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Abstract. We discuss two applications of admissible computability, namely,
to higher randomness, and computability of uncountable structures.

Admissible computability, as formalised by Kripke [62] and Platek [72], is a
common generalisation of metarecursion theory (Kreisel and Sacks [61, 60]) and
Takeuti’s approach to constructibility via recursion on the ordinals [87, 88]. Takeuti
showed how to recover constructibility by considering the ordinals first and using
a class of partial functions on the ordinals, resembling Kleene’s partial recursive
functions. Kreisel and Sacks were motivated by Church and Kleene’s [20, 19, 57]
development of the computable ordinals and the hyperarithmetic sets. The end re-
sult was a generalisation of computability to domains beyond the natural numbers,
namely some ordinals greater than ω.

The first line of enquiry in the field known at the time as α-recursion theory
was the attempt to lift to the admissible setting the constructions of classical
computability, in particular in the areas of the lattice of c.e. sets and the Tur-
ing degrees of c.e. sets. For example, Sacks and Simpson [76] showed that the
Friedberg-Muchnik resolution of Post’s problem holds for every admissible ordinal,
and later Shore extended Sacks’s density theorem to all admissible ordinals [81]. On
the other hand, some ordinals were shown to have unusual computable structure,
for example, for some α, all incomplete c.e. degrees are low [80]. The techniques
of α-recursion theory were later used in the study of nonstandard models of arith-
metic and their computability, via the resemblance of failure of definable regularity
of some singular ordinals and failure of the bounding principle in models of arith-
metic. A more recent application of these investigations is Chong, Slaman and
Yang’s [15] construction of a non-standard model separating the stable and gen-
eral forms of Ramsey’s theorem for pairs, where again a crucial property is that
incomplete c.e. degrees are low.

In this chapter we survey a couple of more recent applications of admissible
computability, namely to the study of higher randomness and the study of un-
countable computable structure theory. The methods of α-recursion theory showed
that the generalistion of computability allows us to elucidate the underlying na-
ture of basic notions and constructions of classical computability. This is the main
theme of the work that we present. By contrasting classical computability with
its generalisations, we can separate between the fundamental and the accidental.
What is common to all generalisations, and thus can be considered necessary to
computability, and what is special to the natural numbers?

An example is given by the work in [39], which exhibits some of the role that
finiteness plays in computability. Kreisel [61] studied the analogy between Π1

1 sets
of numbers and computably enumerable ones, and noted that the correct analogue
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of hyperarithmetic is not computable but finite (for example, the image of a hy-
perarithmetic function is hyperarithmetic). Thus, in admissible computability, it is
not only the notion of computability that is generalised, but the notion of finiteness.
If α is an admissible ordinal, then α-computable processes are those which take up
to α many steps to perform, and each ordinal β ă α is in this context considered as
finite. However in [39] it is shown that some constructions of computability theory
rely on the fact that finite ordinals have predecessors. In particular, it is shown
that Lachlan’s [64] continuous tracing technique is necessary for his embedding of
the 1-3-1 lattice into the c.e. degrees, and its success relies on the “true finiteness”
of the natural numbers.

Similarly, studying higher randomness allows us to observe how “time tricks” are
heavily utilised in classical algorithmic randomness; and studying uncountable lin-
ear orderings and free groups shows how to properly generalise classical results such
as the Dzgoev-Remmel characterisation of computably categorical linear orderings.

Below, we first give a brief development of admissible computability, and then
discuss the two applications mentioned. For more details on admissible computabil-
ity we refer the reader to the classic [78] and to [8, 18]. For more on α-recursion
theory see [14] and [82].

1. Admissible computability

There are several equivalent ways for defining admissible computability. Kripke,
following Takeuti and Kleene, used an equation calculus. Platek [72] and later
Köpke and Seyfferth [59] gave a more intuitive definition in terms of idealised com-
puters or Turing machines with ordinal-length tape. The approach used most fre-
quently appeals to set theory. The motivating example here is computability as
definability in the structure HF, the collection of hereditarily finite sets. The struc-
ture pHF; Pq is effectively bi-interpretable with the standard model pN;`,ˆq of
arithmetic: in one direction, the set N and the (graphs of the) functions ` and ˆ
are ∆1-definable in HF; and via the Ackermann interpretation [1], the structure
pHF; Pq is interpretable in N by a computable relation. Further, the map sending
n P N to the number coding n in this interpretation is computable, with computable
range. It follows that a function f : N Ñ N is computable if and only if it is ∆1-
definable in pHF; Pq, and a set A Ď N is computably enumerable if and only if it is
Σ1-definable in pHF; Pq. Here by Σ1 we refer to the Levy hierarchy of formulas in
the language of set theory, which is built up from formulas which only use bounded
quantifiers.

We can therefore redevelop the theory of computability by defining a set A Ď HF
to be c.e. exactly if it is Σ1-definable in pHF; Pq, and a partial function f : HF Ñ HF
to be partial computable if its graph is c.e. As a kind of motivation, we consider
that once we agree that the relations P and equality should be considered com-
putable, then bounded quantifiers correspond to a bounded search, which should
also be admitted as computable; and so all ∆0-definable sets should be considered
computable. The external existential quantifier in a Σ1 formula then corresponds
to an unbounded search.

Proceeding with our defintions, a we call a set A Ď HF computable if it is
∆1-definable, that is, if it is c.e. and co-c.e. A partial function f : HF Ñ HF is
computale if it is partial computable and its domain is computable. We can then
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proceed to prove the basic facts about computability from these definitions. For
example:

Proposition 1.1. A set A Ď HF is computable if and only if its characteristic
function 1A is computable.

To see this, assuming that A is computable, we observe that the relation 1Apxq “
y is

`

py “ 0q & px R Aq
˘

_
`

py “ 1q & px P Aq
˘

,

which is ∆1-definable as well. Similarly:

Proposition 1.2. The composition of partial computable functions is partial com-
putable.

For if the relations fpxq “ y and gpyq “ z are both Σ1-definable, then so is the
binary relation

pDyq fpxq “ y & gpyq “ z.

Proposition 1.3. A set A Ď HF is c.e. if and only if it is the range of an injective
partial computable function.

To see this, in the harder direction, let A Ď HF be c.e.; let R Ď HF2 be a
∆0-definable relation such that x P A ðñ pDyqRpx, yq. There is a computable
ordering ăHF of HF of order-type ω. We let C be the collection of pairs px, yq such
that y is ăHF-least such that Rpx, yq holds; then C is computable, and the map
px, yq ÞÑ x restricted to C is injective, computable and its range is A.

We should say a little more on the ordering ăHF. It is the image of the natural
ordering on N under the isomorphism between HF and N given by the Ackermann
interpretation. A direct construction of ăHF, not appealing to arithmetic, is done
by recursion. In the context of HF, defining computable functions by recursion is
stated as follows:

Proposition 1.4. Suppose that I : HF Ñ HF is computable. Then there is a unique
function g : N Ñ HF satisfying gpnq “ Ipgænq for all n P N; and this function is
computable.

Since HF “ Vω “
Ť

n Vn, we can construct ăHF as the union of linear orderings
ăn of Vn such that each ăn`1 is an end-extension of ăn; to do so, all we need to do
is to define a computable operation taking a linear ordering ăX of a finite transitive
set X and producing an ordering ăPpXq of PpXq which is an end-extension of ăX .
One way to do this is to let ăPpXq be the right-lexicogrpahic ordering of PpXq

based on ăX .1 We just need to check that the map taking ăX to ăPpXq is Σ1-
definable in HF, and then use recursion.

We remark that the recursion scheme given by Proposition 1.4 can be extended
to define computable functions on other well-founded relations, for example P; that
type of recursion shows, for example, that the function taking x P HF to its tran-
sitive closure is computable. Another use of recursion allows us to formalise first-
order logic in HF. Under any reasonable formalisation of formulas, the collection
of formulas is computable, and the satisfaction relation between finite structures

1 a ăPpXq b if x P b for the ăX -greatest element of a4b



4 N. GREENBERG

and formulas is also computable, as all involve “bounded search”. Now a Σ1 sen-
tence ψ (with parameters in HF) holds in HF if and only if there is some transitive
M P HF such that M |ù ψ. This is because of absoluteness for ∆0 predicates. This
shows that the global Σ1 satisfaction relation is c.e. We can then fix a computable
numbers xψey of all Σ1 formulas, and let

We “ tx P HF : HF |ù ψepxqu ;
then the list xWey is a list of all c.e. sets; it is uniformly c.e., in that the set
À

eWe is c.e. (because the global Σ1 satisfaction relation is Σ1-definable). It is also
acceptable, which means that whenever xAey are uniformly c.e. sets, then there is a
computable function f such that for all e, Ae “Wfpeq. For if θpx, yq is a Σ1 formula
defining

À

eAe, then the function f takes e to the code of the formula θpe,´q.2

1.1. Admissible sets. The definition of an admissible set aims to answer the
question: what is the minimal amount of set-theoretic closure required of a set M so
that we can mimic the definition of computability above with satisfactory result?
That is, if we: consider the elements of M to be “finite”; the ordinals of M to
be “numbers”; and interpret “c.e.” as Σ1-definable in M — would this give us a
reasonable theory of computability?

Some minimal amount of closure is certainly required. Take, for example, the
structure M “ Vω`ω. The ordinals of this structure are ω`ω. Under any reasonable
definition, ordinal addition should be a computable operation. However, ω P M
but ω ` ω R M . That is, the sum of two “finite numbers” is “infinite”, which
should not be the case. So for a reasonable theory of computability, it should be
the case that the ordinals of M are closed under addition. We could make a longer
and longer list of similar operations (multiplication, exponentiation,...) but it is
not clear where to stop. Rather, we (i) require some very basic amount of closure,
so that definability of M makes any kind of sense; and (ii) then, anticipating the
definition of M -computable functions, we require the image of a finite object under
an M -computable function to be finite, or at least bounded. Here are the formal
details.

Definition 1.5. A nonempty transitive set M is amenable if:
‚ For all x, y PM , tx, yu PM ,

Ť

x PM , and xˆ y PM ;
‚ For every ∆0pMq predicate R and every set a PM , aXR PM .

The second condition is referred to as ∆0-comprehension.

Definition 1.6. Let M be an amenable set. A set A Ď M is M -computably
enumerable if it is Σ1pMq. It is M -computable if it is ∆1pMq, i.e., M -c.e. and
M -co-c.e.

A partial function from M to M is M -partial computable if its graph is M -c.e.
An M -partial computable function is M -computable if its domain is M -computable.

Some basic facts about computability hold for all amenable sets, with exactly
the same proofs. For example:

‚ The graph of an M -computable function is M -computable.
‚ A set is M -computable if and only if its characteristic function is M -

computable.

2 The acceptability property is also known as the “s-m-n theorem”.
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‚ The composition of M -partial computable functions is M -partial com-
putable.

However, as was observed above, some amenable sets, such as Vω`ω, are poor
choices for computability purposes. The seond step consists of the following defini-
tion:

Definition 1.7. A nonempty transitive set M is admissible if it is amenable, and
it satisfies ∆0 collection: If R Ď M2 is a ∆0pMq relation, then for all a P M such
that a Ď domR there is some b PM such that for all x P a there is some y P b such
that Rpx, yq.

The definition is made to be minimal, so that it is easier to verify that certain
sets are admissible; however it implies more:

Proposition 1.8. Every admissible set satisfies ∆1 comprehension and Σ1 collec-
tion.

Recalling our intentions, it is common to refer to the elements of an admissible
set M as “M -finite”. Thus, ∆1-comprehension says: the intersection of an M -finite
set with an M -computable set is M -finite. And Σ1-collection means: if R is an M -
c.e. relation and a Ď domR is M -finite, then there is an M -finite b Ď rangeM which
contains R-images for all x P a. In particular, the image of an M -finite set under an
M -computable function is contained in an M -finite set, and by comprehension, is
in fact M -finite. A key fact used is that M -c.e. relations are closed under bounded
quantification: if R is M -c.e., then so is p@x P yqR.

Example 1.9. If κ is a cardinal, then
Hκ “ tx : | tcpxq| ă κu

(where tcpxq is the transitive closure of x) is an admissible set. This is clear if κ is
regular, and uses a reflection argument when κ is singular. In particular, HF “ Hω

is admissible, and HF-computability is classical computability. On the other hand,
for every admissible set M , we have HF ĎM , and if M ‰ HF then HF PM .

The key to admissibility is that it is precisely what is required to be able to
define M -computable functions by recursion. The analogue of Proposition 1.4 is:

Proposition 1.10. Let M be an admissible set. Let α “ opMq “ M X On (the
ordinals of M). Suppose that I : M ÑM is M -computable. Then there is a unique
function g : αÑM satisfying:

‚ For all β ă α, gæβ is M -finite and gpβq “ Ipgæβq.
The unique such function g is M -computable.

Given Proposition 1.4 (and its generalisations to other M -computable well-
founded relations other than pα;ăq), we can proceed with the development of com-
putability theory as above, with proofs copied over nearly verbatim. For example,
the formalisation of first-order logic proceeds in the same way, giving us a universal
M -c.e. set: an M -c.e. set W such that letting, for x PM , W rxs “ ty : px, yq PW u
be the x-section of W , the collection

 

W rxs : x PM
(

is the collection of all M -c.e.
sets. All standard proofs of the Kleene fixed point (“recursion”) theorem hold in
all admissible sets, and so on. An admissible set M is closed under basic ordi-
nal arithmetic (addition, multiplication, exponentiation), and these operations are
M -computable.
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Further, some set-theoretic concepts have admissible effectivisations. A set-
theoretic way of viewing admissibility is by saying that the ordinal α “ opMq for
an admissible set M is “M -effectively regular”; it may fail to be a regular cardinal
(indeed may not be a cardinal at all), but M -computable functions cannot witness
this fact: there is no M -computable sequence of order-type ă α, unbounded in α.
Some properties of regular cardinals then carry over to admissible ordinals, once
we restrict to M -computable objects. For example:

Lemma 1.11. Let M ‰ HF be admissible, let γ ă opMq and let xCαyαăγ be a
uniformly M -computable sequence of closed and unbounded subsets of opMq. Then
Ş

αăγ Cα is M -computable, closed and unbounded in opMq.

Similarly, if M ‰ HF is admissible, and f : opMq Ñ opMq is M -computable,
then

tβ ă opMq : f rβs Ď βu

is closed and unbounded in opMq.

1.2. Constructibility. One part of classical computability which we developed
above but have not generalised yet is ăHF, the computable well-ordering of the
“universe”. This is because in general, there is no reason to assume such a well-
ordering exists. For example, M “ Hω1 may not have any definable well-ordering,
as the reals may fail to have such an ordering. To make computability “linear”, we
restrict ourselves to the constructible universe.

Just as for HF, if M is admissible, then satisfaction for structures inside M is
M -computable (this was used to get a universal M -c.e. set). Further applications
of the recursion principle (analgoues of Proposition 1.10) shows that if A PM then
PDEFpAq, the collection of A-definable subsets of A, is also an element of M , and
the map A ÞÑ PDEFpAq is M -computable. Applying recursion once more, we get:

Proposition 1.12. Let M be admissible.
(1) For all α ă opMq, Lα PM , and the map αÑ Lα is M -computable.
(2) LopMq “ LM “

Ť

αăopMq Lα is M -c.e.

Further, recall that ăL, the well-ordering of L, is defined recursively, with the or-
dering of Lα`1 being an end-extension of the ordering of Lα; again, an examination
shows that this operation can be defined in a Σ1 way, and so the restriction of ăL
to an admissible set M is its restriction to LopMq, and is M -c.e.; the map taking α
to ăL æLα is M -computable, and the map taking x P LopMq to ty P L : y ăL xu is
M -partial computable.

A key fact is that L inherits admissibility:

Proposition 1.13. Let M be an admissible set. Then LopMq is admissible as well.

There are some details to the argument, which concern the development of L
inside L, but the crux of the proof is in showing that if β ă opMq and f : β Ñ opMq
is LopMq-computable, then it is bounded below opMq; and the point is that since LM
is itself M -c.e., any Σ1-definition within LM can be translated to a Σ1-definition
inM , replacing the unrestricted quantifiers by quantifiers ranging over LM . Hence f
is also M -computable, and hence bounded. We thus define:

Definition 1.14. An ordinal α is admissible if Lα is an admissible set.
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By Proposition 1.13, α is admissible if and only if there is an admissible set M
such that α “ opMq. We say that a set is α-c.e. if it is Lα-c.e., and α-computable
if it is Lα-computable.

Working in initial segments of L, we utilise the following:

Proposition 1.15. If α is admissible, then there is an α-computable bijection
between α and Lα.

Indeed, if jpβq is the βth element of L according to ăL, then j restricts to a
bijection between α and Lα, as j can be defined by recursion, and so jrαs Ď Lα
and the map jæα is Lα-computable. Similarly, a recursion on ăL æLα defines
j´1æLα by recursion inside Lα, and so jæα is the required bijection.3

Proposition 1.15 allows us to “linearize” α-computability. For example, we now
get a numbering xWβyβăα of all α-c.e. sets, rather than a numbering indexed
only by the elements of Lα. Similarly, when performing priority arguments in
α-computability, we can order all requirements in order-type α (rather than just
indexed by elements of the admissible set), and so can set a priority ordering be-
tween them. We can regard every α-computable process as being recursively de-
fined along α. More informally, we think of such processes as taking α many steps.
In general, working in α-computability, with experience, we apply some kind of
Church-Turing thesis to α-computable functions. Just as in classical computabil-
ity, we eventually describe computable processes informally, rather than writing
computer programs in detail, in admissible computability, we eventually cease to
write down precise Σ1 formulas defining the functions we are interested in. Instead,
we develop an intuition as to what constitutes “legal” α-computable manipulations
of α-finite objects (elements of Lα), and get a sense of the “time” that a process
takes; if it takes fewer than α steps, then it “halts”.

1.3. The least admissible ordinal (beyond ω). So far we have given only one
kind of example of admissible ordinals, namely the cardinals (Example 1.9). By
a reflection argument (collapsing elementary substrctures), we see that there are
many admissible ordinals which are not cardinals, indeed many countable ones.
We can give a concrete description of the least admissible ordinal beyond ω. In-
terestingly, this ordinal arises from Church and Kleene’s theory of the computable
ordinals. An ordinal β is called computable if there is a computable well-ordering
of N of order-type β. The computable ordinals form a countable initial segment
of the ordinals, and the least non-computable ordinal is denoted by ωck

1 (Church-
Kleene ω1). Now a computable ordinal β ą ω cannot be admissible: if ăβ is some
computable well-ordering of N of order-type β, then the ordering ăβ is an element
of Lω`1, and so of Lβ ; if Lβ were admissible, then by β-recursion, we would see
that the isomorphism from pN;ăβq to pβ;ăq would be β-computable, contradicting
admissibility. However:

Proposition 1.16. ωck
1 is admissible.

The reason for this is Σ1
1 bounding, a key aspect of the theory of computable

ordinals and hyperarithmetic sets. We give a quick review. Σ1
1 bounding says that

if A is a Σ1
1 collection of well-orderings of N, then there is a computable bound on

3 We remark that in fact, for every limit ordinal α, Lα is amenable and there is an Lα-
computable bijection between α and Lα, but the definition of this bijection is not uniform in α.
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the order-types of all the orderings in A. One way to see this is to note that the
collection of computable well-orderings is Π1

1-complete, and so, by Cantor’s diagonal
argument, cannot be Σ1

1; however, if the order-types of the orderings in A are not
computably bounded, then we can give a Σ1

1 definition of the computable well-
orderings by asking for an embedding into some element of A. A more constructive
approach (which also gives uniformity) is as follows: by a normal form argument, A
is the projection of an effectively closed set P in Baire space. We let Q be the closed
set of triples pL, f, gq, where pL, fq P P (so L P A) and g is an infinite descending
sequence in L. Since every L P A is a well-ordering, Q is actually empty. This
means that the tree S associated with the definition we gave Q is well-founded. For
every L P A, the tree of finite descending sequences in L is embeddable into S, and
so the rank of S, which is computable, bounds the order-types of all elements of A.

Spector [85] showed, essentially, that if you take an iteration of the Turing jump
along any computable well-ordering, then the result depends only on the order-
type of the ordering. Thus, for every computable ordinal α, there is a well-defined
Turing degree 0pαq, which contains all computable iterations of the Turing jump of
length α. This is an increasing hierarchy of Turing degrees of length ωck

1 ; a set of
numbers is defined to be hyperarithmetic if its Turing degree lies below some 0pαq.
Kleene [56] used the Σ1

1 bounding principle to show that the hyperarithmetic sets
coincide with the ∆1

1 sets, an effective analogue of the coincidence of the Borel sets
with the ∆1

1 ones (due to Suslin).
The next step is the Sepctor-Gandy theorem [84, 35], which analyses the quan-

tifiers ranging over the hyperarithmetic reals.

Theorem 1.17. A set A Ď N is Π1
1 if and only if it is of the form “there exists a

hyperarithmetic x such that Qp´, xq”, where Q is Π0
2.

One direction is easier. Suppose that Q is an arithmetical predicate. The map
taking a (computable index of a) computable well-ordering K to the iteration HpKq
of the Turing jump along K is Π0

2-definable, and so HpKq is ∆1
1 uniformly in K.

There is a hyperarithmetic x such that Qp´, xq if and only if there is a com-
putable well-ordering K and a Turing reduction Φ such that Qp´,ΦpHpKqqq holds.
The search for indices for K and Φ is arithmetic; the main complexity is asking
whether K is well-founded or not.

In the other direction, we start with an analysis of pseudo-ordinals. A (com-
putable) pseudo-ordinal is a computable ordering of N which is not well-founded,
however it has no hyperarithmetic infinite descending sequences. The existence
of such objects can be concluded using Σ1

1 bounding, in its guise as a “overspill”
argument. By the easy direction of the Spector-Gandy theorem, the collection
of computable well-orderings together with the computable pseudo-ordinals is Σ1

1;
since it contains all computable well-orderings, and it cannot coincide with the col-
lection of computable well-orderings, a pseudo-ordinal must exist.4 The length of
the well-founded part of any pseudo-ordinal must be precisely ωck

1 ; it cannot be
longer, as then a principal initial segment would give a computable copy of ωck

1 .
And it cannot be shorter, because otherwise, an argument using effective transfi-
nite recursion shows that the well-founded part would be hyperarithmetic, and so

4 A completely different way to obtain pseudo-ordinals is by the Gandy basis theorem, from
which we get a countable, ill-founded model of ZFC whose well-founded part has height ωck

1 ; that
model contains ill-founded “ordinals” which the model believes are computable ordinals.
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we would be able to hyperarithmetically define an infinite descending sequence by
avoiding the well-founded part. It follows that any iteration of the Turing jump
along a pseudo-ordinal must compute all hyperarithmetic sets (and in particular
will not be hyperarithmetic). Note that the existence of such an iteration is not
automatic, as the pseudo-ordinal is, in fact, ill-founded; however, an overspill argu-
ment shows that there is a pseudo-ordinal L˚ with a jump hiearchy along L˚.

We can now prove the harder direction of the Spector-Gandy theorem. Let A
be Π1

1. Membership of some n in A can be translated to the question of whether
some computable linear ordering K is well-founded or not. K is well-founded if
and only for some e in the well-founded part of L˚, the unique interation of the
Turing jump along L˚ up to e computes an embedding of K into L˚ up to e; and
this happens if and only if for some e P L˚, a hyperaeithmetic iteration of the jump
along L˚ up to e computes such an embedding.

In essence, a similar argument can be now used to show that ωck
1 is admissi-

ble. After learning some general facts about Lα for limit α, and about Lωck
1

in
particular, we can show that for admissibility, it suffices to show that every func-
tion f : ω Ñ ωck

1 which is Σ1-definable in Lωck
1

(without parameters) is bounded
below ωck

1 . By effective transfinite recursion, we show that for all α ă ωck
1 , there is

a hyperarithmetic copy of Lα, in a uniform way: essentially, 0pωαq computes such
a copy. Now consider the copies of various Lα’s computed by an iteration of the
jump along L˚. At the well-founded levels we get Lα for all α ă ωck

1 . At the
ill-founded levels, we get ill-founded models behaving like Lα’s, whose well-founded
part includes Lωck

1
. Observing the interpretation of the function f : ω Ñ ωck

1 in
these models, we see that in each copy we get a restriction of f to (possibly) a
subset of ω, but that in the ill-founded models, by upward absoluteness, we get f
itself. That is, the ill-founded models believe that f is total. By “underspill”, there
must be some well-founded model which believes that f is total, that is, some Lα
for α ă ωck

1 believes that f is total, whence f is bounded by α.
Yet another similar argument gives a set-theoretic interpretation of the Spector-

Gandy theorem: a set A Ď ωω is Π1
1 if and only if there is some Σ1 formula in the

language of set theory such that for all y P ωω, y P A if and only if Lωy
1
rys |ù ϕpyq.

Here ωy1 is ωck
1 relativised to y, that is, the least ordinal which does not have a

y-computable copy. The set Lωy
1
rys is the smallest admissible set containing y as

an element. Restricting to subsets of N, and recalling the definition above of α-c.e.
sets for admissible ordinals α, we obtain:

Proposition 1.18. A set A Ď N is Π1
1 if and only if it is ωck

1 -c.e.

Also, a set A Ď N is ∆1
1 (hyperarithmetic) if and only if it is ωck

1 -finite (an
element of Lωck

1
). As mentioned above, because of the strong analogy between Π1

1
sets and c.e. sets, which is exemplified by Proposition 1.18, one would be led to
believe that ∆1

1 should be analogous to “computable”. Kreisel and Sacks realised
that the correct analogue is “finite”, and so turned to investigate the complexity
of subsets of ωck

1 , which may be ωck
1 -computable and not ωck

1 -finite. Nonetheless,
ωck

1 -computability is very useful in the investigation of Π1
1 sets.

1.4. Higher computability and effective descriptive set theory. As an aside,
we give an example for how computability can be used to prove theorems of descrip-
tive set theory. This relies on the connection between the “boldface” set-theoretic
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notions (Borel, Π1
1) and their “lightface” computable analogue (hyperarithmetic,

Π1
1), which was mentioned above (Addison [2]). We note that the coincidence of

hyperarithmetic and ∆1
1 holds for sets of reals as well as of numbers; a set A Ď ωω

is hyperarithmetic if for some computable α, y P A ðñ ypαq P B for some com-
putable set B. We show:

Proposition 1.19. If B Ď ωω is ∆1
1 and f : B Ñ ωω is computable and injective,

then f rBs is ∆1
1.

Proof. Since the map y ÞÑ ypαq is Π0
2-definable, for every x P B, x is a Π0

2pfpxqq-
singleton, which in turn implies that x is ∆1

1pfpxqq, and so by Kleene’s theorem,
hyperarithmetic relative to fpxq. Now f rBs is naturally Σ1

1 (as B is Σ1
1); it is

also Π1
1, as y P f rBs if and only if there is some x P B, hyperarithmetic relative to y,

such that fpxq “ y; we apply the easy direction of the Spector-Gandy theorem. �

Since a function is contiuous if and only if it is computable relative to an oracle,
we obtain:

Corollary 1.20. If B Ď ωω is Borel and f : B Ñ ωω is continuous and injective,
then f rBs is Borel.

There are several sophisticated uses of computability in descriptive set theory.
For instance, the Glimm-Effros dichotomy (Harrington, Kechris and Louveau [48])
can be deduced from an effective version. Most recently, Day and Marks used a
variety of effective considerations in their recent resolution of the decomposability
conjecture (in preparation). Work leading up to their resolution also used surprising
tools, such as the Shore-Slaman join theorem [83] used by Kihara [55].

2. Higher computability and randomness

In this section we give various examples of how the contrast and comparison
between ωck

1 -computability and classical computability give us new insights into
the nature of computability itself. Some of these examples arise when we consider
computability relative to an oracle; others, when we consider the interaction of
computability and randomness. A main theme is the failure of “time tricks”. Guided
by questions of higher algorithmic randomness, we use ωck

1 -computability to study
reals, i.e., subsets of ω, rather than subsets of ωck

1 . That is, the objects that we
study have “height” ω. On the other hand, the computable processes that we use
take up to ωck

1 many “steps”. This discrepancy between height and time exposes
many instances of classical computability in which the coincidence of height and
time in the lower setting is used in arguments. In the higher setting (of Π1

1 sets and
ωck

1 -computability), some of the classical results still hold, but we need to devise
new proofs; and some of the classical results fail. This tells us when time tricks are
essential.

Algorithmic randomness attempts to answer the question “what does it means for
a (finite or infinite) binary sequence to be random?” Using the tools of computabil-
ity, it gives a hierarchy of randomness notions, based on ever more complicated null
sets. For a detailed account, see Downey’s chapter in this volume, or [27, 26, 71].

While most null sets considered in algorithmic randomness are around the level
of effectively open and effectively Gδ sets, very early in the development of the
theory, Martin-Löf [66] and Sacks [77, 78], and later Stern [86], introduced notions
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of randomness at a “higher setting”, i.e., the level of arithmetic, hyperarithmetic
and Π1

1 sets. They defined the notion of ∆1
1-randomness, which means avoiding

all ∆1
1 null sets; Sacks and Stern also introduced the notion of Π1

1-randomness,
with a similar definition.

A different approach was taken by Hjorth and Nies [50]. They relied on the
analogy between Π1

1 and c.e., and used the main definition of “classical” algorith-
mic randomness, namely ML-randomness, and simply replaced every instance of
“c.e.” by Π1

1. They showed that the resulting notion of Π1
1-ML randomness5 shared

many of the properties held by the classical notion. For example, it can be chara-
terised using a Π1

1 version of Kolmogorov complexity, and a higher analogue of
the Kučera-Gács theorem [63, 34] holds.6 Along with this notion of randomness,
they introduced a continuous reducibility which interacts well with the study of
randomness.

This last point was taken up and studied in detail in [10]. The Kučera-Gács
theorem is just one of many ways that randomness and Turing reducibility interact.7
When studying the “higher” (Π1

1) analogue of randomness, we therefore also need
to understand what is the correct higher analogue of Turing reducibility. The first
guess would be relative hyperarithmetic reducibility. However the main drawback of
this reducibility is that it is not given by continuous maps. This is why Hjorth and
Nies introduced ďfin-h, which is a continuous version of hyperarithmetic reducibility.
For example, this is the reducibility that they use in their version of the Kučera-
Gács theorem.

2.1. Choosing the correct higher continuous reducibility. In [10], the au-
thors showed that there are inequivalent ways of generalising Turing reducibility
to the higher setting, and argued that one more general than ďfin-h is the cor-
rect one for studying higher randomness. The issue revolves around consistency of
functionals. Let us give some details. A functional is a set Φ Ď 2ăω ˆ 2ăω. If Φ
is a functional and x P 2ω, then we let Φpxq be the union of all σ such that for
some τ ă x we have pτ, σq P Φ. The motivation is that for any x, y P 2ω we have
y ďT x if and only if there is some c.e. functional Φ such that Φpxq “ y. The pair
pτ, σq being in a functional Φ says that in the oracle machine coded by Φ, for any
oracle x extending τ and any k ă |σ|, on input k with oracle x the machine halts
and outputs σpkq.

For a functional Φ and x P 2ω, there may be two reasons that Φpxq would not be
properly defined. One is partialness; in our formulation, Φpxqmay be a finite binary
string rather than an infinite one. Another is that Φpxq may be inconsistent, i.e.,
not a function: we could have pτ0, σ0q and pτ1, σ1q both in Φ where τ0, τ1 are both
prefixes of x, but σ0 and σ1 are incomparable. This last point is often ignored in
classical computability, because inconsistencies can be fixed: if y ďT x then in fact

5 A Π1
1-ML null set is a Gδ set of the form

Ş

n Un, where the sets Un are uniformly Π1
1 open,

and λpUnq ď 2´n; here λ denotes the fair coin measure on 2ω . Using Π1
1 open sets is made easy

by the fact that a Π1
1 set is open if and only if it is generated by a Π1

1 set of string, that is, if it is
of the form tx P 2ω : pDσ PW qσ ă xu for some Π1

1 set W Ď 2ăω .
6 The Kučera-Gács theorem says that every real is computable from some random sequence.
7 Another very well-known example is van-Lambalgen’s effective “2-step iteration” theo-

rem [90], which says that the join X ‘ Y is ML-random if and only if X is ML-random and
Y is ML-random relative to X. Yet another example is the Miller-Yu theorem [67], which states
that if X ďT Y are both ML-random, and Y has one of many stronger randomness properties
(for example, being 2-random), then X must share this property as well.
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there is a consistent c.e. functional Φ such that Φpxq “ y; Φ being consistent simply
means that the situation above cannot occur, in other words, that it is consistent
on all oracles.

Let us consider how we can remove inconsistencies. Suppose that Ψ is a c.e.
functional; we can produce a consistent c.e. functional Φ such that for all x, if Ψpxq
is consistent then Φpxq “ Ψpxq. How do we do this? we enumerate the “axioms”
of Ψ (the pairs of strings in Ψ). Suppose that at stage s we have already enumerated
Φs (a finite set of axioms), and see that a new axiom pτ, σq is now enumerated into Ψ.
It is possible that pτ, σq is inconsistent with some axioms already in Φs, but it is
also possible that the axiom applies to some oracles on which Ψ is consistent. What
we do is look at every extension τ̄ of τ of length s, and enumerate the axiom pτ̄ , σq
into Φs`1 only if it does not contradict another axiom already in Φs.

This was a time trick: at stage s, we used strings of length s, which were “fresh”,
in that they are longer than all strings that we dealt with so far. Now suppose that
we work in the higher setting, with Π1

1 functionals, which are enumerated in ωck
1

many stages. We would like to mimic the argument, but now at stage s ě ω we
may be in bad shape. Suppose, for example, that at stage n ă ω we see the axiom
0n1 ÞÑ 0 in Ψ and copy it over to Φ; all these axioms are pairwise consistent.
However at stage ω we see that Ψ maps some 0k to 1, and in fact it is possible
that Ψp0ωq “ 1 ¨ ¨ ¨ is total and consistent. However enumerating 0m Ñ 1 into Φ
for any m after stage ω will make Φ inconsistent.

In fact, this argument is turned around in [9] to show that there are x, y P 2ω such
that Φpxq “ y for some Π1

1 functional Φ, but there is no consistent Π1
1 functional Ψ

such that Ψpxq “ y. That is, the time trick is essential in the previous argument.
In [10], the authors argued that the relation ďωck

1 T, defined by:

Definition 2.1. Let x, y P 2ω. We say that x is higher computable from x, and
write y ďωck

1 T x, if there is some Π1
1 functional Φ such that Φpxq “ y.

is the correct definition to use. One piece of evidence is the relationship between
computability and enumerability. There is only one reasonable definition for the
relation “continuously relatively higher-x-c.e.”: an enumeration functional is a set
W Ď 2ăω ˆ ω. For an enumeration functional W and an oracle x P 2ω, we let W x

be the collection of all n P N such that for some τ ă x we have pτ, nq P W . Again
the point is that for all x and A Ď N, the set A is c.e. relative to x if and only
if there is a c.e. functional W such that W x “ A. With enumeration functionals
there are no issues of partialness or consistency, and so we define:

Definition 2.2. Let x P 2ω. A set A Ď N is higher x-c.e. if A “ W x for some Π1
1

enumeration functional W .

The standard classical argument shows that that for any x and A, the set A
is higher x-computbale (that is, A ďωck

1 T x) if and only if A is both higher x-c.e.
and higher co-x-c.e. Another piece of evidence for using ďωck

1 T is that some basic
theorems about ML-random sequences, such as van-Lambalgen’s theorem, hold for
Π1

1-ML sequences, with Turing replaced with ďωck
1 T, rather than the consistent

version of higher Turing reducibility.
Hjorth and Nies’s definition is stricter than “consistent higher Turing”. They

defined y ďfin-h x if there is a Π1
1 functional Φ such that Φpxq “ y, and such that

Φ (as a set of pairs) is a monotone function defined on a subtree of 2ăω. That is,
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not only is Φ consistent, but when we state that Φ maps τ to σ, we have already
stated what Φ does on all of its initial segments. This appears to be a significant
restriction. In the lower setting, an argument such as above uses a time trick to
take a consistent functional and turn it into a c.e. functional of this type. It was
therefore a little suprising to learn the following:
Proposition 2.3. y ďfin-h x if and only if there is a consistent Π1

1 functional Φ
such that Φpxq “ y.

That is, the time trick is not as essential to the result. Of course we need to make
a new argument, and this argument is non-uniform (and must be so). Roughly, it
goes as follows. Suppose that Φ is a consistent functional and that y “ Φpxq. Define
a Π1

1 tree T Ď 2ăω: at stage s ă ωck
1 , enumerate into Ts all strings ρ such that

for all n, some extension of ρ is mapped by Φs to a string of length ě n. Since
Φpxq is total, an admissibility argument show that x P rT s.8 Now there are two
cases. If there is no s such that x P rTss, then x collapses ωck

1 in a continuous
way: the map taking n to the least s such that xæn P Ts is cofinal in ωck

1 and higher
computable from x. Now we can transform Φ to a fin-h functional by copying Φspτq
if τ P Ts`1zTs. Otherwise, x P rTss for some s ă ωck

1 . We can then use Φs to give a
fin-h functional Ψ with Ψpxq “ y, as we can examine Φs in a hyperarithmetic way
and let Ψ map ρ to the longest string compatible with Φspτq for all extensions τ
of ρ.

Another comparison between higher and classical computability is done by ex-
amining relative effectively closed sets. For every x, there is a Π0

1pxq class which
contains no x-computable points. The usual argument is a time trick, but nonethe-
less, by a nonuniform argument, we can show that for every x, there is a higher
x-effectively closed set containing no y ďωck

1 T x [9]. We can again show that that
the nonuniformity is necessary.9

2.2. A deeper look into ML randomness. The idea of replacing “c.e.” by Π1
1

can be now relativised using Definition 2.2. We thus define:
‚ For every x, a higher x-ML null set is a set

Ş

n Un such that λpUnq ď 2´n,
and the sets Un are uniformly higher x-c.e. open (generated by higher x-c.e.
sets of strings).

Classically, the centrality of ML-randomness is witnessed by its robustness: many
equivalent definitions coincide. Which of the implications are necessary, and which
coincidental? Consider, for example, discrete measures. A discrete measure is a
function µ : ω Ñ Rě0 such that µpωq “

ř

n µpnq is finite. After identifying between
numbers and finite binary strings, each discrete measure determines a co-null set:
the set Rµ of x such that µpxænq ěˆ 2´n.10 Classically, a real x is ML-random if
and only if for every left-c.e. (lower semicomputable) discrete measure µ, x is in
the associated co-null set Rµ. Let us recall how to show this.

8 For every τ ă x, for any n we know that Φ maps some extension of τ to some string of
length ě n (namely some initial segment of x); the map taking n to the least s at which such an
extension appears is ωck

1 -computable, and so bounded.
9 An interesting contrast is given by work of J. Miller and M. Soskova (in preparartion), who

examine relativised randomness and related notions working with enumeration oracles, that is,
using enumeration reducibility. One of their results is the construction of a “self-PA” oracle in
their context, an oracle for which the property we discussed above fails.

10 This means: for some constant δ ą 0, for all n, µpxænq ě δ2´n.
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In one direction, let µ be a left-c.e. discrete measure. We show that there is a
ML null set

Ş

n Un continaing the complement of Rµ, so that every real “captured”
by µ (in the sense that x R Rµ) is captured by the ML-null set; this will show that
if x is ML-random then it is random for discrete measures (meaning x P Rµ for all
left-c.e. µ). For each n, we let Sn be the set of strings σ such that µpσq ą 2n2´|σ|,
and let Un be the open set generated by Sn. The sets Un are uniformly c.e., and
λpUnq ď

ˆ 2´n, the point being that λpUnq is bounded by the weight
ř

σPSn
2´|σ|

of Sn, which in turn is bounded by 2´nµpωq.
In the other direction, let

Ş

n Un be an ML-null set; we find a left-c.e. discrete
measure µ which captures every x P

Ş

n Un. To do this, for every n (uniformly)
we find a c.e. antichain An of strings which generates Un. We then define µnpσq “
2n2´|σ| for every σ P An, and µnpσq “ 0 otherwise; then µnpωq is bounded by the
weight of An, which is the measure of Un, and so µ “

ř

n µn is as required.
Now the first implication is completely natural, and the same argument shows:

Proposition 2.4. For every x P 2ω, every sequence r which is higher x-ML random
is random for higher x-c.e. discrete measures, that is, for every higher x-left-c.e.
discrete measure µ, r P Rµ.

In the other direction, one step is problematic: finding an antichain An gener-
ating Un. This relies on a time trick. Let W be a c.e. set of strings generating an
effectively open set W . We enumerate an antichain A in stages; at stage s, when
we see a string σ enter S, we enumerate into A all extensions of σ of length s which
do not extend any string previously enumerated into A. As above, we use the fact
that at stage s, all strings in A have length ă s. We can, in fact, show that this
time trick is necessary:

Proposition 2.5 ([9]). There is a higher effectively open set (a set generated by
a Π1

1 set of strings) which is not generated by any Π1
1 antichain.

Sketch of proof. We enumerate a higher c.e. set of strings V , ensuring that for all e,
the eth higher c.e. set of strings We is not an antichain, or it does not generate rV să
(the open set generated by V ). Let σe “ 0e1. For each e, let Ae “ tσeˆσn : n P Nu.
We let V0 “

Ť

eAe. At stage s ă ωck
1 , for every e, we check if both rAesă Ď rWe,ss

ă

and σe 0̂8 R rWe,ss
ă. If so, then we enumerate σe into Vs`1.

Fix e, and suppose that rWes
ă “ rV să. By compactness of 2ω, every τ P

Ae is covered by finitely many strings in We, and so there is some s such that
rτ s Ď rWe,ss

ă; this is recognised computably. By admissibility of ωck
1 , as Ae is

ωck
1 -finite, there is some s such that rAesă Ď rWe,ss

ă. Let s be least such. If
σeˆ8 P rWe,ss

ă then by our instructions, σe 0̂8 R rV să, contradicting rWes
ă “

rV să. Hence σe 0̂8 R rWe,ss
ă, whence by our actions, σe 0̂8 P rV să, implying that

σe 0̂8 P rWes
ă; an initial segment of σe 0̂8 is enumerated into We at some stage

t ą s, and so must be incomparable with some string already in We,s, as rAesă is
dense along σe 0̂8. �

Thus, it is not clear that the result holds in all settings, and indeed, it does not;
in upcoming work, the author, together with J. Miller and B. Monin, show that
there is some oracle x relative to which there is a sequence r, which is random for
higher x-c.e. discrete measures, but is not higher x-ML random.

Is the oracle necessary? the answer is positive; indeed, Hjorth and Nies showed
the equivalence of higher ML-randomness with the even weaker property of being
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random for higher prefix-free complexity. To overcome the reliance on time tricks,
they used the next lemma below. In the argument above, it was not actually
important that the sets An were antichains; what we really used are the properties
Un Ď rAns

ă and wtpAnq ď 2´n, where again wtpAq “
ř

τPA 2´|τ |; we used an
antichain because if A is an antichain then wtpAq “ λpAq.11 And the condition
wtpAnq ď 2´n is not fundamental either; all we need is

ř

n wtpAnq to be finite.
The following lemma then suffices.

Lemma 2.6. For every Π1
1 open set U and every ε ą 0 there is a Π1

1 set of strings V
such that U Ď rV să and wtpV q ď λpUq ` ε. This is uniform in U and ε.

Sketch of proof. We give a proof slightly different to the one in [50], by introducing
a new tool: the projectum function. There is an ωck

1 -computable injective function
p : ωck

1 Ñ ω (essentially, take α to some index for a computable copy of α). We
use p to “distribute mass” along the stages s ă ωck

1 . By stage s, we will have
enumerated Vs with Us Ď rVss

ă. Suppose that Us`1 “ Us Y rτss. Since rτsszrVssă
is hyperarithmetic, we can effectively (in the sense of Lωck

1
) find an antichain Cs

(indeed a finite one) satisfying rτss Ď rVssă Y rCssă and λpCsq ď λprτsszrVss
ăq `

ε2´ppsq; we add Cs to Vs`1. The sum of all the “extra errors”
ř

ε2´ppsq is bounded
by 2ε, as p is injective. �

Along these lines, Hjorth and Nies showed that there is a universal Π1
1-ML test (a

largest Π1
1-ML null set); the standard argument applies. However, when relativising,

in the lower setting, a time trick is used to construct a uniform oracle universal
ML-test; oracle effectively open operators Un such that for every oracle x, xUxny is a
universal test for x-ML-randomness. In the higher setting, in [10] it is shown that
this cannot be done in the higher setting, and in fact, with more work, an oracle x
is constructed for which there is no universal higher x-ML test at all.

Further work, however, is required to completely elucidate the relationships be-
tween all variants of ML-randomness, for example, those that rely on c.e. martin-
gales (equivalently, left-c.e. continuous measures), prefix-free Kolmogorov complex-
ity, and Schnorr tests. The necessary implications are clear, but constructions of
oracles witnessing the failure of other implications appear to be hard.

2.3. The higher limit lemma. Recall that Shoenfield’s limit lemma states that a
function f is H1-computable functions iff it has a computable approximation: a uni-
formly computable sequence xfsy such that f “ lims fs (in the discrete topology).
In the higher setting, any complete Π1

1 (such as Kleene’s O, or the set of indices of
computable well-orderings) plays the role of H1. For computable approximations,
though, we need approximations of length ωck

1 (the limit of a hyperarithmetic ω-
sequence of functions is hyperarithmetic, as ∆1

1 is closed under taking the Turing
jump). Indeed, fixing a complete Π1

1 set O, the following are equivalent for a func-
tion f :

‚ f ďωck
1 T O;12

‚ there is a ωck
1 -computable sequence xfsysăωck

1
(of functions fs : ω Ñ ω, each

necessarily being hyperarithmetic) such that f “ lims fs, in the sense that
for all n, for some s ă ωck

1 , ftpnq “ fpnq for all t P rs, ωck
1 q.

11 We write λpAq for λprAsăq.
12 We remark that f ďωck

1 T O if and only if f ďT O.
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The fact that the approximation has limit stages allows us to define and inves-
tigate subclasses of the O-computable functions which have no classical analogue.
For example, a finite-change approximation is an approximation xfsy such that for
all n, there is no infinite increasing sequence xsky of stages such that for all k,
fsk`1pnq ‰ fsk

pnq.13 Not all functions f ďωck
1 T O have finite change approxima-

tions.
Such subclasses can be used to answer questions about notions of randomness

that lie between higher ML randomness and Π1
1-randomness, prime among them

the higher version of weak 2-randomness (or strong 1-randomness): a higher test
for weak 2-randomness is a set

Ş

n Un which is null, where the sets Un are uniformly
Π1

1 open. Each such null set is Π1
1, and so we get the implications:

Π1
1-random ùñ higher weakly 2-random ùñ higher ML random.

Some basic facts about weak 2-randomness rely on time tricks. Consider, for ex-
ample, the fact [23] that no weakly 2-random sequence can be ∆0

2: let xxsy be a
computable approximation of a ∆0

2 sequence x. We let Un be the open set generated
by txsæn : s ą nu; note how stages and lengths are compared. Then

Ş

n Un “ txu,
which is null, and the sets Un are uniformly c.e. We know that to some extent the
time trick is necessary: Gandy’s basis theorem implies that there is a Π1

1-random
sequence x ďT O.

To what extent can O-computable sequences be higher weak 2-random? Chong
and Yu [16] showed, using the Lebesgue density theorem, that no higher weakly
2-random sequence can be higher left-c.e. (left-Π1

1). In [44], the following is shown:

Proposition 2.7. No sequence which has a finite-change approximation can be
higher weakly-2 random.

Sketch of proof. Let xxsy be a finite-change approximation of x “ xωck
1

. The prop-
erty that we use about such approximations is that (after perhaps modifying the
limit steps) the set X “

 

xs : s ď ωck
1
(

is closed. Let Un be the open set generated
by

 

xsæn : s ă ωck
1
(

. Then every y P
Ş

n Un lies in the closure of X, and hence
in X. Since X is countable, it is null. �

Proposition 2.7 is used, for example, to show that the two halves of the higher
version of Chaitin’s Ω are not Π1

1-random, indeed, they are not higher weakly 2-
random. Another property, weaker than having a finite-change approximation, can
be used to separate Π1

1-randomness from higher weak 2-randomness. This relies
on Stern’s result [86], rediscovered by Chong, Nies and Yu [17], that x is Π1

1-
random if and only if it is ∆1

1-random and ωx1 “ ωck
1 . Thus, it suffices to constuct

a higher weakly 2-random sequence x such that ωx1 ą ωck
1 . For example, every

non-hyperarithmetic x with a finite-change approximation satisfies ωx1 ą ωck
1 : the

function mapping n to the least s such that xæn “ xsæn is unbounded in ωck
1 .

Unfortunately, Proposition 2.7 says that this cannot be used for the desired sepa-
ration. However a weaker notion is compatible with being higher weakly 2-random:
having an approximation xxsy such that for all n, the set

 

s ă ωck
1 : xsæn “ xæn

(

is closed (and neccessarily unbounded). Again, if x has such an approximation

13 Note that it is not enough to require that fs`1pnq ‰ fspnq for only finitely many s ă ωck
1 ;

to that, we need to add that for all limit s ă ωck
1 , the limit făs “ limtăs ft exists and for all n,

fspnq ‰ făspnq for only finitely many limit s. In general, in approximations for which the limits
făs exist for all limit s, by reindexing, we assume that fs “ făs.
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and is not hyperarithmetic, then the map n ÞÑthe least s such that xsæn “ xæn is
unbounded in ωck

1 (if t ď ωck
1 is a bound, then by closure, xt “ x; for all t ă ωck

1 ,
xt is hyperarithmetic).

Finally, we remark that subclasses of the O-computable functions can be used to
give Demuth-style characterisations of higher weak 2-randomness. This is related to
the class MLRrH1s, determined by null sets

Ş

n Un for which λpUnq ď 2´n, each Un
is effectively open, but the sequence itself is not necessarily uniformly so; rather,
H1 can be used to find a c.e. open index for Un. In the lower setting, MLRrH1s
is equivalent to weak 2-randomness, but in the higher setting, the class MLRrOs
(modified so the indices are of Π1

1 open sets) is very strong, strictly stronger than
Π1

1-randomness, as it is incompatible with being O-computable. A time trick similar
to the one above is used in the lower setting. In the higher setting, we restrict the
kind of functions that give indices.

For example, letting xWeyeăω be an effective enumeration of all Π1
1 open sets,

we say that a finite-change null set is a null set of the form
Ş

xWfpnqynăω which
is nested (meaning Wfpn`1q Ď Wfpnq), satisfies λpWfpnqq ď 2´n, and such that f
has a finite-change approximation. Avoiding all finite-change null sets is equivalent
to higher weak 2-randomness. In the direction which requires a new argument,
curiously, we are informed by the proof of Proposition 2.7. Suppose that xWfpnqy

determines a finite-change null set, which we want to cover by a higher weak 2-test;
let xfsy be a finite-change approximation of f . By fiddling, we may assume that
for all s, xWfspnqy is nested and λpWfspnqq ď 2´n. Let Un “

Ť

săωck
1
Wfspnq; we

show that
Ş

Un is null. For s ď ωck
1 , let As “

Ş

nWfspnq, and let A “
Ť

sďωck
1
As.

Each As is null, and ωck
1 is countable, so A is null. And

Ş

n Un Ď A; this uses the
fact that

 

fs : s ď ωck
1
(

is compact.

2.4. Other work. There is much more to say about higher randomness. There
is extensive work on lowness notions for higher randomness (the higher analogues
of K-trivial sets) in [50, 10, 3], work on the Borel complexity of the set of Π1

1-
randoms [68], and a higher analogue of the Miller-Hirschfeldt theorem saying that
a ML-random is weak 2 random if and only if it forms a minimal pair with H1 [44].
In a different direction, recently researchers have been studying randomness de-
fined using infinite-time Turing machines [11, 69], in which admissibility plays an
important role as well.

3. Uncountable computable structure theory

Effective considerations of rings and fields were made even before the formalisa-
tion of computability itself [21, 49, 89]. The modern incarnation of these is the field
of computable structure theory (or computable algebra). The aim is to understand
the relationship between the algebraic structure and the information stored in that
structure; see the surveys [58, 47, 22], the books [6, 31] and the upcoming book by
Montalbán.

By the nature of the tools involved, such considerations are restricted to count-
able structures. It is natural to attempt to study effective properties of uncountable
structures as well, and several approaches have been suggested (see [40]). In [42],
J. Knight and the author suggested using admissible computability on cardinals for
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this purpose (recalling Example 1.9 saying that every cardinal is an admissible or-
dinal). For example, for any cardinal κ, we say that a group G with universe κ is κ-
computable if its group operation is a κ-computable function, and similarly a linear
ordering with universe κ is κ-computable if the ordering relation is κ-computable.
We can then attempt to answer the same questions asked in the countable setting:
which linear orderings of size κ have κ-computable copies? What does it take to
compute isomorphisms between two κ-computable copies of some structure?

This last question gives rise to the concept of a κ-computably categorical struc-
ture: a structure M such that for any two κ-computable copies of M , there is a
κ-computable isomorphism between them. The classical notion of ω-computably
categorical structres, which was introduced by Mal’cev [65], has been studied ex-
tensively. There are two lines of inquiry. One is general; important results, for
example, are the characterisation of relative computable categoricity by syntactic
means of an effective family of formulas defining the orbits of the structure [13, 7];
Goncharov’s result saying that computable categoricity is equivalent to its relative
version in 2-decidable structures [37]; work on uniform computable categoricity
[24]; Goncahrov’s construction of structures with finite computable dimension (the
number of computable copies up to computable isomorphism) [38]; and more recent
work on the complexity of being computably categorical [28]. In [43], some work
along these lines is carried out in the higher setting.

Another line of inquiry is trying to understand computable categoricity in par-
ticular classes of structures. An important example is linear orderings, where the
fundamental result is due to Dzgoev (see [36]) and Remmel [74]:

Theorem 3.1. A computable linear ordering is computably categorical if and only
if it has finitely many elements with successors.

Theorem 3.1 formalises the idea that the only way that a linear ordering can be
computably categorical is if Cantor’s back-and-forth technqiue can be used to con-
struct isomorphisms between any two of its copies. The point about having finitely
many successors is that after matching up finitely many elements (the successor
pairs), which can be done non-uniformly, the rest is broken up to finitely many
dense pieces, which we can match with a back-and-forth process.

In [41], the authors characterise ω1-computably categorical linear orderings. As
we shall see, this sheds light on the classical result as well. The naive attempt
at generalising Theorem 3.1 to the higher setting would be to guess that an ω1-
computable linear ordering is ω1-computably categorical if and only if it has only
countably many successor pairs; recall that in L, Lκ “ Hκ, so the ω1-finite sets are
precisely the hereditarily countable ones.14 This, however, fails in both directions.

In one direction, we observe that 2 ¨ R, the linear ordering obtained from the
reals by replacing each real by a successor pair, is ω1-computably categorical. If
we are given two copies of 2 ¨ R, then non-uniformly, we fix two copies of 2 ¨ Q
inside them. Then we can match the rest. The important point is that if A is a
countable subset of an ω1-computable linear ordering K, then for every x P KzA,
we can ω1-effectively find the left and the right cuts that x defines in A, that
is, the sets ta P A : a ăK xu and ta P A : x ăK au. So suppose that K and K 1

are two ω1-computable copies of 2 ¨ R; let A and A1 be the images of 2 ¨ Q in K
and K 1, respectively. As stated, an order-preserving bijection π : A Ñ A1 can be

14 Throughout, we assume, for simplicity, that V “ L.
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fixed, as it is a countable object. Now given any p P KzA, we compute the A-cut
pB1, B2q determined by p. We first wait for another point q which determines the
same A-cut. Then, we find two points p1 and q1 which in K 1 determine the A1-cut
pπrB1s, πrB2sq, and match tp, qu with tp1, q1u in an order-preserving way.

What this second example tells us is that the Dzgoev-Remmel result relies, to
put it flippantly, on the fact that ℵ0 is a strongly inaccessible cardinal: in more
serious language, on the fact that a finite subset of a linear ordering can be split
into only finitely many cuts, and so determines only finitely many intervals in the
linear ordering. In any case, the analysis so far shows that the phrasing of the result
in terms of successor pairs is a little misleading. Rather, what it should say, is that
a countable linear orderin K is computably categorical if and only if there is a finite
set A Ă K such that for every cut pA1, A2q of A, the order-type of the K-interval
determined by that cut allows us to effectively match it to its copy.15 The example
2 ¨ R shows that in the collection of these “effectively matchable” order-types, we
must include the finite ones, as well as, in the countable setting, the rationals.

Under this reconsideration, we could guess that an ω1-computable linear order-
ing K is ω1-computably categorical if and only if there is a countable set A Ă K
such that every K-interval determined by a cut of A is either finite or dense. How-
ever, in the uncountable setting, density is insufficient. For we note that the linear
ordering Q ¨ ω1 (the result of replacing each point in the linear ordering ω1 by a
copy of the rationals) is dense, but not ω1-computably categorical. We can con-
struct two ω1-computable copies K and K 1 of this linear ordering and at the same
time diagonalise against all ω1-computable attempts at an isomorphism between
them. This is done with a priority argument. For each e ă ω1, we ensure that
the eth partial ω1-computable function ϕe is not an isomorphism from K to K 1. To
do that, we fix an interval C of K of order-type Q; when we see that ϕe has halted
on every point of C, we add a new point to K 1, between points of ϕerCs. Note that
if ϕe is total, we will witness ϕeæC at a countable stage, as C is countable. The
requirement then imposes restraint on weaker ones. This only restrains countable
pieces of K and K 1, and so the regularity of ω1 implies that each requirement can
find some unrestrained space.

What underlies this argument is that in the original plan of carrying out the
back-and-forth process, density was not really the important property of Q; what
is important is that Q is saturated. There is a unique saturated ω1-linear ordering,
denoted by η1, and we can construct ω1-computable copies of it. In any case, this
shows that perhaps a reformulation of the Dzgoev-Remmel theorem which grasps
at its “real essence” is as follows:

Theorem 3.2. A computable linear ordering K is computably categorical if and
only if there is a finite set A Ă K such that every K-interval determined by a cut A
is either finite or saturated.

We almost have a good guess for how to characterise ω1-computably categorical
linear orderings; we just require the parameter set A to be countable. But there is
one last issue. Given two linear orderings of finite size n, we can effectively match

15 Here a cut pA1, A2q of A is a partition of A into an initial and final segment (one of which
may be empty), and the K-interval determined by this cut is tx P K : A1 ă x ă A2u, where as
expected A1 ă x means p@a P A1q a ăK x, and similarly for x ă A2. We sometimes write
pA1, A2qK for this K-interval.
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between them by waiting for all n points to appear. However, this assumes that
we know n. If there are infinitely many intervals, we could have some, many, or
all sizes appear as intervals. To complete a construction for all intervals together,
we need to know which is which. In the lower setting, this effective aspect of the
characterisation is missing, because adding a finite amount of information costs
nothing. This hidden aspect is revealed in the eventual characterisation:

Theorem 3.3 ([41]). An ω1-computable linear ordering K is ω1-computably cat-
egorical if and only if there is a countable set A Ă K such that every K-interval
determined by a cut of A is either finite or saturated, and further, there is a partial
ω1-computable function which for every cut pA1, A2q of A for which the interval
pA1, A2qK is finite, maps the cut to the size of that interval.16

Now one may ask why we restricted ouselves to κ “ ω1. What about ω2, and
other cardinals? The answer lies in the proof of Theorem 3.3. It is beyond the
scope of this survey to give a detailed account. We only mention that the argument
relies on the fact that every countable linear ordering has a proper self-embedding
(this is how we force an opponent to add points where we want them). Further, it
makes use of Hausdorff’s separation between scattered and nonscattered countable
linear orderings, and so in contrast with the classical case, the construction on an
interval will have two pahses: first, we must force the opponent’s interval to be
nonscattered; then we make it saturated. This special analysis of countable linear
orderings does not generalise to uncountable ones; indeed, there are uncountable
linear orderings with no proper self-embeddings. To date, there is no charaterisation
of ω2-computably categorical linear orderings.

3.1. Free abelian groups. When a structure is not computably categorical, it
still makes sense to ask how much information is required to compute isomorphisms
between any two computable copies. In the special case of the countable free abelian
group Zpωq, computing an isomorphism with the standard copy is the same as
computing a basis for the group. In the countable case, Downey and Melnikov [25]
showed that the free abelian group is ∆0

2-categorical; equivalently, if we are given
a copy of the countable free abelian group (via its groups table), then with one
Turing jump we can construct a basis. The construction is recursive: at a finite
stage we have a finite piece of the basis, and then we can extend it to a larger finite
piece, making sure that the next element of the group is generated.

Of course, this resembles the construction of a basis of a vector space: add a
vector not spanned by the ones chosen so far. In the case of groups, the fact that
we cannot always divide means that some finite linearly independent sets cannot
be part of a basis (think the subset t2u of the group Z). At the minimum, they
need to span a pure subgroup: roughly, one in which every division which occurs in
the larger group, already occurs within the subgroup. Pontryagin [73] essentially
showed that a finite set generating a pure subgroup can be extended to a basis; in
other words, a finitely generated pure subgroup H of a free group G detaches in G,
in the sense that G “ H‘K for some subgroup K of G. This allowed Downey and
Melnikov to give to construct a basis by recursion.

16 On cuts defining infinite outputs, the output of this function may be anything. The point
being that during the construction of an isomorphism, we may believe that pA1, A2qK has some
size n, and match accordingly. If this guess is false, then pA1, A2qK is saturated, so we can extend
the matching that we already made to an isomorphism.
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What happens in the uncountable setting? The situation for vector spaces is the
same as in the countable world: we may need one jump to determine linear inde-
pendence, but once we have that, we can construct bases by transfinite recursion,
adding one element at a time. With free abelian groups, the situation is very differ-
ent. Fuchs (see [33]) showed that there is a pure subgroup H of Zpωq which does not
detach in Zpωq. Suppose that this Zpωq sits inside an uncountable free group G (all
groups henceforth are abelian). The following situation may occur: we try to build
a basis for G by recursion. We keep adding elements, all within H, each generating
a pure subgroup. At each finite step, we have a finite set; by Pontryagin, it can be
extended to a basis of G. But if we happened to work within H, at stage ω we may
have an infinite set which cannot be extended to a basis of G. New complications
are introduced at limit steps that do not occur in the countable world.

In fact, the situation is dire. Not only does not a jump or two suffice, no trans-
finite iteration suffices, and beyond:

Theorem 3.4 ([45]). For every uncountable regular cardinal κ, and every set X Ď κ
which is ∆1

1pLκq-definable, there is a κ-computable copy G of the free abelian group
Zpκq which has no X-computable basis.

The class ∆1
1pLκq is huge, much bigger than any definition of “hyperarithmetic”

in the context of κ-computability. So in particular, Theorem 3.4 implies that there
is a κ-computable copy of Zpκq which has no basis which is first-order definable
over Lκ. Essentially, no process of recursion can be designed that builds bases of
uncountable free groups “from below”. A basis needs to be given in its entirety.

The work in [45] continues work in [46], in which Theorem 3.4 was first proved
for all successor cardinals κ, in fact for all regular cardinals which are not weakly
compact. For such cardinals, it is shown in [46] that the problem of identifying free
groups is as complicated as possible: it is Σ1

1pLκq-complete.
In general, the structure of uncountable torsion-free abelian groups is “sufficiently

thin” so that set-theoretic considerations play a major role in their investigation.
This is most famously seen in Shelah’s independence result for the Whitehead
problem (asking whether every abelian group satisfying ExtpG,Zq “ 0 is free) [79];
for more on this extensive body of work see the book [30]. The results mentioned
above heavily rely on set-theoretic methods as well.

For example, the identification of free groups is tied to the problem of telling
whether a given subset of a regular cardinal κ is nonstationary. Suppose that G is
an abelian group with universe κ. A filtration of G is a sequence xGαyαďκ which
is increasing (α ă β implies Gα Ď Gβ), continuous (Gβ “

Ť

αăβ Gα for all limit
ordinals β ď κ), satisfying G “ Gκ and |Gα| ă κ for all α ă κ. If Ḡ “ xGαy is a
filtration of G, then we let the detachment set of Ḡ to be

DivpḠq “ tα ă κ : p@β P pα, κqq Gα �Gβu ,

where H �K denotes that H detaches in K as a direct summand.17 The detachment
set depends on the choice of filtration, however any two choices result in detachment
sets that are equivalent modulo the nonstationary ideal on κ; any two filtrations
agree on a club (closed and unbounded subset of κ). If every Gα for α ă κ is free,
then G is free if and only if DivpḠq contains a club [29].

17 When Gβ is free this is equivalent to Gβ{Gα being free.
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Fokina et al. [32] showed that the nonstationary ideal on ω1 is Σ1
1pLω1q-complete.

For most regular cardinals, we can show that telling which sets contain clubs is com-
putationally equivalent, in the sense of κ-computability, to the problem of identi-
fying which groups are free. In the harder direction, given a set X Ď κ, we want to
κ-effectively construct a filtration Ḡ of a group G “ GpXq which is free if and only
if X contains a club. In set theory, this is usually done “statically”, but when effec-
tive considerations are applied, it is useful to think of the constrction as being done
recursively. At step α of the construction we will have defined Gγ for all γ ď α, and
need to define Gα`1, depending on whether α P X or not. If α P X then we want
to arrange that α P DivpḠq, by adding copies of Z as direct summands. If α R X
then we want to “twist” Gα inside Gα`1 so that α` 1 witnesses that α R DivpḠq.
In doing so, we need to ensure that we do not destroy past detachments of Gβ ’s for
β ă α.

It would seem that we want to ensure that DivpḠq “ X. However, this ignores
an important point: we need to ensure that for all limit α ă κ, Gα is free. In other
words, we want to ensure that we haven’t twisted too much, even when X is sparse.
To do that, we restrict our twisting further, to a set E Ď κ which is stationary in κ,
but does not reflect (for all α ă κ, EXα is nonstationary in α). In the case that κ
is a successor cardinal, such a set E is given by Jensen’s elaborate machinery [51]
which he used to define a global square sequence in L. When κ is inaccessible, we
need to thin E further, to a set which witnesses the describability of κ, when such
a set exists.18 When such a set does not exist, the cardinal κ is weakly compact,
and then this very compactness tells us that the problem of determining which
group is free is actually relatively simple: a group G of size κ is free if and only if
every subgroup of size ă κ is free, and so in this case the collection of free groups
is Π0

2pLκq.

3.2. Further work. Ash et al. [4, 5] generalised Watnick’s result [91, 75] (inde-
pendently discovered by Downey (see [22]) and by Ash et al.) by showing that for
any computable ordinal α and any 0p2αq-computable linear ordering K, there is a
computable copy of Zα ¨K.19 This shows that 2α jumps are not only sufficient but
required to compute the iteration of the Hausdorff drivative of a linear ordering
(the derivative is taken by identifying points which are finitely far apart). Ash’s
technique is related to Montalbán’s “true stage” approximation of the iterations of
the jump [70]. Work in progress by Turetsky and the author examines the situation
in the uncountable setting, again revealing what is special about the countable case
and what is general. For example, the work seems to imply that the fundamental
operation is not actually Hausdorff’s derivative, but rather, one closer to that of
Cantor-Benixson.

Further extensive work on thin trees of uncountable height was undertaken by
Johnston [54], who again utilised set-theoretic tools in novel ways. For example,
he uses Suslin trees when building Π0

1 classes (in the uncountable sense); they
allow us to work toward an empty class but later recover the construction if we
need to change our mind. Further work by Johnson [52, 53] considers fields and

18 An interesting aspect of the construction in these cases is that given X, we construct a
group G which is X-computable, but the filtration Ḡ will not be X-computable but merely left-
κ-c.e.; this kind of distinction does not of course come up in set theory.

19 When α ě ω we need to replace 2α by 2α` 1.
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uses abstract elementary classes. On the arithmetical hierarchy in the uncountable
setting see [12].

Many questions abound; a particular one is what happens when we drop the
assumption V “ L.
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[66] Per Martin-Löf. On the notion of randomness. In Intuitionism and Proof Theory (Proc. Conf.,
Buffalo, N.Y., 1968), pages 73–78. North-Holland, Amsterdam, 1970.

[67] Joseph S. Miller and Liang Yu. On initial segment complexity and degrees of randomness.
Trans. Amer. Math. Soc., 360(6):3193–3210, 2008.

[68] Benoit Monin. Higher randomness and forcing with closed sets. Theory Comput. Syst.,
60(3):421–437, 2017.
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