
DETECTING ERRORS IN SPREADSHEETS

Yirsaw Ayalew, Markus Clermont, Roland T. Mittermeir
Institut für Informatik-Systeme, Universität Klagenfurt

 Klagenfurt, Austria
Email: { yirsaw, mark, mittermeir} @ifi.uni-klu.ac.at

ABSTRACT

The paper presents two complementary strategies for identifying errors in spreadsheet programs.
The strategies presented are grounded on the assumption that spreadsheets are software, albeit of a
different nature than conventional procedural software. Correspondingly, strategies for identifying
errors have to take the inherent properties of spreadsheets as much into account as they have to
recognize that the conceptual models of “ spreadsheet programmers” differ from the conceptual
models of conventional programmers. Nevertheless, nobody can and will write a spreadsheet,
without having such a conceptual model in mind, be it of numeric nature or a layout focussed,
geometrical nature.

1 INTRODUCTION

Spreadsheet systems are the most widely used and the most popular end user systems.
Hence, spreadsheets (we might refer to them as “spreadsheet programs”) are an important
basis for far reaching decisions in almost any field of a modern society. Studies on the
quality of spreadsheets resp. spreadsheet based decisions show, however, that there is a

substantial divergence between significance and care in this area 3, 6, 12, 13, 14, 15, 16.

Nardi and Miller 10, 11 discussed the characteristics spreadsheet languages provide for
end-user programming. Among them is the property that spreadsheets shield users from
low-level details of traditional programming. They allow users to think in terms of tabular
layouts of adequately arranged and textually designated numbers. They appear to users as
analogous to pencil and paper. The computing model upon which they finally rest is so
hidden from the users that the term “programming” seems inappropriate and the term
“ testing” simply inapplicable.

As professionals we have to recognize that below the surface, spreadsheets are programs.
They are even special programs from the perspective that the placement of code is
dependent on the layout of the result. – A fact that seems to reduce complexity at first sight
(and it does so in simple cases), but that might become a burden in complex situations and
specifically during modification. Thus, given the factual importance of spreadsheets due to
the importance of the decisions based upon spreadsheet computations, very conventional
considerations for software quality need to be considered. These considerations might
encompass testing as much as they might encompass design or maintenance and
configuration management. However, in using these technical terms, we must not forget
that the spreadsheet user does not consider him-/herself as a programmer. (S)he is an end-
user who does not want to be bothered with technicalities of the world of programming. In
order to become successful, approaches to improve quality control for spreadsheets have to
avoid conventional programming- or software engineering jargon. They rather have to link
directly to the conceptual structures, spreadsheet users have readily available.

In this paper we wil l, therefore, first try to highlight some commonalities and some
differences between spreadsheets and conventional algorithmic software. We then give
some definitions of the basic terms needed for further discussion about errors in
spreadsheets. In section 4 a framework for the classification of spreadsheet faults is
described on the basis of some prototypical errors. Finally, in section 5 two complementary
approaches to alleviate quality problems in spreadsheet programs are outlined.

2 SPREADSHEETS AND SOFTWARE: WHAT’S DIFFERENT?

Software is written in a professional manner by Professionals; Spreadsheets are
written by End-Users! While this statement is true on some face value, it raises wrong
connotations. Software professionals, if working professionally, will build their products
based on design that is based on some conceptual model or specification linking the
application problem to an algorithmic solution with the algorithm usually considering also
certain computer idiosyncracies (input/output being not the least among them).
Spreadsheet-writers are end-users and as such, they are not programming professionals.
However, they are professionals too, professionals in their application domain. And in this
capacity, they do whenever they express their problems/solutions in writing – like anybody
else who writes something meaningful –, express themselves based on some conceptual
model. Of course, this applies also when they express themselves in writing a spreadsheet.
The only difference to the software professional is that their model is not related to
programming concepts. It relates application aspects to two-dimensional (tabular)
arrangements of numbers interspersed with explanatory text. The numbers are further
conceptually interrelated by either one of the following situations:

• The given number is the result of a computation of some other numbers placed (or
to be written later) at a given location.

• The given number is part of a set of numbers playing conceptually the same role.
This “same role” is generally expressed by geometrical proximity (physical area).
However, we will later identify cases where this conceptual embracement cannot be
expressed by geometrical proximity (logical area).

Spreadsheet experts wil l recognize that the two cases mentioned are not comprehensive.
However, we claim that they cover most of the territory, at least most of the territory “non-
expert” end-users are familiar with.

As spreadsheet systems are easy to use, do not require much training on formal methods of
designing and programming, and show in contrast to conventional programs the results of
the effort while the development effort is still in progress, they are also written in a

different style. There is a notion of immediate feedback 5 once the content of a cell i s
specified. This easy way to quick feedback leads to a development style of trial & error,
cutting & pasting, copying & modifying; a mixture that must be horrifying for an orderly
software methodologist. Figure 1 shows these aspects. Given these considerations, it
becomes obvious that irrespective of the true nature of spreadsheet-“software”,

conventional wisdom on software testing 2, 9, 17 does either not apply or applies only to a
limited extent. It applies specifically from the perspective though that spreadsheet
computations are basically numerical computations. We wil l come back to this property in
section 5.2.

Hence, rather than banking too much on preaching designing first and establishing a
quality improvement cure on the observation of this gospel, we base our approach on the
very nature of existing spreadsheets and existing processes of how spreadsheets are
written. In this paper, we focus specifically on “spreadsheets as they are”. This leads us to
discuss in the sequel model visualization and plausibil ity testing. For model visualization
we suggest that end-users should be able to transform their problems/solutions into two-
dimensional structures and highlight irregularities in this transformation. For plausibili ty
testing we rely on the end-users gut feeling for meaningful boundaries of the data
(numbers!) treated in a spreadsheet. Discussing strategies for ensuring spreadsheet quality
dynamically (focusing on spreadsheet evolution) would be beyond the scope of this paper.

Figure 1: Conventional program vs. spreadsheet program development process

Before delving into both of these areas, we will proceed by defining some key terms
needed for further discussion and mentioning some prototypical faults in spreadsheets and
their related categories.

3 SOME TERMINOLOGY

Since the term “spreadsheet” itself is overloaded, we explain below the semantics
attached to spreadsheet related terms in this paper.

A ������� is the atomic unit of a spreadsheet and can have five states: (a) it can be empty, (b) it
can hold a constant value that is supplied by the programmer of the spreadsheet, (c) it can
hold an input value that is supplied by the user of the spreadsheet, (d) it can hold a value
that is calculated by a formula or (e) it can hold a label which describes the contents of a
set of other cells.

A ���
	��������������� is an n-dimensional matrix of cells. Each cell is uniquely identified by n-
coordinates. If n=2, as in the standard case, a cell is uniquely identified by its row and
column address.

A ���������������������
��� is a reference to another cell’s value which is either relative or absolute.
The address of the referenced cell is given with a pair of coordinates, in the first case the
origin is the referencing cell, in the latter the upper left corner of the spreadsheet.

A �����������
	 is a mathematical expression, containing cell references, operators, functions1,
and constant values. At least one cell-reference is expected to be included in the
computational expression of the formula. A formula yields exactly one result and is free of
side-effects.

A ������������������������������ �"!$#&%��'#(� (SCL) is a set of language constructs to describe the data-
flow (cell references) and the data-manipulation (formulas) in the spreadsheet program.
Functional properties of the spreadsheet are expressed by SCL. The copy and paste
primitives are also considered to be part of the SCL, if they are used in a context with
logical areas.

A ������������)�������*�+�'!�#,%��"#-� (SL) is the SCL together with constructs for manipulation of the
layout of the spreadsheet.

A ./�0�1�2�3�4)5�1�1�68790�:-;(0�2'< (SP) is the specification of data-flow between cells, data-
manipulation in cells and of the values of constant cells.

A =?>�@�A�B�C�D)E�A�A�FHG�IJDKFLB"I�M�A (SI) is a spreadsheet program, where all input cells have certain
values. A spreadsheet program can be instantiated multiple times. By changing one of the
input values, the spreadsheet instance of a certain spreadsheet program is transformed into
another spreadsheet instance of the same program.

A N?O�P�Q�R�S�T)U�Q�Q�VWN?X&TYVZQ'[is an integrated environment, where spreadsheet programs can be
created, instantiated and edited. The spreadsheet system interprets a specific spreadsheet
language.

An R�P�Q�R is a set of related cells. If the cells are spatially neighbors and the area is marked
by the programmer, we use the notion of a physical area. A physical area usually serves as
the input for a grouping function, like SUM, MAX or AVG. If the relation originates from
similarities of the data-manipulation or from the way of creation (i.e copy and paste), we
use the term logical area. We require the cells in a physical area to be also spatially
adjacent, for cells in a logical area, no such criterion is defined. The logical area is used to
describe a kind of conceptual cohesion between cells. If we cannot figure out the way the
cells were created (e.g. copy and paste of same source), we have to employ certain
heuristics that are based on the similarity of the references and formulas to group cells into
logical areas.

4 FAULTY SPREADSHEETS AND ERROR CATEGORIES

In this section we describe a framework that enables us to categorizes errors by their
association to spreadsheet concepts. We also define three categories of errors that are
associated with physical areas, logical areas and general errors. Some examples are
provided to demonstrate how an error originates. Of course, all the shown problems could
have been solved in another way, without an error occurring.

A classification scheme should address the types of most frequent important errors. In
addition, the effectiveness of error prevention and detection techniques can be evaluated,
provided that there is a taxonomy of errors which indicates the types, frequency and

possible causes. However, as Beizer 2 indicated, there is no universally correct way to
categorize faults. A given fault can be put into different categories depending on the view

1
A function is a built-in formula supplied by the spreadsheet system

of the tester and the source of the error.

Some classification schemes are available for spreadsheet errors. Panko and Halverson 15

offer a taxonomy that consists of three major categories of errors: mechanical, logic, and
omission errors. Mechanical errors refer to typographical and positioning errors. Logic
errors are misunderstandings of the logic of the necessary algorithm to be used in a
formula. Omission errors are a result of leaving out something needed in the program. This
classification is mainly based on the causes of the errors. A more general classification

scheme containing Panko and Halverson’s scheme is given by Rajalingham et al. 20.

Saariluoma et al. 22 in their experimental study, categorized spreadsheet errors in two
basic types: Location and Formula errors. Location errors are what are commonly termed
as misreference errors. They also indicated that these errors are typical in spreadsheet
programs. Formula errors contain typographical errors in formula components and what
they call mathematical mistakes. Mathematical errors are a result of the inabil ity to define
the necessary mathematical expression in a formula.

Unlike the other classification schemes, we do not want to categorize the errors by their
cause, rather by the spreadsheet concept they seem to be associated with. In our further
considerations we do not make a difference between logical, mathematical or typographic
errors, because from the error itself we cannot find out its cause.

4.1 Category 1: Physical Area Related Errors

Errors that are typical to physical areas normally deal with missing values in the area or
values of the wrong type somewhere in the area. We call this error reference to a blank cell
resp. reference to a cell with value of wrong type. In some cases such values are entered on
purpose, to achieve a better structure and/or readability of the spreadsheet program. In
other cases, these values result from errors.

Figure 2: Reference to a blank/wrong typed cell

Example 1: Reference to a blank/wrong typed cell

In Figure 2 the range for the sum spans from label 1. Quarter down to the last cell of the
list. The two label cells are not considered in the sum yet, but there is no hint for the
user/programmer that they might influence the sum, if they are changed to a number (e.g
to 1 instead of 1. Quarter).

Another typical problem of the physical area is the impact on the results if new values are
added to the area. If the new value is inserted somewhere in the middle of the physical
area, it automatically expands, such that the new value and all old values are still within
the area. If the new values are added by appending them to the area, the area does not

expand. This leads to the error type of incorrect physical area specification.

Generally, the incorrect physical area specification problem exists, if there are cells outside
the physical area, which should be part of it. For the user it is not clear that those cells are
not part of the physical area any more and it is common for him/her to assume that those
cells influence the result of the function applied to the physical area, too.

Figure 3: Physical area specification error

Example 2: Physical Area Specification Error

In Figure 3 the user defines a sum over an area of cells. During the lifespan of the
spreadsheet program it turns out that more cells are needed for specifying the revenues of
the salesmen. This is not a problem for extending Miller’s range, but the row appended for
Smith is not part of the physical area anymore. The sum cell does not yield the correct
result, but the reason, why the final spreadsheet instance is wrong, is not obvious for the
user.

A third class of typical errors is the accidental deletion of a cell within a physical area.
This leads to the already identified reference to a blank cell error. In addition, adding
something that should not be present will have similar consequences.

A fourth class of errors is the physical area mix up error. While the previous error
categories are grounded on the fact that users hardly distinguish between spreadsheet
programs and spreadsheet instances (input has not the distinct role as in conventional
programming), this error class is due to the spreadsheet program’s property, which is a
mixture of a problem solving tool and a presentation tool. The problem arises, when two
separate physical areas get mixed up. In this case one of them cannot be defined as a
physical area by the user anymore. The grouping functions have to be replaced by
expressions (i.e SUM by multiple +). For the user it is not obvious that (s)he can specify
two physical areas in two columns (see lefthand-side of Figure 4), but that it is not allowed
to merge them in one column resp. that the result of the grouping function applied to one
of the physical areas is not correct any more.

Example 3: Physical area mix up problem

As shown in Figure 4, the salesman spreadsheet program has to calculate a final sum over
all sales and a subsum for each salesman. If the user wishes to place the final sum, the
subsum and the sales in one column (i.e. for layout reasons), the final sum has to be
replaced by an expression which adds the subsums. If the subsum moves to another cell or
another salesman (with a new subsum) is introduced, the user has to maintain the final
sum expression. If (s)he forgets it, the final sum becomes wrong.

Figure 4: Physical area mix up problem

4.2 Category 2: Logical Area Related Errors

As we have defined in section 3 a logical area represents some kind of cohesion between
cells. Normally a logical area originates from copying the same source multiple times and
the user is not aware of the logical area, which a cell belongs to.

A typical error is overwriting a formula with a constant value. This error can have many
reasons, like rounding errors or unexpected results of the formula. The user simply
overwrites the formula result in the cell with a constant value. Of course, this value
remains there, even if the values in the formerly referenced cells change.

Another error that is common to logical areas is copy misreference. In this case, a constant
value or an absolute reference is specified in a formula, instead of a relative reference. This
error is generally not noticed until the cell’s formula is copied into another cell . If a
constant cell i s referenced with a relative reference, a similar problem will occur, when the
cell’s formula is copied.

4.3 Category 3: General Errors

General errors are not explicitly associated with a physical or logical area and only few
occur when entering values to input cells. Most of them are made during formula
definition. An error associated with input cells is only typographical. Incorrect use of
formats also affects the way a value is displayed. One might format a value as 0.2% while
the intended meaning could have been 20%. This can happen to both input cells and
formula cells. In addition, if a numeric data is formatted as label data, then it might affect
the computed value of a formula.

The other group of general errors is made during formula definition. As stated in section 3
a formula may involve cell references, operators, functions, and constant values. An error
can be made in any of these components due to typographical errors or inabil ity to
formulate the necessary mathematical expression. These errors include operator errors,
boundary errors, parentheses errors, and function errors.

5 QUALITY IMPROVEMENT APPROACHES

In this section we discuss our approaches which deal with the amelioration of the
quality of spreadsheet programs. The two approaches presented deal with the different
classes of errors discussed in the above categorization.

We first discuss model visualization. This gives the spreadsheet programmer resp. the
spreadsheet user more insight into the structure of the spreadsheet, which is expected to
help to shorten the trial and error process of creating the spreadsheet and to understand and
debug spreadsheets in use. The other approach deals with interval testing a spreadsheet and
tries to overcome the difficulties that result from a lack of specification of spreadsheets by
introducing interval arithmetic as basic device.

5.1 Model Visualization

The fact that spreadsheet models2 are “buried in the formulas” 6 obviously makes it
very hard to understand and to reconstruct the spreadsheet model.

The buried model has to be reconstructed, to enable the developer or tester to see beyond
the formulas to the underlying logic and structure. To achieve this we must consider both

the dataflow in the spreadsheet (as suggested by 21) and the static aspects, such as logical
and physical areas. The generation of such a representation of the spreadsheet model
should be automatic with little or no intervention of the programmer. Once generated, the
spreadsheet model can be used for visualization and for the automatic comparison of
spreadsheet programs.

The visualization should support different resolutions, from coarse to fine grained, to give
the user resp. programmer the possibility to have a look at the spreadsheet program on the
level of physical and logical areas and the dataflow between those areas. In a further step
there should be a possibil ity for the user to zoom into certain areas and to get a more
detailed overview on formula or cell-reference resolution.

We plan to realize the graphical visualization of the model in a way that is based on the

data-flow graph of the spreadsheet (see 1, 8), but also visualizing logical and physical
areas. The user should be enabled to navigate in the visualized model as suggested in

Storey et al. 23. They suggest a representation, which allows zooming into specific areas of

a graph, without loosing the overview about the context, using a fisheye view (see 4).

Figure 5: Shortening the trial and error process

2
Abstract representation of a spreadsheet program

Our visualized model should serve as a tool for three purposes:

1. Shortening the trial and error process to develop solutions for real-world problems
(see Figure 5). We assume that problem understanding is supported by the graphical
representation of the spreadsheet model.

2. Understanding of spreadsheet programs that were developed by another programmer.

3. Enabling comparison of spreadsheet programs at the level of the spreadsheet model.
This comparison should abstract from values and consider only the model properties,
like data-flow, physical and logical areas.

The visualized model will give a representation of physical areas, which gives a visual
feedback to the user, if there are cells of different types or cells of different conceptual
content in the area. A physical or logical area might be visualized as a box, and
interruptions as lines of a different color. This visualization should help to control the
reference to a cell with value of wrong type problem.

It has also to be checked, if there are adjacent cells to the physical area, which have the
same type as the cells of the area3. This might be a hint for the incorrect physical area
specification problem which can be properly visualized by drawing the required border in a
different color.

The physical area mix up problem can be resolved by separating the overlapping areas
again in the graphical representation. The detection of such overlapping areas, however, is
not a trivial problem and further research has to be done in this topic.

By identifying and visualizing logical areas, a concept that is not visually expressed for the
user resp. programmer in modern spreadsheet systems, a lot of the problems presented in
section 4.2 are already alleviated. Logical areas will often be spatially adjacent, although
that is not a necessity. If they are interrupted sporadically and only by a few cells, it might
be a hint for the overwriting a formula with a constant value problem. The way of
visualization should be similar to visualizing the reference to a cell with value of wrong
type problem.

5.2 Interval Testing

After creating a spreadsheet program for a particular application, it is natural to check
its correctness. We create spreadsheet programs mainly to perform numerical
computations. What do we expect to be correct? Usually, we have a gut feeling of the
range of reasonable values for each given cell.

Spreadsheet development is based on cells which are to be filled with input values and
formulas for computation. For the correctness of a spreadsheet program, every input value
as well as every formula should be correct. Actually, many spreadsheet errors are made
during formula definition. To judge the validity of the value of a formula cell, we check
whether the computation is in the range of expected results. However, the expected
behavior of a spreadsheet program is not explicitly specified.

The main task in testing a program is to be able to detect the existence of a fault in the

3
If there are cells with values of different types in the area, the correct type can be resolved from the grouping function,

which is applied to the area.

program. To achieve this we need systematically designed test cases (using an appropriate
test strategy) that reveal faults in the program. By running the program with the test cases
and comparing the result with the expected outcome described in the specification or
generated by a test oracle4, the existence of a fault can be detected.

Generating a powerful oracle, however, presupposes the existence of a specification
7,18,19. Here, we neither have the specification required, nor would spreadsheet
developers have the patience and expertise to run a lengthy suite of test cases. Hence,
mechanisms need to be devised to approach the power of a test oracle while putting
minimal strains on the developers’ diligence and insight into complex dependencies. Thus
we must recognize that “ testers” of spreadsheet programs are end-users who are not aware
of testing theory and hence they are not expected to do testing in the traditional sense.
Rather, users of spreadsheet systems are highly dependent on the system’s assistance. The
fact that control structures are confined to cell contents (and in general used rather rarely if
compared to algorithmic programs) allows us to use interval arithmetic as proxy for the
services of powerful test oracles.

Figure 6 depicts the test process for a spreadsheet program. Based on the goal of
computation and by looking at the input values of cells referenced in a formula, the user,
assuming the role of a human oracle, specifies the expected range of computation of a
formula in the form of an interval for permissible/expected values.

Each actual value assumed by a cell is a discrete value, either entered by the user as input
or obtained as result of a computation by the spreadsheet program. For each of these cells,
a range of permissible values has to be given. This is much simpler than generating test
cases (which is a very complex process especially for end users) as seen in imperative
programs.

The user specifies intervals for those input cells which may assume different values. Those
cells which do not assume different values can be represented by an interval of length zero.
Therefore, for a formula cell under test, there are two values to be computed and
compared: a value computed by the spreadsheet program (d) (see Figure 6) based on the
values of the cells referenced in the formula and a bounding interval (B) computed by
interval program based on interval arithmetic using the interval values of those referenced
cells. The interval program is an equivalent of a spreadsheet program where the values of
cells are represented as intervals and the computation is performed based on interval
arithmetic.

In order to infer the existence of a fault in a formula cell , the three values d, E, and B
which are generated by different sources should be compared. There are two cases to
consider.

case 1: d ∈∈ E and E ⊆⊆ B

As the computed interval value of a formula is bounded by minimum and maximum values
of the possible computation (this is by definition of interval arithmetic), the expected
interval should lie within the computed interval. In addition, the value computed by the
spreadsheet program should lie within the expected magnitude of computation. Hence, in
this case, we can say that there is no symptom of fault.

4
A mechanism that predicts the expected behavior of a program based on a specification

Figure 6: Spreadsheet program test process

case 2: d ∉∉ E or E ⊄⊄ B

In this case, there is an indication of symptom of fault. The fault may be in the formula or
in the user’s perception of expected results. Of course, testing is performed based on the
assumption that there is a correct behavior of a program against which the actual result is
compared. However, we can not always take for granted that the expected behavior is
correct. In the situation where d ∉∉ E, due to some misreferences of cells in the formula or
some other errors, the actual result is shifted from the expected result. In the second
possibili ty where E ⊄⊄ B, faults affect the bounding interval computed for the formula and
create a misalignment between E and B.

This approach is mainly targeted to misreference and incorrect range specification errors.
These errors are a result of specifying or selecting a group of cells incorrectly to achieve
the desired goal of computation. Generally, we can say that these errors are failures in
specifying a plan for a given computational goal. Misreference and incorrect range
specification errors are likely to create a misalignment between the values computed by the
spreadsheet program, interval program and the expected interval specified by the user. In
addition, other errors may also create a discrepancy between the values d, E, and B and
could be detected in the process. Once the existence of a fault in a formula is known, the
source of the fault may be traced using the data dependency relation between cells
established through the formula.

It has to be acknowledged that this interval testing plays a dual role. On one hand, it
identifies faults in spreadsheet instances, whenever actual values d fall outside of the
permitted range. On the other hand, the comparison between E and B is rather a check on
the consistency of the user’s arithmetic model. Thus, this check can be quite powerful on a
much more general level than on the level of a specific spreadsheet instance.

6 CONCLUSION

This paper attempts to overcome the tension between the statements “ Spreadsheets are
Software too” and ” spreadsheet-authors are no Programmers” in order to improve the
quality of spreadsheet software.

It is shown that there seems to be no single answer serving as silver bullet. However, a mix
of approaches, close enough to the end-users’ conceptual model of plausible ranges for
values of items as well as visualization of the mapping of conceptual structures to cell
arrangements might help to highlight errors of frequently occurring nature.

REFERENCES

1 Wil liam B. Ackermann. Data Flow Languages. IEEE Computer, pages 15–40, February 1982.
2 Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, second edition, 1990.
3 Poll y Brown and John Gould. An experimental study of people creating spreadsheets. Transactions on

Office Information Systems, 5(3):258–272, July 1987.
4 G. W. Furnas. Generalized fisheye views. In Conference proceedings on Human factors in computing

systems, pages 16–23. ACM, April 1986.
5 D.G. Hendry and T.R.G. Green. Creating, comprehending and explaining spreadsheets: a cogniti ve

interpretation of what discretionary users think of the spreadsheet model. International Journal of
Human-Computer Studies, 40(6):1033–1065, 1994.

6 Thomas Isakowitz, Shimon Shocken, and Henry C. Lucas. Toward a Logical/Physical Theory of
Spreadsheet Modeling. ACM Transactions on Information Systems, 13(1):1–37, 1995.

7 Panakaj Jalote. An Integrated Approach to Software Engineering. Springer-Verlag New York,Inc.,
second edition, 1997.

8 Krishna M. Kavi, Bill P. Buckles, and Narayan Bhat. A Formal Definition of Data Flow Graph Models.
IEEE Transactions on Computers, C-35(11):940–947, November 1986.

9 Glenford J. Myers. The Art of Software Testing. Wiley-Interscience, New York, 1979.
10 Bonnie Nardi and James Miller. An Ethnographic Study of Distributed Problem Solving in Spreadsheet

Development . In Proceedings of the conference on Computer-supported cooperative work , pages 197–
208. ACM, October 1990.

11 Bonnie A. Nardi and James R. Mil ler. The Spreadsheet Interface: A Basis for End User Programming.
Technical Report HPL-90-08, HP Software Technology Laboratory, March 1990.

12 Raymond R. Panko. Applying code inspection to spreadsheet testing. Technical report, Department of
Decision Sciences, College of Business Administration, 2404 Maile Way, Honolulu, Hi 96822,
November 1997.

13 Raymond R. Panko. What we know about spreadsheet errors. Journal of End User Computing: Special
issue on Scaling Up End User Development, 10(2):15–21, Spring 1998.

14 Raymond R. Panko. Two Corpuses of Spreadsheet Errors. In Proceedings of the 33rd Hawaii
International Conference on System Sciences 2000, volume 33. IEEE, 2000.

15 Raymond R. Panko and Richard P. Halverson,Jr. Spreadsheets on trial: A survey of research on
spreadsheet risks. Proceedings of the Twenty-Ninth Hawaii International Conference on System
Sciences, January 2-5 1996.

16 Raymond R. Panko and Jr. Ralph H. Sprague. Errors in developing and code inspecting a simple
spreadsheet model. Working paper 96-02, University of Hawaii, Department of Decision Sciences,
College of Business Administration, 2404 Maile Way, Honolulu, Hi 96822, December 1996.

17 Wil liam Perry. Effective Methods for Software Testing. John Wiley & Sons,Inc., U.S.A, 1995.
18 D.K. Peters and D.L. Parnas. Generating a test oracle from program documentation-work in progress.

Proceedings of the 1994 international symposium on software testing and analysis(ISSTA), pages 58–
65, August 17-19 1994.

19 D.K. Peters and D.L. Parnas. Using test oracles generated from program documentation. Proc. Third
IEEE Transactions on Software Engineering, 24(3):161–173, March 1998.

20 Kamalasen Rajalingham, David Chadwick, Brian Knight, and Dilwyn Edwards. Quality Control in
Spreadsheets: A Software Engineering-Based Approach to Spreadsheet Development. In Proceedings of
the 33rd Hawaii International Conference on System Sciences 2000, volume 33. IEEE, 2000.

21 Boaz Ronen, Michael Palley, and Henry Lucas. Spreadsheet analysis and design. Communication of the
ACM, 32(1):84–93, January 1989.

22 Pertti Saariluoma and Jorma Sajaniemi. Transforming verbal descriptions into mathematical formulas in
spreadsheet calculation. International Journal of Human-Computer Studies, 41(6):915–948, 1994.

23 Magaret-Anne Storey, Kenny Wong, P. Fong, D. Hopper, K. Hopkins, and Hausi Müller. On Designing
an Experiment to Evaluate a Reverse Engineering Tool. In Proceedings of the 3rd Working Conference
on Reverse Engineering, 1996.

