
NON-DENSITY IN PUNCTUAL COMPUTABILITY

NOAM GREENBERG, MATTHEW HARRISON-TRAINOR,
ALEXANDER MELNIKOV, AND DAN TURETSKY

Abstract. In computable structure theory, one considers computable presen-

tations of abstract structures such as graphs or groups, and one thinks of two
different computable presentations as being essentially the same if there is a

computable isomorphism between them. Because the inverse of a computable

function is also computable, the relation of being computably isomorphic is
an equivalence relation, and so the only structure on the set of computable

presentations is the number of non-equivalent presentations.

Recently there has been increased interest in primitive recursive presen-
tations of structures, and in this setting, the inverse of a primitive recursive

function is not necessarily primitive recursive, and so we get a relation of re-
ducibility between structures which induces a partial pre-ordering on the prim-

itive recursive presentations of a structure. Whenever we have a reducibility

notion, one of the natural first questions is whether it is dense. We show that
it is not dense: There are primitive recursive presentations A ≅ B of the same

abstract structure, such that A is reducible to B (there is a primitive recursive

isomorphism A → B) but B is not reducible to A (there is no primitive recur-
sive isomorphism B → A), and for any third primitive recursive presentation

M of the same structure, if A is reducible toM andM is reducible to B, then

either M is reducible to A or B is reducible to M.

1. Introduction

This paper contributes to the new theory which is focused on eliminating un-
bounded search from proofs and processes in algebra and infinite combinatorics;
see surveys [BDKM19, DMN] for the foundations of this theory. The key motiva-
tion here is that unbounded search is often abused in the literature on algorithms
performed in infinite algebraic and combinatorial structures. For example, it is
well-known that the word problem for finitely generated groups is intrinsic in the
sense that if one presentation has decidable word problem then every presentation
will have decidable word problem. This is simply because we can match the genera-
tors and map words to words to transition between any two given copies. However,
this isomorphism relies on the unbounded search as well: we must wait for an el-
ement to be spanned by the generators to define its image. Another example is
the back-and-forth proof that all countable dense linear orders with no endpoint
are isomorphic; see [BDKM19, KMN17, MNb] for more examples. It is natural to
ask what happens when we forbid unbounded search, i.e., if we restrict ourselves
to primitive recursive procedures.

A primitive recursive algorithm of course does not have to be computationally
feasible. Nonetheless, somewhat unexpectedly primitive recursive algorithms are
useful in the study of more feasible algorithms. As discussed in [KMN17, BDKM19],

Greenberg and Turetsky were supported by a Marsden Fund grant #17-VUW-090.

1

2 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

very often eliminating unbounded search is the crucial step in turning a general Tur-
ing computable algebraic procedure into a polynomial time one; for many examples
see [Gri90, CDRU09, CR92, CR98, Ala17, Ala18]. Of course, producing a primi-
tive recursive algorithm is typically less challenging than designing a feasible one
since we do not have to worry about counting steps explicitly; we only care that
there is some precomputed bound on all loops and searches. Remarkably, it is not
uncommon that the resulting crude primitive recursive algorithm can be modified
into a feasible one. For example, the recent solution [BHTK+19] to a problem of
Khoussainov and Nerode on the characterisation of automatic structures ([KN08],
Question 4.9) relies on a simpler argument that works for primitive recursive struc-
tures; with some extra work it is then pushed to automatic structures. Another
useful role of primitive recursion is in proving that no feasible procedure is possible
at all. Indeed, it is often easiest to argue that a primitive recursive procedure or
even a total procedure fails to exist, let alone a polynomial time or automatic one;
see, e.g., [CR92, CR98, KMN17]. We conclude that primitive recursion serves as a
unifying useful abstraction which connects feasible algebra [CR98, KN08] with the
earlier approach to online algorithms in combinatorics via totality [Kie98, KPT94].

In this paper we focus on eliminating unbounded search from proofs and pro-
cesses in computable structure theory [EG00, AK00]. Following the tradition that
goes back to Mal′cev [Mal61] and Rabin [Rab60], computable structure theory stud-
ies computably presented countably infinite algebraic structures; these are struc-
tures upon the domain N whose operations and relations are Turing computable.
The natural subrecursive analogy of this notion is the following definition:

Definition 1.1 ([KMN17]). A countable structure is fully primitive recursive or
punctual if its domain is N and the operations and predicates of the structure are
(uniformly) primitive recursive.

The intuition is that a punctual structure must reveal itself “punctually”, i.e.,
within a precomputed number of steps. We will also fix the convention that all
finite structures are also punctual by allowing initial segments of N to serve as their
domains. We will never consider infinite languages in the paper; therefore, we do
not need to clarify what uniformity means in Definition 1.1.

Computable structure theory typically studies computable structures up to com-
putable isomorphism, which gives an equivalence relation on computable copies of
the same structure. To talk about isomorphisms in the framework of punctual
structures, we shall also need to consider punctual analogues of computable func-
tions. However, recall that the inverse of a primitive recursive function does not
have to be primitive recursive. In contrast with computable structure theory, this
leads to a reduction:

Definition 1.2 ([KMnN17]). A punctual structure A is punctually reducible to a
punctual structure B, written A ≤pr B, if there exists a primitive recursive surjective
isomorphism from A onto B.

This leads to an equivalence relation ≡pr and the punctual degree structure on
the classes (the punctual degrees) which will be denoted PR(A).

The punctual degrees PR(A) of a structure A is a rather sensitive invariant
which allows us to detect subtle subrecursive differences between two seemingly
similar structures. We give an example. The dense linear order is a canonical

NON-DENSITY IN PUNCTUAL COMPUTABILITY 3

example when a computable back-and-forth method works; the other common (al-
gebraically) homogeneous examples include the random graph and the Fräısse limit
of finite abelian p-groups. It seems that for each of these structures the proof
requires exactly one unbounded delay at every step. Remarkably, the punctual
degrees of the dense linear order, the random graph, and the universal abelian p-
group are pairwise non-isomorphic; see [MNb]. Intuitively, the result shows that
these delays are actually different in nature in all three cases. Similarly, there ex-
ist infinite punctual finitely generated structures having non-isomorphic punctual
degrees [KMN17, BKMN]; note that such structures have a unique computable
presentation up to a Turing computable isomorphism.

The study of punctual degrees naturally splits into two main themes, one of
finding structure and the other of finding examples of non-structure.

In the first theme, one seeks to formulate a general enough property of PR-
degrees of A which is implied by A having a certain algebraic property, e.g., being
finitely generated or homogeneous. It is natural to ask how the algebraic properties
of A are reflected in PR(A). Very little is known here so far, but there has been
some progress in the case of finitely generated structures. For instance, for a finitely
generated rigid structure A with ∣A∣ > 2 and a countable lattice L, the following
are equivalent: (1) L can be embedded into PR(A) preserving sup and inf , and
(2) L is distributive; see [KMZ]. This is a structural result which is yet to be fully
understood. Also, it is not hard to show that, for a finitely generated A, PR(A)

has to be dense [BKMN] and is never a Boolean algebra [KMZ]. Work here is
ongoing.

The second theme is concerned with finding structures whose punctual degrees
have non-trivial and counterintuitive features refuting natural conjectures. While
the two themes clearly complement each other both technically and methodologi-
cally, the second theme is of some special interest to a computable structure theorist
because it resembles the once very popular theory of finite computable dimen-
sion [Gon80, GMR89, Hir01, HKSS02, McC02, GLS03] while the techniques are
substantially different. For instance, Melnikov and Ng [MNa] have constructed a
punctual A with exactly two punctual degrees. There are also counter-intuitive
examples of finitely generated structures [BKMN] and highly technical bizarre ex-
amples of unary structures [DGM+]. Each of these counterexamples refutes natural
conjecture which intuitively should hold. The main result of this paper contributes
to the second theme, since it refutes the following natural conjecture:

Conjecture 1.3. The punctual degrees PR(A) of any structure A are always
dense.

That is, A <pr B should imply that there exists a C such that A <pr C <pr B.
The conjecture holds for many natural classes ([KMN17]) as well as for all tech-
nical counter-examples known so far [KMZ, DGM+, KMN17, BKMN, KMnN17].
Perhaps most notably, the conjecture holds for arbitrary finitely generated struc-
tures [BKMN]. It may seem that if a structure A is not finitely generated then its
punctual degrees should be even more “rich”. Such an A should have more ways of
delaying certain configurations from quickly appearing in it, thus there should be
even more ways of building an intermediate C. Nonetheless, we prove:

Theorem 1.4. There exist a punctual structure A such that PR(A) are not dense.

4 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

The proof of this theorem is of a special technical interest because it is the
first known successful implementation of non-degenerate infinite injury via the tree
method in the punctual framework, and as far as we know in feasible algebra in
general. The proof contains several novel ideas related to the ways the priority tree
method and how it should be understood and used in the punctual context. The
fundamental issue with the usual tree method is that we typically cannot simply
wait below a Π0

2 outcome since this wait is clearly unbounded. Nonetheless, guessing
at a Π0

2 outcome seems inevitable in our proof, so we had to adjust the method.
Many questions about punctual degrees remain open. We strongly suspect that

the new techniques will be helpful in attacking:

Question 1. Is there a structure A that has exactly two punctual degrees b <pr
a?

Question 2. Let L be a finite partial order. Is there an A with PR(A) ≅ L?

In Question 2, finite Boolean algebras and the atomic non-distributive M5 and N5

seem most interesting since they will contrast with results from [KMZ].
We also suspect our methods can be applied to natural classes. For instance,

we would like to understand which linear orders have dense punctual degrees. We
suspect that, for an abelian p-group A, PR(A) are dense if and only if ∣PR(A)∣ =

∞; the latter has a purely algebraic characterisation [KMN17].

2. Proof of Theorem 1.4

Proof. Recall that we need to build punctual A <pr B and prove that there is no
M with A <prM <pr B.

2.1. The language of the structure. Recall that the domain of every punctual
structure has to be ω. The language of A will be as follows. There will be a unary
relation U such that it complement U c is a pure set in A in which all n-tuples
are automorphic to each other over U . We will be able to “waste time” by adding
elements to U c when necessary. The essential part of the structure of A will be
contained within U . There will also be unary functions f and g. The elements of
U will be of two types:

● elements x such that g(x) = x and fn(x) = x for some n ≥ 3; or
● elements y such that f(y) = y and g(y) = x for some x of the first type.

We call an element of the first type, together with its images under f , an n-cycle
where n is least such that fn(x) = x. We call an element of the second type a
tag. Note that we can immediately tell of which type an element z is by checking
whether g(z) = z or f(z) = z. An n-cycle will be either tagged or untagged; if it
is untagged, then no element of the n-cycle will be the image under g of another
element, and if it is tagged, then each element of the n-cycle will be the image
under g of a tag, with a different tag for each element of the cycle. So given two
tagged n-cycles, any isomorphism of the cycles extends to an isomorphism of the
tags. Also, if we see one element of a cycle in a punctual structure, and we know
the length of the cycle, we can in a primitive recursive way find all of the elements
of the cycle by iterating f ; similarly, given a tag, we can find the cycle it is attached
to.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 5

2.2. The requirements. We build A and an isomorphic copy B, both punctually
computable. At every stage of the construction, we will have partial structures As
and Bs upon initial segments of ω, with A = ⋃As and B = ⋃Bs.

Remark 2.1. Each As will be a substructure of Bs, and the reduction A ≤pr B will
be natural in the sense that an element of As will be immediately copied into Bs
but will perhaps receive a different index in the domain ω. Although the reduction
witnessing A ≤pr B will not be the identity map, it will differ from the identity
map up to a punctual g whose range g(A) and whose inverse g−1 ∶ g(A)→ g is also
primitive recursive. Having in mind this feature of g, we will sometimes abuse our
terminology and call g the identity map.

2.2.1. The requirements. Let (Mi, ψi, θi)i∈ω be a list of the primitive recursive
structures and primitive recursive maps ψi∶A → Mi and θi∶Mi → B. Let γi be
a list of the primitive recursive maps B → A.

B

γj

~~

Mi

θi

OO

A

ψi

OO

We must meet the following requirements:

Ri: if ψi is an isomorphism from A onto Mi and θi is an isomorphism

from Mi onto B, then either Mi ≤pr A or B ≤prMi.

Si: γi is not a primitive recursive isomorphism from B onto A.

To makeMi ≤pr A or B ≤prMi, we have to define a primitive recursive isomorphism
either from Mi onto A or from B onto Mi.

As with any priority argument, it is helpful to first consider a strategy to satisfy
requirements individually, and only after this to combine these strategies together.
In this argument, combining the strategies is particularly difficult, mainly due to
the fact that each of the Mi is individually primitive recursive, but they are not
uniformly primitive recursive.

2.3. Intuition for one R-strategy. To begin, we will informally describe the
strategy for satisfying a single requirement R = Ri while satisfying all of the re-
quirements Si. Let M = Mi, ψ = ψi, θ = θi, where these were defined in the
previous subsection.

Up to a punctual delay, we may assume that whenever an element shows up in
M, its image in B under θ is immediately defined, and that its image is an element
of the same type; in particular, for x ∈M: x ∈ U if and only if θ(x) ∈ U ; x is part
of an n-cycle if and only if θ(x) is part of an n-cycle; and if x is tagged then θ(x)
is tagged. Note that we cannot say that if θ(x) is tagged, then x is tagged; this is
because the tag y on x yields a tag θ(y) on θ(x), but a tag on θ(x) does not yield
a tag on x. Of course if θ is to be an isomorphism, a tag must eventually be added
to x, it just does not have to show up within a primitive recursive delay. So we
think of A as a substructure of M, and M as a substructure of B.

6 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

Remark 2.2. It is important to note that this is only the case when we are dealing
with only a single requirement R; so this assumption is not strictly necessary but
it will make it easier to understand the key points of the construction while dealing
with only one R requirement before adding in complications. In the presence of
many requirements we can no longer conclude that this delay described above is
primitive recursive uniformly in the index i. This is because there is no uniformly
primitive recursive enumeration of the θi. It will of course be uniformly computable
in the index i. Since θi is total and thus can be computed in a bounded amount of
time, we can keep adding elements to U c to delay until we see θi to halt. It follows
that the induced delay is primitive recursive relative to θi. See [BDKM19] for more
examples of subrecursive non-uniformity in punctual structure theory.

Having in mind Remarks 2.1 and 2.2, in presence of only one R-requirement we
can identify an element x ∈ A with the respective element in B, and also in M:

A
ψ
//M

θ // B

x // x̂ // x

If this is ever not the case, we can immediately end the construction withM ≇ A ≅

B. (This is by standard techniques but as this will not be necessary in the general
case, we will not elaborate on how this can be done.) For any element x of B, we
use x̂ to denote an element of M whose image in B is x. If, for example, x is part
of an n-cycle but θ(x) is not, the requirement R is automatically satisfied and does
not require any further action.

The basic strategy for Si. To diagonalize against a potential primitive recursive
isomorphism γi∶B → A, put an n-cycle C in B, but to keep it out of A long enough
that γi must be defined on C in B but has no reasonable image for C in A.

A naive idea for meeting Ri. Informally, B will contain more algebraic subcom-
ponents (cycles) than A, according to the basic Si-strategy above. If Mi reveals
these extra cycles with some fixed primitive recursive delay, then we can match
these cycles with those in B punctually, and B ≤pr Mi. However, if Mi keeps re-
vealing these extra cycles slower than expected, we must make sure thatMi ≤pr A;
intuitively, this urges A to enumerate the cycle and match it with the cycle inMi.

Of course, we do not have a uniform measure of “speed” with which a cycle
C is expected to appear in Mi, and this has to be guessed using the uniformly
computable list of all primitive recursive functions. Suppose currently we work
with a timestamp function p̃` which gives us a measure of enumeration speed (to
be clarified later).

The obvious problem with the naive idea described above is thatMi could reveal
finitely many cycles p̃`-fast, and therefore we chose to make progress in witnessing
B ≤pr Mi. However, much later we can discover that some fresh cycle C reveals
itself slow relative to p̃`, and therefore we should switch to demonstrating that
Mi ≤pr A. But the slow cycles either still have no image in A or these images
appeared too late, and this is inconsistent with Mi ≤pr A.

Our solution to this problem (to be described in detail below) is based on the
following idea. Every time Mi reveals a cycle C quickly, we immediately put a
tagged version C○ of this cycle into A and match C with C○. This way we will be

NON-DENSITY IN PUNCTUAL COMPUTABILITY 7

able to catch up in the definition of Mi ≤pr A by putting a tag on C as late as we
want.

This idea leads to complications in the strategy. As soon as we put C○ into A,
a similar tagged cycle must also appear in Mi because A ≤pr Mi, and since we
must guarantee A ≤pr B we must also put an extra tagged cycle in B. This means
that, keeping in mind the possibility that Mi ≤pr A as above, we will be forced to
put another extra cycle into A, etc. Thus, at the end we may end up with lots of
cycles, most of which are tagged. To make progress in demonstratingMi ≤pr A we
will have to homogenise the whole component which grew out of the single cycle C.

We now give more details. We begin with clarifying the concept of primitive
recursive time of computation, and then we give a detailed description of the main
strategies in presence of only one Ri.

2.4. Primitive recursive time. Recall that a function is primitive recursive if,
and only if, it can be realised on the universal Turing machine with a primitive
recursive timestamp function; see the appendix of [BDKM19]. In other words, we
have that pi(x) = U(s(i);x)[t(x)] ↓ where t(x) is a primitive recursive timestamp
function and s is the primitive recursive function from the s-m-n theorem. Let
(pi)i∈ω be a uniformly computable list of all primitive recursive functions ω → ω.
Set p̃i(n) to be the sum, over j < i, of the primitive recursive timestamp functions
for pj(n) (which are ≥ pj(n)). So p̃i dominates pj , j < i, on all inputs. If we can
ensure that a computable function is slower than each of the p̃i then the function
cannot be primitive recursive. Moreover, p̃i(n) has the nice property that it takes
time about p̃i(n) to compute p̃i(n); more formally, p̃i(n) is time-constructible, in
that p̃i(n) can be computed in time O(p̃i(n)), and this is uniform in i. Imagine
that we want to wait until after stage p̃i(n) to take some action, but that we want
to take that action soon after stage p̃i(n). The first step would be to compute p̃i(n)
to see how long we have to wait, and if p̃i(n) took a long time to compute, by the
time we had computed it we would already have waited too long and missed our
chance. But since p̃i is constructed using the stopping times, we can compute p̃i(n)
in only slightly more than p̃i(n) steps as follows: for each j < i, compute pj(n),
and then add up the total computation time; this is p̃i(n).

At every stage of the construction the strategy forR is associated with an index `
and a potential timestamp function p̃`. Before we explain what exactly the strategy
does, we note that the requirement R will have one of two outcomes:

Σ2: for some `, whenever an untagged n-cycle C enters B, its copy Ĉ enters
M by stage maxx∈C p̃`(x).

Π2: for every `, there is an untagged n-cycle C in B such that Ĉ does not enter
M by stage maxx∈C p̃`(x).

There will be many tagged n-cycles in all of the structures A, B, and C, so it is
really the untagged n-cycles that we will have to worry about.

Remark 2.3. Essentially, one should think of the Σ2 outcome as saying that un-
tagged n-cycles entered M soon after they entered B, and thus using p̃` we can
demonstrate B ≤prMi. The Π2 outcome says that for any primitive recursive de-
lay p̃`, there are n-cycles which enterM much later than they entered B, relative to
the delay p`. In this outcome, the strategy combined with homogenization of other
components (where we thought we had the Σ2 outcome) will allow us to punctually
map M onto A.

8 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

More on the strategy for Si. Recall that we also have to diagonalize against maps
γi∶B → A. In the Σ2 outcome, we can put untagged n-cycles C in B and hold them
out of A as long as we want; therefore, we simply follow the basic strategy for Si
as explained above. In the Π2 outcome, we have to build a map from M to A.
Only when an untagged n-cycle C enters M we are forced to put it in A. Since
we are in the Π2 outcome, there are many cycles C that take a long time to enter
M, and therefore nothing urges us to put them into A. We will use this feature
to demonstrate γi∶B → A cannot be an isomorphism; more details will be given in
§2.5.2. In particular, we do not have to meet Si explicitly (via its basic strategy)
in this case.

2.5. Formal details for one R combined with all Si. The structure we build
will be divided up into different components, each of which is the location of an
attempt to satisfy a particular requirement; the n-component consists of all of the
n-cycles and their tags. Recall that we use the complement of U to delay when
necessary. Also, recall that we identify cycles in A and B which indeed agree up to
a primitive recursive correspondence; see Remark 2.1

2.5.1. The description of one n-component. The n-component works as follows.
When it begins to act, it chooses the least ` such that the requirement R might
still have the Σ2 outcome with witness index `. We call this ` the threshold value.
The n-component begins by adding an untagged n-cycle C to B, but not to A, as
shown in the diagram below.

B ∶ C

M ∶

A ∶

We then wait for one of the following two things to happen, in which case we take
the corresponding action. We call one the (current) Π2 outcome, and the other the
(current) Σ2 outcome. Let s be the current stage.

● Π2 outcome: A version of C has not showed up in M within p̃`(C) =

maxx∈C p̃`(x) many steps. Add C to A; when an untagged n-cycle Ĉ = ψ(C)
shows up in M, we have ϕ map it to C.

B ∶ C

M ∶ Ĉ

ϕ

��

A ∶ C

● Σ2 outcome: An n-cycle Ĉ enters M within at most p̃`(C) = maxx∈C p̃`(x)

steps. Add a tagged n-cycle D1 to A and B. Set ϕ(Ĉ) = D1.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 9

B ∶ C ○D1

M ∶ Ĉ
ϕ

A ∶ ○D1

(The circles here denote that the cycle is tagged.) Note that ϕ is not

currently looking like an isomorphism, because Ĉ is untagged, but D1 is
tagged.

Then, as soon as the ψ-image D̂1 of D1 shows up inM, add a new tagged
n-cycle D2 to A and, thus, to B.

B ∶ C ○D1 ○D2

M ∶ Ĉ

ϕ

○D̂1

ϕ

!!

A ∶ ○D1 ○D2

We continue doing this. To meet S1, . . . ,Sn, we need to diagonalise against
γ1, . . . , γn∶B → A. Eventually, the maps γ1, . . . , γn must become defined on
C ⊆ B, but they cannot map C to another untagged n-cycle, because there
are no untagged n-cycles in A; the best that such a γ = γj can do is to map
C to some Di as shown in the diagram below. After each of γ1, . . . , γn have
been computed on C, we add C to A.

B ∶ C

γ

��

○D1 ○D2 ○D3 ⋯

M ∶ Ĉ

ϕ

○D̂1

ϕ

!!

○D̂1

ϕ

!!

○D̂1

ϕ

⋯

A ∶ C ○D1 ○D2 ○D3 ⋯

Even after this happened, we keep adding new tagged n-cycles to the com-
ponent.

It is possible that at some point in the construction, the n-component
will have to be homogenized. What this means is that we want to make
ϕ—which so far does not look like an isomorphism, because it maps the

untagged Ĉ to the tagged D1—into an isomorphism. Add a tag to C, and

10 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

extend ϕ to map the last n-cycle Dk we have built so far to C, e.g.

B ∶ ○C ○D1 ○D2 ○D3 ○D4

M ∶ ○Ĉ

ϕ

○D̂1

ϕ

!!

○D̂2

ϕ

!!

○D̂3

ϕ

!!

○D4

rr
A ∶ ○C ○D1 ○D2 ○D3 ○D4

Now ϕ looks like an isomorphism on the n-component.

This completes the strategy for a single component.

2.5.2. Combining several components. Start the first n-component with n = 3 and
` = 0 (recall the minimum length of a cycle is 3). Once the current component is
finished acting, start a new n-component with n being the current stage and the
threshold value ` being the least ` such that no component with the same threshold
value has had a Π2 outcome. Whenever we have a new component with a Π2

outcome, homogenize all of the components with Σ2 outcomes.
In the end, we will be in one of two cases:

● All of the components have the Π2 outcome or were homogenized; and for
each ` there is a component with threshold value `. In this case ϕ is an
isomorphism M→ A, and so the requirement R is satisfied.

We argue that there is no primitive recursive isomorphism B → A. If
there was, say γ, then let ` be such that p̃` dominates γ. Let n be such
that the n-component had this threshold value ` and outcome Π2. There
is an untagged n-cycle C in B, but no untagged n-cycle is in A until after
stage maxx∈C p̃`(x); since p̃` dominates γ, γ cannot cannot map C to an
untagged n-cycle in A, and hence cannot be an isomorphism.

● All but finitely many components have the Σ2 outcome with the threshold
value ` which will never be homogenised; the other components either have
the Π2 outcome or are homogenized.

In this case there exists a primitive recursive isomorphism B →M. Let `
be such that all of the non-homogenized components with the Σ2 outcome
have threshold value `. We can define the isomorphism non-uniformly on
the finitely many other components. We argue that, on cofinitely many
components, the map θ−1 ∶ B → M is punctual. When a cycle C is first

added to B, wait for maxx∈C p̃`(x)-many steps for θ−1(Ĉ) to show up inM

and map C to Ĉ. For an element Di, when we add Di to B, we also add

it to A, and we can wait for the image D̂i = ψ(Di) to show up in M; we

then map Di to D̂i. This process is punctual since p` and ψ are primitive
recursive. So the requirement R is satisfied.

We also argue that in this case there is no primitive recursive isomor-
phism B → A; but as described in the construction, an n-component with
Σ2 outcome ensures that γ1, . . . , γn are not isomorphisms before adding
C to A unless it is later homogenised. Since there are infinitely many n-
components with arbitrarily large n having a Σ2-outcome and which are
never homogenised, all Sj-requirements are met.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 11

In either case, we have satisfied R and each requirement Sj .

2.6. The full construction. Now we will describe how to meet all of the re-
quirements. An n-component will now work with the R-requirements R0, . . . ,Rn.
There is some additional complexity that arises when dealing with many structures
M0,M1,

2.6.1. The four main issues. There are four key issues which we will have to cir-
cumvent in presence of many R-requirements and which were not visible in the case
of only one R-requirement. We informally discuss these issues below; the formal
construction is contained in the next subsection.

First, when we add the n-cycle C to B, some of the monitored Mi might add

the corresponding n-cycle Ĉ to Mi very quickly, and others very slowly, where
quickly and slowly for Mi are measured relative to a primitive recursive threshold

function p̃`i . When some Mi has an n-cycle Ĉ show up slowly relative to p̃`i (the
Π2 outcome), we must quickly add C to A because we want to build a primitive

recursive isomorphism Mi → A mapping Ĉ in Mi to C in A). But if `i < `j , and
hence p̃`i is dominated by p̃`j , this process might be happening quickly relative to
p̃`j , and we have not yet finished waiting for Mj to respond. Thus, we are adding
C to A sooner than we would like for Mj .

To resolve this, we use the following idea. Since the scenario above happens only
when Ri plays its Π0

2-outcome, Rj can assume that Ri has the true outcome Π0
2

which means that Mi is arbitrarily slow. In particular, Ri will eventually have
its threshold lifted arbitrarily large and will play its Π0

2-outcome again and again
arbitrarily late in the construction. Thus, it is safe forMj to rely on the threshold
of Ri for its own Π0

2-outcome, provided that the true outcome ofMi is indeed Π0
2.

Of course, we will have to handle more that one requirement at once. In this
case, in addition to the outcome, we will maintain the maximum threshold value

`max ∶= `i; this keeps track of how long we were able to wait for Ĉ to show up. If all
of the requirements R1, . . . ,Rk we are dealing with have the Σ2 outcome, then the
threshold value is just the maximum of `1, . . . , `k because we were able to wait as
long as we wanted before adding C to A. An important aspect of the construction
will be that the maximum thresholds eventually keep increasing, in the sense that
their limit is ∞, so that they do not limit the construction. This will be further
clarified below and then verified in Lemma 2.8.

Second, there is a new issue with homogenization and building a potential iso-
morphism. Recall that we had to homogenize a component, say the n-component,
because it had the outcome Σ2, and later the m-component with m > n played
the outcome Π2. Recall that (§2.5.1) we would wait for a cycle to appear in the
opponent’s structure within a certain bound, and only then we would perhaps add
a tagged cycle to A. In presence of many R-requirements we cannot afford to wait
for many opponent’s structures to respond within distinct and increasing bounds.
Also, we never had to homogenize a component which played its Π2 outcome. The
strategy will nevertheless be similar. Whereas before we waited until a component
had the Σ2 outcome to introduce tagged n-cycles D, we will now always add tagged
n-cycles to each component. Consider the following example.

Example 2.4. Suppose the n-component plays its Σ2 outcome for R1, but the
Π2 outcome for R2. In particular, it attempts to build an isomorphism M2 → A.

12 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

Suppose also that at a later stage the n-component must be homogenized because
some later component has the Π2 outcome forR1. The question is whether we would
like to add a tagged cycle to A, and if yes then how soon. The basic strategy for R2

says that a tagged cycle is to be added only when R2 finishes its computation with
its much slower threshold. However, R1 cannot afford to wait for this computation
to finish since it has to act now.

The solution will be to add a tagged cycle to A without waiting for R2 to finish
its computation. This action will force a tagged cycle to appear in M2, and this
can potentially happen very quickly. This is of course consistent with the basic
strategy for R2, because it really only cares about untagged cycles. Also, it could
then be the case that the global true outcome of R2 is Σ2 (i.e., cofinitely many
components will play Σ2 with the same threshold) and so we actually need to build
an isomorphism B →M2. Thus, we must also think of the potential image of the
new cycle of M2 in B, but this will be provided by the basic strategy for R1.

To summarise, to make sure that we never get stuck in the definitions of our
maps and that we have enough tagged cycles, just add as many as necessary and
as quickly as possible. This will not upset the main strategy in its essence.

Third, when dealing with a single requirement R, we were able to assume that
the composition θ ○ψ∶A→M→ B was essentially the identity map in the sense of
Remark 2.1. The strategy then was to only add a single n-cycle at a time, and to
wait for its images to appear in M before adding a new n-cycle. Now, when we
add an n-cycle to A, we might need to add more n-cycles to A for the sake of Mi

(which must act relatively quickly) before the image of the n-cycle has appeared
in Mj (which might be acting much more slowly). This means in particular that,
for instance, θj will have many potential images for a given (tagged) cycle, and its
choice does not have to naturally line up with what θi does. Nevertheless this is not
really an issue because there is little interaction between θi and θj , and similarly
for ψi and ψj . All we need is that B and A have enough (tagged) cycles to be
matched with those inMj , and this is up to the opponent to ensure that his maps
make sound choices.

There is one time at which we will need a little more control, and that is when a
component is homogenized. When the n-component is homogenized, we will stop
adding new n-cycles, which will mean that each of A, Mi, and B have exactly the
same number of n-cycles, all of which will be tagged; thus ψi and θi will naturally
have to be surjective on the n-cycles, and this will be enough for us.

Fourth, we cannot have a single threshold value for each requirement, but rather
for each requirement Ri and each guess σ at the outcomes of the requirements

R0, . . . ,Ri−1, we must have a threshold value `σi . Whether Ĉ enters Mi quickly
or slowly is dependent on the threshold value; but we have a number of different
possible threshold values `σi for each σ, and which one we use depends on the current
outcomes of R0, . . . ,Ri−1. This combinatorial complexity is sorted using the tree
of strategies.

2.6.2. The tree of strategies. The n-component will have an outcome for each re-
quirement R which is either Σ2 or Π2. We think of these outcomes as being orga-
nized on a tree, with the Π2 outcomes to the left of the Σ2 outcomes. Formally, we

NON-DENSITY IN PUNCTUAL COMPUTABILITY 13

define the tree of (possible) outcomes T = {Σ2,Π2}
<ω which consists of the finite

maps from indices i of requirements Ri to outcomes {Σ2,Π2}.
Whenever a component plays an outcome σ, it injures every previous component

that had an outcome to the right of σ on the tree (which will mean homogenizing
the components which had those outcomes). The true path will, as usual, be the
leftmost path visited infinitely often.

For each requirement i and string σ = ⟨σ0, . . . , σi−1⟩ of outcomes for the higher
priority requirements, we maintain a threshold value `σ. These values get updated
after the action of each component, and we denote the threshold value after the
n-component by `σ[n]. Sometimes we write `σi for `σ as a reminder of which
requirement Ri the threshold value is for, though of course i = ∣σ∣. The threshold
value represents our current best guess at the witness for the Σ2 outcome of Ri
under the assumption that the higher priority requirements have the outcomes listed
in σ.

2.6.3. The formal construction. We will describe the action of each component,
leaving the construction of the isomorphisms to the verification. At any point in
time only one component will be active. On completion, the n-component will
define an outcome Γ = (Γ1[n], . . . ,Γk[n]) and a maximum threshold `max[n] as
well as defining new threshold values `σ[n]. We begin with the 3-component, and
when it is finished continue with the 4-component, the 5-component, etc.

Action of the n-component: Begin by adding an untagged n-cycle C to B, and at
each stage add a new tagged n-cycle D1,D2, . . . to A and B:

B ∶ C ○D1 ○D2 ○D3 ⋯

A ∶ ○D1 ○D2 ○D3 ⋯

We keep adding new tagged n-cycles D until the component is homogenized. Then,
until the loop is ended, at each consequent stage s do the following:

● For each i ≤ n for which Ri has not yet been determined to have the Σ2

outcome, check whether an n-cycle Ĉ enters Mi[s] with Ĉ mapped to C in

B by θi∶Mi → B. If not, then do nothing; if such an n-cycle Ĉ has entered
Mi, then declare Ri to have the outcome Γi[n] ∶= Σ2.

● For each i ≤ n for which Ri has not yet been declared to have the Σ2

outcome, check whether there is σ = (σ0, . . . , σi−1) such that:
– for j < i, if σj is Σ2 then Rj has already been declared to have the Σ2

outcome in this component;
– with ` = `σi , the current stage s has s ≥ p̃`(x) for each x ∈ C ⊆ B.

If there is such an i, choose the least. The maximum threshold is `max[n] ∶=
`σi [n − 1] for the witness i. Declare each Rj which does not already have
the Σ2 outcome to have the outcome Γj[n] ∶= Π2. Add C to A. End the
loop.

● If all of R1, . . . ,Rn have been declared to have the Σ2 outcome, declare
each Rj , j > n, to have the outcome Γj[n] ∶= Π2. Eventually the maps
γ1, . . . , γn∶B → A must become defined on C ⊆ B, but they cannot map C
to another untagged n-cycle, because there are no untagged n-cycles in A;

14 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

the best that such a γ can do is to map C to some tagged n-cycle D. After
each of γ1, . . . , γn have been defined on C, we can add C to A.

Once this has happened we will end the loop. The maximum threshold
for the component is `max[n] ∶= `max[n − 1] + 1.

Let Γ[n] = (Γ1[n],Γ2[n], . . .) be the outcome of the n-component. For each m-
component, m < n, with outcome Γ[m] to the right of Γ[n]—i.e. with, for some
i, Γ1[m] = Γ1[n], . . . ,Γi−1[m] = Γi−1[n], and Γi[m] = Σ2 but Γi[n] = Π2—we
homogenize the m-component by adding a tag to C. We stop adding new tagged
m-cycles to A and B.

We update the thresholds as follows:

● For each σ ≺ Γ, with i = ∣σ∣, define:
– `σ[n] ∶= `σ[n − 1] if Γi = Σ2 (i.e., if Ri had the Σ2 outcome in this

component); and
– `σ[n] ∶= `[n − 1] + 1 if Γi = Π2 (i.e., if Ri had the Π2 outcome in this

component).
(This defines ` on initial segments of Γ.)

● For each σΠ2 ≺ Γ, with i = ∣σ∣, and each τ ∈ {Σ2,Π2}
<ω, let `σΣ2τ [n] ∶=

max(`σ[n − 1] + 1, `σΣ2τ [n − 1]). (This defines ` everywhere to the right of
Γ.)

● For each other σ, let `σ[n] ∶= `σ[n − 1]. (This defines ` everywhere to the
left of Γ.)

This ends the construction.

2.7. Verification. Let n1, n2, n3, . . . be the n-components which are never homog-
enized. The standard type of argument in priority constructions proves:

Lemma 2.5. For each requirement Ri, one of the following is the case:

(1) For every sufficiently large j, Γi[nj] = Σ2, or
(2) For every sufficiently large j, Γi[nj] = Π2.

Proof. We argue by induction on i. We may assume that for every sufficiently
large j ≥ J , for each i′ < i, Γi′[nj] takes on a fixed value. Now if j′ > j > J
and Γi[nj′] = Π2 but Γi[nj] = Σ2, then Γ1[nj′], . . . ,Γi[nj′] would be to the left of
Γ1[nj], . . . ,Γi[nj], contradicting the fact that the nj-component is never homog-
enized. So for sufficiently large j, Γi[nj] takes on the same value (either Σ2 or
Π2). �

In the first case, we say that the requirement Ri has (true) outcome Σ2; in this

case, Ĉ always appears relatively quickly inMi, where quickly is measured relative
to some primitive recursive function p̃`. Lemma 2.6 shows that in this case the
threshold values stabilize on a single value of `. In the second case, we say that

Ri has (true) outcome Π2. Then Ĉ often appears slowly (or not at all) in Mi,
relative to any primitive recursive function. Lemma 2.7 shows that in this case the
threshold values increase unbounded.

Lemma 2.6. Let σ be the sequence of true outcomes of R0, . . . ,Ri−1. If the true
outcome of Ri is Σ2, then there is ` such that for sufficiently large j, `σi [nj] = `.

Proof. Let K be sufficiently large that for k ≥ K and j ≤ i, Γj[nk] is the true
outcome of Rj . Thus, for m ≥ nK , the outcome Γ[m] of the m-component is never

NON-DENSITY IN PUNCTUAL COMPUTABILITY 15

to the left of σ̂ ⟨Σ2⟩, as if it was, the nK-component would be injured. So for each
such m, either Γ[m] is to the right of σ, or it extends σ̂ {Σ2}. A component never
changes the thresholds `σ where σ is to the left of its outcome, so if Γ[m] is to the
right of σ, then we have `σi [m] = `σi [m − 1]. If Γ[m] extends σ̂ {Σ2}, then we also
have `σi [m] = `σi [m − 1]. Thus for all m ≥K, `σi [m] = `σi [nK]. �

Lemma 2.7. Let σ be the sequence of true outcomes of R0, . . . ,Ri−1. If the true
outcome of Ri is Π2, then limj→∞ `σi [nj] =∞.

Proof. Let K be sufficiently large that for k ≥ K and j ≤ i, Γj[nk] is the true
outcome of Rj . Thus, for m ≥ nK , the outcome Γ[m] of the m-component is never
to the left of σ̂ ⟨Π2⟩, as if it was, the nK-component would be injured. So for each
such m, either Γ[m] is to the right of σ, it extends σ̂ {Σ2}, or it extends σ̂ {Π2}.
A component never changes the thresholds to the left of its outcome, so if Γ[m] is
to the right of σ, then we have `σi [m] = `σi [m − 1]. If Γ[m] extends σ̂ {Σ2}, then
we also have `σi [m] = `σi [m − 1]. And if Γ[m] extends σ̂ {Π2}, then we also have
`σi [m] = `σi [m − 1] + 1. The latter is the case whenever m = nk, k ≥ K, and so it
follows that limj→∞ `σi [nj] =∞. �

Suppose that σ is the outcome of the requirementsR0, . . . ,Ri−1 in the n-component,
and that Ri has outcome Π2 in the n-component. The idea of the construction was

that we want to wait for Ĉ to show up inMi until we can compute p̃`σi [n−1](x). But
we might not wait this long, because before this happens we might find that some
other requirement has the Π2 outcome. The maximum threshold `max[n] measures
how long we actually waited. The next lemma will show that this threshold value
increases to infinity, which will mean that this poses no issue.

Lemma 2.8. limm→∞ `max[m] =∞.

Proof. To each n-component, we will assign a sequence t[n] = (t1[n], t2[n], t3[n], t4[n], . . .).
Here, tr[n] will be the number of σ with `σ[n] = r. Note that each entry of t[n] is
always finite (because we have `σ[n] ≥ ∣σ∣).

First, we always have `σ[n] ≥ `σ[m] for n > m, which means that the sequence
of t[n] is non-increasing as the components increase: t[3] ≥ t[4] ≥ ⋯.

Now we will argue that if `max[n + 1] ≤ `max[n], then t[n + 1] < t[n] and, in
particular, for some i ≤ `max[n], ti[n + 1] < ti[n]. This can only happen finitely
many times for each i, so we can conclude that lim supm→∞ `max[m] = ∞. There
are two possibilities from one stage to the next, only in the second of which can we
have `max[n + 1] ≤ `max[n]:

● If each of R1, . . . ,Rn+1 in the (n+1)-component have the Σ2 outcome, then
we define

`max[n + 1] = `max[n] + 1.

● If some Ri had the Π2 outcome and ended the loop for the (n + 1)-
component, then we set `max[n+1] = `σi [n] where σ = (Γ0[n], . . . ,Γi−1[n]).
We have `σ[n + 1] = `σ[n] + 1. Together with the fact that for each τ ,
`τ [n + 1] ≥ `τ [n], this implies that t[n + 1] < t[n], and in particular for
some j ≤ `σ[n] = `max[n], tj[n + 1] < tj[n].

This proves the lemma. �

16 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

Let σ be a list of outcomes for R0, . . . ,Ri−1. Whenever we have a Σ2 outcome
for Ri extending σ for the first time, we reset the thresholds `τ for τ extending σΣ2

so that `τ ≥ `σ. This results in:

Lemma 2.9. Let σ, τ be a sequence of outcomes with σ̂ ⟨Σ2⟩ ⪯ τ . Then for every
n, `σ[n] ≤ `τ [n].

Proof. Let i = ∣σ∣. This is true at the beginning (for the 3-component), and we
argue that it remains true from one stage to the next.

First suppose that Γi[n + 1] = Σ2. Then we have `σ[n + 1] = `σ[n]. For each
τ ∈ {Σ2,Π2}

<ω, we have `σΣ2τ [n + 1] ∶= `σΣ2τ [n]. Since `σ[n] ≤ `σΣ2τ [n], the same
remains true for n + 1.

Second, suppose that Γi[n+1] = Σ2. Then we have `σ[n+1] = `σ[n]+1. For each
τ ∈ {Σ2,Π2}

<ω, we have `σΣ2τ [n + 1] ∶= max(`σ[n] + 1, `σΣ2τ [n]) ≥ `σ[n + 1]. �

The next two lemmas say that the outcome of Ri in the n-component actually

determines how quickly or slowly Ĉ entered Mi.

Lemma 2.10. Let σ be the sequence of outcomes for R1, . . . ,Ri−1 in the n-component.
Suppose that the outcome Γi[n] of Ri on the n-component was Σ2. Let s be the

first stage at which p̃`σ[n−1](x) is computed for every x ∈ C ⊆ B. Then Ĉ entered
Mi by the stage s.

Proof. We argue by induction on i. Inductively, and using Lemma 2.9, by this
stage s, for every j < i with σ(j) = Σ2, Rj has already been declared to have the

Σ2 outcome. Then if Ĉ had not entered Mi by stage s, the n-component would

declare Ri to have the Π2 outcome. Since this is not the case, Ĉ must have entered
Mi by stage s. �

Lemma 2.11. Suppose that the outcome Γi[n] of Ri on the n-component was Π2.

Let s be the first stage at which p̃`max[n](x) is computed, for x ∈ C ⊆ B. Then Ĉ has
not entered Mi by stage s.

Proof. If Ĉ had entered Mi, Ri would have been declared to have outcome Σ2 by
the n-component. �

Next we will show that for each i, either B ≤prMi (if Ri had the Σ2 outcome)
or Mi ≤pr A (if Ri had the Π2 outcome).

Lemma 2.12. Suppose that ψi is an isomorphism from A onto Mi and θi is an
isomorphism from Mi onto B, and that the outcome of Ri is Σ2. Then B ≤prMi.

Proof. We have to argue that there is a primitive recursive isomorphism B →Mi.
Let σ be the sequence of true outcomes of R0, . . . ,Ri−1. Fix K and ` such that for
k ≥K and j < i, Γj[nk] = σ(j), Γi[nk] = Σ2, and `σi [nj] = `.

We define an isomorphism ψ∶B → Mi component-by-component. On the nth
component, we have a number of different cases:

● If n < nK , then we construct the isomorphism by non-uniformly mapping Ĉ
to C. For each tagged n-cycle D in B, we map D to a tagged n-cycle inMi;
we can find such a tagged n-cycle in a primitive recursive way by finding
the image, under ψi∶A →Mi, of a tagged n-cycle in A. While we do this,
we must also make sure that each tagged n-cycle in Mi is the image of
some tagged n-cycle in B.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 17

● If n ≥ nK and `i ≤ `, then after we put C into B, wait for one of the following
to happen:

– An n-cycle Ĉ with θi(Ĉ) = C ∈ B enters Mi.

Map C to Ĉ. We map tagged n-cycles in B to tagged n-cycles in Mi

as described above. If the n-component is ever homogenized, then
we stop adding new tagged n-cycles to A and B. In both A and B,
every n-cycle is tagged, and A and B have the same finite number of

n-cycles. Thus after a primitive recursive delay, Ĉ must be the image
under θi of an n-cycle in A (which may not be C ⊆ A), and hence will

receive a tag; we can then map the tag of C ⊆ B to the tag of Ĉ.

– For some j < i, σ(j) = Π2 but an n-cycle Ĉ with θj(Ĉ) enters Mj .

We know that the n-component will be homogenized because its out-
come will be to the right of the true outcome (its outcome cannot be
to the left of the true outcome, or the nK-component would be homog-
enized). So C will at some point receive a tag. So we can map each of
C and each other tagged n-cycle D in B to any other tagged n-cycle in
Mi, in such a way that every tagged n-cycle inMi is the image of one
in B. We can do this primitively recursively because we have, via the
map ψi∶A→Mi, a primitive recursive list of tagged n-cycles in Mi.

We claim that one of these must happen by stage maxx∈C⊆B p̃`(x). Suppose
that up to stage maxx∈C⊆B p̃`(x), there is no j < i with σ(j) = Π2 such

that an n-cycle Ĉ with θj(Ĉ) enters Mj ; this means that no such Rj is
declared to have the Σ2 outcome in the n-component. For each j < i with
σ(j) = Σ2, by Lemma 2.9 we know that `σj[n − 1] ≤ ` = `σi . If there is some

j ≤ i with σ(j) = Σ2 such that by stage maxx∈C⊆B p̃`(x) no n-cycle Ĉ with

θj(Ĉ) has entered Mj , then (by the contrapositive of Lemma 2.10) for the
least such j, R0, . . . ,Rj would be declared to have outcome σ↾j Π2 in the
n-component. This is to the left of the true outcome, which is the outcome
of nK , and so the nK-component would be injured. Thus we can conclude

that for each j ≤ i with σ(j) = Σ2, by stage maxx∈C⊆B p̃`(x), an n-cycle Ĉ

with θj(Ĉ) has entered Mj . In particular, this is true for j = i. So we
have shown that one of the two possibilities above must occur by stage
maxx∈C⊆B p̃`(x).

Putting together these isomorphisms on each component, which are uniformly prim-
itive recursive, we get a primitive recursive isomorphism B →Mi. �

Lemma 2.13. Suppose that ψi is an isomorphism from A onto Mi and θi is an
isomorphism from Mi onto B, and that the outcome of Ri is Π2. Then Mi ≤pr A.

Proof. We have to argue that there is a primitive recursive isomorphism Mi → A.
Fix K such that for k ≥K and j < i, Γj[nk] = σ(j), Γi[nk] = Π2.

We define an isomorphism Mi → A component-by-component. On the nth
component, we have two different cases:

● If n < nK , then we construct the isomorphism by non-uniformly mapping Ĉ
to C. (As in the previous lemma, we map tagged n-cycles in Mi to tagged
n-cycles in A.)

● If n ≥ nK , we wait for an element Ĉ with θi(Ĉ) = C to appear inMi. While
we wait, we have to map tagged n-cycles in Mi to tagged n-cycles in A;

18 N. GREENBERG, M. HARRISON-TRAINOR, A. MELNIKOV, AND D. TURETSKY

we can do this because we have a primitive recursive list of tagged n-cycle

D in A. When Ĉ enters Mi, we have two possibilities.

First, if C is already in A, then we map Ĉ to C. Ĉ cannot receive a tag

unless its image C = θi(Ĉ) in B does, which only happens if the n-component
is homogenized; in this case, C also receives a tag in A, and we can map

the tag of Ĉ to this tag.
Otherwise, if C is not already in A, the outcome of the n-component for

Ri is Σ2, and so we know that the n-component will later be homogenized,

and Ĉ will receive a tag. So we just map Ĉ to a tagged n-cycle in A. When

Ĉ receives a tag, we map it to the tag of its image in B.
When the n-component is homogenized, C ⊆ A receives a tag, and we

can find a new tagged n-cycle D̂ in Mi and map it to C in A.

Putting together these isomorphisms on each component, which are uniformly prim-
itive recursive, we get a primitive recursive isomorphism Mi → A. �

Lemma 2.14. Each requirement Si is satisfied: γi is not an isomorphism from B
to A.

Proof. If there is some nj-component, nj ≥ i, such that each of the requirements
R1, . . . ,Rnj has the Σ2 outcome, then C ∈ B is an untagged n-cycle (since the nj-
component is never homogenized), and we do not add C to A until after γn has
already become defined on C; so the image of C under γn cannot be an untagged
n-cycle, and γn cannot be an isomorphism.

Otherwise, let i′ be such that γi is dominated by p̃i′ . For every nj-component,
nj ≥ i

′, some requirementRk has the outcome Π2. For sufficiently large j, `max[nj] >
i′. This means that in the nj-component, C is not added to A until after stage
maxx∈C⊆B p̃i′(x) (see Lemma 2.11), and so no element of C is among the first
maxx∈C⊆B p̃i′(x) elements of A. Since p̃i′ dominates γi, for x ∈ C ⊆ B, γi(x) cannot
be in C ⊆ A; and as the nj-component is never homogenized C is the only untagged
nj-cycle. Thus γi is not an isomorphism. �

By Lemmas 2.12 and 2.13, each R requirement is satisfied. By Lemma 2.14,
each S requirement is satisfied. This completes the proof of the theorem. �

References

[AK00] C. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy,
volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland

Publishing Co., Amsterdam, 2000.
[Ala17] P. E. Alaev. Structures computable in polynomial time. I. Algebra Logic, 55(6):421–

435, 2017.

[Ala18] P. E. Alaev. Structures computable in polynomial time. II. Algebra Logic, 56(6):429–
442, 2018.

[BDKM19] Nikolay Bazhenov, Rod Downey, Iskander Kalimullin, and Alexander Melnikov. Foun-

dations of online structure theory. Bull. Symb. Log., 25(2):141–181, 2019.
[BHTK+19] Nikolay Bazhenov, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Mel-

nikov, and Keng Meng Ng. Automatic and polynomial-time algebraic structures. The

Journal of Symbolic Logic, pages 1–32, 04 2019.
[BKMN] N. Bazhenov, I. Kalimullin, A. Melnikov, and K. M. Ng. Punctual presentations of

finitely generated structures. Submitted.
[CDRU09] Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel, and Zia Uddin. Space com-

plexity of abelian groups. Arch. Math. Log., 48(1):115–140, 2009.

NON-DENSITY IN PUNCTUAL COMPUTABILITY 19

[CR92] Douglas A. Cenzer and Jeffrey B. Remmel. Polynomial-time abelian groups. Ann.

Pure Appl. Logic, 56(1-3):313–363, 1992.

[CR98] D. Cenzer and J. B. Remmel. Complexity theoretic model theory and algebra. In
Yu. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, editors, Handbook

of recursive mathematics, Vol. 1, volume 138 of Stud. Logic Found. Math., pages

381–513. North-Holland, Amsterdam, 1998.
[DGM+] R. Downey, N. Greenberg, A. Melnikov, K.M. Ng, and D. Turetsky. Punctual cate-

goricity and universality. to appear in the Journal of Symbolic Logic.

[DMN] Rod Downey, Alexander Melnikov, and Keng Meng Ng. Foundations of online struc-
ture theory ii: the operator approach. Preprint.

[EG00] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra and

Logic. Consultants Bureau, New York, 2000.
[GLS03] S. Goncharov, S. Lempp, and R. Solomon. The computable dimension of ordered

abelian groups. Adv. Math., 175(1):102–143, 2003.
[GMR89] S. S. Goncharov, A. V. Molokov, and N. S. Romanovskĭı. Nilpotent groups of finite

algorithmic dimension. Sibirsk. Mat. Zh., 30(1):82–88, 1989.

[Gon80] S. Goncharov. The problem of the number of nonautoequivalent constructivizations.
Algebra i Logika, 19(6):621–639, 745, 1980.

[Gri90] Serge Grigorieff. Every recursive linear ordering has a copy in DTIME-

SPACE(n, log(n)). J. Symb. Log., 55(1):260–276, 1990.
[Hir01] Denis R. Hirschfeldt. Degree spectra of intrinsically c.e. relations. J. Symbolic Logic,

66(2):441–469, 2001.

[HKSS02] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko. Degree spectra and com-
putable dimensions in algebraic structures. Ann. Pure Appl. Logic, 115(1-3):71–113,

2002.

[Kie98] H. A. Kierstead. Recursive and on-line graph coloring. In Yu. L. Ershov, S. S. Gon-
charov, A. Nerode, and J. B. Remmel, editors, Handbook of recursive mathematics,

Vol. 2, volume 139 of Stud. Logic Found. Math., pages 1233–1269. North-Holland,
Amsterdam, 1998.

[KMN17] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Algebraic structures

computable without delay. Theoret. Comput. Sci., 674:73–98, 2017.
[KMnN17] I. Sh. Kalimullin, A. G. Mel′ nikov, and K. M. Ng. Different versions of categoricity

without delays. Algebra Logika, 56(2):256–266, 2017.

[KMZ] I. Kalimullin, A. Melnikov, and M Zubkov. Punctual degrees and lattice embeddings.
to appear in proceedings of Aspects of Computation (World-Scientific).

[KN08] Bakhadyr Khoussainov and Anil Nerode. Open questions in the theory of automatic

structures. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, (94):181–204, 2008.
[KPT94] H. A. Kierstead, S. G. Penrice, and W. T. Trotter Jr. On-line coloring and recursive

graph theory. SIAM J. Discrete Math., 7:72–89, 1994.

[Mal61] A. Mal′cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.
[McC02] Charles F. D. McCoy. Finite computable dimension does not relativize. Arch. Math.

Logic, 41(4):309–320, 2002.
[MNa] A. Melnikov and K.M. Ng. A structure of punctual dimension two. to appear in

Proceedings of the American mathematical Society.

[MNb] A. G. Melnikov and K. M. Ng. The back-and-forth method and computability without
delay. Preprint.

[Rab60] M. Rabin. Computable algebra, general theory and theory of computable fields.
Trans. Amer. Math. Soc., 95:341–360, 1960.

	1. Introduction
	2. Proof of Theorem 1.4
	2.1. The language of the structure
	2.2. The requirements
	2.3. Intuition for one R-strategy
	2.4. Primitive recursive time
	2.5. Formal details for one R combined with all Si.
	2.6. The full construction
	2.7. Verification

	References

