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Abstract. We show that the existence of hyperarithmetic isomorphisms be-

tween computable structures is complete for Π1
1 equivalence relations under

computable reductions. This uses Montalbán’s true stages machinery for iter-

ated priority arguments, of which we give a new development.

1. Introduction

Does a classification problem have good invariants? This is a fundamental ques-
tion, which encompases endeavors across mathematics. To give a positive answer,
it suffices to exhibit simple invariants. To take canonical examples, vector spaces
over a fixed field are classified by their dimension, while algebraically closed fields
of a fixed characteristic are classified by their transcendence degree. One of the
main insights of mathematical logic is that tools in set theory and computability
theory can be used to formally state and prove that certain classification problems
do not have simple invariants.

In descriptive set theory, this is formalised by studying definable equivalence
relations up to Borel reducibility (see [Gao09, Kan08, Kec99]). This notion of
reducibility allows us to compare the complexity of equivalence relations on Pol-
ish spaces. An anti-classification result is given by completeness. A collection Γ
of equivalence relations is specifed by either syntactic complexity or a structural
property; for example the collections of Borel or analytic equivalence relations; or
the relations whose equivalence classes are all countable. An equivalence relation
E P Γ is complete if every equivalence relation in Γ reduces to E. This says that E
is as complicated as possible within the class Γ. Invariants, on the other hand, serve
to simplify, and so are incompatible with completeness. In the examples of vector
spaces and fields, the invariants give a reduction from the isomorphism relation
for these structures to equality of natural numbers, one of the simplest equivalence
relations in existence.

Computability theory gives a different setting for the same general project. It
studies equivalence relations on N under computable reductions. A computable
reduction of an equivalence relation E to an equivalence relation F is a computable
function f : NÑ N such that for all i, j P N, iEj ðñ fpiqFfpjq. If there is such
a reduction we write E ď F . This is a modification of computable reducibility
on sets of natural numbers, first studied by Post [Pos44], who showed that the
halting set is complete for c.e. sets under computable reducibility. The study of
computable reducibility of equivalence relations has origins in work of Ershov’s
([Ers77a] , see [Ers77b, Ers99]), and began in ernest with Bernardi and Sorbi, who
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studied c.e. equivalence relations [BS83]. Gao and Gerdes, and separately Andrews,
Lempp, J. Miller, Ng, San Mauro and Sorbi, have also studied c.e. equivalence re-
lations [GG01, ALM`14], while Fokina, S. Friedman and Nies have studied Σ0

3

equivalence relations [FFN12], and Fokina, S. Friedman, Harizanov, Knight, Mc-
Coy and Montalbán have studied Σ1

1 equivalence relations [FFH`12], all under
computable reductions.

Set theory and computability theory give complementary views of the complex-
ity of classification. Set theoretic methods allow topological and measure-theoretic
techniques, and study definability on a large scale. Computability studies simpler
objects (relations on countable rather than continuum-sized domains), however new
distinctions come from the considerations of effectiveness. An example of this is
the complexity of isomorphism relations. In the setting of descriptive set theory,
H. Friedman and Stanley [FS89] initiated the study of isomorphism problems for
classes of countable structures under Borel reducibility. One of their central results
is that the isomorphism relation for all countable structures, while being analytic
(Σ1

1), is not complete for that class. In contrast, Fokina et al. showed that isomor-
phism of computable structures is computably complete for effectively analytic (Σ1

1)
equivalence relations on N [FFH`12]. More precisely, if pMiqiPω is an admissible
numbering of all partial computable structures, consider the relation

iE–j è rMi and Mj are total and Mi –Mjs.

This is a Σ1
1 equivalence relation on N1, and for every Σ1

1 equivalence relation E on
N, E ď E–.

In contrast with descriptive set theory, which does not differentiate between
complexities of functions on countable sets, in computability theory it is natural
to ask not about the existence of arbitrary isomorphisms but about definable, or
concrete ones. At the simplest level, Fokina, Friedman and Nies examined a related
equivalence relation by restricting to computable isomorphisms rather than allowing
arbitrary isomorphisms; they showed that computable isomorphism of computable
structures is computably complete for Σ0

3 equivalence relations on N [FFN12], where
this is understood in the same manner as the previous result.

Rather than restrict to computable isomorphisms, in this paper we look at the
class of effectively Borel functions, also known as the hyperarithmetic functions. A
function is hyperaithmetic if it can be built from very simple functions by iterating
the operation of the Turing jump and closing under relative computability — much
like the Borel sets are built from the open ones by taking countable unions and
complements. Similarly, the hyperarithmetic functions are those which are ∆1

1 —
effectively analytic and effectively co-analytic, which again mirrors a characterisa-
tion of Borel sets. We answer the question (which again, cannot be asked in the
set-theretic setting), what is the complexity of the existence of effectively Borel
isomorphisms between computable structures? We prove:

Theorem 1.1. Hyperarithmetic isomorphism on computable structures is com-
putably complete for Π1

1 equivalence relations on N.

In more detail: fix an admissible numbering of partial computable structures
pMiqiPω. Consider the equivalence relation i „ j è both Mi and Mj are total,

1Strictly speaking, we must define E– to be the reflexive closure of the above relation to make
it an equivalence relation.
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and there is a hyperarthmetic isomorphism between Mi and Mj .
2 The universe

of this relation is N. The Spector-Gandy theorem [Spe60, Gan60] implies that this
relation is Π1

1 (effectively co-analytic). The precise statement of Theorem 1.1 is that
the equivalence relation „ is computably complete for Π1

1 equivalence relations on
N: for every Π1

1 equivalence relation E there is a computable function f such that
for all i, j P N, iEj ðñ fpiq „ fpjq.

1.1. Our approach, informally. Let E be a Π1
1 equivalence relation on N. To

prove Theorem 1.1 we construct an array xNky of uniformly computable structures
such that for all i, j P N,

iEj ðñ there is a hyperarithmetic isomorphism between Ni and Nj .

What do these structures look like? Each structure will have disjoint components
indexed by pairs pe, iq P N. The component indexed by pe, iq in the structure Nk

will be used to diagonalise against the eth potential hyperarithmetic isomorphism
between Ni and Nk. We may assume that the universes of the component indexed
by pe, iq are the same in all structures. Each component pe, iq has two parts. One
is a tag, consisting of two elements ae,i and be,i (which we may assume are the
same elements in all the structures). These elements are not distinguished in the
signature of these structures. To each one we attach a linear ordering: Ae,i and
Be,i. Again we may assume that the universes are the same.

So formally, the signature will contain:

‚ Unary relations T e,i;
‚ Binary relations Me,i;
‚ Binary relations Le,i.

Each structure, as mentioned, will contain disjoint sets Ae,i, Be,i, and tae,i, be,i :
pe, iq P N2u, with each Ae,i and Be,i infinite. These sets are uniformly computable,
and the functions pe, iq ÞÑ ae,i, be,i are computable.

‚ T e,ipxq holds in Nk if and only if x “ ae,i or x “ be,i;
‚ pMe,iqNk is a directed graph. Me,ipx, yq holds in Nk if and only if x P Ae,i

and y “ ae,i, or x P Be,i and y “ be,i.
‚ pLe,iqNk will be a disjoint union of two linear orderings, one on Ae,i, the

other on Be,i.

We will denote these linear orderings by Ak,e,i and Bk,e,i. Now the main point of
these definitions is the following:

Proposition 1.2. Let m, k P N. Suppose that F : Nm Ñ Nk is an isomorphism.
Then:

(a) F pae,iq P tae,i, be,iu.
(b) If F pae,iq “ ae,i then F rAm,e,is “ Ak,e,i and F rBm,e,is “ Bk,e,i (and of

course preserves their linear orderings).
(c) If F pae,iq “ be,i then F rAm,e,is “ Bk,e,i and F rBm,e,is “ Ak,e,i.

Both are potentially possible, depending on the order-types of the relevant linear
orderings.

We need to ensure two things:

2Again, we mean „ to be reflexively closed so as to be an equivalence relation.
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‚ IfmEk then for some computable ordinal β,Hpβq computes an isomorphism
between Nm and Nk.

‚ If  mEk then for all e, Fe is not an isomorphism between Nm and Nk.

Here xFey is a uniform list of all Π1
1 partial functions from N to N; note that a

function is hyperarithmetic if and only if it is total Π1
1.

Let us consider first how to diagonalise against some Fe. As mentioned above,
we reserved the component pe, iq of Nk to diagonalise against Fe : Ni Ñ Nk being
an isomorphism. The rough plan is as follows. Suppose that  iEk, so we want to
diagonalise. We are only worried if F pae,iq P tae,i, be,iu.

‚ If Fepa
e,iq “ ae,i then we ensure that Ai,e,i fl Ak,e,i;

‚ If Fepa
e,iq “ be,i then we ensure that Ai,e,i fl Bk,e,i.

In either case this ensures that Fe cannot be an isomorphism from Ni to Nk; this
follows from Proposition 1.2.

On the other hand, if iEk then regardless of what Fepa
e,iq may be, we need to

ensure that Ni – Nk. An important point is that this doesn’t mean that we must
have Ai,e,i – Ak,e,i and Bi,e,i – Bk,e,i; this could be flipped, with the isomorphism
matching A’s to B’s. We will make sure that one of the two always happens, even
if  iEk — and so all the structures Nm we construct will be pairwise isomorphic.
The only question is whether a hyperarithmetic oracle can correctly match the
linear orderings. That is, an oracle constructing the isomorphism will need to know
whether to send ae,i to itself or to be,i, and then construct the isomorphisms of the
linear ordering.

Π1
1 sets are Σ1pLωck

1
q. This means that they are analogous to c.e. sets, except

that they take ωck
1 many steps to enumerate. Here recall that ωck

1 is the least
non-computable ordinal, which is also the least admissible ordinal beyond ω. As a
result, each true Π1

1 fact ϕ can be attached a computable ordinal, below denoted
by vϕw, which is its “ordinal height”: at time (or level) α “ vϕw we discover that ϕ
is true. Roughly, this corresponds to Hpαq, the αth iteration of the Turing jump,
computing the fact that ϕ is true. Recalling that it takes (about) α jumps to
compute isomorphisms between copies of the linear ordering ωα, the more involved
plan is now as follows.

First, we present the equivalence relation E as the union
Ť

αăωck
1
Epαq of hyper-

arithmetic equivalence relations which get coarser with time: for a time we believe
that  iEk, but at some point α we may discover that iEk.

Now suppose that at time α ă ωck
1 , we discover that Fepa

e,iqÓ (and is either ae,i

or be,i). We will then make, for all m P N,
 

Am,e,i, Bm,e,i
(

– tωα, ωα ` ωαu ,

and note that ωα fl ωα ` ωα “ ωα ¨ 2. For all k P N,

‚ if iEpαqk, then we let Ak,e,i – ωα and Bk,e,i – ωα ¨ 2.
‚ if  iEpαqk, then we may or may not flip, depending on Fepa

e,iq:
– if Fepa

e,iq “ be,i then we choose the same: Ak,e,i – ωα and Bk,e,i –
ωα ¨ 2.

– if Fepa
e,iq “ ae,i then we flip, letting Ak,e,i – ωα ¨ 2 and Bk,e,i – ωα.

If we manage to do this, we will have diagonalised successfully: if  iEk then
for all α,  iEpαqk, and so whenever some Fe converges, we will diagonalise. But
now we need to address the other requirement: what happens when iEk? This is
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discovered at some stage β, and roughly (give or take some jumps), we will want
Hpβq to compute an isomorphism between Ni and Nk. We work on each component
separately. For a fixed pe, iq, there are two possibilities:

‚ At stage α ă β, we discovered that Fepa
e,iqÓ and so determined that the

orderings are ωα and ωα ¨ 2. But α ă β means that Hpβq knows this, and
knows which way we diagonalised, so it can correctly match ae,i to itself
or to be,i. Then, again because α ă β, Hpβq can construct isomorphisms
between any two copies of ωα (and of ωα ¨ 2).

‚ Otherwise, suppose that Fepa
e,iqÓ at some stage α ě β. By that stage

we know that we want to make Ni and Nk the same. So we know that
Ai,e,i – Ak,e,i and Bi,e,i – Bk,e,i. In fact, we will ensure that the βth

Hausdorff derivative Ai,e,iβ is the same linear ordering (not just isomorphic)

as Ak,e,iβ , and the same for the B’s. The oracle Hpβq will compute these
derivatives and match them by the identity function. Each point in the
derivative is the image of a sub-ordering of type ωβ , and Hpβq, having
computed the derivative process, can now match these point-by-point.

Roughly, that is the plan; but we have not addressed some questions:

(1) If Fepa
e,iqÒ, what do the orderings Ak,e,i and Bk,e,i look like? Unfortunately

we cannot give a Π1
1 enumeration (of order-type ω) of the total Π1

1 functions,
i.e. the hyperarithmetic, functions.

(2) It seems that the construction of the structures requires the oracles Hpβq

for all β ă ωck
1 . But we want to make the structures Nk computable. And

we can’t enumerate all the computable ordinals, not even in a ∆1
1 way.

There are two solutions that address both problems. To work computably, we use
Montalbán’s [Mon14] extension of the Ash machinery of iterated priority arguments
(see [AK00]). That means that at every stage s, for every α, we have a finite, stage s
approximation for Hpαq, in a computable way, and we work with that oracle to
construct our structures. Many of these approximations will be false, and so we
need to delicately ensure that we can correct our mistakes when we discover them
(or think that we discovered them, only to be recorrected again in the future).
This is the machinery of α-true stages. In section 2 we give a redevelopment of
this machinery, which we believe is simpler and more intuitive than that which has
appeared in print so far.

We still need to address the question: what about getting all the ordinals up
to ωck

1 ? This is a serious problem, because the Ash - Montalbán machinery works
up to any chosen computable ordinal, not all the way up to ωck

1 . The solution is
to use a pseudo-ordinal : a Harrison linear ordering that supports a jump-hierarchy
and other arithmetic structures such as the finite approximations to the jumps.
Now, ωck

1 is an initial segment – the well founded part – of a pseudo-ordinal δ˚,
and we perform our construction imagining that the pseudo-ordinal is indeed well-
founded. After the fact, we take a look and observe that the extra ill-founded layers
(between ωck

1 and δ˚) did not spoil our original plans. For example, it is possible
that  iEk but that we “discover” that iEpαqk at some level ωck

1 ă α ď δ˚. The
same argument works: Hpαq will compute an isomorphism between Ni and Nk.
But that “iteration” of the jump is not hyperarithmetic. All true convergences
of Fe appear at well-founded stages, so below α, and so we will have successfully
diagonalised against those. And if Fepa

e,iqÒ even at level δ˚, then we make both
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linear orderings isomorphic to ωδ˚ , which is again a Harrison linear ordering. The
argument thatHpβq, where we discover that iEk at level β, can compute an isomor-
phism between Ni and Nk, works exactly the same: the βth Hausdorff derivative
is computed, and is identical in both structures — it will be ill founded, but that
does not matter.

2. True Stages

We discovered a development of Montalbán’s apparent true stages machinery
that we believe is simpler and more intuitive. We present it here.

2.1. True stages, including limits. We first develop a system of apparent true
stages that includes limit iterations of the jump. Let δ˚ be a computable ordinal.
We fix a well-ordering ă˚ of N of order-type δ˚`1 such that the successor function
and collection of limits are computable (essentially, a notation for δ˚`1 in Kleene’s
system of ordinal notations O). For α ď δ˚ we let nα denote the natural number
in position α according to ă˚.

Jumps of strings. For a string σ P ωďω let σ1 denote the collection of inputs on
which a universal Turing machine with oracle sequence σ halts in fewer than |σ|
many steps. Thus the jump of the empty string is empty. We assume that if σ
is a one-entry extension of τ then |σ1| ď |τ 1| ` 1. Thus, for every string σ we get
an enumeration of the elements of σ1 in order of which converged earlier (i.e. with
shorter oracle). If σ is finite, we let ppσq be the last element enumerated into σ1;
ppσq “ ´1 if σ1 “ H.

Definition. By induction on α ď δ˚ we define the relation s Ĳα t (for s ď t ď ω),
which reads “s appears α-true at stage t.” We also define along the same induction
strings σαt .

‚ The string σαt is defined to be the increasing enumeration of all the stages s
such that nα ă s ă t and s Ĳα t.

The aim is: σαω is our version of Hpαq, and σαt is the stage t approximation of σαω .
The definition of Ĳα is as follows.

‚ For s, t ď ω, s Ĳ0 t if s ď t.
‚ If α is a limit ordinal, then s Ĳα t if for all β ă α, s Ĳβ t.
‚ If Ĳα has been defined, then s Ĳα`1 t if s Ĳα t, and there is no e ă ppσαs q

in pσαt q
1zpσαs q

1.

The general idea for this definition is this: at stage s ă ω, with oracle σαs we
compute the jump set pσαs q

1, but we only commit to the values of the jump up to
the last element enumerated, namely ppσαs q. Suppose that t ą s. If s đα t then t
thinks that s was likely wrong about the oracle σαs , and so there is no meaningful
comparison between their jumps pσαs q

1 and pσαt q
1. Suppose, however, that s Ĳα t.

We will shortly show that σαs ď σαt , and so pσαs q
1 Ď pσαt q

1. Recall that s only
commited to the jump up to ppσαs q. This commitment is discovered to be false
by stage t if pσαs q

1 æ ppσαs q ‰ pσαt q
1 æ ppσαs q, that is, if a number e ă ppσαs q was

enumerated into pσαt q
1 with use beyond σαs .
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Basic properties. First, it is easy to see: if α ă β and s Ĳβ t then s Ĳα t. In
particular, as Ĳ0 is the natural ordering on ω ` 1, if s Ĳα t then s ď t. Also, for
all t and all α, t Ĳα t.

Lemma 2.1. For all α ď δ˚,

(a) The relation Ĳα is a partial ordering.
(♦) For all s ď r ď t ď ω, if s, r Ĳα t, then s Ĳα r.
(♣) For all s Ĳα r Ĳα t ď ω, if s Ĳα`1 t then s Ĳα`1 r.
(b) If s Ĳα t then σαs ď σαt .
(c) If s Ĳα`1 t and t is finite, then ppσαs q ď ppσαt q.

s r

t

s r

t

s r

t

α

α
α

α

α
α

α`1

α
α`1

Figure 1. From left to right: the transitivity of Ĳα, the property
p♦qα, and the property p♣qα (given p♦qα).

While the converse of (b) may fail, it is “close” to the truth, and this gives an
informal motivation for the three properties illustrated in fig. 1. The relation Ĳα

is transitive because if s Ĳα r Ĳα t then σαs ď σαr ď σαt , and so σαs ď σαt . The
property p♦q is similar: if σαs , σ

α
r ď σαt then σαs and σαr are comparable. The

property p♣q says that if σαs ď σαr ď σαt , so that pσαs q
1 Ď pσαr q

1 Ď pσαt q
1, and no

number e ă ppσαs q has been enumerated into the jump up to stage t, then certainly
no such number was enumerated by the earlier stage r.

Proof. First, we observe that (b)α follows from (a)α and p♦qα: by the definition
of σαt , for (b)α we need to show that if r ă s Ĳα t then r Ĳα s ðñ r Ĳα t. One
direction follows from (a)α, the other from p♦qα.

We also observe that (c)α also follows from (a)α and p♦qα. Suppose that s Ĳα`1 t
and t is finite. Then s Ĳα t, which by (b)α implies that σαs ď σαt , and so pσαs q

1 Ď

pσαt q
1. If ppσαt q ‰ ppσαs q then ppσαt q R pσ

α
s q
1. If ppσαt q ă ppσαs q then e “ ppσαt q

violates the definition of s Ĳα`1 t.

By simultaneous induction on α we prove: (a)α, p♦qα, and p@β ă αq p♣qβ .

For α “ 0 this is easy. Suppose that α is a limit and that the inductive assump-
tion holds for all β ă α. The assumption certainly implies that for all β ă α, p♣qβ
holds. Since the relation Ĳα is the intersection of the relations Ĳβ for β ă α, we
also get (a)α and p♦qα.

It remains to check the successor case. Let α ă δ˚, and suppose that (a)α and
p♦qα hold (and so also (b)α and (c)α). We verify that (a)α`1, p♦qα`1 and p♣qα
hold.3

For (a)α`1, let s Ĳα`1 r Ĳα`1 t. Then s Ĳα r Ĳα t, and so by (a)α, s Ĳα t. By
(b)α, σαs ď σαr ď σαt , and so pσαs q

1 Ď pσαr q
1 Ď pσαt q

1. Suppose that e P pσαt q
1zpσαs q

1;
we need to show that e ą ppσαs q. There are two cases. If e P pσαr q

1 then e ą ppσαs q

3We do not use the assumption that p♣qβ holds for all β ă α.
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by the assumption s Ĳα`1 r. Otherwise, e P pσαt q
1zpσαr q

1 and so e ą ppσαr q by the
assumption r Ĳα`1 t. By (c)α and the assumption s Ĳα`1 r we get ppσαr q ě ppσαs q.
Note that we may assume that r ă t and so that r is finite.

Next we verify p♣qα. Suppose that s ă r ă t, s Ĳα r Ĳα t, and s Ĳα`1 t. We
have observed that pσαr q

1 Ď pσαt q
1. Let e P pσαr q

1zpσαs q
1. Then e P pσαt q

1zpσαs q
1, and

so by s Ĳα`1 t we get e ą ppσαs q; so s Ĳα`1 r as well.

Finally, we verify p♦qα`1. In fact, it follows from p♦qα and p♣qα. Suppose that
s ă r ă t and that s, r Ĳα`1 t. By p♦qα, s Ĳα r. By p♣qα, s Ĳα`1 r. �

Corollary 2.2. For finite t, s Ĳα`1 t if and only if s Ĳα t, and for all r P ps, ts such
that sŸα r Ĳα t, ppσαr q ě ppσαs q.

Proof. Each successive r such that s Ÿα r Ĳα t extends σα by one bit, and so
pσαt q

1zpσαs q
1 equals tppσαr q : sŸα r Ĳα t & ppσαr q ‰ ppσαs qu. �

Structurally, the transitivity of Ĳα and the property p♦qα together say that
pω ` 1,Ĳαq is a tree; every s ă ω has height at most s in that tree. We shall soon
see that ω has height ω in this tree.

When we say nothing.

Lemma 2.3. Suppose that s Ĳα t, and there is no stage r Ÿα s such that r ą nα.
Then s Ĳα`1 t.

Proof. The assumption implies that σαs is the empty string, and so that ppσαs q “
´1. �

The continuity of the relations Ĳα (namely for limit α, Ĳα is the intersection of
Ĳβ for β ă α) implies that for all s ď t ď ω, maxtγ ď δ˚ : s Ĳγ tu must exist.

Lemma 2.4. Let s ď t ď ω; let γ “ max tα ď δ˚ : s Ĳα tu. If γ ă δ˚ then s ą nγ .

Proof. If nγ ě s then there certainly is no r Ÿγ s such that r ą nγ , whence by
Lemma 2.3, s Ĳγ`1 t, contrary to the definition of γ. �

The lemma says that s Ĳγ`1 t can first fail only at a level γ which is “at play”
at stage s. Another way of stating Lemma 2.4:

Corollary 2.5. Suppose that s Ĳβ`1 t, that γ ą β, and that for all α P pβ, γq,
nα ě s. Then s Ĳγ t.

An application is:

Lemma 2.6. For all t ď ω, 0 Ĳδ
˚

t.

Computability.

Proposition 2.7.

(a) The relations Ĳα, restricted to N, are uniformly computable.
(b) The functions s ÞÑ σαs , restricted to N, are uniformly computable.
(c) The function ps, tq ÞÑ maxtα ď δ˚ : s Ĳα tu (for s ď t ă ω) is computable.

When discussing computability, we ignore the difference between α and nα. So
for example, part (a) of the proposition means that the set

 

pnα, s, tq P N3 : s Ĳα t
(

is computable.
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Proof. The relations s Ĳα t and the functions s ÞÑ σαt are computed by simultane-
ous recursion on t. The latter are computed from the former. The definition of the
relations shows that if we can decide s Ĳα t, and so know σαs and σαt , then we can
also decide whether s Ĳα`1 t. The algorithm is given with the aid of corollary 2.5.
Enumerate the set tβ ď δ˚ : nβ ă su Y t0u as 0 “ β0 ă β1 ă ¨ ¨ ¨ ă βk. Then
s Ĳβ0 t. If we have decided that s Ĳβi t and βi ă δ˚, then we check if s Ĳβi`1 t; if

so, and i ă k, then s Ĳβi`1 t. If βk ă δ˚ and s Ĳβk`1 t then s Ĳδ
˚

t. This decision
procedure also gives part (c). �

True stages. For brevity, for all α ď δ˚, let

Dα “ ts P N : sŸα ωu .

This is the set of the α-true stages. If α is a limit ordinal then Dα “
Ş

βăαD
β .

Note that σαω is the increasing enumeration of the stages s ą nα in Dα. If Dα is
infinite then σαω “

Ť

sPDα σ
α
s .

Lemma 2.8. Suppose that Dα is infinite. The following are equivalent:

(1) s P Dα`1;
(2) for all t ě s in Dα, s Ĳα`1 t;
(3) for infinitely many t ě s in Dα, s Ĳα`1 t.

Proof. For (1) Ñ (2), we use the property p♣q (if s Ĳα`1 ω and s Ĳα t Ĳα ω
then s Ĳα`1 t). For (3) Ñ (1), we use the fact that pσαωq

1 “
Ť

tPDαpσ
α
t q
1. So if

s Žα`1 ω then there is some e P pσαωq
1zpσαs q

1 with e ă ppσαs q; for large enough t
in Dα, e P pσαt q

1 and so s Žα`1 t. �

Proposition 2.9. For every α ď δ˚, Dα is infinite.

Proof. By induction on α. D0 “ N. At successor levels we use non-deficiency
stages. Namely, let s0 ă ω; let s ą s0 in Dα such that ppσαs q is minimal among
ppσαt q for t ą s0 in Dα. By corollary 2.2 and property p♦q, for all t ě s in Dα,
s Ĳα`1 t. By Lemma 2.8, s P Dα`1.

Suppose that α is a limit ordinal, and suppose that for all β ă α, Dβ is infinite.
Given s0 P N we find some γ ă α such that nγ ą s0 and for all β P pγ, αq, nβ ą nγ .
This can be done since α is a limit ordinal4. We then let s be the least stage in Dγ

greater than nγ .
We claim that s P Dα. By induction on β P rγ, αs we show that s P Dβ .

Limit β ď α we get for free. If β P rγ, αq and s P Dβ , then since nβ ě nγ , and
Dβ Ď Dγ , either s ď nβ or s is the least stage in Dβ greater than nβ . In either
case there is no r Ÿβ s such that r ą nβ . Then s P Dβ`1 by Lemma 2.3. �

The argument just given for limit levels has some resemblence to taking the
diagonal intersection of closed and unbounded sets. Indeed, it is inspired by an
analogous construction in the context of uncountable admissible computability, in
which each Dα is closed and unbounded, and at limit levels of uncountable cofinality
we use diagonal intersections.

Remark 2.10. For every α ď δ˚, Dα is the unique infinite path through the tree
pN,Ĳαq. This is proved by induction. At the successor step, if t P DαzDα`1, then
any infinite path above t in pN,Ĳα`1q must also induce an infinite path in pN,Ĳαq,

4And N is well-founded
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and thus must be a subset of Dα; but by Lemma 2.8, t Ĳα`1 s for only finitely
many s P Dα.

The jumps. We show that σαω P 0pαq, in a uniform way.

Proposition 2.11.

(a) For every α ă δ˚, pσαωq
1 ”T σ

α`1
ω , uniformly.

(b) For every limit α ď δ˚, σαω ”T

À

βăα σ
β
ω, uniformly.

(c) For every infinite X Ď Dα, X ěT σ
α
ω , uniformly.

The uniformity means, for example, that there is a single reduction procedure Ψ
such that for all α ă δ˚, Ψpσα`1

ω , αq “ pσαωq
1.

Proof. First observe thatDα and σαω are Turing equivalent, uniformly. Parts (a) and
(b) of the proposition are proved by simultaneous effective transfinite recursion. For
the successor step, suppose that this has been done up to and including level α ă δ˚.
Given pσαωq

1 we first compute σαω and so Dα. Then, to decide if some s P Dα is
in Dα`1, we compare pσαs q

1 and pσαωq
1 and see whether they agree below ppσαs q.

In the other direction, given Dα`1 we compute pσαωq
1: for s P Dα`1 we output

pσαs q
1 æppσαs q.

Now suppose that α is a limit ordinal. The set Dα computes each Dβ for β ă α,
uniformly: s P Dβ if and only if s Ĳβ t for some or all t ě s in Dα. In the other
direction, we use Lemma 2.4 (which applies to t “ ω): to decide if s P Dα we check
if s P Dβ`1 for all β ă α such that nβ ă s.

Finally, to show (c), note that s P Dα if and only if s Ĳα t for some or all t ě s
in X. �

Together with the fact that D0 is computable, we get that σαω P 0pαq as promised.
Indeed, if

@

Hpαq
D

αďδ˚
is the jump hierarchy along δ˚, defined in any reasonable

way, then σαω ”T H
pαq, uniformly in α.

2.2. True stages, redux. The system of approximations σαs and apparent true
stages s Ĳα t defined above is possibly the most natural development of this ma-
chinery. Unfortunately, it is not the most useful for applications. The problem is
that for α a limit, Hpαq is not as useful an oracle as we would like: the question of
whether some event happens at some level β ă α is c.e. in Hpαq but not computable
from it.

It turns out, as was discovered by Montalbán, that we can modify the relations
Ĳα to get Hpα`1q at limit levels. The idea is to “shift the blame” to a lower level.
Suppose that λ ă δ˚ is a limit ordinal, s Ĳλ t but s đλ`1 t. Some e P pσλt q

1zpσλs q
1

is smaller than ppσλs q. Let γ ă λ be maximal such that nγ ă s. Between γ and λ,
nothing is happening at stage s, and so morally speaking, σλs is essentially σγs , the
only real difference coming from the fact that possibly nλ ă nγ . Thus we should
blame level γ and declare that s does not appear to be pγ ` 1q-true at stage t after
all. This is what we do, except for one snag: if γ itself is a limit ordinal, then we
have just repeated the problem at a lower level. We could repeat; alternatively, we
can just shift the blame one level up to γ ` 2, which is what we choose to do.

We therefore define relations ďα as follows. We assume henceforth that δ˚ is a
successor ordinal.

Definition 2.12. Let s ď t ď ω; let λ “ max tα ď δ˚ : s Ĳα tu.
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‚ If λ is a successor ordinal (including the case λ “ δ˚), then for all α ď δ˚,
s ďα t if and only if s Ĳα t (if and only if α ď λ).

‚ Suppose that λ ă δ˚ is a limit ordinal. Let t0 be the least stage in the
interval ps, ts such that s Ÿλ t0 Ĳ

λ t and s Žλ`1 t0. By Lemma 2.8, t0 is
finite. We can therefore let γ be the greatest ordinal below λ such that
nγ ă t0.5 Then for all α ď δ˚, we let s ďα t if and only if α ď γ ` 1.

Note that ďα implies Ĳα.

Remark 2.13. Suppose that λ ă δ˚ is a limit ordinal, that s Ÿλ t0 Ĳ
λ t but

s Žλ`1 t0; and that t0 is finite. Let γ be the greatest ordinal α ă λ such that
nα ă t0. Then s ęγ`2 t. To see this, first observe that sŸλ t but by p♣q, s Žλ`1 t.
Let t1 be least such that s Ÿλ t1 Ĳ

λ t and s Žλ`1 t1. Then t1 ď t0. Let γ1 be the
greatest α ă λ such that nα ă t1. Then γ1 ď γ and s ęγ

1
`2 t.

Properties. We show that ďα has the same nice properties as Ĳα.

Lemma 2.14. For each α ď δ˚, ďα is a partial ordering.

Proof. For all t, t Ĳδ
˚

t, and so t ďα t for all α.

Suppose that s ă r ă t and that s ęα t. We need to show that either s ęα r or
r ęα t. We may assume that s Ĳα r Ĳα t, and so that s Ĳα t.

So there must be some limit ordinal λ ă δ˚ such that s Ĳλ t but s đλ`1 t. Note
that α ď λ.

Let t0 be minimal such that s Ÿλ t0 Ĳ
λ t and s đλ`1 t0. As mentioned above,

t0 is finite. Let γ be greatest below λ such that nγ ă t0. Then s ďγ`1 t. Hence
α P pγ ` 1, λs. The fact that α ě γ ` 1 implies that for any u and v, if u ď t0 and
u Ĳα v then u Ĳλ v (corollary 2.5). This, for example, implies that s Ĳλ r.

s

r

t0

t

λ

λ

α

λ

Now there are two cases, depending on the order between r and t0. Suppose first
that t0 ď r. By p♦q (with respect to r and t), we get t0 Ĳ

α r. As just noticed, this
implies that t0 Ĳ

λ r. So sŸλ t0 Ĳ
λ r but s Žλ`1 t0. By Remark 2.13, s ęγ`2 r, so

s ęα r.
Next suppose that r ă t0. As r ă t0 and r Ĳα t, we get r Ĳλ t. By p♦q,

r Ĳλ t0. The minimality of t0 shows that s Ĳλ`1 r, and so r đλ`1 t0. So again by
Remark 2.13, r ęγ`2 t, whence r ęα t. �

The following is immediate from the definition of ďα:

Lemma 2.15. For all s ď t ď ω:

(a) s ď0 t; and

(b) 0 ďδ
˚

t.

The following as well:

5We may assume that n0 “ 0; since t0 ą 0, such γ must exist.
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Lemma 2.16. The orderings ďα are nested: if α ă β ď δ˚ and s ďβ t then s ďα t.

And the main point of this modification also follows from the definition.

Lemma 2.17. Let λ ă δ˚ be a limit ordinal, and let s ď t ď ω.

(a) s ďλ t if and only if s ďα t for all α ă λ.
(b) If s ďλ t then s ďλ`1 t.

Lemma 2.18. The property p♣q holds for the relations ďα: if s ďα r ďα t and
s ďα`1 t then s ďα`1 r.

Proof. Suppose that s ďα r ďα t but that s ęα`1 r. We show that s ęα`1 t. Since
đα`1 implies ęα`1, we may assume that s Ĳα`1 t. By p♣q for the orderings Ĳα,
we get s Ĳα`1 r. So the failure of s ďα`1 r is blamed on some limit ordinal λ ą α
such that s Ĳλ r but s đλ`1 r; let r0 be least such that sŸλ r0 Ĳ

λ r and s Žλ`1 r0;
let γ ă λ be greatest such that nγ ă r0. So α` 1 “ γ ` 2, i.e., α “ γ ` 1.

We have r0 Ĳ
λ r Ĳα t and since λ ą α, we get r0 Ĳ

α t; by corollary 2.5, we get
r0 Ĳ

λ t. By Remark 2.13, s ęγ`2 t, so s ęα`1 t as required. �

Lemma 2.19. The property p♦q holds for the relations ďα: if s, r ďα t and s ă r
then s ďα r.

Proof. p♦qα is proved by induction on α. As in the proof of Lemma 2.1, p♦qα`1

follows from p♦qα and p♣qα. �

Lemma 2.20. If α is a successor, s Ĳα t and s ęα t, then s ă mintnα, nα´1u.

Proof. By the definition of ďα, there is a limit ordinal λ such that λ ě α, s Ÿλ t
and s Žλ`1 t. Since α is not a limit, α ă λ.

Let t0 and γ be as in the definition of ďα. So s ă t0 and α P rγ ` 2, λq; so
nα ě t0 and nα´1 ě t0. It follows that s ă nα and s ă nα´1. �

Computability follows from Definition 2.12 and Proposition 2.7:

Lemma 2.21.

(a) The relations ďα, restricted to N, are uniformly computable.
(b) The function ps, tq ÞÑ maxtα ď δ˚ : s ďα tu (for s ď t ă ω) is computable.

Next we consider true stages. We let

Cα “ ts P N : s ďα ωu .

Proposition 2.22. For each α ď δ˚, Cα is infinite.

Proof. By Lemma 2.15, C0 “ N. By Lemma 2.17, for limit α we have Cα “ Cα`1.
It thus suffices to prove the proposition for successor ordinals α.

But for α a successor, every s P Dα beyond nα is in Cα, by Lemma 2.20. �

The argument just given also shows that for successor α, Cα and Dα are Turing
equivalent, uniformly. Given Dα, we only need to check s ď nα in Dα; we check
whether s ďα t for some t ą nα in Dα. A similar process reduces Dα to Cα.
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2.3. Shifting by one. The fact that for limit α ă δ˚, ďα is the same as ďα`1,
means that we can ignore the limit levels. We can thus shift the infinite levels by
one. We make the following definitions for α ă δ˚:

ďα “

#

ďα, if α ă ω;

ďα`1, if α ě ω.

Cα “

#

Cα, if α ă ω;

Cα`1, if α ě ω.

Hpαq “

#

Hpαq, if α ă ω;

Hpα`1q, if α ě ω.

ταs “

#

σαs , if α ă ω;

σα`1
s , if α ě ω.

The sets Hpαq can be given a concise description: Hp0q “ H, and for α ą 0,

Hpαq “

´

À

βăαHpβq

¯1

.

It might seem that these strings τ are just remnants of Ĳ, having little to do with
our new ď. In fact, the τ are listing true stages, just as the σ did. Recall that σαt is
an increasing enumeration of the stages r such that nα ă r Ÿα t. By Lemma 2.20,
if α is a successor, then for r ą nα, for all t ě r, r ďα t if and only if r Ĳα t.
Hence σαt is also the increasing enumeration of the stages r such that nα ă r ăα t.
Shifting by one, let mα “ nα for α ă ω and otherwise let mα “ nα`1; then for all
α ď δ˚, ταt is the increasing enumeration of the stages r such that mα ă r ăα t.

Again assuming δ˚ is a successor ordinal, we let δ˚ “ δ˚´ 1. We summarise the
properties of these objects.

Proposition 2.23. Let α ď δ˚.

(a) ďα is a partial ordering on ω ` 1.
(b) s ď0 t if and only if s ď t.
(c) For all t ď ω, 0 ďδ˚ t.
(d) The orderings are nested: if α ă β ď δ˚ and s ďβ t then s ďα t.
(e) Continuity: if λ ď δ˚ is a limit, then s ďλ t ðñ p@β ă λq s ďβ t.
p♦q If s, r ďα t and s ď r then s ďα r.
p♣q If α ă δ˚, s ďα r ďα t and s ďα`1 t then s ďα`1 r.
(f) If s ďα t then ταs ď ταt .
(g) Cα “ ts P N : s ďα ωu is infinite, and ταω “

Ť

sPCα
ταs .

(h) ταω ”T Cα ”T Hpαq, uniformly.
(i) The functions s ÞÑ ταs , restricted to s P N, are uniformly computable.
(j) The relations s ďα t, restricted to s, t P N, are uniformly computable, and

further, the function ps, tq ÞÑ maxtα ď δ˚ : s ďα tu is computable.
(k) For every s ă ω, for only finitely many α ď δ˚ is ταs nonempty, and the

collection of such α can be obtained computably from s.
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3. Further technology

3.1. Relative to a pseudo-ordinal. Σ1
1 bounding — an “overspill” argument

— allows us to extend the technology of apparent α-true stages to ill founded
extensions of the least non-computable ordinal ωck

1 . A unifying approach to all
overspill arguments uses an ill founded model of ZFC. Let V ˚ be a countable ω-
model of ZFC which omits ωck

1 ; this implies that the well-founded part of V ˚

has height ωck
1 , and so V ˚ contains ill-founded computable “ordinals”. These are

pseudo-ordinals: they are ill-founded, but the corresponding computable orderings
have no hyperarithmetic descending chains. This is because every hyperarithmetic
set is in V ˚.

The development of the previous section, including Proposition 2.23, is a theorem
of ZFC, and so holds in V ˚. Let δ˚ P V

˚ be a pseudo-ordinal. For α ď δ˚ we obtain
an array of objects Hpαq, ďα, ταs , Cα, all in the sense of V ˚, satisfying the inductive
definition of the sets Hpαq and the properties described above, all in V ˚.

However, V ˚, being an ω-model, is arithmetically absolute. For well-founded

α ă δ˚, the fact that pHpαqq
V ˚ satisfies the Π0

2 inductive definition of this iteration

of the jump implies that pHpαqq
V ˚ “ Hpαq. And similarly, for well-founded α,

pďαq
V ˚ “ďα, pταs q

V ˚ “ ταs , and pCαq
V ˚ “ Cα. We therefore omit the superscript

V ˚ even for the objects at ill-founded levels.

Remark 3.1. Let α ď δ˚ be ill-founded. In V , there will be many jump-hierarchies

along α, and so writing Hpαq for pHpαqq
V ˚ may be a bit abusive. In V ˚, though,

there is only one jump-hierarchy along α. Similarly, in V , Cα “ pCαq
V ˚ will not

be the unique path through ďα“ pďαq
V ˚ , but it is the unique path in V ˚.

In V , ďα cannot have an isolated path: the restriction of ďα to N is computable
in V ˚, and so computable. An isolated path would be hyperarithmetic. But any
such path is an infinite subset of Cβ for all well-founded β ă δ˚, and so computes
every hyperarithmetic set.

3.2. Checking Π1
1 statements. The ordinals α ă ωck

1 provide a sort of clock
for Π1

1 sets; just as we think of Σ0
1 sets as being enumerated by a computable

process of length ω, we can think of Π1
1 sets as being enumerated by a computable

process of length ωck
1 . If ϕ is a Π1

1 sentence, then ϕ is true if and only if there is
some well-founded α such that Hpαq knows that ϕ is true.

To make this precise, recall that Kleene’s O is a complete Π1
1 set. Thus there is

a computable function h from Π1
1 sentences to N which is a one-one reduction of

the set of true Π1
1 sentences to O.

Every d P O is a notation for a computable ordinal, denoted by |d|O. For a
true Π1

1 sentence ϕ, we let vϕw, the ordinal height of ϕ, be

vϕw “ |hpϕq|O ` 1.

For false Π1
1 sentences ϕ we let vϕw “ 8. As is common, we write 8 ą α for every

ordinal α. When vϕw ă 8, i.e. when ϕ is true, then vϕw is a successor ordinal; we
will make use of this fact.

For computable α, let

Oăα “ td P O : |d|O ă αu .

Fact 3.2. For every α ă ωck
1 , Hpαq computes Oăα, uniformly.
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We remark that Fact 3.2 is the reason for using the shifted jump hierarchy Hpαq.

For limit λ, Hpλq does not compute Oăλ, rather it can only enumerate it.

Proposition 3.3. There is a Turing functional Γ such that for every computable
ordinal δ˚, for every α ď δ˚, Γpταω , α,´q is total, and for every Π1

1 sentence ϕ,

‚ if vϕw ď α then Γpταω , α, ϕq “ vϕw;
‚ if vϕw ą α then Γpταω , α, ϕq “ 8.6

Proof. Compose Fact 3.2 with the uniform reduction of Hpαq to ταω ; and use the
uniform reductions ofHpβq toHpαq for β ă α. So given ταω , α and ϕ, we first check if
hpϕq P Oăα; if so, the functional Γ searches for β ă α such that hpϕq P Oăβ`1zOăβ ,
and when found, outputs β ` 1. If not, then Γ outputs 8. �

Remark 3.4. We have been loose in our identification of α and nα when discussing
computability, and so used vϕw in two senses. Fix a computable ordinal δ˚ with
a fixed computable notation-like presentation as used in the previous section to
develop the system ďα and ταω . Let ϕ be a true Π1

1 sentence with vϕw ď δ˚.
Then d “ hpϕq P O, but it is not one of the notations nα, and in general, there is

no computable way to obtain α ď δ˚ (i.e. to obtain nα) of the same height. However
the output of Γpταω , nα, ϕq is nβ with β “ vϕw: ταω can perform this translation.

The nonstandard clock. Kleene’s O is not an element of V ˚, but V ˚ has its own
version O˚. A Π1

1 sentence ϕ is true in V ˚ if and only if hpϕq P O˚ if and only if

vϕwV
˚

is a computable ordinal in the sense of V ˚. Again by arithmetic absoluteness,

if ϕ is true then vϕwV
˚

“ vϕw. Hence ϕ is true if and only if vϕwV
˚

, which we
henceforth denote simply by vϕw, is in the well-founded part of δ˚.

Working with the same functional Γ in V ˚, Proposition 3.3 holds in V ˚.

Approximating the clock. We wish to approximate this evaluation of Π1
1 sentences

at every stage s ă ω, using ταs as a stand-in for ταω . Since we have only a finite
fragment of the oracle, we will have three possible outcomes. Either ταs is sufficiently
long to compute Γpταs , α, ϕq, in which case it has an opinion of whether ϕ is already
witnessed to be true by level α or not. Alternatively, Γpταs , α, ϕqÒ (which we can
check computably, as we bound the oracle computation to |ταs | many steps) —
which means that ταs is unsure about the status of ϕ.

Notation 3.5. For brevity and clarity, for s ď ω, we let heightspα,ϕq “ Γpταs , α, ϕq.
To emphasise that these functions are total, we write heightspα,ϕq “ unsure

rather than writing heightspα,ϕqÒ. Restricted to s P N, these functions are com-
putable. We may assume that if heightspα,ϕq ă 8 then it is a successor ordinal,
and so heightsp0, ϕq P tunsure,8u for all s and ϕ.

Remark 3.6. Suppose that s ďα t and that heightspα,ϕq ‰ unsure. Then
heighttpα,ϕq “ heightspα,ϕq. This is because ταs ď ταt . Also, heightωpα, sq ‰
unsure and equals limsPCα heightspα, sq.

Notation 3.7. We write presentspα,ϕq if heightspα,ϕq “ α. We write pastspα,ϕq
if heightspα,ϕq ă α.

Lemma 3.8. For every s ă ω there are only finitely many α ď δ˚ such that
for any ϕ, heightspα,ϕq ‰ unsure. The collection of all such α can be obtained
computably from s.

6Again, this include the case vϕw “ 8.



16 NOAM GREENBERG AND DANIEL TURETSKY

Proof. We may assume that Γpxy, α, ϕq Ò for any α and ϕ, so this follows from
Proposition 2.23(k). �

We will use this machinery in V ˚; again, at well-founded levels, V and V ˚ agree.

3.3. An application: approximating Π1
1 equivalence relations. Fix a pseudo-

ordinal δ˚ P V
˚. Let E be a Π1

1 equivalence relation on ω.
Let s ď ω and α ď δ˚. We let

qspαq “ max tq ď s : p@i, j ă qq heightspα, “iEj”q ‰ unsureu .

For brevity we let
Qspαq “ r0, qspαqq.

We define an equivalence relation Espαq on Qspαq. Naively, we would like to take
the reflexive, transitive closure of the set

tpi, jq : i, j P Qspαq & pastspα, “iEj”qu .

However this would not have a nice property we are after: if i, j P Qspαq and
s ďα t then iEspαqj ðñ iEtpαqj. This is because we could at stage t discover
some large k equivalent to both. To avert that, we define by recursion on j P Qspαq,
Espαqær0, js. If Espαqær0, j ´ 1s was defined (and is an equivalence relation), then
we extend it to an equivalence relation Espαqær0, js as follows:

‚ If pastspα, “iEj”q for some i ă j, then we choose the i ă j which makes
heightspα, “iEj”q smallest (if this is not unique, we choose the least i
among those), and we add j to the equivalence class of i;

‚ Otherwise, we start a new equivalence class for j.

We summarise the properties of these relations. We write Epαq for Eωpαq.

Proposition 3.9. Let α ď δ˚.

(a) Espαq is an equivalence relation on Qspαq.
(b) Esp0q is equality.
(c) If s ďα t then Qspαq Ď Qtpαq and Espαq is the restriction of Etpαq to

Qspαq.
(d) Qpαq “ N “

Ť

sPCα
Qspαq, and Epαq “

Ť

sPCα
Espαq.

(e) If α ă β ď δ˚ then Epαq refines Epβq. For limit λ ď δ˚, Epλq “
Ť

αăλEpαq.
(f) E “

Ť

αăωck
1
Epαq.

(g) The functions ps, αq ÞÑ Qspαq, Espαq, restricted to s P N, are computable.
(h) For every stage s, Qspαq ‰ H for only finitely many α; the set of such α’s

is obtained computably from s.

Proof. Most follow from the properties of the functions heights. For (f), note
that Epαq Ď E; this uses the fact that E is an equivalence relation. In the other
direction, we prove by induction that for all j, for sufficiently large α, E æ r0, js “
Epαqær0, js. (h) follows from Lemma 3.8. �

3.4. Weeding out inconsistencies. Suppose that α ă β ď δ˚. If ϕ is a true Π1
1

statement and vϕw ď α then heightωpβ, ϕq “ heightωpα,ϕq “ vϕw. And if s ă ω
is a β-true stage then we get similar consistency; we may have heightspβ, ϕq “
unsure or heightspα,ϕq “ unsure, but if not, then we have heightspβ, ϕq “
heightspα,ϕq. On the other hand, if s is not β-true, then τβs may compute incor-
rectly, in which case we may get inconsistencies. For example, we could see that
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heightspα,ϕq “ 8 but heightspβ, ϕq ď α. Observing this gives us a proof that
s R Cβ . During the construction, at every stage we would like consistent opinions
between levels, and so we will simply skip inconsistent stages. This is done as
follows.

We fix a Π1
1 equivalence relation E and define Espαq as in the previous section.

Also recall that xFey lists the partial Π1
1 functions.

Definition 3.10. For s ă ω we say that the following Π1
1 statements are relevant

at stage s:

‚ “iEj”, for i, j ď s;
‚ “Fepa

e,iq “ c” for e, i ď s and c “ ae,i, be,i.

We define consistency of guesses.

Definition 3.11. For a stage s, a Π1
1 statement ϕ, and ordinals α ă β ď δ˚,

we say that heightspα,ϕq and heightspβ, ϕq are mutually consistent if either
heightspα,ϕq or heightspβ, ϕq are unsure, or:

‚ if heightspα,ϕq ď α then heightspβ, ϕq “ heightspα,ϕq;
‚ if heightspα,ϕq “ 8 then heightspβ, ϕq ą α.7

We also say, for e, i, s ă ω and ordinal α ď δ˚ that Fepa
e,iq is internally con-

sistent at stage s and level α if it is not the case that for both c P tae,i, be,iu,
heightspα, “Fepa

e,iq “ c”q ă 8.8

We define an increasing function u : ω Ñ ω. We start with up0q “ 0. Given
ups´ 1q, we define upsq to be the least stage t ą ups´ 1q such that

(1) For all α ă β ď δ˚, for every Π1
1 statement ϕ which is relevant at stage s,

heighttpα,ϕq and heighttpβ, ϕq are mutually consistent;
(2) For all e, i ă s and all α ď δ˚, Fepa

e,iq is internally consistent at stage t
and level α.

If t P Cδ˚ then for all α ă β, for any ϕ, heighttpα,ϕq and heighttpβ, ϕq are
mutually consistent, and for any e and i, Fepa

e,iq is internally consistent at stage t
and level α. This implies:

Lemma 3.12. u is total and Cδ˚ Ď rangeu.

We also observe that u is computable; this follows from Lemma 3.8. We therefore
re-index all of our stages:

‚ We redefine s ďα t to mean upsq ďα uptq;
‚ We redefine ταs to be ταupsq;

‚ We replace Cα by u´1rCαs;
‚ We redefine heightspα,ϕq to be heightupsqpα,ϕq;

‚ We redefine Qspαq to be Qupsqpαq X r0, sq;

and so on.

Lemma 3.13. Proposition 2.23, and all the development of the current section
(including Proposition 3.9), still hold after the re-indexing of stages.

7Or briefly: if either heightspα,ϕq ď α or heightspβ, ϕq ď α then heightspβ, ϕq “

heightspα,ϕq.
8The point is that Fepae,iq cannot have more than one value.
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Proof. The only thing that requires any comment is the uniform equivalence Cα ”T

Hpαq. However, by Lemma 3.12, rangeu X Cα is infinite, and since rangeu is
computable, by Proposition 2.11(c), rangeuX Cα ”T Hpαq, uniformly. �

For future reference, we summarise the consistency properties of every stage after
our speedup:

Lemma 3.14. For every s ă ω,

‚ For all α ă β ď δ˚, for every Π1
1 statement ϕ which is relevant at stage s,

heightspα,ϕq and heightspβ, ϕq are mutually consistent;
‚ For all e, i ă s and all α ď δ˚, Fepa

e,iq is internally consistent at stage s
and level α.

We can apply this consistency to the approximations Espαq.

Lemma 3.15. For all s ď ω and α ă β ď δ˚, Espαq refines Espβq on QspαqXQspβq.

The proof is the same as that of Proposition 3.9(d), using consistency. Namely,
by induction on j ă qspαq, qspβq, we show that Espαq æ r0, js refines Espβq æ
r0, js. We assume this holds up to j ´ 1 and prove it for j. If j starts a new
Espαq-equivalence then this is immeidate. Otherwise, let i0 ă j be such that
heightspα, “iEj”q is minimal, say γ ă α (and i0 minimal among those giving γ).
So i0Espαqj. Then for no i ă j can we have heightspβ, “iEj”q ă γ, as that would
entail heightspβ, “iEj”q “ heightspα, “iEj”q, contrary to the minimality of γ;
and similarly, for no i ă i0 can we have heightspβ, “iEj”q “ γ.

Remark 3.16. Since we made sure that beliefs about Π1
1 statements are consistent

across levels, it would appear that using the functions heightspα,ϕq for α ă δ˚ is
redundant. We could simply consult heightspδ˚, ϕq. Taking a step back, why do
we even need to approximate any oracle except for Hpδ˚q?

The point is that if iEj at level β then we needHpβq to compute the isomorphism
between Ni and Nj . To make this happen, we need level β of our construction,
namely the βth Hausdorff drivative of each Ak,e,i and Bk,e,i, to be computed from
Hpβq (uniformly, of course).

This means that if s ďα t, then whatever we construct at level α at stage s
must be respected at stage t. Now suppose that heightspα,ϕq “ unsure but
heightspβ, ϕq “ α for some β ą α and some ϕ which would cause us to build
something at level α. If s ďα t but s ęβ t, in particular if s is α-true but not
β-true, then it would be a bad idea to take τβs ’s word that vϕw “ α. To build at
level α, we need ταs to give us this assurance.

We remark that guessing only at level δ˚ and working at all levels uniformly is
the difference between Ash’s α-system technology and the added power introduced
by Montalbán with his α-true stages.

4. Π1
1 completeness

In this section we prove Theorem 1.1. Fix a Π1
1 equivalence relation E. We will

build structures Nk as described in Subsection 1.1. To specify the structure Nk, it
is enough, for each e and i, to define the linear orderings Ak,e,i and Bk,e,i on the
sets Ae,i and Be,i.

Most of the proof takes place in V ˚. In that model we fix:
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‚ An enumeration pFeqePω of the Π1
1 partial functions from ω to ω (again, Π1

1

in the sense of V ˚);
‚ A pseudo ordinal δ˚, equipped with the relations ďα, the sequences ταs ,

and the functions heightspα,ϕq which we defined above, sped up so as to
avoid inconsistencies;

‚ Our approximations Espαq to the equivalence classes Epαq.

4.1. The last step. Below, in Proposition 4.1, we detail the properties of ob-
jects that we build in the construction, and then show that this suffices to prove
Theorem 1.1. Recall from our discussion in section 1.1 that part of our strategy
is to determine, in some cases, that a computable linear ordering Ak,e,i that we
are building should have order-type ωα or ωα ¨ 2 for some computable ordinal α.
To ensure that for ד P ω3, a linear ordering Aד has the intended order-type, we
construct, along with these orderings, the iteration of their Hausdorff derivative.
Recall that the Hausdorff derivative L1 of a linear ordering L is formed by identi-
fying two points in L if the interval between them is finite, and giving the result
the induced ordering. There is then a natural map from L onto L1. We can define
Lpnq by iterating this process, and we can extend to limit levels by taking direct
limits. Performed within V ˚, in this way we get a directed system of linear orders of
height up to δ˚. Note that “the” derivative or its iterates are an order-type rather
than a particular ordering; however if the order-type of K is the step α Hausdorff
derivative of L then there is a unique quotient map from L to K, and we call K
“the” step α derivative of L.

In the construction, for each ד P ω3, we construct not only the linear orderings
Aד and Bד but for all α ď δ˚, linear orderings Aד

α and Bד
α, with Aד

0 “ Aד and
Bד

0 “ Bד. The ordering Aד
α is the αth iteration of the Hausdorff derivative of Aד,

and will be Hpαq-computable, uniformly, and similarly for the B’s. Together with
the orderings we will need to build the associated quotient maps fד

α from Aד
0 to Aד

α,
and the quotient maps gד

α from Bד
0 to Bד

α.
In two cases though we will make the orderings Aד

α and Bד
α empty. The first is

when we decide to make their Hausdorff rank smaller than α — in our case, when
we decide to make Aד

α and Bד
α isomorphic to ωβ and ωβ ¨2 (or the other way round)

for some β ă α. The other case is when ד “ pk, e, iq, ש “ pm, e, iq for some m ă k,
and for some β ă α we have kEpβqm. In this case the triple ש will “take over”
from ד and ensure that the order-type is correct; we will have to ensure that in this
case Aש

0 – Aד
0, and that Hpβq can construct the isomorphism between them; the

same for Bש
0 and Bד

0.
For brevity of notation, for ד “ pk, e, iq and ש “ pm, e, iq (note the same e and i),

we write שEpαqד if kEpαqm. When m ă k we also write ש ă .ד Similarly, if m
is the least element of its Epαq-equivalence class, then we say that ש is the least
element of its Epαq-equivalence class.

The following proposition summarises the required properties of the systems of
linear orderings and quotient maps that we construct. It takes place inside V ˚.

Proposition 4.1. There are, for α ď δ˚ and each ד P ω3, linear orderings Aד
α and

Bד
α, and maps fד

α and gד
α, satisfying:

(a) Uniformly in α and ,ד the orderings Aד
α and Bד

α and maps fד
α and gד

α are
computable from Hpαq.
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(b) The universe of Aד
α (and of Bד

α) is either H, t0u, t0, 1u or ω. Aד
α is empty

if and only if Bד
α is empty, and |Aד

α| ď 2 if and only if |Bד
α| ď 2.

(c) If Aד
α is nonempty, then it is the αth Hausdorff derivative of Aד

0, and fד
α is

the associated quotient map. Further, Aד
0 – ωα ¨Aד

α. The same holds for B
and g.

(d) Suppose that α is least such that ד is not the least element of its Epαq-
equivalence class. Let צ be the least element of s’ד Epαq-equivalence class.
Then Aד

α “ Aצ
α and Bד

α “ Bצ
α. For all β ą α, Aד

β and Bד
β are empty.

(e) Suppose that ד “ pk, e, iq is the least element of its Epαq-equivalence class.
Suppose that there is some c P tae,i, be,iu such that v“Fepa

e,iq “ c”w ď α.
Since each Fe is a function, there is exactly one such c. Then:
(i) If v“Fepa

e,iq “ c”w ă α then Aד
α and Bד

α are empty.
(ii) If v“Fepa

e,iq “ c”w “ α then:
‚ if c “ be,i then |Aד

α| “ 1 and |Bד
α| “ 2;

‚ if c “ ae,i and kEpαqi then |Aד
α| “ 1 and |Bד

α| “ 2;
‚ if c “ ae,i and  pkEpαqiq then |Aד

α| “ 2 and |Bד
α| “ 1.

On the other hand, if there is no such c, then Aד
α and Bד

α are infinite.

In (d), we emphasise that we require actual equality of the linear orderings. That
is, we require that the identity map x ÞÑ x is an isomorphism between the linear
orderings.9

Most of the work will be the proof of Proposition 4.1. Before we embark on that
proof, we show how this proposition implies Theorem 1.1; this proof is in V .

Proof of Theorem 1.1, assuming Proposition 4.1. As discussed in section 1.1, we
have already assumed that pe, iq ÞÑ pae,i, be,iq is computable, with computable
range, and that

@

Ae,i, Be,i
D

are uniformly computable infinite sets, pairwise dis-

joint and disjoint from tae,i, be,iu. We also fix uniformly computable bijections

he,iA : ω Ñ Ae,i and he,iB : ω Ñ Be,i.
We note that the assumptions imply that for every ד P ω3, Aד

0 and Bד
0 are infinite;

this is because Ep0q is equality (Proposition 3.9), so (e) applies; and because vϕw ą 0
for all ϕ.

Using the signature discussed in section 1.1, for each k, we define the structure Nk

as follows: the linear ordering pAe,iqNk is isomorphic to Ak,e,i0 via he,iA , and pBe,iqNk

is isomorphic to Bk,e,i0 via he,iB . Since Aד
0 and Bד

0 are uniformly computable, the
structures Nk are uniformly computable.

We note that if α ă β ď δ˚ and Aד
β is nonempty, then the step pβ´αq Hausdorff

derivative quotient map fד
α,β : Aד

α Ñ Aד
β is computable from Hpβq, uniformly; this

is because fד
β “ fד

α,β ˝ f
ד
α, and fד

α is onto Aד
α.

Before we show the desired reduction, we make the following observation, within
V ˚. For pe, iq P ω2, if Fepa

e,iq “ c P tae,i, be,iu then let θpe, iq “ v“Fepa
e,kq “ c”w;

otherwise (including when Fepa
e,iqÒ) let θpe, iq “ 8.

Claim 1.1.1. Let pe, iq P ω2 and α ď θpe, iq (α ď δ˚ if θpe, iq “ 8). Let ד “ pk, e, iq
and let צ be the least element of s’ד Epαq-equivalence class. Then Aד

0 – Aצ
0 and

Bד
0 – Bצ

0, Aצ
α is nonempty, and Hpαq computes the αth Hausdorff quotients from

Aד
0 to Aצ

α and from Bד
0 to Bצ

α. This is uniform in α, ד and pe, iq.

9We could have required an isomorphism, uniformly computed from Hpαq.
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Proof. We prove the claim by effective transfinite recursion on α. For α “ 0,
we know that צ “ ד and Aד

0 is infinite. Suppose that the claim has been shown
for α ă θpe, iq, δ˚; we consider α ` 1. Given ד “ pk, e, iq, since Hpα`1q computes
Epα ` 1q (uniformly), we can find the least element צ of s’ד Epα ` 1q-equivalence
class. Also let ש be the least element of s’ד Epαq-equivalence class. By (d) in case
ש ‰ ,צ we know that Aש

α`1 “ Aצ
α`1. As observed, Hpα`1q computes the quotient

map fצ
α,α`1 from Aצ

α to Aצ
α`1, and so we compose it with the α-step quotient map

from Aד
0 to Aש

α to get the desired map from Aד
0 to Aצ

α`1.
For limit α ď θpe, iq, δ˚, since Epαq is the limit of Epβq for β ă α (Proposi-

tion 3.9(e)), there is some β ă α such that צ is the least element of s’ד Epβq-
equivalence class; by recursion, we already have the map from Aד

0 to Aצ
β , and so we

compose with fצ
β,α. �

Let k,m ă ω; suppose that  pkEmq. So for all α ă ωck
1 ,  pkEpαqmq. We show

that there is no hyperarithmetic isomorphism between Nk and Nm. Suppose that
F : Nk Ñ Nm is hyperarithmetic and total. Then F P V ˚ and is hyperarithmetic
in the sense of V ˚. Hence there is some e such that F “ Fe. By Proposition 1.2,
we may assume that Fepa

e,kq P tae,k, be,ku. Let α “ θpe, kq; α ă ωck
1 . Suppose, for

example, that F pae,kq “ ae,k.

Let k̂ be the least elements of k’s Epαq-equivalence class, and let m̂ be the least
element of m’s Epαq-equivalence class.

‚ Since k̂Epαqk, |Ak̂,e,kα | “ 1;
‚ Since  pm̂Epαqkq, |Am̂,e,kα | “ 2.

Thus, Ak̂,e,k0 – ωα and Am̂,e,k0 – ωα ¨2, so they are not isomorphic. By Claim 1.1.1,

Ak,e,k0 – Ak̂,e,k0 and Am,e,k0 – Am̂,e,k0 , so Ak,e,k0 fl Am,e,k0 , whence pAe,kqNk and
pAe,kqNm are not isomorphic. By Proposition 1.2, F is not an isomorphism from Nk

to Nm. If c “ be,k then we run the same argument, as Ak,e,k0 – ωα and Bm,e,k –
ωα ¨ 2.

Suppose now that kEm. So there is some α ă ωck
1 such that kEpαqm. We build

a hyperarithmetic isomorphism from Nk to Nm. To build such an isomorphism,

as discussed above, we need, uniformly in pe, iq, to find isomorphisms from Ak,e,i0

to either Am,e,i0 or to Bm,e,i0 (and to tell which one), and similarly from Bk,e,i0 .
By taking compositions, we may assume that k is the least element of its Epαq-
equivalence class. Fix a pair pe, iq; let צ “ pk, e, iq and ד “ pm, e, iq. There are two
possibilities.

If α ď θpe, iq, then by Claim 1.1.1, for β ď α let g : Aד
0 Ñ Aצ

α be the step α
Hausdorff quotient map, which we obtain uniformly from Hpαq. For each z P Aצ

α,
Hp2αq can compute the isomorphism between tx P Aד

0 : gpxq “ zu and tx P
Aצ

0 f
צ
αpxq “ zu, as the assumption implies that they are both isomorphic to ωα.

This is uniform in z (and pe, iq). Piecing these together, we obtain the desired
isomorphism between Aד

0 and Aצ
0. We do the same for the B’s.

Suppose that θ “ θpe, iq ă α. By Claim 1.1.1, one of Aד
0 and Bθ0 is isomorphic

to ωθ, the other to ωθ ¨ 2; and the same for Aצ
0 and Bצ

0. Computing the iterated
Haudorff derivative, Hp2αq can figure out which is which and compute the required
isomorphisms. �

The rest of the paper takes place entirely within V ˚.
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4.2. Describing the construction. How would we build the objects Aד
α etc. dis-

cussed in Proposition 4.1 and compute them from the correct oracles? The obvious
approach would be to perform some kind of effective transfinite recursion. The
difficulty though is that the construction at a level α depends on what happens
above α, rather than below it. For example, if Hpβq knows that we want |Aד

β | “ 1,

then somehow H needs to contrive to make Aד
0 – ωβ . What we do, following Ash’s

iterated priority argument method [Ash90] proving the iterated version of Wat-
nick’s theorem about pulling back complexity of linear orderings, is approximate
the objects at finite stages. At each stage s we use the stage s approximation of
Hpαq engineered above, and so approximate vϕw by using the functions heights,
rather than heightω, and use our stage s approximation Espαq of Epαq. We will
use this information to approximate the orderings and maps at each stage. At each
stage, only finitely much information is given by the function heights (Lemma 3.8),
and so only finitely many linear orderings and maps will be nonempty. For each α,
we will need to arrange that for α-true stages s, the stage s version Aד

α,s of Aד
α
10,

for example, is correct (it is a sub-ordering of the final Aד
α). The main difficulty

is arranging this between levels. If α ă β and s is α-true but not β-true, then we
need to ensure that Aד

α,s is correct; however Aד
β,s at that stage may be incorrect,

and the structure of Aד
α,s is determined to some extent by Aד

β,s, as the latter is
intended to be an iterated derivative of the former.

As our first step, we will define, for each stage s, what our guesses are for the
linear orderings that should be built at that stage. Replacing Epαq by Espαq, we
use the same notational conventions for equivalence of triples ד P ω3: we write
pk, e, iqEspαqpm, e, iq if kEspαqm. The universe of this relation is Qspαq ˆ ω2. We
use the same partial ordering on triples: pk, e, iq ă pm, e, iq if k ă m. Thus, for
each ד P Qspαq ˆ ω2, we speak of the least element of s’ד Espαq-equivalence class.

Requiring attention and the instruction functions. Recall that the possible “out-
comes” for one of our linear orderings Aד

α are:

‚ Have size 1 or 2 (if we diagonalise at level α);
‚ be infinite;
‚ be equal to some other ordering Aצ

α;
‚ be empty (if we diagonalise at a level below α, or have copied another linear

ordering at a level below α).

The following definition states when we have sufficiently much information to
form an opinion on what the outcomes of Aד

α and Bד
α should be.

Definition 4.2. Let s P ω be a stage. We say that a pair pα, qד (with ד “ pk, e, iq)
requires attention at stage s if:

(1) e ă s;
(2) i, k P Qspαq;

11

(3) For both c P tae,i, be,iu, heightspα, “Fepa
e,iq “ c”q ‰ unsure.

We define the instruction functions instrAs pα, qד and instrBs pα, qד for all pairs
pα, qד which require attention at stage s; they tell us the required outcome (size or
shape) of the associated linear ordering:

10Below we will denote the stage s version of Aד
α by

`

Aד
α

˘ps .
11Recall that Qspαq is the domain of Espαq.
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(1) Suppose that for some c P tae,i, be,iu, heightspα, “Fepa
e,iq “ c”q ď α. We

know (Lemma 3.14) that there is just one such c. Then:
(i) If heightspα, “Fepa

e,iq “ c”q ă α then instrAs pα, qד “ instrBs pα, qד “
0.

(ii) Suppose that heightspα, “Fepa
e,iq “ c”q “ α.

(a) If c “ be,i then instrAs pα, qד “ 1 and instrBs pα, qד “ 2.
(b) If c “ ae,i and kEspαqi, then instrAs pα, qד “ 1 and instrBs pα, qד “

2.
(c) If c “ ae,i and pkEspαqiq, then instrAs pα, qד “ 2 and instrBs pα, qד “

1.
(2) Otherwise, if there is some β ď α such that pβ, qד requires attention and β

is not the least element of its Etpβq-equivalence class, then we let β be the
least such β; we let צ be the least element of s’ד Etpβq-equivalence class.

(i) If β ă α then instrAs pα, qד “ instrBs pα, qד “ 0.
(ii) If β “ α then instrAs pα, qד “ instrBs pα, qד “ .צ

(3) Otherwise, instrAs pα, qד “ instrBs pα, qד “ ω.

Note that instrAs pα, qד P t1, 2u if and only if instrBs pα, qד P t1, 2u. We write
instrspα, qד “ t1, 2u. Similarly, we write instrspα, qד “ 0, instrspα, qד “ ω
or instrspα, qד “ .צ If instrspα, qד “ 0 or instrspα, qד “ t1, 2u then we write
“instrspα, qד is finite”. When we write instrspα, qד “ instrtpβ, ,qש we mean that
instrAs pα, qד “ instrAt pβ, qש and instrBs pα, qד “ instrBt pβ, .qש

Lemma 4.3.

(a) At any stage s, only finitely many pairs pα, qד require attention, and the
collection of such pairs can be obtained computably from s.

(b) For each α and ,ד for sufficiently large s P Cα, the pair pα, qד requires
attention at stage s.

(c) If s ďα t and pα, qד requires attention at stage s, then it also requires
attention at stage t, and instrspα, qד “ instrtpα, .qד

(d) If instrωpα, qד ‰ 0, ω then α is a successor ordinal.
(e) If ,שEspαqד then pα, qד requires attention at stage s if and only if pα, qש

does.
(f) If pα, qד requires attention at stage s, and צ ă ד is the least element of s’ד

Espαq-equivalence class, then either instrspα, qד “ צ and instrspα, qצ “
ω, or instrspα, qד “ instrspα, qצ is finite.

(g) Suppose that β ă γ, both pβ, qד and pγ, qד require attention at stage s, and
instrspβ, qד ‰ ω. Then instrspγ, qד “ 0.

Proof. (a) follows from Proposition 3.9(h); (b) follows from Remark 3.6 and Propo-
sition 3.9(d). (c) follows from Remark 3.6 and from Proposition 3.9(c). (d) follows
from the fact that if ă 8, vϕw is a successor ordinal, and also from the fact that
the least ordinal β for which ד is not the least element of its Epβq-equivalence class
is not a limit (Proposition 3.9(e)). For (e), by definition, ד “ pk, e, iq, ש “ pm, e, iq
and k,m P Qspαq; the remainder of the definition of requiring attention does not
mention k or m. (f) follows from examining the possible cases of Definition 4.2:
again say ד “ pk, e, iq and צ “ pm, e, iq. By definition, if instrspα, qצ is fi-
nite, then so is instrspα, ,qד and further, because ,דEspαqצ i.e. kEspαqm, and
Espαq is an equivalence relation, we have kEspαqi if and only if mEspαqi; so when
instrspα, qצ “ t1, 2u we have instrspα, qד “ instrspα, ,qד that is, we diagonalise
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the same way. For (g) we consider the two possibilities for instrspβ, .qד Say
ד “ pk, e, iq. If heightspβ, “Fepa

e,iq “ c”q ď β, then by consistency of our beliefs
(Lemma 3.14), heightspγ, “Fepa

e,iq “ c”q ď β ă γ, giving instrspγ, qד “ 0. Simi-
larly, if ד is not the least element of its Espβq-equivalence class, then by instruction,
as β ă γ, again instrspγ, qד “ 0. �

Permissible resets. The natural approach, as is the case in the Ash-Watnick con-
struction, is to require that if s ďα t then Aד

α,t is a linear order extending Aד
α,s (we

write Aד
α,s Ď Aד

α,t). Then it would be clear that Hpαq computes Aד
α “

Ť

sPCα
Aד
α,s.

Unfortunately, we will not be able to always get this extension relation. The reason
for this is delicate.

Consider a limit ordinal λ ď δ˚. We need to ensure that Aד
λ is the step λ

Hausdorff derivative of Aד
0. This means that it is the direct limit of the system

pAד
β , f

ד
β,γqβďγăλ

12. To make sure that the linear ordering that we are building is

indeed this direct limit, the crucial requirement is to ensure that if x, y P Aד
0 and

fד
λpxq “ fד

λpyq, then there is some β ă λ such that fד
βpxq “ fד

βpyq.
We could hope that this property can be ensured at the limit, but in fact the

only way we found to make this work is by requiring that this property holds at
every stage of the construction. Thus if at some stage s we have decided that
fד
α,λpxq “ fד

α,λpyq for some x, y P Aד
α,s, then we need to build some linear ordering

Aד
β,s for some β P pα, λq in which we could merge x and y. The complication is that

possibly, for no β P pα, λq does pβ, qד require attention at stage s. Thus, we will
have to build Bד

β,s before we know what the instructions are for this linear ordering.
If s is λ-true, then this is not a problem: we will later discover that Hpβq wants

us to build an infinite linear ordering at level β. If s is not β-true, then what we
do at level β at stage s does not really matter, it will be ignored when building the
true Aד

β . However, it is possible that s is β-true but λ-false. At a later β-true stage

we will see (or at least think) that we were wrong about Aד
λ,s and that in fact Aד

β

should be, for example, empty, or instructed to copy some other linear ordering.
Thus, we will need to reset the linear ordering Aד

β,t, and allow it to not extend

Aד
β,s, even though s ďβ t.

If we do this, how can we ensure that Hpαq computes Aד
α correctly? For that

matter, how do we ensure that limsPCα A
ד
α,s exists? We will allow only a single

reset for each object. That is, as long as we are ignorant of any instruction to the
contrary, we are required to extend the previously constructed linear ordering; and
once the pair pα, qד requires attention, we know what the instructions are, and then
we no longer allow any further resets.13 And Hpαq can find an α-true stage at which
pα, qד requires attention and start constructing Aד

α from there.

The following definition allows us to keep track of those pairs pα, qד for which at
stage s we believe that we have evidence that we will not be performing the usual
Ash-Watnick construction, and thus possibly allow a reset.

12As we saw in the proof above using Proposition 4.1, when given only fד
α “ fד

0,α for all α,

we can find the intermediate maps fד
α,β as the map fד

α is onto Aד
α. In our construction it will be

more convenient to keep track of all the maps fד
α,β , because at some steps during the construction,

some of these maps may fail to be onto.
13Of course this description is relative to the α-true stages only, so only a single reset along

each ďα-path.
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Definition 4.4. For a stage s ď ω and a level α ď δ˚, we define Vspαq to be the
set of ד such that for some β ď α, the pair pβ, qד requires attention at stage s and
instrspβ, qד ‰ ω.

The idea is that if ד P Vspαq, then perhaps pα, qד does not require attention at
stage s, because we have not seen enough convergence; but if stage s is correct
about Hpβq for all β ď α, then once we do see enough convergence we will see that
we want to make Aד

α empty. The following lemma summarises the properties of the
sets Vspαq, which all follow from our analysis above of requiring attention and the
instruction functions.

Lemma 4.5.

(a) Vsp0q “ H for all s and V0pαq “ H for all α.
(b) If s ďα t then Vspαq Ď Vtpαq.
(c) If α ă γ then Vspαq Ď Vspγq.
(d) If pα, qד requires attention at stage s, then ד P Vspαq if and only if instrspα, qד ‰

ω.14

(e) If s ďα t and pα, qד requires attention at stage s, then ד P Vspαq ðñ ד P
Vtpαq.

(f) Vωpαq “
ď

sPCα

Vspαq.

(g) For s ă ω, Vspαq is finite and uniformly computable from α and s.
(h) Vωpαq is uniformly computable from Hpαq.

4.3. Objects of the construction. We now define objects of height δ˚. The
intention of an object is to be a potential finite fragment of the above described
collection of directed systems: the state of the construction at some finite stage s.

Definition 4.6. An object is a tuple
ˆ

xGαyαďδ˚ ,
@

rד
α

D

αďδ˚
Pω3ד

,
@

Aד
α

D

αďδ˚
Pω3ד

,
@

Bד
α

D

αďδ˚
Pω3ד

,
@

fד
α,β

D

αďβďδ˚
Pω3ד

,
@

gד
α,β

D

αďβďδ˚
Pω3ד

˙

satisfying the following:

(1) For each α ď δ˚ and ד P ω3, rד
α P t0, 1u.

(i) If α ď β then rד
α ď rד

β .

(ii) rד
δ˚
“ 0 for all but finitely many .ד

(2) For each α ď δ˚, Gα Ă ω3 is finite, and for all but finitely many α, Gα is
empty.

(3) Each Aד
α and Bד

α is a finite linear order, and all but finitely many are empty.
(i) Aד

α is empty if and only if Bד
α is empty.

(ii) |Aד
α| ď 2 if and only if |Bד

α| ď 2.
(4) For each ד and α, the universes of Aד

α and Bד
α are initial segments of ω,

and if nonempty, then 0 is their leftmost point.
(5) For α ď β ď δ˚,

(i) If either Aד
α or Aד

β are empty, then the function fד
α,β is empty.

(ii) If both Aד
α and Aד

β are nonempty, then fד
α,β is an order-preserving

function from Aד
α onto an initial segment of Aד

β .

14That is, if pα, qד requires attention at stage s, then in the definition of ד P Vspαq we can

always take β “ α.
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Similarly for the B’s and g’s.
(6) For a fixed ,ד restricting to those α ď β with Aד

α and Aד
β nonempty, xfד

α,βy

is a directed system. Namely:
(i) fד

α,α is the identity map;
(ii) if α ď β ď γ ď δ˚, and Aד

α, Aד
β and Aד

γ are nonempty, then fד
α,γ “

fד
β,γ ˝ f

ד
α,β .

The same holds for xgד
α,βy.

Note that an object is finite, in that it can be completely described by finitely
much information: the finitely many linear orderings; the finitely many nonempty
finite sets Gα; the finitely many ד with rד

δ˚
“ 1; and for each such ,ד the least α

such that rד
α “ 1.

Before we proceed, we remark on some components of the definition. Many
components of an object tell us about the intention behind setting some linear
orderings and maps the way we do. For example, setting rד

α “ 1 means that we
possibly have spent a reset, and will not allow further resets to Aד

α and Bד
α; at

stage s we will set rד
α “ 1 exactly when ד P Vspαq. Similarly, the set Gβ indicates

which locations will not allow any resets even if none were taken so far; at stage s
we will set ד P Gβ exactly if pβ, qד requires attention at stage s. The reason that we
do not directly incorporate attention seeking and the sets Vspαq into the definition
of an object is to allow us further flexibility. The definition will apply, for example,
to the result of performing only one step of several during any stage.

In the same way, regarding (3)(ii), by setting |Aד
α| P t1, 2u, the object tells us

that we intend to diagonalise at this location; at stage s we will set |Aד
α| P t1, 2u

exactly when pα, qד requires attention at that stage and instrspβ, qד “ t1, 2u.
The purpose of (4) is threefold. First, of course, it ensures that the universe of

the final linear ordering will be computable, in fact it will be either t0u, t0, 1u or ω
as required by Proposition 4.1. Second, it ensures that if we specify that the size of
a linear ordering is 1 or 2, we will have specified the linear ordering as well. Third,
it ensures that when extending linear orderings, we do not add points to the left.
This will be useful when glueing together objects. Regarding (5), we remark that
the definition implies that when nonempty, fד

α,β maps the leftmost point of Aד
α to

the leftmost point of Aד
β ; that is, fד

α,βp0q “ 0.

Convention 4.7. If o is an object, we write
`

Aד
α

˘o
to refer to the Aד

α element of o.
Similarly for each of the other elements of o.

Notation 4.8. Suppose that o is an object, α ď γ ď δ˚, and ד P ω3. If
`

Aד
α

˘o
is

nonempty, then for x, y P
`

Aד
α

˘o
, we write px „γ yq

o if there is some β P rα, γs such

that
`

Aד
β

˘o
is nonempty and

`

fד
α,β

˘o
pxq “

`

fד
α,β

˘o
pyq (and similarly for B and g).

This notation is sparse, as the notion obviously also depends on α, ד and whether
we are looking at A or B; but these will usually be clear from the context.

Terminology 4.9. Suppose that o is an object, α ď β ď δ˚, and ד P ω3. We write
`

rד
rα,βs

˘o
for the sequence x

`

rד
ξ

˘o
yξPrα,βs.

Object extensions. The intention of the following definition is to ensure that the
αth level of the construction is computed by Hpαq. Let o and p be objects. We
define the relation o ďα p, which says that decisions made at levels β ď α when
constructing o are preserved in p, except for when there is a permissible reset.
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Definition 4.10. Let o and p be objects. For α ď δ˚, we let o ďα p if for every
β ď α:

(1) For every ד P ω3,
`

rד
β

˘o
ď
`

rד
β

˘p
;

(2) pGβq
o Ď pGβq

p, and for all ד P pGβqo,
`

rד
β

˘o
“

`

rד
β

˘p
;

and for every ד P ω3 such that
`

rד
β

˘o
“

`

rד
β

˘p
,

(3)
`

Aד
β

˘o
Ď
`

Aד
β

˘p
and

`

Bד
β

˘o
Ď

`

Bד
β

˘p
;

(4) If 1 ď |
`

Aד
β

˘o
| ď 2 then

`

Aד
β

˘o
“
`

Aד
β

˘p
and

`

Bד
β

˘o
“
`

Bד
β

˘p
;

and in addition, for every γ P rβ, αs such that
`

rד
rβ,γs

˘o
“
`

rד
rβ,γs

˘p
,

(5)
`

fד
β,γ

˘o
Ď
`

fד
β,γ

˘p
and

`

gד
β,γ

˘o
Ď
`

gד
β,γ

˘p
;

(6) for all z P range
`

fד
β,γ

˘o
, the leftmost point of tx P

`

Aד
β

˘o
:
`

fד
β,γ

˘o
pxq “ zu

is also the leftmost point of tx P
`

Aד
β

˘p
:
`

fד
β,γ

˘p
pxq “ zu;

(7) if γ “ β ` 1 and ד P pGβ`1q
o then for all z P range

`

fד
β,β`1

˘o
, tx P

`

Aד
β

˘o
:

`

fד
β,β`1

˘o
pxq “ zu is an initial segment of tx P

`

Aד
β

˘p
:
`

fד
β,β`1

˘p
pxq “ zu;

suppose also that there is no ζ P rβ, γs with 1 ď |
`

Aד
ζ

˘p
| ď 2; then:

(8) If x, y P
`

Aד
β

˘o
and px „γ yq

p then px „γ yq
o;

(9) letting f “
`

fד
β,γ

˘p
, for all z P rangepf æ

`

Aד
β

˘o
q, the leftmost point of

tx P
`

Aד
β

˘o
: fpxq “ zu is the leftmost point of tx P

`

Aד
β

˘p
: fpxq “ zu;

the same holds for B and g.

Let us discuss some aspects of this definition. Some of the items are directly
related to achieving some parts of Proposition 4.1; but as above, some are used
in the process of producing the next finite object, which involves some glueing of
several previous objects. And also, some items are stated in a particular way to
ensure that the relations ďα are transitive.

For example, (3) and (5) are required so that we can eventually define Aד
α to

be the union of Aד
α,s for s P Cα after the last reset. The condition

`

rד
β

˘o
“

`

rד
β

˘p

precisely says that no reset for the pair pβ, qד was taken in passing from the object o
to the object p. (2) forces no resets for pairs which o has stated cannot have future

resets (even if
`

rד
β

˘o
“ 0).

In (7) we are requiring that every 1-step Hausdorff derivative equivalence class
which o witnesses up to level α must be an initial segment of an equivalence class
in p. The purpose of this requirement is to ensure that each equivalence class in
the final system has order-type ω, so that Aד

α – ω ¨ Aד
α`1. On the other hand, (8)

is only used when glueing objects together. It says that unless we have a very good
reason to merge points x and y (because when constructing p we have discovered
that we need to need to build a finite linear ordering), we do not; this is a departure
from the Ash-Watnick construction.

It would seem that there is some redundancy in stating both (6) and (9). How-
ever, they do not quite imply each other, and are needed for different purposes.
(6) is needed for ensuring that the preimage of a point at a limit level λ has the
correct order-type, namely ωλ. The inductive argument for showing this needs the
fact that this preimage has a least element, which is ensured by this item. (9),
on the other hand, is required for glueing objects. The difference is that we allow
z R

`

Aד
γ

˘o
, equivalently (in light of (5)), that

`

Aד
γ

˘o
is empty.
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The condition there is no ζ P rβ, γs with 1 ď |
`

Aד
ζ

˘p
| ď 2 is added to this item

as well as (8), because in order to make ďα transitive, we need to rely on (8) as
well, and the extra condition is necessary for (8). On the other hand, to make the
final argument successful, we need (6) to hold even when this extra condition fails.

We make a few observations about this definition.

Lemma 4.11.

(1) Each ďα is a partial ordering;
(2) The relations are nested: for α ď β, o ďβ pñ o ďα p;
(3) The empty object is ďδ˚ p for every object p;
(4) The relations ďα are uniformly computable.

Proof. Most are straightforward. In showing thatďα is transitive, we need to justify
items 8 and 9. Suppose that o ďα p ďα q, that β ă γ ď α, and that

`

rד
rβ,γs

˘o
“

`

rד
rβ,γs

˘q
; so

`

rד
rβ,γs

˘o
“

`

rד
rβ,γs

˘p
“

`

rד
rβ,γs

˘q
, and so

`

fד
β,γ

˘o
Ď

`

fד
β,γ

˘p
Ď

`

fד
β,γ

˘q
.

Let f “
`

fד
β,γ

˘q
. Suppose that there is no ζ P rβ, γs with 1 ď |

`

Aד
ζ

˘q
| ď 2; by (4),

there is no ζ P rβ, γs with 1 ď |
`

Aד
ζ

˘p
| ď 2. This shows that (8) holds between o

and q.

Let z P rangepf æ
`

Aד
β

˘o
q; let y be the leftmost point in

`

Aד
β

˘o
mapped by f

to z. Let x P
`

Aד
β

˘q
such that fpxq “ z. Also let w be the leftmost point in

`

Aד
β

˘p

mapped to z by f . Since p ďα q, w ď x. Note that y P
`

Aד
β

˘p
and that py „γ wq

q;

by (8), py „γ wq
p. So there is some ζ P rβ, γs such that

`

fד
β,ζ

˘p
pyq “

`

fד
β,ζ

˘p
pwq.

Now y is the leftmost point in
`

Aד
β

˘o
mapped by

`

fד
β,ζ

˘p
to

`

fד
β,ζ

˘p
pwq; since o ďα p,

we have y ď w. This shows that (9) holds for o ďα q. �

Note that it is not the case that o ď0 p for all o and p. Also, the sequence of
relations is not continuous: it is possible, for λ limit, to have o ďβ p for all β ă λ
but o ęλ p.

Stage-based objects. We will define the notion of an s-object, where s is a stage.
This means that the object is eligible to be picked at stage s: the decisions made
in constructing the object are consistent with what we currently guess about the
universe (i.e., about the Hpαq). Further, in order to make the limit objects total,
by stage s we need to ensure that some levels are nonempty and have at least s
many elements.

Definition 4.12. Let p be an object. For clarity, in this definition we write Aד
α

for
`

Aד
α

˘p
, and similarly for the B, f , g, r and G. For a stage s ă ω, we say that p

is an s-object if the following additional conditions are satisfied for all α ď δ˚ and
for all ד P ω3:

(1) If Aד
α ‰ H then for all β ě α, fד

α,β is onto Aד
β , and the same holds for gד

α,β ;

(2) rד
α “ 1 ðñ ד P Vspαq;

(3) ד P Gα if and only if pα, qד requires attention at stage s;

and if pα, qד does not require attention at stage s, then:

(4) If ד P Vspαq then Aד
α and Bד

α are empty;
(5) If Aד

α (and Bד
α) are nonempty then |Aד

α|, |B
ד
α| ě 3;

but if pα, qד does require attention at stage s, then:

(6) If instrspα, qד is finite, then |Aד
α| “ instrAs pα, qד and |Bד

α| “ instrBs pα, ;qד
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(7) If instrspα, qד “ ω then |Aד
α|, |B

ד
α| ě s` 3;

(8) If instrspα, qד “ צ then Aד
α “ Aצ

α and Bד
α “ Bצ

α;
(9) If α ă δ˚, instrspα, qד “ ω, and Aד

α`1 is nonempty, then for each z P Aד
α`1,

tx P Aד
α : fד

α,α`1pxq “ zu

has at least s elements, and similarly for each z P Bד
α`1;

(10) If α is a limit ordinal and ד R Vspαq then there is some successor ordinal
β ă α such that fד

β,α and gד
β,α are isomorphisms.

We again make some remarks. As in the statement of Proposition 4.1, we stress
that in item 8, we are requiring literal equality of linear orders.15

As discussed above, (10) is used to show that for limit λ, Aד
λ is the direct limit of

pAד
βqβăλ, rather than a quotient of this direct limit. This item, as well as (1), were

added to this definition rather than to Definition 4.6 because as we mentioned, the
latter will be applied to partial objects constructed during the construction of an
s-object.

When pα, qד does not require attention but we know that for some β ă α, there
are special instructions for Aד

β , then the eventual instruction will be for Aד
α to be

empty; (4) ensures that we indeed keep this linear ordering empty, since we may
have already spent our one reset. As we shortly show, (5) together with other items
will ensure that |Aד

α| P t1, 2u only when we are directly instructed to do so. (6, 7,
8) say that instructions issued at stage s are obeyed. (9) ensures that at the limit,
each one-step preimage is infinite, and so has order-type precisely ω.

We remark on the condition ד R Vspαq in (10). We need this because when
attempting to meet this item, we will choose some β ă λ and let Aד

β “ Aד
λ. This

will be a level at which ד does not require attention, and so in light of (4) can only
do this if ד R Vspβq. By Lemma 4.3(d), this condition is also sufficient.

Finally, we remark on the connection between the relations s ďα t and p ďα q.
We have noticed differences in their behaviour, such as with continuity and the ď0

relation. However, we will connect these relations in at least one direction. As we
will shortly see, if, in our construction, at stage s we pick object p and at stage t we
pick object q, and s ďα t, then we will require p ďα q. Examining the definition of
s- and t-objects, and the definition of p ďα q, we observe that this does make sense.
For example, if pα, qד requires attention at stage s and instrspα, qד “ ω, then we

require
`

Aד
α

˘p
to have many points; there will be no reset, and so

`

Aד
α

˘q
will need

to extend
`

Aד
α

˘p
, and so also have many points; this is fine because s ďα t implies

that instrspα, qד “ instrtpα, qד (Lemma 4.3(c)), and so the extension requirement
does not conflict with our desire to obey the instruction at stage t. The same holds
for finite instructions, or for a copying instruction; here we use Proposition 3.9(c).

Lemma 4.13. Suppose that p is an s-object, β ď δ˚ and ד P ω3, and 1 ď |
`

Aד
β

˘p
| ď

2. Then pβ, qד requires attention at stage s and instrspβ, qד “ t1, 2u.

Proof. By (4,5,6,7) of Definition 4.12, pβ, qmustד indeed require attention at stage s,
and instrspβ, qד ‰ ω, 0. So we just need to show that instrspβ, qד ‰ צ for some .צ

But in that case, by (8),
`

Aד
β

˘p
“

`

Aצ
β

˘p
, and so 1 ď |

`

Aצ
β

˘p
| ď 2. Since צ is

the least element of its Espβq-equivalence class, instrspβ, qצ is not a copying in-
struction; rather, by the same analysis, it must be that instrspβ, qצ “ t1, 2u. By
Lemma 4.3(f), instrspβ, qד “ t1, 2u as well. �

15We use the literal meaning of the word “literally”.
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4.4. Proof of Proposition 4.1. Our strategy is now fully revealed: any com-
putable sequence xpsysPω such that each ps is an s-object and s ďα t ñ ps ďα pt
will suffice.

Proposition 4.14. There is a computable sequence xpsysPω such that for each s,
ps is an s-object, and s ďα tñ ps ďα pt.

Before we construct it, we show that such a sequence suffices.

Proof of Proposition 4.1, based on Proposition 4.14. Let xpsy be a sequence as guar-
anteed by Proposition 4.14. We start with the following.

Claim 4.1.1. For all α and ד there is a stage s˚ “ s˚pα, qד P Cα such that for all

t ą s˚ in Cα,
`

rד
r0,αs

˘ps˚ “
`

rד
r0,αs

˘pt
. Such a stage can be found byHpαq, uniformly

in α and .ד

Proof. By Definition 4.12, we need to find some s˚ P Cα such that for all β ď α,
ד P Vs˚pβq if and only if ד P Vωpβq. Such a stage exists because for s ďα t, the
least β for which ד P Vtpβq is no greater than the least β such that ד P Vspβq.
However this only shows that Hpα`1q can find s˚. But s˚ can be found directly:
the sets Vωpβq for β ď α are Hpαq-computable, uniformly in β; we can find the
least β such that ד P Vωpβq (if such exists), and if so, the least s P Cα such that
ד P Vspβq. �

For each α and ,ד if s˚pα, qד ďα s ďα t then
`

Aד
α

˘ps
Ď
`

Aד
α

˘pt
. We thus define

Aד
α “

ď

 `

Aד
α

˘ps
: s P Cα, s ě s˚pα, qד

(

.

We similarly define Bד
α. Similarly, for γ ď α ď δ˚, we let

fד
γ,α “

ď

 `

fד
γ,α

˘ps
: s P Cα, s ě s˚pα, qד

(

,

and similarly define gד
γ,α. We let fד

α “ fד
0,α and similarly define gד

α. (a), (b), (d)
and (e) of Proposition 4.1 follow from the definitions above. It remains to check (c).
We do so in the following claims. We fix ד P ω3. We focus on the A-side of the
construction, as the B-side is identical.

Claim 4.1.2. For all α ă δ˚, if Aד
α`1 is nonempty then for all z P Aד

α`1, the
order-type of tx P Aד

α : fד
α,α`1pxq “ zu is ω.

Proof. At all but finitely many s P Cα`1, pα ` 1, qד requires attention, and so
ד P pGα`1q

ps for such s. By Definition 4.10(7), the order-type of the set in question
is an ordinal ď ω. By Definition 4.12(9), the set is infinite. �

Recall that for a limit λ ď δ˚, the direct limit of the system pAד
α, f

ד
α,βqαďβăλ is

defined to be the set of equivalence classes for the following relation: for x P Aד
0

and y P Aד
0, x „ y if there is a γ ă λ such that f0,γpxq “ f0,γpyq. Note that we are

implicitly using the fact that the maps fד
α,β are onto. The classes are ordered with

the induced ordering, and this induced ordering being well-defined follows from the
f0,γ being order-preserving.

Claim 4.1.3. If λ ď δ˚ is a limit and Aד
λ is nonempty, then it is the direct limit of

the system pAד
α, fα,βqαďβăλ.
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Proof. The isomorphism from the direct limit to Aד
λ is hprxsq “ fד

0,λpxq for x P Aד
0.

That this is well-defined follows from fד
0,λ “ fד

γ,λ ˝ f
ד
γ,0. That it is surjective follows

from fד
0,λ being surjective. That it is order-preserving follows from fד

0,λ being order-
preserving.

The only point of difficulty is showing injectivity. Let x, y P Aד
0, and suppose

that fד
0,λpxq “ fד

0,λpyq. We need to show that there is some γ ă λ such that

fד
0,γpxq “ fד

0,γpyq. Let s P Cλ, s ě s˚pλ, .qד By Definition 4.12(10), there is some

γ ă λ such that
`

fד
0,γ

˘ps
“
`

fד
0,γ

˘ps
. By our choice of s,

`

fד
0,γ

˘ps
Ď fד

0,γ . �

Claim 4.1.4. For any ד and γ ď δ˚ such that Aד
γ is nonempty, Aד

0 – ωγ ¨Aד
γ and fד

γ

is the map induced by the Hausdorff derivative.

Proof. We prove the claim by induction on γ. The case γ “ 0 is immediate. At
successor stages we use Claim 4.1.2. Suppose that γ is a limit ordinal. Claim 4.1.3
implies that Aγ is the direct limit of the system pAד

β , f
ד
β,ζqβďζăγ and that fד

γ is

the quotient map. We show that Aד
0 – ωγ ¨ Aד

γ . For β ď γ, for z P Aד
β , let

Uβpzq “ tx P A
ד
0 : fד

βpxq “ zu. We need to show that for all z P Aד
γ , Uγpzq – ωγ .

Let z P Aד
γ . Let s ě s˚pγ, qד in Cγ such that z P

`

Aד
γ

˘ps
. Then Definition 4.10(6)

shows that the leftmost point y of
`

Aד
0

˘ps
mapped to z by

`

fד
γ

˘ps
is the leftmost

point of U0pzq. For β ă γ let yβ “ fד
βpyq. Then y is the leftmost point of Uβpyβq. By

induction, for all β ă γ, Uβpyβq – ωβ . For β ă ζ ă γ, Uβpyβq is an initial segment of
Uζpyζq; this is because yβ is the leftmost point in Aד

β mapped by fד
β,ζ to yζ . Finally,

by Claim 4.1.3, Uγpzq “
Ť

βăγ Uβpyβq. It follows that Uγpzq – supβăγ ω
β “ ωγ . �

This concludes the proof of Proposition 4.1. �

4.5. The weak extendibility condition. It remains to prove Proposition 4.14,
the existence of the desired computable sequence xpsy. The existence will follow
from what Montalbán called the weak extendibility condition [Mon14, Def.4.1]:

Proposition 4.15. Let k ě 0; suppose that sk ď sk´1 ď . . . ď s1 ď s0 ď t are
stages, δ˚ “ αk ą αk´1 ą ¨ ¨ ¨ ą α1 ą α0 ě 0 are ordinals, and pk, pk´1, . . . , p0 are
objects such that:

(i) for each i ď k, pi is an si-object;
(ii) for each i ď k, si ďαi t; and

(iii) for each i ă k, pi`1 ďαi`1 pi.

Then there is a t-object q such that for all i ď k, pi ďαi q.

Montalbán showed that the weak extendibility condition implies Proposition 4.14,
which he called his metatheorem [Mon14, Thm.4.2]. We repeat his argument for
completeness.

Proof of Proposition 4.14, given Proposition 4.15. We define the sequence by re-
cursion. We start with p0 being the empty object, which is a 0-object. Suppose
that t ą 0 and that we have already defined p0, p1, . . . , pt´1. We must construct a
t-object pt with ps ďα pt for all pairs pα, sq with s ďα t.

First, we define a pair of finite sequences. Start with α´1 “ ´1 and s0 “ t´ 1.
Given si ă t, let

αi “ maxtα ď δ˚ : si ďα tu.
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If αi “ δ˚ we are done; otherwise note that si ą 0, and let

si`1 “ max ts ă si : s ďαi`1 tu ,

again noticing that such s exists because 0 ďδ˚ t.
Let k be such that αk “ δ˚. Note that α´1 ă α0 ă α1 ă ¨ ¨ ¨ ă αk “ δ˚ and

sk ă sk´1 ă ¨ ¨ ¨ ă s0 “ t´ 1. Also note that for each i ď k, si is the greatest s ă t
such that s ďαi´1`1 t (rather than only s ă si´1). Indeed, for all s P psj , sj´1s,
maxtα : s ďα tu ď αj´1.

As mentioned above, p♦q and p♣q imply that for each i ă k, si`1 ďαi`1 si,
and so, by our inductive hypothesis, psi`1 ďαi`1 psi . Thus the hypotheses of the
weak extendibility condition, Proposition 4.15, hold, with psi in the role of pi; we
let pt be the t-object given by the proposition. We note that the existence of the
required pt implies that we can find it by a search, as the conditions defining it can
be checked computably; however, the proof of the weak extendibility condition will
be constructive.

Let s ă t and let α ď δ˚ such that s ďα t; we need to show that ps ďα pt. Write
sk`1 “ ´1; find i P t0, 1, . . . , ku such that si`1 ă s ď si. The choice of si`1 in the
case i ă k implies that α ď αi (if i “ k this is immediate from αk “ δ˚). Thus
si ďα t. By p♦q, s ďα si, and so by induction, ps ďα psi . Now psi ďαi pt gives
psi ďα pt, and thus by transitivity, ps ďα pt, as desired. �

We remark that we can further break down the weak extendibility condition to
two simpler “extension lemmas”.

Lemma 4.16. If s ďα t and p is an s-object, then there exists a t-object q such
that p ďα q.

Lemma 4.17. Suppose that α2 ą α1 ą α0 and s2 ď s1 ď s0 with s2 ďα2
s0 and

s1 ďα1
s0. If pi is an si-object, for i ă 3, with p2 ďα1`1 p1 ďα1

p0, then there
exists an s0-object q with pi ďαi q for i ă 3.

We allow α0 “ ´1, in which case ps0 ď´1 q is vacuous.

Note that under the hypothesis of Lemma 4.17, by p♦q and p♣q, s2 ďα1`1 s1.

s t
p q

α

α

s2 s1

s0

p2 p1

p0q

α2 α1

α1`1

α1α2 α1

α0

Figure 2. The two extension lemmas.

The weak extendibility condition is equivalent to the conjunction of the two
extension lemmas (this equivalence is not restricted to our particular setting). In
one direction, suppose that the weak extendibility condition Proposition 4.15 holds.
We first note that we can deduce the apparently stronger version in which αk is
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not required to equal δ˚. This is because we can always add sk`1 “ 0, αk`1 “ δ˚
and pk`1 being the empty object.

Using this more relaxed extendibility condition, for Lemma 4.16, take k “ 0 with
α0 “ α; and let p0 “ p and s0 “ s. For Lemma 4.17, we let t “ s0 (so s0 ďα0

t
is immediate); if α0 ě 0 we take k “ 2; for i “ 0, 1, 2 we are given si and pi. The
assumption p1 ďα1

p0 certainly implies p1 ďα0`1 p0; we are told that p2 ďα1`1 p1.
If α0 “ ´1 we omit p0 and shift the indices by 1.

In the other direction, suppose that Lemmas 4.16 and 4.17 hold. We define a
sequence q0, q1, . . . , qk of t-objects as in fig. 3. By the first extension Lemma 4.16,
we let q0 be a t-object such that p0 ďα0

q0. Suppose that i ă k and that qi has
been constructed, and that pi ďαi qi. Then by the second extension Lemma 4.17
applied to p2 :“ pi`1, p1 :“ pi and p0 “ qi we obtain a t-object qi`1 such that:

‚ qi ďαi´1
qi`1;

‚ pi ďαi qi`1; and
‚ pi`1 ďαi`1

qi`1.

Finally we let q “ qk. We observe that for i “ 0, 1, . . . , k, by transitivity, pi ďαi q.

pk pk´1 ¨ ¨ ¨ p2 p1 p0

qk qk´1 ¨ ¨ ¨ q2 q1 q0

αk´1`1 αk´2`1 α2`1 α1`1 α0`1

α0α1α2αk´1αk

α´1α0α1αk´3αk´2

α0α1α2αk´2αk´1

Figure 3. Constructing q

We remark that even though the statement of the two extension lemmas seems
simpler than the weak extendibility condition, in fact, the proof more naturally
gives the weak extendibility condition directly.

Remark 4.18. In Montalbán’s application ([Mon14, Thm.5.3]), a simpler variant of
the second extension Lemma 4.17 is used: an object q is obtained with p0 ďα1

q
and p2 ďδ˚ q. This simpler extension lemma does not hold in our construction
(as well as similar constructions such as for the proof of the Ash-Watnick theorem
[Ash90]), so we require the more complicated Lemma 4.17.

We turn now to the proof of the weak extendibility condition. We break this proof
up into two parts: we first take the objects p0, p1, . . . , pk and “glue” them together
in to some object o. This process will involve removing some linear orderings
but will not require adding new ones. This is the step at which we spend resets
if necessary. The object o produced will not quite be a t-object. The following
definition lists properties of o that will enable us, in the second step, to add linear
orderings to make a t-object.

Definition 4.19. An object o is called admissible for stage t if the following con-
ditions hold for all β ď δ˚ and ד P ω3: 16

16As in Definition 4.12, we omit the superscript o, as o is the only object we will mention in
this definition.
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(1) rד
β “ 1 ðñ ד P Vtpβq;

(2) ד P Gβ if and only if pβ, qד requires attention at stage t;
(3) If 1 ď |Aד

β | ď 2 then pβ, qד requires attention at stage t and instrtpβ, qד “
t1, 2u;

if pβ, qד does not require attention at stage t, then:

(4) If ד P Vtpβq then Aד
β and Bד

β are empty;

but if pβ, qד requires attention at stage t, and Aד
β is nonempty, then:

(5) If instrtpβ, qד is finite, then |Aד
β | “ instrAt pβ, qד and |Bד

β | “ instrBt pβ, qד
17;

(6) If instrtpβ, qד “ צ then Aד
β “ Aש

β and Bד
β “ Bש

β .

We remark that we could have added (7) of Definition 4.12, in that it would
hold for the object o that we build, but we will not need this condition when we
extend o to a t-object. The same holds for Definition 4.12(5).

Using this definition, Proposition 4.15 will follow from the conjunction of the
two following lemmas.

Lemma 4.20. Let k ě 0; suppose that sk ď sk´1 ď . . . ď s1 ď s0 ď t are stages,
δ˚ “ αk ą αk´1 ą ¨ ¨ ¨ ą α1 ą α0 ě 0 are ordinals, and pk, pk´1, . . . , p0 are objects
such that:

(i) for each i ď k, pi is an si-object;
(ii) for each i ď k, si ďαi t; and
(iii) for each i ă k, pi`1 ďαi`1 pi.

Then there is an object o, admissible for stage t, such that for all i ď k, pi ďαi o.

Lemma 4.21. If o is an object which is admissible for stage t, then there is a
t-object q with o ďδ˚ q.

So it remains to prove Lemma 4.20 and Lemma 4.21. We start with the former.

4.6. Proof of Lemma 4.20. We build the object o as a combination of the ob-
jects pi, except that we reset those linear orderings that we need removed.

We start, of course, by setting
`

rד
β

˘o
“ 1 if and only if ד P Vtpβq for all β ď δ˚

and all ד P ω3, and ד P pGβqo if and only if pβ, qד requires attention at stage t.

For all β ď δ˚, using the fact that αk “ δ˚, we let ipβq be the smallest i ď k
such that β ď αi. For all β ď γ ď δ˚, ipβq ď ipγq, and as β ď αipβq, we have

pipγq ďβ`1 pipβq.

Let β ď δ˚ and let ד P ω3. First, we define
`

Aד
β

˘o
. To avoid excessive notation,

we do not mention
`

Bד
β

˘o
, but the definition is identical.

(a) If pβ, qד does not require attention at stage sipβq and ד P Vtpβq then we let
`

Aד
β

˘o
“ H.

(b) Otherwise, we let
`

Aד
β

˘o
“
`

Aד
β

˘pipβq .

Now we define the maps
`

fד
β,γ

˘o
(as with the B’s, we don’t mention the g-

maps but their definition is identical). The difficulty is with defining
`

fד
β,γ

˘o
when

ipβq ă ipγq, because then we don’t already have a map from
`

Aד
β

˘pipβq into
`

Aד
γ

˘pipγq .

17In particular, instrtpβ, qד ‰ 0
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Fix .ד Of course if either
`

Aד
β

˘o
or

`

Aד
γ

˘o
is empty then

`

fד
β,γ

˘o
is empty. We

also let
`

fד
β,β

˘o
be the identity on

`

Aד
β

˘o
for all β.

Suppose that β ă γ and both
`

Aד
β

˘o
and

`

Aד
γ

˘o
are nonempty. First we suppose

that β and γ are successive levels-ד of o, meaning that for all ξ P pβ, γq,
`

Aד
ξ

˘o
is

empty. To define
`

fד
β,γ

˘o
we have two cases:

(i): If there is no ζ ď β such that
`

Aד
ζ

˘pipγq is nonempty and
`

rד
ζ

˘pipγq
“

`

rד
ζ

˘pipβq ,

then we let
`

fד
β,γ

˘o
map every point in

`

Aד
β

˘o
to 0.18

(ii): Otherwise, let ζ “ ζד
β,γ be the greatest ζ ď β such that

`

Aד
ζ

˘pipγq is nonempty

and
`

rד
ζ

˘pipγq
“

`

rד
ζ

˘pipβq . Since ζ ď β and pipγq ďβ pipβq, we have
`

Aד
ζ

˘pipγq
Ď

`

Aד
ζ

˘pipβq , and so
`

fד
ζ,β

˘pipβq is defined on each y P
`

Aד
ζ

˘pipγq and preserves their
ordering.

For each z P
`

Aד
γ

˘pipγq
“

`

Aד
γ

˘o
we let yz be the leftmost element of

`

Aד
ζ

˘pipγq

which is mapped to z by
`

fד
ζ,γ

˘pipγq ; and we let xz “
`

fד
ζ,β

˘pipβq
pyzq.

19 Note that

x0 “ y0 “ 0. Hence, for all w P
`

Aד
β

˘o
there is some z P

`

Aד
γ

˘o
such that xz ď w

in
`

Aד
β

˘o
; we let

`

fד
β,γ

˘o
map w to the rightmost such z (rightmost in

`

Aד
γ

˘o
of

course).

Having defined
`

fד
β,γ

˘o
for successive levels-ד β ă γ, for any β ă γ with

`

Aד
β

˘o

and
`

Aד
γ

˘o
both nonempty we let β “ ε0 ă ε1 ă ¨ ¨ ¨ ă εk “ γ be a list of the

levels-ד of o between β and γ; we let
`

fד
β,γ

˘o
“
`

fד
εk´1,εk

˘o
˝ ¨ ¨ ¨ ˝

`

fד
ε1,ε2

˘o
˝
`

fד
ε0,ε1

˘o
;

this concludes the definition of o.

We start the verification with:

Claim 4.20.1. If β ă γ and
`

Aד
β

˘o
and

`

Aד
γ

˘o
are nonempty, then

`

fד
β,γ

˘o
is order-

preserving.

Proof. By taking compositions, we may assume that β and γ are successive levels-ד
of o. We then consider how we defined

`

fד
β,γ

˘o
. In case (i) the claim is immediate.

In case (ii),
`

fד
β,γ

˘o
being order-preserving follows from the defintion, and the fact

that z ÞÑ xz (from the definition of
`

fד
β,γ

˘o
) is order-preserving (as both

`

fד
ζ,γ

˘pipγq

and
`

fד
ζ,β

˘pipβq are order-preserving). �

We also note that
`

rד
β

˘o
ď

`

rד
γ

˘o
follows from Vtpβq Ď Vtpγq (Lemma 4.5(c)).

Similarly, for all but finitely many ,ד
`

rד
δ˚

˘o
“ 0, as Vtpδ˚q is finite (Lemma 4.5(g)).

Also, each pGβq
o is finite and all but finitely many are empty because only finitely

many pairs require attention at any stage (Lemma 4.3(a)). There are only finitely

many nonempty
`

Aד
β

˘o
since each pi is an object.

18This is the only place in this paper in which we use the fact that the homomorphisms fד in

objects do not have to be onto. The issue being that
`

Aד
β

˘o
may have fewer points than

`

Aד
γ

˘o
.

19We use the fact that pipγq is an sipγq-object, and so
`

fד
ζ,γ

˘pipγq is onto
`

Aד
γ

˘o
; but this is not

really important, we could have defined xz only for z P range
`

fד
ζ,γ

˘pipγq .
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Most other items of Definition 4.6 are immediate; to show that o is an object it
remains to show that the range of each

`

fד
β,γ

˘o
is an initial segment of

`

Aד
γ

˘o
. We

need the following.

Claim 4.20.2. If pβ, qד does not require attention at stage t and ד P Vtpβq then
`

Aד
β

˘o
and

`

Bד
β

˘o
are empty.

Proof. If pβ, qד does not require attention at stage t, then since sipβq ďβ t, the pair
pβ, qד does not require attention at stage sipβq either (Lemma 4.3(c)). If ד P Vtpβq
then our construction sets

`

Aד
β

˘o
to be empty. �

Claim 4.20.3. Suppose that pβ, qד requires attention at stage t, and instrtpβ, qד ‰
ω. Then for all γ ą β,

`

Aד
γ

˘o
is empty.

Proof. Let γ ą β. Then ד P Vtpγq. If pγ, qד does not require attention at stage t then
`

Aד
γ

˘o
is empty (Claim 4.20.2). If pγ, qד requires attention then instrtpγ, qד “ 0

(Lemma 4.3(g)) and then
`

Aד
γ

˘o
“ H by Definition 4.19(5). �

Claim 4.20.4. Suppose that j ď k, β ď αj , and 1 ď |
`

Aד
β

˘pj
| ď 2. Then pβ, qד

requires attention at stage t, instrtpβ, qד “ t1, 2u and
`

Aד
β

˘o
“
`

Aד
β

˘pj
.

Proof. Since pj is an sj-object, pβ, qד requires attention at stage sj and instrsj pβ, qד “
t1, 2u (Lemma 4.13). Since sj ďβ sipβq ďβ t, pβ, qד requires attention at stages sipβq
and t and instrtpβ, qד “ instrsipβqpβ, qד “ instrsj pβ, .qד

20 Since pj ďβ pipβq,
`

Aד
β

˘pipβq
“
`

Aד
β

˘pj
; by construction,

`

Aד
β

˘o
“
`

Aד
β

˘pipβq . �

Combining Claim 4.20.4 and Claim 4.20.3 we get:

Claim 4.20.5. Suppose that j ď k, β ď αj , and 1 ď |
`

Aד
β

˘pj
| ď 2. Then for all

γ ą β,
`

Aד
γ

˘o
is empty.

Claim 4.20.6. Let β ă γ be successive levels-ד of o, suppose that ζ “ ζד
β,γ is

defined, and suppose that
`

rד
rζ,βs

˘pipγq
“

`

rד
rζ,βs

˘pipβq . Then
`

fד
β,γ

˘o
˝
`

fד
ζ,β

˘pipβq

extends
`

fד
ζ,γ

˘pipγq .

Proof. Since
`

Aד
γ

˘o
is nonempty, by Claim 4.20.5, for no ξ ď β do we have 1 ď

|
`

Aד
ξ

˘pipβq
| ď 2.

Let y P
`

Aד
ζ

˘pipγq ; let z “
`

fד
ζ,γ

˘pipγq
pyq and let x “

`

fד
ζ,β

˘pipβq
pyq. Then yz ď y,

and so xz ď x. Let z1 ą z in
`

Aד
γ

˘o
; then y ă yz1 . As py γ yz1q

pipγq , we have

py β yz1q
pipγq ; since pipγq ďβ pipβq), x ă xz1 (Definition 4.10(8)), and so

`

fד
β,γ

˘o

maps x to z. �

It follows that if ζ “ ζד
β,γ is defined, then

`

fד
β,γ

˘o
is onto

`

Aד
γ

˘o
: for all z, since

`

fד
ζ,γ

˘pipγq
pyzq “ z, we have

`

fד
β,γ

˘o
pxzq “ z. Of course in case (i) of the definition

of
`

fד
β,γ

˘o
, the range of this map is an initial segment of

`

Aד
γ

˘o
, namely t0u. With

compositions, we see that every map
`

fד
β,γ

˘o
is onto an initial segment of

`

Aד
γ

˘o
;

we conclude that o is an object.

20Recall that this means that instrAsipβq pβ, qד “ instrAt pβ, qד and instrBsipβq pβ, qד “

instrBt pβ, ,qד and the same for sj .
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Next, we show that o is admissible for stage t. The first two items of Defini-
tion 4.19 are by definition. (4) is Claim 4.20.2. For (3), suppose that 1 ď |

`

Aד
β

˘o
| ď

2. By consturction,
`

Aד
β

˘o
“
`

Aד
β

˘pipβq . Then (3) follows from Claim 4.20.4.

We check (5) and (6) of Definition 4.19. Suppose that pβ, qד requires attention

at stage t, that
`

Aד
β

˘o
is nonempty, and that instrtpβ, qד ‰ ω. Then ד P Vtpβq.

Since
`

Aד
β

˘o
is nonempty and ד P Vtpβq, by construction, pβ, qד requires attention

at stage sipβq. Again, instrsipβqpβ, qד “ instrtpβ, .qד Since pipβq is an sipβq-object,
`

Aד
β

˘o
“
`

Aד
β

˘pipβq is of the right type:

‚ If instrAt pβ, qד P t0, 1, 2u then |
`

Aד
β

˘pipβq
| “ instrAt pβ, qד (and the same

for B);

‚ If instrAt pβ, qד “ צ then
`

Aד
β

˘o
“

`

Aד
β

˘pipβq
“

`

Aצ
β

˘pipβq . Since pβ, qצ
requires attention at stage sipβq (Lemma 4.3(e)),

`

Aצ
β

˘o
“

`

Aצ
β

˘pipβq .

It remains to show that pj ďαj o for all j ď k. We need the following claims.

Claim 4.20.7. Let β ď δ˚ and ד P ω3.

(a)
`

rד
β

˘pipβq
ď
`

rד
β

˘o
.

(b) pGβq
pipβq Ď pGβq

o, and if ד P pGβqpipβq then
`

rד
β

˘pipβq
“
`

rד
β

˘o
.

(c) If
`

rד
β

˘pipβq
“
`

rד
β

˘o
then

`

Aד
β

˘o
“
`

Aד
β

˘pipβq .

Proof. (a): Suppose that
`

rד
β

˘pipβq
“ 1. Since pipβq is an sipβq-object, ד P Vsipβqpβq.

Since sipβq ďβ t, ד P Vtpβq (Lemma 4.5(b)), and so
`

rד
β

˘o
“ 1 as well.

(b): Again we use that pipβq is an sipβq-object. So if ד P pGβqpipβq then pβ, qד
requires attention at stage sipβq, and so requires attention at stage t, and so by
construction, ד P pGβq

o. Further, for such ,ד ד P Vsipβqpβq ðñ ד P Vtpβq

(Lemma 4.5(e)), and ד P Vsipβq ðñ
`

rד
β

˘pipβq
“ 1.

(c): Suppose that
`

Aד
β

˘pipβq
‰

`

Aד
β

˘o
. Then

`

Aד
β

˘o
“ H,

`

Aד
β

˘pipβq
‰ H, ד P

Vtpβq and pβ, qד does not require attention at stage sipβq. Then
`

rד
β

˘o
“ 1 by

construction, and
`

rד
β

˘pipβq
“ 0 by Definition 4.12(4). �

We can now show that (1),(2) and (3) of Definition 4.10 hold between each pj
and o at the right levels. Namely, let j ď k, and let β ď αj . Since pj ďβ pipβq, we

have
`

rד
β

˘pj
ď
`

rד
β

˘pipβq ; with Claim 4.20.7(a), we conclude that
`

rד
β

˘pj
ď
`

rד
β

˘o
.

Similarly, if ד P pGβqpj then ד P pGβqpipβq and so ד P pGβqo, and further,
`

rד
β

˘pj
“

`

rד
β

˘pipβq and so also equals
`

rד
β

˘o
.

And if
`

rד
β

˘pj
“

`

rד
β

˘o
then as

`

rד
β

˘pj
ď

`

rד
β

˘pipβq
ď

`

rד
β

˘o
, we have

`

rד
β

˘pj
“

`

rד
β

˘pipβq
“

`

rד
β

˘o
. Since pj ďβ pipβq,

`

Aד
β

˘pj
Ď

`

Aד
β

˘pipβq ; by Claim 4.20.7(c), we

get
`

Aד
β

˘pj
Ď
`

Aד
β

˘o
.

We also note that (4) between each pj and o follows from Claim 4.20.4.

Claim 4.20.8. Suppose that β ă γ, and that both
`

Aד
β

˘pipγq and
`

Aד
γ

˘o
are nonempty;

suppose that
`

rד
rβ,γs

˘pipγq
“
`

rד
rβ,γs

˘o
. Then:

(a)
`

fד
β,γ

˘o
extends

`

fד
β,γ

˘pipγq .

(b) For every z P
`

Aד
γ

˘o
, the leftmost point of

`

Aד
β

˘pipγq mapped by
`

fד
β,γ

˘pipγq

to z is also the leftmost point of
`

Aד
β

˘o
mapped by

`

fד
β,γ

˘o
to z.
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Proof. For all ε P rβ, γs, pipγq ďε pipεq, so the assumption implies that
`

rד
rβ,εs

˘pipγq
“

`

rד
rβ,εs

˘pipεq
“
`

rד
rβ,εs

˘o
. We prove the claim by induction on γ.

The base case is when γ is the next level-ד above β. Then ζד
β,γ is defined and

equals β. In this case both (a) and (b) follow directly from the construction (we

do not need Claim 4.20.6); yz “ xz is the leftmost point in
`

Aד
β

˘o
mapped to z by

`

fד
β,γ

˘o
.

For the inductive case, let ε be the greatest level-ד of o below γ. Then ζ “ ζε,γ is

defined and ζ ě β. For (a), let w P
`

Aד
β

˘pipγq ; let y “
`

fד
β,ζ

˘pipγq , x “
`

fד
ζ,ε

˘pipεq
pyq

and z “
`

fד
ζ,γ

˘pipγq
pyq “

`

fד
β,γ

˘pipγq
pwq.

‚ Since pipγq ďε pipεq and
`

rד
rβ,ζs

˘pipγq
“
`

rד
rβ,ζs

˘pipεq , we have y “
`

fד
β,ζ

˘pipεq
pwq,

and so x “
`

fד
β,ε

˘pipεq
pwq.

‚ By Claim 4.20.6, z “
`

fד
ε,γ

˘o
pxq.

‚ By induction, as
`

rד
rβ,εs

˘pipεq
“

`

rד
rβ,εs

˘o
,
`

fד
β,ε

˘o
extends

`

fד
β,ε

˘pipεq , and so

x “
`

fד
β,ε

˘o
pwq.

We conclude that z “
`

fד
β,γ

˘o
pwq, establishing (a).

For (b), let z P
`

Aד
γ

˘o
; let w be the leftmost in

`

Aד
β

˘pipγq mapped to z by
`

fד
β,γ

˘pipγq . Since
`

fד
β,ζ

˘pipγq is onto an initial segment of
`

Aד
ζ

˘pipγq (in fact onto
`

Aד
ζ

˘pipγq), yz, which recall is the leftmost point in
`

Aד
ζ

˘pipγq mapped by
`

Aד
ζ,γ

˘pipγq

to z, equals
`

fד
β,ζ

˘pipγq
pwq. Then xz “

`

fד
β,ε

˘pipεq
pwq; recall that this is the left-

most point in
`

Aד
ε

˘o
mapped to z by

`

fד
ε,γ

˘o
. Let x P

`

Aד
β

˘o
and suppose that

`

fד
β,γ

˘o
pxq “ z; let x1 “

`

fד
β,ε

˘o
pxq. Then xz ď x1. If xz ă x1 then as

`

fד
β,ε

˘o
is

order-preserving, w ă x.
Suppose that xz “ x1. By Claim 4.20.5, since

`

Aד
γ

˘o
is nonempty, for no ξ ď ε

do we have 1 ď |
`

Aד
ξ

˘pipεq
| ď 2. Since pipγq ďε pipεq, w is also the leftmost point

in
`

Aד
β

˘pipεq mapped to x1 “ xz by
`

fד
β,ε

˘pipεq . By induction applied at level ε,
w ď x. �

Again let j ď k and let β ď γ ď αj . Suppose that
`

rד
rβ,γs

˘pj
“

`

rד
rβ,γs

˘o
. As

above, for all ε P rβ, γs,
`

rד
rβ,εs

˘pj
“
`

rד
rβ,εs

˘pipεq
“
`

rד
rβ,εs

˘o
.

Since pj ďγ pipγq,
`

fד
β,γ

˘pj
Ď

`

fד
β,γ

˘pipγq . By Claim 4.20.8(a), we also have
`

fד
β,γ

˘pj
Ď
`

fד
β,γ

˘o
, establishing (5) of Definition 4.10 between pj and o.

For (6), let z P
`

Aד
γ

˘pj
, and let y be the leftmost point in

`

Aד
β

˘pj
mapped by

`

fד
β,γ

˘pj
to z. Since pj ďγ pipγq, y is the leftmost point in

`

Aד
β

˘pipγq mapped by
`

fד
β,γ

˘pipγq to z. By Claim 4.20.8(b), y is also the leftmost point in
`

Aד
β

˘o
mapped

to z by
`

fד
β,γ

˘o
.

Skipping (7) for now, suppose that in addition, for no ξ P rβ, γs do we have

1 ď |
`

Aד
ξ

˘o
| ď 2. Let f “

`

fד
β,γ

˘o
, and let z P range f æ

`

Aד
β

˘pj
; let y P

`

Aד
β

˘pj

be leftmost mapped to z by f . Then y P
`

Aד
β

˘pipγq , and
`

fד
β,γ

˘pipγq
pyq “ z

(Claim 4.20.8(a)). We know that for no ξ P rβ, γs we have 1 ď |
`

Aד
ξ

˘pipγq
| ď

2 (Claim 4.20.4). Thus since pj ďγ pipγq, y is the leftmost point in
`

Aד
β

˘pipγq
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mapped to z by
`

fד
β,γ

˘pipγq . Then as above, (9) of Definition 4.10 follows from

Claim 4.20.8(b).

We verify (8). Let y, y1 P
`

Aד
β

˘pj
, and suppose that py „γ y1qo. By de-

creasing γ we may assume that
`

Aד
γ

˘o
is nonempty, so

`

fד
β,γ

˘o
pyq “

`

fד
β,γ

˘o
py1q.

By Claim 4.20.8(a),
`

fד
β,γ

˘pipγq
pyq “

`

fד
β,γ

˘pipγq
py1q and so py „γ y1qpipγq . Since

pj ďγ pipγq and there is no ξ P rβ, γs with 1 ď |
`

Aד
ξ

˘pipγq
| ď 2, py „γ y

1qpj as well.

Finally, we show (7). We make use of:

Claim 4.20.9. Let β ă δ˚; suppose that
`

rד
rβ,β`1s

˘pipβ`1q
“

`

rד
rβ,β`1s

˘o
and ד P

pGβ`1q
pipβ`1q . Suppose that

`

Aד
β`1

˘o
is nonempty, w P

`

Aד
β

˘pipβ`1q , x P
`

Aד
β

˘o
, and

`

fד
β,β`1

˘o
pxq “

`

fד
β,β`1

˘o
pwq. Then w ď x in

`

Aד
β

˘o
.

Proof. This is where we use the assumption that pipβ`1q ďβ`1 pipβq, rather than
just ďβ . The difficulty is that when ipβ ` 1q ą ipβq (i.e. when β “ αipβq) there

needn’t be much of a connection between
`

fד
β,β`1

˘o
and

`

fד
β,β`1

˘pipβq , as we do not
make pipβq ďβ`1 o.

Since
`

rד
β

˘pipβ`1q
“
`

rד
β

˘o
, we have

`

rד
β

˘pipβ`1q
“
`

rד
β

˘pipβq . Since ד P pGβ`1q
pipβ`1q

and pipβ`1q ďβ`1 pipβq, we have
`

rד
β`1

˘pipβ`1q
“

`

rד
β`1

˘pipβq . That is, together,
`

rד
rβ,β`1s

˘pipβ`1q
“
`

rד
rβ,β`1s

˘pipβq .

Let z “
`

fד
β,β`1

˘o
pxq “

`

fד
β,β`1

˘o
pwq. We show that

`

fד
β,β`1

˘pipβq
pxq ě z (in

`

Aד
β`1

˘pipβq). We consider the definition of the map
`

fד
β,β`1

˘o
. Since

`

Aד
β

˘pipβ`1q

is nonempty, we have ζד
β,β`1 “ β. Then yz “ xz ď x. Since

`

fד
β,β`1

˘pipβq is order-

preserving and extends
`

fד
β,β`1

˘pipβ`1q , we must indeed have
`

fד
β,β`1

˘pipβq
ě z.

By Claim 4.20.8(a), z “
`

fד
β,β`1

˘pipβ`1q
pwq. Since pipβ`1q ďβ`1 pipβq, by (7)

applied between pipβ`1q and pipβq, we have w ď x as required. �

Let j ď k and β ă αj ; suppose that
`

rד
rβ,β`1s

˘pj
“

`

rד
rβ,β`1s

˘o
and that ד P

pGβ`1q
pj . Then

`

rד
rβ,β`1s

˘pj
“
`

rד
rβ,β`1s

˘pipβ`1q
“
`

rד
rβ,β`1s

˘o
and ד P pGβ`1q

pipβ`1q .

Let z P
`

Aד
β`1

˘pj
. Since pj ďβ`1 pipβ`1q,

 

x P
`

Aד
β

˘pj
:
`

fד
β,β`1

˘pj
pxq “ z

(

is an

initial segment of
 

x P
`

Aד
β

˘pipβ`1q :
`

fד
β,β`1

˘pipβ`1q
pxq “ z

(

. By Claim 4.20.9,

that set is an initial segment of
 

x P
`

Aד
β

˘o
:
`

fד
β,β`1

˘o
pxq “ z

(

, giving (7), and
completing the proof of Lemma 4.20.

4.7. Proof of Lemma 4.21. We will split the construction giving Lemma 4.21 into
two parts. We are given an object o which is admissible for stage t. In the first part
we construct an object p ěδ˚ o which satisfies all the conditions of Definition 4.12
except possibly for item 10. We then extend p to a t-object q ěδ˚ p.

Construction of an object p ěδ˚ o satisfying all but item 10 of Definition 4.12. We

start, of course, by declaring that for all α and ,ד
`

rד
α

˘p
“ 1 if and only if ד P Vtpαq

and ד P pGβqp if and only if pβ, qד requires attention at stage t. Since o is admissible

for stage t, this means that pGβq
p “ pGβq

o for all β and
`

rד
β

˘p
“

`

rד
β

˘o
for all β

and .ד
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We construct p “from the top down”. When we consider a level α ď δ˚, we
assume that we have already defined the linear orderings

`

Aד
ζ

˘p
and

`

Bד
ζ

˘p
, and

functions
`

fד
ζ,ξ

˘p
and

`

gד
ζ,ξ

˘p
for all α ă ζ ď ξ ď δ˚. We then define the αth level

of p, namely the orderings
`

Aד
α

˘p
and

`

Bד
α

˘p
, and functions

`

fד
α,ζ

˘p
and

`

gד
α,ζ

˘p
for

all ζ ě α.
The reason that this reverse recursion on δ˚ makes sense is that p will have only

finitely many nonempty levels. A level α of p is empty if all linear orderings
`

Aד
α

˘p

and
`

Bד
α

˘p
are empty.

We commit that:

‚ A level α of p will be nonempty only if the αth level of o is nonempty, or
for some ד P ω3, pα, qד requires attention at stage t.

Since o is an object, only finitely many levels of o are nonempty, and since only
finitely many pairs require attention at each stage (Lemma 4.3(a)), there are only
finitely many such levels α.

The construction and some of its verification should be viewed as a grand in-
duction. We state four claims now. At step α of the construction we assume that
these claims hold at every level ζ ą α.

Claim 4.21.1.
`

Aד
ζ

˘p
and

`

Bד
ζ

˘p
are finite linear orderings.

(a)
`

Aד
ζ

˘p
is nonempty if and only if

`

Bד
ζ

˘p
is nonempty.

(b) If nonempty, then the universe of
`

Aד
ζ

˘p
is an initial segment of ω, and 0 is

its leftmost point; similarly for B.

For the next two claims and further below, let

N “ maxt|
`

Aד
ε

˘o
|, |
`

Bד
ε

˘o
| : ε ď δ˚ & ד P ω3u.

Claim 4.21.2.

(a) If |
`

Aד
ζ

˘p
| ě 3 or |

`

Bד
ζ

˘p
| ě 3 then |

`

Aד
ζ

˘p
|, |
`

Bד
ζ

˘p
| ě N ` t.

(b) If 1 ď |
`

Aד
ζ

˘p
| ď 2 or 1 ď |

`

Bד
ζ

˘p
| ď 2 then pζ, qד requires attention at

stage t and instrtpβ, qד “ t1, 2u;
(c) If pζ, qד requires attention at stage t and instrtpζ, qד is finite, then |

`

Aד
ζ

˘p
| “

instrAt pζ, qד and |
`

Bד
ζ

˘p
| “ instrBt pζ, ;qד

(d) If pζ, qד does not require attention at stage t and ד P Vtpζq then
`

Aד
ζ

˘p
and

`

Bד
ζ

˘p
are empty.

Henceforth we ignore the B-side of the construction, as it is identical to its
A-side.

Claim 4.21.3. Let ξ ě ζ.

(a) If either
`

Aד
ζ

˘p
or

`

Aד
ξ

˘p
are empty, then

`

fד
ζ,ξ

˘p
is empty.

(b)
`

fד
ζ,ζ

˘p
is the identity on

`

Aד
ζ

˘p
.

Suppose that
`

Aד
ζ

˘p
and

`

Aד
ξ

˘p
are nonempty and that ξ ą ζ.

(c)
`

fד
ζ,ξ

˘p
is an order-preserving function from

`

Aד
ζ

˘p
onto

`

Aד
ξ

˘p
.

(d) For all ε ě ξ for which
`

Aד
ε

˘p
is nonempty,

`

fד
ζ,ε

˘p
“
`

fד
ξ,ε

˘p
˝
`

fד
ζ,ξ

˘p
.

(e) Every z P
`

Aד
ξ

˘p
has at least N many

`

fד
ζ,ξ

˘p
-pre-images in

`

Aד
ζ

˘p
.

Note that (c) implies that
`

fד
ζ,ξ

˘p
p0q “ 0.
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Claim 4.21.4.

(a)
`

Aד
ζ

˘o
Ď
`

Aד
ζ

˘p
.

(b) For all ξ ą ζ,
`

fד
ζ,ξ

˘o
Ď
`

fד
ζ,ξ

˘p
.

Before we state the construction at level α, we draw one conclusion about level α:

Claim 4.21.5. If pα, qד requires attention at stage t and ד P Vtpαq, then for all

ζ ą α,
`

Aד
ζ

˘p
is empty.

Proof. We have ד P Vtpζq. By Claim 4.21.2(d) at level ζ, if pζ, qד does not require

attention at stage t then
`

Aד
ζ

˘p
is empty.

If pζ, qד requires attention at stage t then by Lemma 4.3(g), instrtpζ, qד “ 0.
The claim then follows from Claim 4.21.2(c) at level ζ. �

This also holds of course at all levels ζ ą α; together with Claim 4.21.2(b), we
get, for all ζ ą α:

Claim 4.21.6. If 1 ď |
`

Aד
ζ

˘p
| ď 2 then for all ξ ą ζ,

`

Aד
ξ

˘p
is empty.

So suppose that α ď δ˚ and that the levels ζ ą α of p were already defined, and
that the claims above hold at all levels ζ ą α. Fix some ד P ω3. We define two
ordinals.

‚ If there is one, we let β “ βד
α be the least β ą α such that

`

Aד
β

˘p
is

nonempty.
‚ If there is one, we let γ “ γד

α be the least γ ą α such that
`

Aד
γ

˘o
is

nonempty.

If γ is defined then by Claim 4.21.4(a) at level γ,
`

Aד
γ

˘o
Ď

`

Aד
γ

˘p
, and so β is

defined and γ ě β.

Claim 4.21.7. Suppose that β “ βד
α is defined, and that

`

Aד
α

˘o
is nonempty. There

is an order-preserving map hד
α :

`

Aד
α

˘o
Ñ

`

Aד
β

˘p
such that:

(i) hד
αp0q “ 0.21

(ii) If γ “ γד
α is defined, then

`

fד
α,γ

˘o
“
`

fד
β,γ

˘p
˝ hד

α;

(iii) For all ζ such that |
`

Aד
ζ

˘p
| ě 3 and:

‚ β ď ζ, if γ is undefined;
‚ β ď ζ ă γ, if γ is defined,

`

fד
β,ζ

˘p
˝hד

α is injective, and for all x P
`

Aד
α

˘o
, hד

αpyq is the leftmost element

of
`

Aד
β

˘p
which is mapped by

`

fד
β,ζ

˘p
to

`

fד
β,ζ

˘p
phד
αpxqq.

(iv) If γ is defined, then for all z P range
`

fד
α,γ

˘o
, the leftmost point of

 

x P
`

Aד
α

˘o
:
`

fד
α,γ

˘o
pxq “ z

(

is mapped by hד
α to the leftmost point of

 

y P
`

Aד
β

˘p
:
`

fד
β,γ

˘p
pyq “ z

(

.

Proof. If γ is not defined, if there is such, let ε be the greatest ordinal ε ě β such
that |

`

Aד
ε

˘p
| ě 3. If γ is defined, if there is such, let ε be the greatest ordinal in the

interval rβ, γq such that |
`

Aד
ε

˘p
| ě 3.

21Note that since o is an object, 0 is the leftmost point of
`

Aד
α

˘o
; and by Claim 4.21.1, 0 is

the leftmost point of
`

Aד
β

˘p
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‚ If neither ε nor γ are defined, let hד
α map every x P

`

Aד
α

˘o
to 0.

‚ Suppose that γ is defined but ε is not. By Claim 4.21.6 we have γ “ β, so
we let hד

α “
`

fד
α,β

˘o
. (i) holds because o is an object. (iv) is immediate.

Suppose that ε is defined. We define an embedding g :
`

Aד
α

˘o
Ñ

`

Aד
ε

˘p
as follows.

‚ If γ is not defined then let g be the isomorphism from
`

Aד
α

˘o
to an initial

segment of
`

Aד
ε

˘p
. This is possible because by Claim 4.21.2(a), |

`

Aד
ε

˘p
| ě

N ě |
`

Aד
α

˘o
|. Note that gp0q “ 0.

‚ If γ is defined (and so ε ă γ) we let g :
`

Aד
α

˘o
Ñ

`

Aד
ε

˘p
be an embedding

such that
`

fד
α,γ

˘o
“

`

fד
ε,γ

˘p
˝ g, and for all z P range

`

fד
α,γ

˘o
, if x P

`

Aד
α

˘o

is leftmost such that
`

fד
α,γ

˘o
pxq “ z, then gpxq is the leftmost w in

`

Aד
ε

˘p

such that
`

fד
ε,γ

˘p
pwq “ z. Note that such w exists because

`

fד
ε,γ

˘p
is onto

`

Aד
γ

˘p
; gp0q “ 0 because

`

fד
ε,γ

˘p
p0q “ 0 “

`

fד
α,γ

˘o
p0q; and g can be made

1-1 because for each z P
`

Aד
γ

˘o
, the

`

fד
ε,γ

˘p
-preimage of z has size greater

than |
`

Aד
α

˘o
| (Claim 4.21.3(e)).

In both cases, having defined g, we let, for x P
`

Aד
α

˘o
, hד

αpxq be the leftmost y

in
`

Aד
β

˘p
such that

`

fד
β,ε

˘p
pyq “ gpxq (so that g “

`

fד
β,ε

˘p
˝ hד

α). Since 0 is the

leftmost point in
`

Aד
β

˘p
mapped by

`

fד
β,ε

˘p
to 0, and gp0q “ 0, we get hד

αp0q “ 0.

(iii) holds by design, as ζ ď ε for each such ζ: for any distinct x, y P
`

Aד
α

˘o
, as

gpxq ‰ gpyq we must have
`

fד
β,ζ

˘p
phד
αpxqq ‰

`

fד
β,ζ

˘p
phד
αpyqq. And since hד

αpxq is

leftmost in
`

Aד
β

˘p
mapped by

`

fד
β,ε

˘p
to gpxq, and

`

fד
β,ζ

˘p
is onto, it must be that

hד
αpxq is also leftmost in

`

Aד
β

˘p
mapped by

`

fד
β,ζ

˘p
to

`

fד
β,ζ

˘p
phד
αpxqq.

Suppose that γ is defined. Then
`

fד
β,γ

˘p
˝ hד

α “
`

fד
ε,γ

˘p
˝ g which was designed

to equal
`

fד
α,γ

˘o
, giving (ii). (iv) also holds by construction. �

Now, again concentrating on the A-side, we will build
`

Aד
α

˘p
, and when β is

defined,
`

fד
α,β

˘p
. Having done this, for all ζ ą α for which

`

Aד
ζ

˘p
is nonempty, we

have ζ ě β and so we define
`

fד
α,ζ

˘p
“

`

fד
β,ζ

˘p
˝
`

fד
α,β

˘p
. For other ζ ą α we leave

`

fד
α,ζ

˘p
empty. Of course we let

`

fד
α,α

˘p
be the identity on

`

Aד
α

˘p
.

There are several cases.

(i): pα, qד does not require attention at stage t and
`

Aד
α

˘o
is empty: we let

`

Aד
α

˘p

be empty.

(ii): ד R Vtpαq and either:
‚ pα, qד requires attention at stage t; or

‚ pα, qד does not require attention at stage t and
`

Aד
α

˘o
is nonempty.

In this case we define
`

Aד
α

˘p
to be a linear ordering extending

`

Aד
α

˘o
.

(a) If β is undefined, then we let
`

Aד
α

˘p
be any end-extension of

`

Aד
α

˘o
of size at

least N ` t ` 3 (with universe an initial segment of ω)22. If
`

Aד
α

˘o
is empty

then we ensure that 0 is the leftmost element of
`

Aד
α

˘p
. (If

`

Aד
α

˘o
is nonempty

then 0 is its leftmost point as o is an object.)

22Recall that N is the bound on the size of all orderings in o.
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(b) Suppose that β is defined. If
`

Aד
α

˘o
is nonempty, let hד

α be the map given by

Claim 4.21.7. Otherwise let hד
α be the empty map. We define

`

Aד
α

˘p
Ě
`

Aד
α

˘o

(on an initial segment of ω) and
`

fד
α,β

˘p
extending hד

α as follows: for every

y P
`

Aד
β

˘p
we let

 

x P
`

Aד
α

˘p
:
`

fד
α,β

˘p
pxq “ y

(

have size at least N ` t` 3 and be an end-extension of
 

x P
`

Aד
α

˘o
: hד

αpxq “ y
(

.

See fig. 4. If
`

Aד
α

˘o
is empty, then we also ensure that 0 is the leftmost point of

`

Aד
α

˘p
.

(iii): pα, qד requires attention at stage t and ד P Vtpαq. In this case by Claim 4.21.5,

β is not defined, so we only need to define
`

Aד
α

˘p
. We obey the instructions:

‚ If instrtpα, qד is finite: we determine
`

Aד
α

˘p
by stipulating that |

`

Aד
α

˘p
| “

instrAt pα, qד and that if nonempty, 0 is the leftmost element of this linear
ordering.

‚ If instrtpα, qד “ צ then by Lemma 4.3(f), instrtpα, qצ “ ω and so the pair

pα, qצ falls under case (ii), so
`

Aצ
α

˘p
has already been defined. We let

`

Aד
α

˘p
“

`

Aצ
α

˘p
.

`

Aד
α

˘o `

Aד
α

˘p
Ď

`

Aד
β

˘p

pfד
α,βq

p
hד
α

`

Aד
γ

˘o

pfד
α,γq

o

`

Aד
γ

˘p

pfד
β,γq

p

Ď

Figure 4. case (ii)(b)

These cases cover all possibilities, because if pα, qד does not require attention

and ד P Vtpαq then
`

Aד
α

˘o
is empty (Definition 4.19(4)).

Note that we abided by our promise to keep all but finitely many levels of p
empty: if the αth level of o is empty, then we only make the αth level of p nonempty
if pα, qד requires attention for some .ד In fact, since o is an object and only finitely
many pairs pα, qד require attention at stage t, only finitely many linear orderings
`

Aד
β

˘p
are nonempty.

We turn to the verification. We give the proofs of the four claims stated above
for ζ “ α.

Proof of Claim 4.21.1. We need to check that 0 is the leftmost point of every
nonempty

`

Aד
α

˘p
. Suppose that case (ii) holds for pα, .qד In sub-case (ii)(a), or
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when
`

Aד
α

˘o
is empty, this is by construction, so suppose that β is defined and

`

Aד
α

˘o
is nonempty. By Claim 4.21.7(i), hד

αp0q “ 0, i.e., hד
α maps the leftmost ele-

ment of
`

Aד
α

˘o
to the leftmost point of

`

Aד
β

˘p
. Thus when constructing

`

Aד
α

˘p
we

are never required to add elements to the left of 0.
In case (iii), this is either by construction, or by the fact that case (ii) holds

for ,צ which we have just covered. �

Proof of Claim 4.21.2. Mostly this follows by examining the construction. For ex-
ample, (a) follows from construction in case (ii) and in case (iii) because case (ii)
holds for .צ For (d), as we observed, the assumptions imply that case (i) holds and

we leave
`

Aד
α

˘p
empty. �

Proof of Claim 4.21.3. (a) and (b) are by construction. For the rest, suppose that

ξ ą α and that
`

Aד
α

˘p
and

`

Aד
ξ

˘p
are both nonempty. Then case (ii) holds for pα, qד

and β “ βד
α is defined; β ď ξ.

For (c), By applying this item at level β, it suffices to observe that by construc-

tion,
`

fד
α,β

˘p
is an order-preserving map from

`

Aד
α

˘p
onto

`

Aד
β

˘p
.

(d) is by construction and induction: we define
`

fד
α,ξ

˘p
“

`

fד
β,ξ

˘p
˝
`

fד
α,β

˘p
and

`

fד
α,ε

˘p
“
`

fד
β,ε

˘p
˝
`

fד
α,β

˘p
; so we use

`

fד
β,ε

˘p
“
`

fד
ξ,ε

˘p
˝
`

fד
β,ξ

˘p
.

(e) is by construction; by induction, it suffices to show for ξ “ β. �

Proof of Claim 4.21.4. (a): we assume of course that
`

Aד
α

˘o
is nonempty; so case (i)

does not hold. In case (ii) for pα, ,qד by construction we define
`

Aד
α

˘p
to extend

`

Aד
α

˘o
. Suppose that case (iii) holds.

Suppose that instrtpα, qד is finite. Since o is admissible for stage t, |
`

Aד
α

˘o
| “

instrAt pα, qד (Definition 4.19(5)), and so we set
`

Aד
α

˘o
“
`

Aד
α

˘p
.

Suppose that instrtpα, qד “ .צ Since o is admissible for stage t,
`

Aד
α

˘o
“
`

Aצ
α

˘o

(Definition 4.19(6)) and by case (ii),
`

Aצ
α

˘o
Ď
`

Aצ
α

˘p
; since we set

`

Aד
α

˘p
“

`

Aצ
α

˘p
,

we get the desired extension
`

Aד
α

˘o
Ď
`

Aד
α

˘p
.

(b): By induction, and since we are taking compositions, it suffices to show that

if γ “ γד
α is defined then

`

fד
α,γ

˘o
Ď

`

fד
α,γ

˘p
. Case (ii) holds. By construction,

`

fד
α,β

˘p
extends hד

α. Also,
`

fד
α,γ

˘p
“

`

fד
β,γ

˘p
˝
`

fד
α,β

˘p
. Then Claim 4.21.7(ii) gives

the desired extension. �

This concludes the proofs of the four claims made before the construction. We
now complete the verifications that p is an object, that all conditions of Defini-
tion 4.12 except possibly for item 10 holds for p, and that o ďδ˚ p.

We have observed that only finitely many linear orderings
`

Aד
α

˘p
are nonempty;

the finiteness requirements (1) and (2) of Definition 4.6 are the same as for o. All
other items have already been checked, and so p is an object. In fact it is not
difficult to see that all items of Definition 4.12 except for (10) have been checked,
or follow immediately from our instructions.

We check that o ďδ˚ p. (4) of Definition 4.10 follows from Definition 4.19(3) and
the construction (case (iii)). For other items, we use the following. For brevity, we
fix some ד P ω3, and for α ă ζ we let:

‚ fα,ζ “
`

fד
α,ζ

˘p
;
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‚ For all z P
`

Aד
ζ

˘p
,

Cα,ζpzq “ tx P
`

Aד
α

˘o
: fα,ζpxq “ zu;

Dα,ζpzq “ tx P
`

Aד
α

˘p
: fα,ζpxq “ zu.

The following claim will be used below, but also verifies Definition 4.10(7).

Claim 4.21.8. Let α ă ζ. Suppose that
`

Aד
α

˘o
and

`

Aד
ζ

˘p
are nonempty, and further

suppose that for all ξ P pα, ζq,
`

Aד
ξ

˘o
is empty.

(a) If |
`

Aד
ζ

˘p
| ě 3 and

`

Aד
ζ

˘o
is empty, then fα,ζ æ

`

Aד
α

˘o
is injective.

Let z P range fα,ζ æ
`

Aד
α

˘o
.

(b) If either z P
`

Aד
ζ

˘o
or |

`

Aד
ζ

˘p
| ě 3 then minCα,ζpzq “ minDα,ζpzq.

(c) If ζ “ α`1 and z P
`

Aד
ζ

˘o
then Cα,α`1pzq is an initial segment of Dα,α`1pzq.

Proof. We know that β “ βד
α is defined, and ζ ě β.

(a):
`

Aד
ζ

˘o
being empty implies that either γ “ γד

α is undefined, or γ ą ζ. In

either case, by Claim 4.21.7(iii),
`

fד
β,ζ

˘p
˝ hד

α is injective; by construction, this map

is precisely fα,ζ æ
`

Aד
α

˘o
.

For the other items, let w “ fα,βpyq “ hד
αpyq. We show that w “ minDβ,ζpzq.

`

Aד
ζ

˘o
is nonempty. Then ζ “ γ, and since fα,γ extends

`

fד
α,γ

˘o
, we have z P

`

Aד
γ

˘o
.

In this case Claim 4.21.7(iv) says that w “ minDβ,ζpzq.

If, on the other hand,
`

Aד
ζ

˘o
is empty, so |

`

Aד
ζ

˘p
| ě 3, then Claim 4.21.7(iii) says

that w “ minDβ,ζpzq.

In either case, by construction, Cα,βpwq is an initial segment of Dα,βpwq. In
particular, y “ minDα,βpwq; it follows that y “ minDα,ζpzq as well. And if ζ “

α`1 and
`

Aד
α`1

˘o
is nonempty then γ “ β “ α`1, and hד

α “
`

fד
α,α`1

˘o
, so w “ z,

so as observed, by construction, Cα,α`1pzq is an initial segment of Dα,α`1pzq. �

The following claim verifies (6) and (9).

Claim 4.21.9. Suppose that α ă ζ, that
`

Aד
α

˘o
and

`

Aד
ζ

˘p
are nonempty, and let

z P range fα,ζ æ
`

Aד
α

˘o
. If either z P

`

Aד
ζ

˘o
or |

`

Aד
ζ

˘p
| ě 3 then minCα,ζpzq “

minDα,ζpzq.

Proof. We prove the claim by reverse induction on α. Let y “ minCα,ζpzq. If

for all ξ P pα, ζq,
`

Aד
ξ

˘o
is empty, then we appeal to Claim 4.21.8(b). Other-

wise, let ξ P pα, ζq be least with
`

Aד
ξ

˘o
nonempty. Let w “ fα,ξpyq which note

is the same as
`

fד
α,ξ

˘o
pyq; w P

`

Aד
ξ

˘o
. Since

`

fד
α,ξ

˘o
is onto an initial segment of

`

Aד
ξ

˘o
, w “ minCξ,ζpzq. By induction, w “ minDξ,ζpzq. By Claim 4.21.8(b),

y “ minCα,ξpwq “ minDα,ξpwq. It follows that y “ minDα,ζpzq as well. �

The following claim verifies Definition 4.10(8), and therefore completes the ver-
ification:

Claim 4.21.10. Suppose that α ă ζ, that x, y P
`

Aד
α

˘o
, that px „ζ yq

p, and that for

no ξ P rα, ζs do we have 1 ď |
`

Aד
ξ

˘p
| ď 2. Then px „ yqo.
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Proof. We prove the claim by reverse induction on α. First note that by shrinking ζ,
we may assume that

`

Aד
ζ

˘p
is nonempty, that is, that fα,ζpxq “ fα,ζpyq. We may

also assume that x and y are distinct, so ζ ą α.
By Claim 4.21.8(a), there is some ξ P pα, ζs, such that

`

Aד
ξ

˘o
is nonempty. Let

x1 “
`

fד
α,ξ

˘o
pxq and y1 “

`

fד
α,ξ

˘o
pyq. Then px1 „ζ y

1qp. By induction, px1 „ζ y
1qp,

and so px „ζ yq
p as well. �

Construction of a t-object q such that q ěδ˚ p. To meet item 10 of Definition 4.12,
we add linear orderings at “large” successor levels below limit levels. We define an
object q as follows. Of course pGαq

p “ pGαq
q and

`

rד
α

˘p
“

`

rד
α

˘q
as is required

of t-objects. If level α of p is nonempty, then the αth level of q is identical to the
αth level of p. Suppose that λ ď δ˚ is a limit ordinal, that pλ, qד requires attention

at stage t, and that ד R Vtpλq. By Definition 4.12(7), |
`

Aד
λ

˘p
| ě 3. Note that for all

β ă λ, ד R Vtpβq.
Find some successor β ă λ such that all levels ζ for β ´ 1 ď ζ ă λ of p

are empty. Since ד R Vtpβq, pד, βq does not require attention at stage t. We let
`

Aד
β

˘q
“

`

Aד
λ

˘p
; we let

`

fד
β,λ

˘q
“

`

fד
β,β

˘q
be the identity on

`

Aד
λ

˘p
. For α ă β we

let
`

fד
α,β

˘q
“

`

fד
α,λ

˘p
; For α ą λ we let

`

fד
β,α

˘q
“

`

fד
λ,α

˘p
. We define B and g’s

similarly. There are only finitely many pairs pλ, qד for which this action is required,
so q is finite.

An examination shows that q is a t-object and q ěδ˚ p. The items to check are
(4) and (5) of Definition 4.12. For the former, we use the fact that ד R Vtpβq. The

latter follows from |
`

Aד
λ

˘p
| ě 3. The rest of the items of Definition 4.12 do not

apply as pβ, qד does not require attention at stage t.

This concludes the proof of Lemma 4.21, and so of Proposition 4.15, and so of
Proposition 4.14, and so of Proposition 4.1, and so of Theorem 1.1.

We observe that our techniques can also be used to show Fokina et al.’s result
that isomorphism of computable structures is computably complete for Σ1

1 equiv-
alence relations. A Σ1

1 equivalence relation is an ωCK1 -intersection of ever finer
hyperarithmetic equivalence relations: E “

Ş

αăωCK1
Epαq. Construct linear or-

ders Ak,m,i for k,m, i P N so that if mEpαqi but  mEpα ` 1qi, then Ak,m,i will
have order-type ωα`1 for each k with mEpα` 1qk, and Ak,m,i will have order-type
ωα`1 ¨ 2 for each k with  mEpα ` 1qk. Then the structure Mk will consist of all
Ak,m,i, for m, i P ω, each labeled with pm, iq in some fashion.
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