantifier alternations, where infinite conjunctions are viewed as universal
quantifiers and infinite disjunctions as existential quantifiers. The Σn sentences have n
alternations of quantifiers, beginning with existential quantifiers; the Πn sentences are similar
but begin with a universal quantifier. The hierarchy continues in the natural way through
the transfinite.
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Definition 1.1 (Montalbán [Mon15]). The Scott rank of a countable structure A is the least
α such that A has a Πα+1 Scott sentence.

This definition is robust in the sense that there are many equivalent characterizations.

Theorem 1.2 (Montalbán [Mon15]). Let A be a countable structure, and α a countable
ordinal. The following are equivalent:

1. A has a Πα+1 Scott sentence.

2. Every automorphism orbit in A is Σα-definable without parameters.

3. A is uniformly (boldface) ∆0
α-categorical.

The Scott ranks assigned by this definition are again not too different from the Scott ranks
assigned by the definitions using back-and-forth relations.

Scott rank is a coarse measure of complexity in that it does not differentiate between, for
example, whether the simplest Scott sentence for a structure is Σα or Πα+1; in either case,
the Scott rank is α. Recently there have been a number of interesting results at this finer
level of detail. We make the following informal definition:

Definition 1.3. The Scott complexity of a countable structure A is the least complexity of
a Scott sentence for A.

Now, Σα and Πα are not the only possible complexities of a sentence of Lω1ω. For example
[KS18, CHK+12, Ho17, HTH18], many finitely generated groups, including all abelian groups
and free groups, have a Scott sentence which is the conjunction of a Σ2 and a Π2 sentence,
but no simpler sentence. We call such a sentence a d−Σ2 sentence (with “d” standing for
“difference”); so d−Σ2 should also be a possible Scott complexity.

There are also other types of Lω1ω formulas. For example, a formula might be the
disjunction of a Σα formula ϕ and Πα formula ψ. However, such a formula cannot be the
simplest Scott sentence of a structure A, for if ϕ∨ψ is a Scott sentence for A, then A ⊧ ϕ∨ψ
and so either A ⊧ ϕ in which case ϕ is a Σα Scott sentence for A, or A ⊧ ψ in which case ψ is
a Πα Scott sentence for A. In practice, it seems that Σα, Πα, and d−Σα are the only possible
Scott complexities. These are arranged from the simplest on the left to most complex on
the right as follows:

Σ1
##

Σ2
##

Σ3
##

Σ0

==

!!

d-Σ1

;;

##

d-Σ2

;;

##

d-Σ3
// ⋯

Π1

;;

Π2

;;

Π3

;;

Moreover, A. Miller [Mil83] showed that if a structure has both a Σα and a Πα Scott sentence,
then it has a d−Σβ Scott sentence for some β < α.

Are these the only possible Scott complexities? The problem is that there is no formal
notion of what it means to be “a complexity class” of Lω1ω formulas. However, it is well-
known that there are connections between the Scott sentences of a stucture A and the
topological complexity of Iso(A), the set of isomorphic copies of A with domain ω, viewed
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as a subset of Baire space. For any reasonably robust notion of the complexity of Lω1ω

formulas, the complexity of a Scott sentence for a structure A is in correspondence, via
Vaught’s version of the López-Escobar theorem, with the topological complexity of Iso(A).
The fact that A has a Scott sentence implies that Iso(A) is always Borel. The topological
complexity of Iso(A) can be measured by its Wadge degree. This motivates the following
formal definition:

Definition 1.4. The Scott complexity of a structure A is the Wadge degree of Iso(A).
In the first part of this paper, we show that the Scott complexity of a countable structure
must be one of Π0

α, Σ0
α, and d−Σ0

α; so, for example, if A has a Πα Scott sentence but no Σα

Scott sentence, then Iso(A) is Π0
α-complete under Wadge reducibility.

By Vaught’s theorem, we associate each of these Wadge degrees of Iso(A) with the
complexity class of the corresponding Scott sentence for A, e.g. identifying the Wadge degree
Π0
α with the complexity Πα. So we need not consider Scott sentences of any complexity

other than Σα, Πα, and d−Σα. Under the natural correspondence between Wadge degrees
and complexities of Scott sentences, we can also define:

Definition 1.5. The Scott complexity of a structure A is the least complexity, from among
Σα, Πα, and d−Σα, of a Scott sentence for A.

In the second part of the paper, we will give examples of structures with particular Scott
complexities in order to give a complete classification of the possible Scott complexities. A.
Miller [Mil83] has given a number of examples, but the problem of constructing a structure
of Scott complexity Σλ+1 for λ a limit ordinal was still open. We give such an example in
Theorem 4.1. He also showed that for a language with no function symbols, if a structure
has a Σ2 Scott sentence, then it has a d−Σ1 Scott sentence. We give a proof of this fact for
all languages in Theorem 5.1.

The complete classification is as follows:

Theorem 1.6. The possible Scott complexities of countable structures A are:

1. Πα for α ≥ 1,

2. Σα for α ≥ 3 a successor ordinal,

3. d−Σ0
α for α ≥ 1 a successor ordinal.

There is a countable structure with each of these Wadge degrees.

Proof. In Theorem 2.6 we show that the Scott complexity of a structure must be one of
Πα, Σα (for α a non-limit), and d−Σα (for α a non-limit). A. Miller [Mil83] showed that no
structure has a Σ1 Scott sentence. In Theorem 5.1 we show that Σ2 cannot be the Scott
complexity of a countable structure.

A. Miller [Mil83, §4] gave examples of structures which have Scott complexity Πα for
α ≥ 1 and Σα and d−Σα for α ≥ 3 if α is not a limit ordinal or the successor of a limit ordinal.
The group Z has Scott complexity d−Σ2. An infinite structure with a single unary operator
holding of exactly one element has Scott complexity d−Σ1. In Theorem 4.1, we give examples
of structures of Scott complexity Σλ+1 for λ a successor ordinal. Then the disjoint union of
such a structure and a structure of Scott complexity Πλ+1 has Scott complexity d−Σλ+1.
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In the last part of this paper, we will investigate the Scott complexity of computable
structures of high Scott rank and give a new example of such structures. We will see that
some important properties of structures of high Scott rank can be rephrased in terms of
Scott complexity.

If A is a countable structure, then the Scott rank of A is at most ωA1 + 1 [Nad74];
equivalently, the Scott complexity of A is at most ΠωA1 +2. We say that A has high Scott rank

if it has Scott rank ≥ ωA1 ; equivalently, A has Scott complexity at least ΠωA1
, so we say:

Definition 1.7. A structure A has high Scott complexity/rank if it has Scott complexity at
least ΠωA1

, or equivalently, it has Scott rank ≥ ωA1 .

There are two possible Scott ranks for a structure of high Scott rank, namely ωA1 and ωA1 +1.
There are examples of each of these [Har68, KM10]. However, there are five possible high
Scott complexities: ΠωA1

, ΠωA1 +1, ΣωA1 +1, d−ΠωA1 +1, and ΠωA1 +2. Of these, ΠωA1
and ΠωA1 +1

correspond to Scott rank ωA1 , and ΣωA1 +1, d−ΠωA1 +1, and ΠωA1 +2 corresponds to Scott rank

ωA1 + 1. We will show that all of these possibilities can be achieved:

Theorem 1.8. There are computable structures of all possible high Scott complexities: ΠωCK
1

,
ΠωCK

1 +1, ΣωCK
1 +1, d−ΠωCK

1 +1, and ΠωCK
1 +2.

The standard example of a structure of Scott rank ωCK1 + 1, the Harrison linear order
ωCK1 ⋅ (1 +Q), has Scott complexity ΠωCK

1 +2. There are also known examples of computable
structures with Scott complexity ΠωCK

1
and ΠωCK

1 +1. This is due to the following fact which
we prove in Section 3.

Proposition 1.9. Let A be a computable structure of high Scott complexity with a ΠωCK
1 +1

Scott sentence (i.e., with Scott rank ωCK1 ). Then:

� If the computable infinitary theory of A is ℵ0-categorical, then A has Scott complexity
ΠωCK

1
.

� Otherwise, A has Scott complexity ΠωCK
1 +1.

The standard examples of computable structures of Scott rank ωCK1 , constructed by Knight
and Millar strengthening a construction of Makkai [Mak81, KM10], were known to have
an ℵ0-categorical computable infinitary theory and hence have Scott complexity ΠωCK

1
. For

some time the most important open question about structures of high Scott rank was whether
there is a computable structure of Scott rank ωCK1 whose computable infinitary theory is not
ℵ0-categorical—which, by the corollary above, is exactly the same as asking for a com-
putable structure of Scott complexity ΠωCK

1 +1. Eventually Harrison-Trainor, Igusa, and
Knight [HTIK18] provided such an example.

Another important open question about structures of high Scott rank, which we answer
in this paper, is whether there is a structure of Scott rank ωCK1 +1 which becomes a structure
of Scott rank ωCK1 after naming finitely many constants. This is equivalent to asking whether
there is a computable structure of Scott complexity ΣωCK

1 +1 or d−ΣωCK
1 +1. The equivalence

follows from the following fact, which is less obvious than it seems:

Proposition 1.10. Let A be a countable structure. Then:
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1. A has a Σα+1 Scott sentence if and only if for some c̄ ∈ A, (A, c̄) has a Πα Scott
sentence.

2. A has a d−Σα Scott sentence if and only if for some c̄ ∈ A, (A, c̄) has a Πα Scott
sentence and the automorphism orbit of c̄ is Σα-definable.

This theorem was first stated without proof by Montalbán [Mon15], but the proof was more
subtle than it appeared at first; it was proved for Σ3 sentences in [Mon17]. We give a proof
here.

The Harrison linear order has Scott complexity ΠωCK
1 +2 because after naming finitely

many constants it still has Scott rank ωCK1 + 1. We construct new examples of computable
structures of Scott complexity ΣωCK

1 +1 and d−ΣωCK
1 +1 in Section 4.

Theorem 1.11. There is a computable structure of Scott rank ωCK1 + 1 which, after naming
finitely many constants, has Scott rank ωCK1 .

2 The Possible Complexities of Structures

2.1 Wadge Degrees

The Wadge degrees were introduced by Wadge in his PhD thesis [Wad83] to measure the
topological complexity of subsets of Baire space ωω under continuous reductions.

Definition 2.1 (Wadge). Let A and B be subsets of Baire space ωω. We say that A is
Wadge reducible to B, and write A ≤W B, if there is a continuous function f on ωω with
A = f−1[B], i.e.

x ∈ A⇐⇒ f(x) ∈ B.

The equivalence classes under this pre-order are called the Wadge degrees; we write [A]W for
the Wadge degree of A. The Wadge hierarchy is the set of Wadge degrees under continuous
reductions.

With enough determinacy, the Wadge hierarchy is very well-behaved; it is well-founded
and almost totally ordered (in the sense that any anti-chain has size at most two).

Theorem 2.2 (Martin and Monk, AD). The Wadge order is well-founded.

Theorem 2.3 (Wadge’s Lemma, AD, [Wad83]). Given A,B ⊆ ωω, either A ≤W B or B ≤W
ωω −A.

Since determinacy for Borel sets is provable in ZFC, this theorem holds in ZFC for such sets.
In general, for each of the pointclasses Γ from among Σ0

α, Π0
α, ∆0

α, d−Σ0
α, and other

pointclasses arising from the Borel or difference hierarchies, if A is Wadge-reducible to a set
in Γ, then A itself is in Γ; and moreover, there is a Γ-complete set. We denote by Γ the
Wadge degree of a Γ-complete set. So, for example, Σ0

1 is the Wadge degree of open, but
not clopen, sets.
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2.2 The Lopez-Escobar Theorem

Fixing a language L, we work in the Polish space Mod(L) of structures in the language L.
Given a structure A, we can view the set Iso(A) of isomorphic copies of A as a subset of
Baire space ωω. The syntactic form of a Scott sentence for A puts a topological restriction
on Iso(A). For example, if A has a Σ1 Scott sentence, then Iso(A) is an open (Σ0

1) subset
of ωω. More generally, if A has a Σα (respectively Πα) Scott sentence, then Iso(A) is Σ0

α

(respectively Π0
α) in the hierarchy of Borel sets. Since every structure has a Scott sentence,

Iso(A) is always Borel. By Vaught’s strengthening of the Lopez-Escobar [LE65] theorem,
the correspondence of complexities also reverses.

Theorem 2.4 (Vaught [Vau75]). Let K be a subclass of Mod(L) which is closed under
isomorphism. Then K is Σ0

α (respectively Π0
α, d−Σ0

α, ¬d−Σ0
α) in the Borel hierarchy if and

only if K is axiomatized by an infinitary Σα (respectively, Πα, d−Σα, ¬d−Σα) sentence.

This theorem was later effectivized by Vanden Boom [VB07]. The inclusion of d−Σ0
α and

¬d−Σ0
α in this theorem was not originally proved by Vaught, but it is well-known and not

hard to show, e.g., by the forcing argument used by Vanden Boom. Moreover, one imagines
that the theorem would extend to any reasonably defined class.

2.3 Possible Scott Complexities

We will also use the following fact which has a short proof due to Alvir.

Theorem 2.5 (A. Miller [Mil83]). Let A be a countable structure. Then if A has both a Σα

and a Πα Scott sentence, it has a d−Σβ Scott sentence for some β < α.

Proof. If α is a limit ordinal, then the theorem is trivial: one of the disjuncts of the Σα Scott
sentence is true in A, and this is a Σβ Scott sentence for A, β < α. Otherwise, let ∃xΦ(x̄) be
a Σα Scott sentence for A. Let ā be such that A ⊧ Φ(ā). Since A has a Πα Scott sentence,
by Theorem 1.2 the automorphism orbit of ā is definable by a Σβ formula, β < α; call this
formula ψā(x̄). Then ∃x̄ψā(x̄) ∧ ∀x̄ (ψā(x̄)→ Φ(x̄)) is a d−Σβ Scott sentence for A.

We can now show:

Theorem 2.6. The only possible Wadge degrees of Iso(A) for countable structures A are
Π0
α (for any α), Σ0

α (for α a non-limit), and d−Σ0
α (for α a non-limit).

Proof. We will not have to use the Axiom of Determinacy because for any structure A,
Iso(A) is Borel.

Let α be least such that Iso(A) is Σ0
α. First note that α cannot be a limit ordinal; if

it were, then A would have a Σα Scott sentence, and one of those disjuncts would be a Σβ

Scott sentence for A for some β < α. If the Wadge degree of Iso(A) is Σ0
α, then we are done.

Otherwise, by Wadge’s Lemma, Σ0
α ≰W [Iso(A)]W and so [Iso(A)]W ≤W Π0

α. Thus Iso(A)
is both Π0

α and Σ0
α; by Vaught’s theorem, A has both a Σα and a Πα Scott sentence. Then,

by Theorem 2.5, A has a d−Σβ Scott sentence for some β < α.
So now, assume that Iso(A) is d−Σ0

β but not Σ0
β. First, if Iso(A) is Π0

β, then we
claim that [Iso(A)]W =W Π0

β. Indeed, if Π0
β ≰W [Iso(A)]W , then by Wadge’s Lemma,

[Iso(A)]W ≤W Σ0
β, and we know that this is not the case.
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Finally, we are left with the case that Iso(A) is d−Σ0
β but neither Σ0

β nor Π0
β. We can

argue as before that β cannot be a limit ordinal (or Iso(A) would be Π0
β). We argue by

contradiction that the Wadge degree of Iso(A) is d−Σ0
β. If d−Σ0

β ≰W [Iso(A)]W then by
Wadge’s Lemma [Iso(A)]W ≤W ¬d−Σ0

β where ¬d−Σ0
β is the subsets of Baire space which

are a union of a Σ0
β set and a Π0

β set. So Iso(A) is of this form, and by Vaught’s Theorem,
it has a Scott sentence which is a disjunction of a Σβ and a Πβ sentence. But A, being a
single structure, must satisfy one of these two disjuncts, and that disjunct is by itself a Scott
sentence for A. So Iso(A) is either Σ0

β or Π0
β, a contradiction.

So—by the correspondence between the complexity of Scott sentences and Wadge degrees—
the only possible Scott complexities are Σα, Πα, and d−Σα. Note that this was all non-
effective, and we do not know what happens in the lightface case.

3 Characterizations of structures of High Scott Com-

plexity

In this section we give the proofs of Propositions 1.9 and 1.10. We will need the back-and-
forth relations. We will use the symmetric back-and-forth relations: given ā ∈ A and b̄ ∈ B,
we define (A, ā) ≡0 (B, b̄) if ā and b̄ have the same atomic type, and (A, ā) ≡α (B, b̄) if for
every ā′ and β < α there is b̄′ such that (A, āā′) ≡α (B, b̄b̄′), and for every b̄′ and β < α there
is ā′ such that (A, āā′) ≡α (B, b̄b̄′).

We also define A ≤α B if every Πα sentence true of A is true of B. We have that A ≡α B
implies A ≤α B and B ≤α A, but not vice versa.

Proposition 3.1. Let A be a countable structure and α a countable limit ordinal. The
following are equivalent:

1. A has a Πα Scott sentence.

2. Whenever A ≤α B for a countable structure B, A ≅ B.

Proof. For 1⇒ 2, if A ≤α B then every Πα sentence true of A (including the Scott sentence
for A) is true of B; thus B ≅ A.

For 2 ⇒ 1 we use the standard technique for showing the back and forth relations are
definable, proceeding by induction on β. For each ā ∈ A, let ϕ1

ā(x̄) be the conjunction of all
Π1 and Σ1 formulas which are true of ā in A. For β > 1 define

ϕβā(x̄) = ( ⩕
0<γ<β

∀ȳ ⩔
ā′∈A

ϕγāā′(x̄ȳ)) ∧ ( ⩕
0<γ<β

⩕
ā′∈A

∃ȳ ϕγāā′(x̄ȳ)) .

Note that we may assume ∣ā∣ = ∣x̄∣. By induction, we can show that

(B, b̄) ⊧ ϕβā ⇐⇒ (A, ā) ≡β (B, b̄).

It also follows by induction on β ≥ 1 that ϕβā is a Π2⋅β formula.

We claim that Φ =⩕0<β<αϕ
β
∅ is a Πα Scott sentence for A. It is Πα because 2 ⋅β < α when

0 < β < α and α is a limit ordinal. If B ⊧ Φ, then A ≡β B for all 0 < β < α, and so A ≤α B
since α is a limit ordinal; hence B ≅ A.
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Proposition 1.9. Let A be a computable structure of high Scott complexity with a ΠωCK
1 +1

Scott sentence (i.e., with Scott rank ωCK1 ). Then:

� If the computable infinitary theory of A is ℵ0-categorical, then A has Scott complexity
ΠωCK

1
.

� Otherwise, A has Scott complexity ΠωCK
1 +1.

Proof. Since A has high Scott complexity and has a ΠωCK
1 +1 Scott sentence, the only possible

Scott complexities are ΠωCK
1

and ΠωCK
1 +1. So it suffices to show that A has a ΠωCK

1
Scott

sentence if and only if the computable infinitary theory of A is ℵ0-categorical.
If the computable infinitary theory of A is ℵ0-categorical, then the conjunction of these

sentences is a ΠωCK
1

Scott sentence for A. On the other hand, suppose that A has a ΠωCK
1

Scott sentence. Then by Proposition 3.1, whenever A ≤ωCK
1
B for a countable structure B,

A ≅ B. In the proof of Proposition 3.1 we constructed for each α < ωCK1 a computable Π2⋅α
sentence ϕα such that

B ⊧ ϕα⇐⇒ A ≡α B.
Thus if B satisfies the computable infinitary theory of A, then for all α < ωCK1 we have
A ≡α B, hence A ≤ωCK

1
B, and so A ≅ B.

Part (1) of the next theorem was first stated by Montálban for successor ordinals in
[Mon15]. The original proof proceeds by observing that the following are equivalent:

1. A is ∆0
α-categorical on a cone.

2. A has a Σα+2 Scott sentence.

3. There is a tuple c̄ such that (A, c̄) has a Πα+1 Scott sentence.

That (1) and (3) are equivalent is obtained by considering Theorem 10.14 of [AK00] on a
cone. Given this equivalence, the proof of (1)⇒ (2) is immediate. After noticing that the
proof of (2)⇒ (1) was not trivial, Montalbán gave a proof of the fact (for α = 1) in [Mon17]
via Henkin construction. There is not yet a published proof in the literature for α > 1, so we
give a proof here; our proof uses Theorem 1.2.

Lemma 3.2. Let A be a structure. If the automorphism orbit of every tuple in A is definable
by a Σα formula, then each such orbit is definable by a Πα formula.

Proof. Fix, for each ā ∈ A, a Σα definition ϕā for ā. Given a tuple c̄, the Πα formula

⩕
∣ā∣=∣c̄∣, ā/≅c̄

¬ϕā(x̄)

defines the orbit of c̄.

Proposition 1.10. Let A be a countable structure. Then:

1. A has a Σα+1 Scott sentence if and only if for some c̄ ∈ A, (A, c̄) has a Πα Scott
sentence.
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2. A has a d−Σα Scott sentence if and only if for some c̄ ∈ A, (A, c̄) has a Πα Scott
sentence and the automorphism orbit of c̄ in A is Σα-definable.

Proof. (1) The right-to-left direction is easy. For the left-to-right direction, suppose that A
has a Σα+1 Scott sentence ∃x̄ϕ(x̄), with ϕ being Πα. Let c̄ be such that A ⊧ ϕ(c̄). Note that
the Scott sentence for A is Πα+2 and so by Theorem 1.2 each automorphism orbit is Σα+1-
definable. Let ∃ȳψ(x̄, ȳ) be a Σα+1 formula defining the orbit of c̄, with ψ being Πα. Let d̄
be such that A ⊧ ψ(c̄, d̄). By Lemma 3.2 the automorphism orbit of c̄ is also Πα+1-definable,
say by γ; so (A, c̄) has a Πα+1 Scott sentence ϕ(c̄)∧γ(c̄). Thus by Theorem 1.2 and Lemma
3.2, the orbit of d̄ over c̄ is Πα- definable, say by θ(c̄, ȳ). Then ϕ(c̄)∧ψ(c̄, d̄)∧ θ(c̄, d̄) is a Πα

Scott sentence for (A, c̄d̄).
(2) We may assume that α is not a limit ordinal. For the left-to-right direction, suppose

that A has a d−Σα Scott sentence ∃x̄ϕ(x̄)∧γ with ϕ being Πβ (β < α) and γ being Πα. Let c̄
be such that A ⊧ ϕ(c̄). Since A also has a Πα+1 Scott sentence, every automorphism orbit is
Σα-definable; by Lemma 3.2, every automorphism orbit is also Πα-definable. Let ψ(x̄) be a
Πα formula defining the orbit c̄ in A. Then γ ∧ϕ(c̄)∧ψ(c̄) is a Πα Scott sentence for (A, c̄).

For the right-to-left direction, suppose that (A, c̄) has a Πα Scott sentence ϕ(c̄) and
the automorphism orbit of c̄ is Σα-definable by a formula ψ(x̄). Then A has a d−Σα Scott
sentence ∃x̄ψ(x̄) ∧ ∀x̄(ψ(x̄)→ ϕ(x̄)).

4 Structures of Scott Complexity Σλ+1

In this section, we will show that for λ a limit ordinal, there are structures of Scott complexity
Σλ+1; this resolves an open question from [Mil83].

Theorem 4.1. For every limit ordinal λ, there is a structure of Scott complexity Σλ+1.

We will also show that there are computable structures of Scott complexity ΣωCK
1 +1; these

are structures of Scott rank ωCK1 +1 which, after naming finitely many constants, have Scott
rank ωCK1 . This answers another open question.

Theorem 4.2. For every limit ordinal λ ≤ ωCK1 , there is a computable structure of Scott
complexity Σλ+1.

From these, taking disjoint unions with known structures we can easily get structures with
Scott complexity d−Σλ+1.

Corollary 4.3. For every limit ordinal λ ≤ ωCK1 , there is a computable structure of Scott
complexity d−Σλ+1.

Proof. It is known that there exists a computable structure C of Scott complexity Πλ+1

([Mil83] for the case λ < ωCK1 , and [HTIK18] for the case λ = ωCK1 ). Let A be a computable
structure of Scott complexity Σλ+1. Then A ⊔ C, where we add a unary relation to the
language to distinguish A and C, has Scott complexity d−Σλ+1.

Corollary 4.4. For every limit ordinal λ, there is a structure of Scott complexity d−Σλ+1.
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We prove Theorems 4.1 and 4.2 using a construction which takes as input a sequence
of trees and produces a structure whose Scott complexity depends on the input trees. By
feeding different sequences of trees into this construction, we get the two theorems.

In general in computable structure theory, ωCK1 behaves quite differently from computable
limit ordinals, and so for Theorem 4.2 one would expect the construction of such a structure
to proceed differently based on whether λ < ωCK1 or λ = ωCK1 . On the other hand, the
difference between Theorem 4.1 and the case λ < ωCK1 of Theorem 4.2 is just the difference
between effectiveness and non-effectiveness. We are able to isolate these differences to the
proof of the following lemma.

Lemma 4.5. Given a limit ordinal λ, there are a pair of sequences of trees (Si)i∈ω and
(Ti)i∈ω such that the following all hold:

� Each Si and Ti has Scott complexity at most Πλ;

� If Si /≅ Ti, then there is a β < λ such that Si /≡β Ti; and

� For each β < λ, there is an i with Si /≅ Ti but Si ≡β Ti.

If λ ≤ ωCK1 , then we can take these sequences to be uniformly computable.

Proof. For λ < ωCK1 , there are many examples appearing in the literature. For instance,
we can fix a computable increasing sequence of successor ordinals (αi)i∈ω which converge
to λ and let Si = Aαi

and Ti = Eαi
, where these are the trees defined by Hirschfeldt and

White [HW02]. If we do not care about effectiveness (e.g., if λ > ωCK1 ), we can take these
same trees, relatived to some oracle which makes λ computable.

For λ = ωCK1 , Harrison-Trainer, Igusa and Knight [HTIK18] constructed appropriate
trees. Fixing a presentation H of the Harrison order, they constructed trees (Ta)a∈H such
that if a is from the ill-founded part of H, then Ta ≅ T ∗, where T ∗ is a fixed tree of Scott
complexity ΠωCK

1
, and if a is from the well-founded part of H and the part of H to the left

of a has order-type α, then Ta is well-founded (so Ta ≢β T ∗ for some β < ωCK1 ) but Ta ≡α T ∗.
Then we let (ai)i∈ω be an enumeration of H and set Ti = Tai and Si = T ∗.

Then the common construction is contained in the following theorem:

Theorem 4.6. Given a limit ordinal λ and a pair of sequences of trees (Si)i∈ω and (Ti)i∈ω
as in the previous lemma, there is a structure of Scott complexity Σλ+1. If the sequences are
uniformly computable, then the structure is computable.

Proof. The language for our structure A will have binary relations P , R and Ei for i ∈ ω.
The universe of our structure will be

[ω]<ω ⊔⊔
i∈ω
Si ⊔⊔

i∈ω
Ti.

Thus we have disjoint copies of each of the Si and Ti, and also we have every finite subset
of ω.

On each of the Ti and Si, P is the tree relation. P has no other structure; that is, it does
not hold for any pair (x, y) not drawn from the same tree.
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Each of the Ei is defined on [ω]<ω by Ei(F,G) ⇋ F △G = {i}. The Ei have no other
structure; that is, they do not hold for any pair (x, y) not both drawn from [ω]<ω.

We can understand the structure on [ω]<ω as an affine space acted on by ⊕i∈ω Z/2, where
the action is F + ei = F △ {i}. By an affine space, we mean a vector space except that
we forget the origin. Then Ei(F,G) ⇐⇒ F + ei = G. Alternatively, we can think of the
structure as the vertices of an infinite dimensional cube, where Ei is the edge relation in the
“i direction”.

Finally, we define R(x, y) to hold if and only if one of the following is true:

� x ∈ [ω]<ω, y ∈ Si, and i /∈ x; or

� x ∈ [ω]<ω, y ∈ Ti, and i ∈ x.

The affine space [ω]<ω is partitioned into two hyperplanes perpendicular to ei: the first is
{F ∈ [ω]<ω ∶ i /∈ F}, and the second is {F ∈ [ω]<ω ∶ i ∈ F}. Instead considering the infinite
dimensional cube, these are the two connected components that result if we delete all the Ei
edges. One of these sets is associated, via R, with Si, and the other with Ti.

Claim 6.1. Let B be the substructure A ↾[ω]<ω . The automorphisms of B are precisely the
maps of the form g(F ) = F △H for some fixed H ∈ [ω]<ω.

Proof. To see that such a map is an automorphism, observe that

Ei(F,G) ⇐⇒ F △G = {i}
⇐⇒ F △G△∅ = {i}
⇐⇒ F △G△ (H △H) = {i}
⇐⇒ (F △H)△ (G△H) = {i}
⇐⇒ Ei(g(F ), g(G)).

The relations R and P are empty on B, and so this suffices.
Conversely, suppose g is an automorphism of B. Let H = g(∅). We prove by induction

on ∣F ∣ that g(F ) = F △H. The case ∣F ∣ = 0 is immediate. For ∣F ∣ > 0, fix i ∈ F , and let
G = F − {i}. Then Ei(F,G), so Ei(g(F ), g(G)), and thus

g(F ) = g(G)△ {i}
= (G△H)△ {i}
= (G△ {i})△H

= F △H.

Claim 6.2. For every β < λ there is an H ∈ [ω]<ω such that (A,∅) ≡β (A,H), but (A,∅) /≅
(A,H).

Proof. Fix an i such that Si /≅ Ti but Si ≡2β Ti, and let H = {i}. (Recall that since λ is a
limit, if β < λ, then 2β < λ.)

The elements of [ω]<ω are definable in A by ∃y E0(x, y), and so any isomorphism g ∶
(A,∅) ≅ (A,H) must restrict to an isomorphism g ∶ (B,∅) ≅ (B,H). Thus g(F ) = F △ {i}
on B, by the previous claim. The tree Si is associated via R with all the elements of
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{F ∈ [ω]<ω ∶ i /∈ F}, and it is the only tree associated with all of these elements. Similarly,
the tree Ti is the only tree associated with all the elements of {F ∈ [ω]<ω ∶ i ∈ F}. As
g interchanges these two sets, g must map Si to Ti. But Si /≅ Ti, a contradiction. Thus
(A,∅) /≅ (A,H).
Claim 6.2.1. Fix α ≤ β. Suppose F̄ , Ḡ ∈ [ω]<ω, x̄, z̄ ∈ Si, ȳ, w̄ ∈ Ti, q̄ ∈ A − [ω]<ω − Si − Ti are
such that:

� ∣F̄ ∣ = ∣Ḡ∣ and for all j < ∣F̄ ∣, Fj △Gj = {i}; and

� ∣x̄∣ = ∣ȳ∣, ∣z̄∣ = ∣w̄∣ and (Si, x̄, z̄) ≡2α (Ti, ȳ, w̄).

Then (A, F̄ , x̄, w̄, q̄) ≡α (A, Ḡ, ȳ, z̄, q̄).

Proof. We argue by induction on α. The case α = 0 is simply a matter of checking that R is
preserved.

For α > 0, without loss of generality we must argue that for any γ < α and any finite
extension of (F̄ , x̄, w̄, q̄), there is a corresponding extension of (Ḡ, ȳ, z̄, q̄) which is γ-equivalent
in A. Fixing a finite extension of (F̄ , x̄, w̄, q̄), we partition this extension into (F̄ ′, x̄′, w̄′, q̄′),
where F̄ ′ ∈ [ω]<ω, and similarly for the other entries.

Define Ḡ′ by Gj = F ′
j△{i} for all j < ∣F̄ ′∣. As 2α > 2γ+1, there is ȳ′ ⊇ ȳ with (Si, x̄′, z̄) ≡2γ+1

(Ti, ȳ′, w̄). So there is z̄′ ⊇ z̄ with (Si, x̄′, z̄′) ≡2γ (Ti, ȳ′, w̄′).
By the inductive hypothesis, (A, F̄ ′, x̄′, w̄′, q̄′) ≡γ (A, Ḡ′, ȳ′, z̄′, q̄′).

It follows that (A,∅) ≡β (A,H).

So the automorphism orbit of ∅ ∈ A is not definable by a Σα formula for any α < λ. Then
by Theorem 1.2, A does not have a Πλ+1 Scott sentence, and so the Scott complexity of A
is at least Σλ+1. To show that it is precisely Σλ+1, it suffices to show that (A,∅) has Scott
complexity Πλ.

Observe that (B,∅) is rigid, because any automorphism must be an automorphism of B
that fixes ∅, which by our characterization of the automorphisms of B must be the identity.
In fact, every element of (B,∅) is Σ1 definable: F = {i0, i1, . . . , ik−1} is the unique element z
of (A,∅) satisfying

∃x0, . . . , xk [x0 = ∅ ∧ xk = z ∧⩕
j<k
Eij(xj, xj+1)].

This is the key fact that drops the Scott complexity of (A,∅). It follows that each Si and
Ti is Π2 definable in (A,∅):

Si = {y ∶⩕
i/∈F

∃x (x = F ) ∧R(x, y)} ,

where “x = F” represents the appropriate Σ1 formula given above. Ti is similar.
By assumption, each Si and Ti has a Πλ Scott sentence φi and ψi, respectively. We will

construct a Πλ Scott sentence for (A,∅). The idea is that our ability to distinguish the
elements of B and the various Si and Ti lets us give a complete description of the structure
on B and the relation R. We then use the φi and ψi to give descriptions of the Si and Ti.
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More precisely, let φ′i be the sentence made from φi by restricting the quantifiers to Si.
That is, each instance of ∀xθ(x) becomes ∀x [x ∈ Si Ô⇒ θ(x)], and each instance of
∃xθ(x) becomes ∃x [x ∈ Si ∧ θ(x)], where “x ∈ Si” represents the Π2 formula given above.
Similarly, ψ′i is made from ψi by restricting the quantifiers to Ti. By an inductive argument
on subformulas, φ′i and ψ′i are both Πλ.

We are now ready to give a Πλ Scott sentence for (A,∅):

∀x
⎛
⎝ ⩔
F ∈[ω]<ω

x = F ∨⩔
i∈ω
x ∈ Si ∨⩔

i∈ω
x ∈ Ti

⎞
⎠

∧¬∃x⩔
i<ω

⩔
F ∈[ω]<ω

x = F ∧ (x ∈ Si ∨ x ∈ Ti)

∧¬∃x⩔
i<ω
x ∈ Si ∧ x ∈ Ti

∧¬∃x⩔
i≠j

(x ∈ Si ∨ x ∈ Ti) ∧ (x ∈ Sj ∨ x ∈ Tj)

∧¬∃x⩔
F≠G

x = F ∧ x = G

∧∀x, y⩕
i<ω

⎛
⎝
Ei(x, y) ⇐⇒ ⩔

F△G={i}
x = F ∧ y = G

⎞
⎠

∧∀x, y R(x, y) Ô⇒ (⩔
i<ω
⩔
i∈F
x = F ∧ y ∈ Si) ∨ (⩔

i<ω
⩔
i/∈F
x = F ∧ y ∈ Ti)

∧⩕
i<ω
φ′i ∧⩕

i<ω
ψ′i

The first four lines partition the structure into B, the Si and the Ti. The fifth and sixth lines
state that the various Ei are defined correctly on B, and further that none of the Ei hold
with any elements outside of B. The seventh line states that R is defined correctly. The final
line determines the isomorphism types of the Si and Ti (it is here that P is defined). Note
that apart from the final line, this sentence is Π4. Since the φ′i and ψ′i are Πλ, the entire
sentence is a Πλ Scott sentence for (A,∅), as desired.

5 Scott complexity Σ2 is impossible

Theorem 5.1. There is no structure with Scott complexity Σ2.

Proof. Suppose that A is a structure with a Σ2 Scott sentence. We may assume that the
Scott sentence is of the form

∃x1, . . . , xnϕ(x̄)
where ϕ(x̄) is Π1. Let ā ∈ A be such that A ⊧ ϕ(ā). Let A∗ be the substructure of A
generated by ā. Then since ϕ is Π1, A∗ ⊧ ϕ(ā). Thus A∗ ≅ A. So we may assume that ā
generates A.

We repeat here Lemma 1.1 of [Mil83]:

Claim. A is saturated.
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Proof. If B is any elementary extension of A, then B ⊧ ϕ(ā) and so B is isomorphic to A.
So every type (with no parameters) in Th(A) is realized in A, i.e., A is weakly saturated.
In particular, there are countably many types in Th(A), and so Th(A) has a countable
saturated model B. But then A elementarily embeds into B, and so B is isomorphic to A.
Thus A is saturated.

If A were infinite, then the type of an element which is not generated by ā is consistent.
But A is saturated, and so this type must be realized in A. This cannot happen as A is
generated by ā. So A is finite, say with n elements. List out these elements as a1, . . . , an.
Let ⟨ψm(a1, . . . , an)⟩ be a list of the quantifier-free formulas true of a1, . . . , an.

Then A has a d−Σ1 Scott sentence: A is axiomatized by saying that there exists n
elements, there are not more than n elements, and also for each m,

∀x1, . . . , xn ⩔
σ∈S(n)

⩕
i≤m

ψi(xσ(1), . . . , xσ(n))

where S(n) is the set of permutations of {1, . . . , n}. Suppose that B is a model of these
sentences; then B has exactly n elements b1, . . . , bn. Since there are only finitely many
permutations in S(n), there must be some permutation σ such that for arbitrarily large m,

B ⊧⩕
i≤m

ψi(bσ(1), . . . , bσ(n)).

Then ai ↦ bσ(i) is an isomorphism from A to B.
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