Information Visualization

Principles for
Information

Visualization
Spreadsheets

preadsheets have proven highly success-

ful for interacting with numerical data,

such as applying algebraic operations, defining data
propagation relationships, manipulating rows or
columns, and exploring “what-if” scenarios. Spread-
sheet techniques have recently been

The visualization
spreadsheet provides a
framework for exploring
large and complex data sets.
Structuring user interactions
using a spreadsheet
paradigm creates a powerful

tool for information

visualization.

30

extended from numeric domains to
other domains.>? Here we present
a spreadsheet approach to display-
ing and exploring information visu-
alizations, with large, abstract,
multidimensional data sets that are
visually represented in multiple
ways. We illustrate how spread-
sheet techniques provide a struc-
tured, intuitive, and powerful
interface for investigating informa-
tion visualizations.

An earlier version of this article
appeared in the proceedings of the
1997 Information Visualization
Symposium.® Here we refocus the
discussion to illustrate principles
that make the spreadsheet approach
powerful. These principles show
how we can perform many user tasks easily in the visu-
alization spreadsheet that prove much more difficult
using other approaches.

Why spreadsheets?

The visualization spreadsheet’s benefit comes from
enabling users to build multiple visual representations
of several data sets, perform operations on these visu-
alizations together or separately, and compare and con-
trast them visually. These operations are becoming ever
more important as we realize certain interaction capa-
bilities are critical, such as exploring different views of
the data interactively, applying operations like rotation
or data filtering to a group of views, and comparing two
or more related data sets. These operations fit natural-

July/August 1998

Ed Huai-hsin Chi, John Riedl, Phillip Barry, and
Joseph Konstan
University of Minnesota

ly into a spreadsheet environment. These benefits
derive from the way spreadsheets span a range of user
interactions. On the one hand, spreadsheets directly
benefit end users, because the direct manipulation
interface makes it easy to view, navigate, and interact
with the data. On the other hand, spreadsheets provide
a flexible and easy-to-learn environment for user
programming.

The success of spreadsheet-based structured inter-
action eliminates many of the stumbling blocks in tra-
ditional programming environments. Spreadsheet
developers create templates that enable end users to
reliably repeat often-needed computations without the
effort of redevelopment or coding. Users do not have to
worry about the data dependencies between data sets or
memory management. These programming idiosyn-
crasies are taken care of automatically. By providing a
natural environment to explore and apply operations
on data, visualization spreadsheets easily enable the
exploration of data sets.

What is a visualization spreadsheet?

Based on our experiences and drawing on others’ past
work,'® we define the spreadsheet paradigm’s charac-
teristics as follows:

m The tabular layout lets users view collections of visu-
alizations simultaneously. Cells can handle large data
sets instead of a few numbers.

m Operators are available for generating or modifying
cell contents. The visualization spreadsheet includes
arich variety of operators for different types of data
sets. Operators can be applied across a specified range
of operand cells, such as a whole column.

m The spreadsheet keeps track of the dependencies
between cells and automatically updates the cells
appropriately when they are manipulated.

These characteristics give the spreadsheet paradigm
its fundamental advantages. We borrow these charac-

0272-1716/98/$10.00 © 1998 IEEE

teristics from numeric spreadsheets. The fundamental
advantages form a set of design constraints that we con-
sider “non-negotiable.” A tool must satisfy these char-
acteristics to merit the term “visualization spreadsheet.”

How does our work fit into past research?

Using a spreadsheet for visualization extends past
research quite naturally. Our work focuses on informa-
tion visualization and the issues that arise prominently
in that domain. We build upon the experiences of other
spreadsheet researchers and include a variety of differ-
ent visual representations and operations useful for
interacting with the data.

The image spreadsheets—Interactive Image Spread-
sheet? and Levoy’s Spreadsheet for Images'—focused
onimages and the associated image operations. We take
an approach similar to Levoy’s system in using Tcl as the
command language, but we extend the spreadsheet
beyond images into information visualization and its
associated tasks and operations.

Our work most resembles Finesse.* We built on past
work by discovering the principles from which the visu-
alization spreadsheet derives its power. Finesse has a
limited number of cell primitives, whereas our proto-
type—built on top of the Visualization Toolkit (VTK)>—
allows a wide variety of geometric primitives. Our work
differs from Finesse because our prototype uses a com-
mand language and allows animation, dynamic visual
filtering, and dynamic mapping of variables to repre-
sentation. Using a command language, our prototype
also lets users construct their own visual representations
of their data. Finesse focuses on financial data, where-
as our system can be tailored to any information visual-
ization tasks.

In contrast to the visualization spreadsheet, existing
large visualization systems generally present a single
visualization at a time. The benefit of data-flow network
visualization systems such as IBM Data Explorer
(http://www.almaden.ibm.com/dx/) is its presenta-
tion of the visualization process as a sequence of oper-
ator modules. The screen space is allocated to present
the operators, rather than the operands. Visualization
spreadsheets are better suited than data-flow networks
for applications in which most of the screen real estate
should focus on the intermediate results.

Principles of visualization spreadsheets

Via examples, we illustrate the principles behind how
the spreadsheet paradigm facilitates information visu-
alization tasks. We illustrate how the visual spreadsheet
paradigm facilitates data exploration by enabling
researchers to derive comparison data sets using oper-
ators such as set addition and subtraction. We also illus-
trate how the spreadsheet paradigm enables the parallel
application of operators to a range of cells, facilitating
visual comparison of values in the cells.

In information visualization, another large problem
involves user-system interactions: a given data type will
have several different visual representations at the user’s
disposal. We discuss how to use the spreadsheet para-
digm to enable the exploration of multiple visual fea-
tures in the spreadsheet simultaneously. This is

especially useful in information visualization, since
there are several different visualization representation
techniques available at the user’s disposal for a given
data type. Moreover, by constructing a layout configu-
ration, we show that the user can set up analysis tem-
plates for application to many data sets. Equipping users
with a set of operations lets them explore data sets in
their unique situations by combining the operations in
various ways.
We built our system, Spreadsheet

for Information Visualization (SIV, I

pronounced “sieve”), on top of a

multi-platform interpreted devel- Via examples, we illustrate

opment system combining Tcl/Tk
and the Visualization Toolkit
(VTK).> VTK provides an object-
oriented architecture with many
pre-built objects.

We will demonstrate the princi-
ples using SIV in the context of three
data domains—molecular biology,
time-series matrix visualization, and

algorithm visualization. Each of tasks.

these domains illustrates specific

problems our research group

encountered in information visualization analysis tasks.
Many of the insights gained in this article result direct-
ly from this multidisciplinary collaboration. By using a
task-centered approach, we illustrate concretely the
principles that underlie how the visualization spread-
sheet enables users to solve problems in information
visualization.

SIV is quite scalable and can handle any data sets
importable into VTK—one of the many advantages of
using an existing visualization toolkit. Each cell view
can occupy its own window for finer detail, and its
dependency relationships appear in a formula entry box.
SIV is capable of handling 16 megabytes of terrain data
points, and volume visualization of size 64 x 64 x 64
voxels or larger. For example, molecular biologists—end
users in our initial design evaluation—have used SIV on
sequence similarity data sets as large as several hundred
pages long.

Derive comparison data sets

In the data exploration process, much user interac-
tion involves applying operators to data sets. The visu-
alization spreadsheet facilitates these interactions by
letting users explore “what-if” scenarios in a structured
environment. For example, users can copy and then
modify the contents of a cell, or perform an operation
on two cells and put the result in a third cell.

The spreadsheet paradigm provides a simple inter-
face for performing value operators that derive new data
sets, such as subtraction and addition. Let’s illustrate
using an algorithm visualization example. Figure 1
shows an algorithm visualization of 3D Delaunay trian-
gulation, which forms tetrahedra from a set of 3D ran-
dom points generated using random number
generators. Even though well studied, the problem of
3D triangulation remains quite non-intuitive for many
people. Traditional algorithm visualization techniques

IEEE Computer Graphics and Applications

the principles behind
how the spreadsheet

paradigm facilitates

information visualization

31

Information Visualization

1 Visualization of 3D random-point
generation and Delaunay triangula-
tion of the resulting point set. The [
columns visualize the algorithm’s
outcome after 5, 6, 25, and 50
steps, respectively. The last row
shows the result of several addition
operations (the formula syntax is
“command result operands™):
AddCell4 132312 22_1;
AddCell 4 23.33.22 32_2;
AddCell 4 33.43.32 42_3;
AddCell 4 43_43_33 23_1;

32

Command: ||

Bddcell 4.2 33223332
Bddcell 4.3 2 4233433

Bddcell 4 43 4333231

®

Spreadshebt)
or [
VisuallZatiofn

|

use animation and sequential layouts to show succes-
sive steps in order to gain better insights. Here the
columns show the algorithm’s results after 5, 6, 25, and
50 steps, from left to right, respectively. Row 1 shows
the point set using 3D scatter plots. Row 2 shows the
transparent tetrahedra after performing 3D Delaunay
triangulation. Row 3 represents the tetrahedra using
edges between vertices.

By adding the geometric contents of cells together,
the user can aggregate visualizations to create new rep-
resentations. The last row (Row 4) aggregates several
cells to form new visualizations that show differences
between successive steps. Cell C41 shows the difference
between step 5 and 6, whereas C, > shows the difference
between step 6 and 25. We can see where new points
were added into the point set, as well as the structural
changes in the convex hulls between steps. In cell Cy 3,
we see that after 25 steps the convex hull is completely
embedded inside the convex hull obtained after 50
steps. Since we know that adding points to the triangu-
lation can only increase the size of the convex hull, this
discovery makes sense. We see the blue surfaces and ver-
tices where the convex hull has not changed. Cell Cs 4

July/August 1998

shows the aggregate of adding all the stick models in
Row 3 together. These representations arise after many
iterations of trying different combinations of the points,
sticks, and surface representations of the data in Rows
1,2,and 3.

Interestingly, these algebraic operations can take on
different semantics at multiple levels. At the low level,
we can capture the cell images and perform image sub-
tractions by subtracting corresponding pixels. At the mid
level, as shown in the above algorithm visualization
example, we can perform geometric object algebraic
operations. We can define objects and algebraically add
them to or subtract them from the scene. At the high
level, we can perform algebraic operations based on the
particular data domain semantics.

We encountered the need to examine domain seman-
tics for operators in a domain study with molecular biol-
ogists exploring DNA sequences. Such studies often
compare a given sequence against a database of known
sequences, generating thousand-page reports of possi-
ble similar regions (alignments) and other information
useful to biologists. Based on AlignmentViewer, a pre-
vious visualization system we built for this data,® we

Al SIV 4.0 Beta

2 A screen snapshot of visualizing
sequence similarity reports after
performing three operations. Step
1: Initially, we loaded each column
with a slightly different, but related,
data set (A1 =B1=C1=D1,A2=B2
=C2=D2,A3=B3=C3=D3). Step
2: We selected Row B, then sub-
tracted cell A3 from it (B1 =B1 - A3,
B2 =B2 - A3, B3 =B3 - A3). Cell B3
contains the empty set as expected.
Step 3: We changed Rows C and D
to show different views of Row A.
The views show different sets of
variables using a different represen-
tation, thus increasing our ability to
see other dimensions of the multi-
variate data sets simultaneously.

constructed a spreadsheet for the research task of com-
paring similarity reports. The basic 3D visual represen-
tation consists of comb-like glyphs that show the
alignments, their similarity, and where they occur along
the input sequence. For example, see cell A1 in Figure
2. This spreadsheet, built with OpenGL and Motif using
C+ +, includes a computational steering environment
for rapidly executing the similarity algorithm on multi-
processor machines. For analysis, it provides animation,
filtering, and variable-to-axis mapping capabilities.
Molecular biologists want to locate differences
between several algorithm runs with different algo-
rithmic parameters. Figure 2 shows a snapshot of an
example session resulting from a three-step analysis:

Step 1: We loaded each column with data sets generat-
ed from the same input sequence by varying a
parameter used to specify the algorithm’s sensi-
tivity with respect to distantly related versus
closely related sequences. We decreased the dis-

tance from far to near in columns 1, 2, and 3,
respectively.

Step 2: We selected Row B and then subtract cell A3 from
each cell in that row. Thus, B1 = B1 —A3,B2 =
B2 — A3, B3 = B3 — A3. Cell B3 contains the
empty set, as expected. The cell values are align-
ment sets, and we defined two alignments as
equal if they share a region. Cells B1 and B2
show alignments found by using far evolution-
ary distance parameters, but not by the near
used in A3.

Step 3: At this point, cells in Row C and D still contain
the same data sets as the corresponding cells in
Row A. We changed the variable-to-axis map-
ping, resulting in different views of the data sets.

Within the domain-specific semantic level, sometimes
several possible definitions exist for the operator. For
example, the difference operator above is only one of
the three possible interpretations. We can actually

IEEE Computer Graphics and Applications

33

Information Visualization

Command: ||

EoUTrcE xumAt.oDE
Getvalue 2 4

pami 20cube

RemoveValus 2 4 paml20cube

SubtractCell 3 4 3 1

3 Visualization of time-series matri-
ces. The screen snapshot shows
visualizations of protein residue
substitution probability matrices of
various evolutionary distances. The
first, second, and third rows visual-
ize matrix 40, 120, and 250 from the
PAM matrix series. The fourth row
visualizes matrix 62 from the Blo-
sum matrix series. The first column
uses a cube representation that
maps positive matrix values to the
volume, height, and color attributes
of the cubes. The second column
uses a carpet plot that maps values
to the height and color of a 3D
surface. The third column uses a bar
representation that maps values to
the length, height, and color attrib-
utes of the bars. The fourth column
shows various representations in
different rotational configurations.

X

Spradtshed] |
or :

& VisuBlIatich

34

define three different types of equality between align-
ments, resulting in three difference operators.® Like-
wise, high-level algebraic operations in other domains
should rely on the specific semantics of those domains.

With many data domains, the comparison operations
are set algebraic rather than numeric. For example,
instead of having negative numbers, we have the exis-
tence of set membership. An additional operator is set
intersection. For instance, A — B creates a new set of
items in A except those that are also in B. In a numeric
spreadsheet, negativity is often represented using a
negative sign, coloring the item red, or putting the num-
ber inside of parentheses. For a task-specific operation
in the visualization spreadsheet, we can define visibil-
ity, colors, or special icons to represent these different
set memberships.

The ability to generate comparison data sets proves
important in exploring the differences between related
data sets. If we know the domain semantics, we can
apply this spreadsheet principle to let users algebraically
explore differences between data sets. The addition and
subtraction operation shown here typify the case of com-
paring two similar, but not identical, data sets—some-
thing of interest to researchers in many fields. The

July/August 1998

spreadsheet approach makes such algebraic manipula-
tions straightforward.

Apply operators in parallel

One common, but equally important, interaction
applies direct manipulation operations such as rotation,
translation, and zooming. In a spreadsheet environ-
ment, often we want to apply the same operation to mul-
tiple cells simultaneously. We have found this feature
extremely useful for comparison tasks. For instance, the
user can select the first row in Figure 1, then perform
rotations simultaneously on all the cells in that row, giv-
ing a rotationally coordinated view of the data. Scatter
plots in the same orientations provide correspondence
between the points in different cells. In general, we have
found the end user’s parallel application of operators
across cells extremely useful.

Besides algebraic operators and simple scene opera-
tions, we have found other operations—such as anima-
tion and dynamic query filtering—useful under this
principle. For example, by selecting a column of cells,
the user can apply an animation operation to those cells
simultaneously. Or the user can apply a data filtering
operator to a row of data to cut out unwanted data

points. As a concrete example, in Step 1 of our sequence
similarity example in Figure 2, we load the data sets by
first clicking on the column button to select a column,
then applying a load-dataset operator to all the cells in
that column. In Step 2, we subtract Cell A3 from Row B
by first selecting Row B and then applying a subtraction
operator to all the cells in that row.

Distributing a single operation across a group of data
sets is a common interaction in data exploration. We
speed up users’ tasks by automating the chore of apply-
ing operations to a large number of cells.

View multiple features simultaneously

For a given data type, we can often choose from many
different visual representation techniques. Often, a tech-
nique contributes to finding one visual feature, while
another visually extracts a different visual feature. For-
tunately, the spreadsheet environment assists in orga-
nizing and displaying various visual representations.
Because our system easily extends to handle new tech-
niques via command modules, it lets us quickly experi-
ment with and compare several representation
techniques. Here we illustrate this flexibility in all three
data domains.

The algorithm visualization of Figure 1 shows sever-
al different visual representations of a 3D Delaunay tri-
angulation. Row 1 represents the point set as 3D scatter
plots, showing the spread of points quite well. Row 2
shows the same data using transparent tetrahedra after
3D Delaunay triangulating on the point sets. Through
interactive rotation, this representation gives a better
view of the points’ relative placement. It also shows the
convex hulls of the point sets and how the hulls change
between steps of the algorithm. Row 3 represents the
Delaunay triangulation as edges rather than tetrahedra,
thus giving a better view of the triangulation’s interior
structure.

Our sequence similarity spreadsheet also permits
changing the visual representation via a mapping tool.
In Figure 2, the cells in Row C and D contain the same
data sets as the corresponding cells in Row A, but we
changed the mapping in Row C and D to show different
variables of the similarity report. In this organization,
the cells in a given column represent the same value;
however, each row offers a different view of the data.
The ability to map different variables to different axes in
different cells improves a user’s ability to see more vari-
ables simultaneously. In this spreadsheet, a click-and-
point interface controls the operations. The user loads
the columns with data one column at a time and
changes the data mapping of each row using the map-
ping tool dialog box. We implemented the mapping tool
as a pull-down menu for each axis.

Exploring multiple features is also important in the
domain of time-series matrices. Two major difficulties
arise in dealing with time-series matrices: identifying
differences in the matrix values between successive
matrices, and finding an easy way to view and explore
simultaneously the different features extracted by dif-
ferent representations. For example, the “cityscape” rep-
resentation shows the matrix values as 3D blocks,
whereas the “heatmap” representation shows the val-

ues as colored tiles.” Fortunately, the spreadsheet envi-
ronment deals well with these difficulties.

We encountered two matrix series in trying to solve
problems with molecular biologists studying evolution’s
effect on genetic sequences. Evolution accepts certain
substitutions of one amino acid by another. PAM (Point-
Accepted Mutations) and Blosum (Blocks Substitution
Matrix) are two matrix series with each matrix repre-
senting substitution probabilities at a given evolutionary
distance.® An element M of a matrix specifies the rela-
tive probability of substituting the amino acid i for j after
a given evolutionary interval. A positive entry specifies
an accepted mutation that is more likely than random,
whereas a negative entry specifies less likely than ran-
dom. These matrix series’ detailed nature encodes a
large amount of information.® For example, biologists
use these matrices in the calculation of similarity
between sequences. Biologists want to understand the
nature of these matrices because of their mathematical
and biological complexity.

We used SIV to gain a better understanding of PAM
and Blosum, which were calculated from different sets
of information sources. To understand the differences
between the matrices requires visually comparing a
number of different matrices simultaneously. In Figure
3, the first, second, third, and fourth rows of cells visu-
alize the PAM40, PAM120, PAM250, and Blosum62
matrix, respectively. We found being able to quickly
bring in data and lay them out in different ways
extremely useful. For example, the last row shows the
Blosum62 matrix after 7 lines of commands.

By constructing several modules for different visual
representations of matrices, we used our spreadsheet to
answer specific scientific questions on these amino acid
substitution time-series matrices. In Figure 3, the tabu-
lar layout shows different visual representations in dif-
ferent columns. The values in the cells are the same
across each row, but we varied the visual representation
to bring out different features of the data set.

We discovered several novel patterns in these matri-
ces. The first column uses a cube representation that
maps positive matrix values to the volume, height, and
color attributes of the cubes. This representation shows
the interesting variation of the diagonal entries more
clearly than the other representation methods. The
entry represented by the orange cube varies more than
any other entry.

The second column uses a “carpet plot” that maps val-
ues to the height and color of a 3D surface (using a rain-
bow color map with any negative entry mapped to red).
The carpet plot technique shows that the matrices have
different ranges of values (the colors get brighter and
brighter from top to bottom).

The third column uses a bar-plot representation that
maps values to the bars’ length, height, and color attrib-
utes. The bar-plot technique makes comparing a specif-
ic entry from matrix to matrix easy and shows the overall
decreasing trend of most off-diagonal entries. The
fourth column shows various representations in differ-
ent rotational orientations.

By vertically scanning the spreadsheet, the user can
detect differences between matrices quickly. As we can

IEEE Computer Graphics and Applications

35

Information Visualization

36

Further Reading in Spreadsheet-based Interactions

People have long used tables to organize
information. The spreadsheet extends the tabular
organization of information naturally by letting
the user specify and interact with the contents of
the cells and the interconnections between the
cells. The spreadsheet paradigm has been
suggested in earlier works for domains such as
images, volume visualization, and financial data.
Here we suggest further reading related to
spreadsheet-based visualization systems.

Tabular organizations

Mathematicians and statisticians have long used
tables of sine, cosine, and confidence probabilities.
Mare recently, the invention of the VisiCalc
numerical spreadsheet in 1979 fueled the
adoption of personal computers.*

Statisticians have examined visualizing higher
dimensional point sets by a table of projections.
For example, one multivariate analysis tool, the
scatter matrix, is a table of scatter plots.?
Visualization researchers have applied similar
ideas, but in different ways, to produce a table of
views of a single data set.>* In the scatter matrix, a
statistics researcher may mark a datum in one
scatter plot, and the program would then
highlight the corresponding point in all other
scatter plots. These approaches represent a largely
static tabular approach to the data, but they
include some interactivity, such as rotation,
translation, and zooming.

Spreadsheets for images

The first spreadsheet that allows displaying
images in a cell is the Analytic Spreadsheet
Package (ASP).° Levoy’s Spreadsheets for Images
system® and Hasler et. al.’s 1ISS system’ examine

see from all the columns, the diagonals of these matri-
ces have strong values—which makes sense, since evo-
lution favors the identity substitution (no mutation).
From the second column we see that the matrices differ
substantially because the colors get brighter and
brighter from top to bottom. The last row shows the Blo-
sum62 matrix, and we see its values clearly differ from
any of the PAM matrices shown.

Propagating view changes in parallel to multiple cells
proved highly valuable in this data analysis situation.
By selecting a row, we can compare the various visual
representations in the same orientation. Alternatively,
we can select a column and compare different matrices
using the same visual representation.

Our experience shows that the spreadsheet’s elegant
organization allows interesting combinations of differ-
ent visual representations of the underlying data. Users
can compare and visually extract different features from
the different representations. The spreadsheet envi-

July/August 1998

ways to profitably extend the spreadsheet
paradigm to images (as well as to other data
sets—Levoy briefly mentions 3D volumes). For
example, Levoy shows how a spreadsheet can be
used to examine an image processing pipeline,
and Hasler shows that many image processing
tasks can be efficiently organized in a spreadsheet
system. These two systems illustrate some of the
capabilities made possible by extending the
spreadsheet paradigm to other domains.

Visualization systems

Interest in visualization-based user interfaces has
blossomed in the past few years, with systems
developed for application areas from hypertext
information to geology, molecular biology, file-
system structure, and animal behavior patterns.
Large visualization systems contain modules that
users can hook together into a data-flow network
to create visualizations. These systems offer many
advantages for building applications rapidly. Their
success attests to the usefulness of modular, easy-
to-use, extensible tools for visualization tasks.
Examples of such systems include ConMan,® AVS,°
Iris Explorer (http://www.nag.co.uk/welcome%
5Fiec.html), IBM Data Explorer (http://www.
almaden.ibm.com/dx/), and Visualization Toolkit
(VTK).2°

Visual interactive spreadsheets

Past work in the visualization community has
produced interactive tables for specific
applications, including systems such as
TableLens,'* Focus,*? and a graphical financial
spreadsheet called Finesse.*® TableLens is designed
for browsing tabular numerical information
represented using bar graphs. The Focus

ronment equips users with the necessary tools to explore
the representation space.

Create analysis templates

The spreadsheet lets users create templates to reliably
repeat often-needed computations without redevelop-
ment or coding. This advantage—evident in numerical
spreadsheets—translates easily into visualization
spreadsheets. Users can construct their own layouts in
situations that programmers cannot foresee and reuse
them over and over again. This single easily understood,
easily configured tool can handle multiple situations.
Users, already familiar with tables, can immediately
start organizing their data in this spreadsheet metaphor.
For example, for easy comparison in numerical spread-
sheets, users often put two numbers next to each other
or load two sets of numbers into adjacent columns. Sim-
ilarly, in the visualization spreadsheet, users lay out two
data sets next to each other or compare two groups of

interactive table, modeled after TableLens, allows
sophisticated navigation via sorting and hiding of
information contained in the table.'? Focus
resembles TableLens, with the main difference
between the two in the interaction methods.
TableLens uses a fish-eye layout strategy for display,
whereas Focus uses a dynamic querying
mechanism as the primary interaction method.
Finesse is a prototype system designed for financial
data, where the cells lie on fixed grids and contain
four representation primitives—line plots, 3D
surface plots, heat maps, or 3D bar graphs.

The NoPumpG prototype* system abandons
the fixed tabular grid of conventional
spreadsheets, so all cells are free floating. It allows
the specification of line plots based on sliders
attached to variable values. It is compared to a
spreadsheet because of its data dependency
capabilities.

References

1. P.S. Brown and J.D. Gould, “An Experimental Study of
People Creating Spreadsheets,” ACM Trans. Office Infor-
mation Systems, Vol. 5, pp. 258-272, July 1987.

2. W. Cleveland and M. McGill, eds., Dynamic Graphics
for Statistics, Wadsworth and Brooks/Cole, Belmont,
Calif., 1988.

3. J. van Wijke and R. van Liere, “Hyperslice: Visualization
of Scalar Functions of Many Variables,” Proc. IEEE Visu-
alization 91, IEEE CS Press, Los Alamitos, Calif., 1991,
pp. 119-125.

4. V. Anupam et al., “Dataspace: 3D Visualizations of
Large Databases,” Proc. IEEE Information Visualization
Symp. 95, IEEE CS Press, Los Alamitos, Calif., 1995,
pp.82-88 and 144-145, 1995.

5. K.W. Piersol, “Object-Oriented Spreadsheets: The Ana-
lytic Spreadsheet Package,” Proc. Conf. on Object-Ori-

data using adjacent columns. This flexibility contributed
to the numerical spreadsheets’ success.

For example, in Figure 2 the user set up an organiza-
tion that enables the immediate detection of differences
between different but related data sets. For example, even
viewers without molecular biology training can see the
similarity in the data sets’ general structure, but also that
some alignments present in cells A2 and A3 do not appear
inAl. Users can now take advantage of their visual com-
parison abilities to detect differences between data sets.

As another example, the table’s columns and rows
increase the number of dimensions we can see simulta-
neously. In Figure 1, the columns show several snap-
shots of the 3D Delaunay algorithm’s steps. So in this
case, the columns represent the time dimension. With
the same analysis template the user can analyze sever-
al different runs of the algorithm, examining a differ-
ent random-point generator each time.

Figure 3 demonstrates an analysis template of differ-

ented Programming Systems, Languages, and Applica-
tions (Sigplan Notices, Vol. 21, No. 11), N. Meyrowitz,
ed., ACM Press, New York, 1986, pp. 385-390.

6. M. Levoy, “Spreadsheets for Images,” Proc. Siggraph
94, A. Glassner, ed., ACM Press, New York, 1994, pp.
139-146.

7. A.F. Hasler, K. Palaniappan, and M. Manyin, “A High
Performance Interactive Image Spreadsheet (IISS),” Com-
puters in Physics, Vol. 8, May/lune 1994, pp. 325-342.

8. P.E. Haeberli, “ConMan: A Visual Programming Lan-
guage for Interactive Graphics,” Computer Graphics
(Proc. Siggraph 88), J. Dill, ed., ACM Press, New York,
1988, pp. 103-111.

9. C.Upson et al., “The Application Visualization System:
A Computational Environment for Scientific Visualiza-
tion,” IEEE Computer Graphics and Applications, July
1989, pp.30-42.

10. W.J. Schroeder, K.M. Martin, and W.E. Lorensen, The
Visualization Toolkit: An Object-Oriented Approach to 3D
Graphics, Prentice Hall, Englewood Cliffs, N.J., 1996.

11. R.Rao and S.K. Card, “The Table Lens: Merging Graph-
ical and Symbolic Representations in an Interactive
Focus + Context Visualization for Tabular Information,”
Proc. ACM CHI 94 Conf. on Human Factors in Comput-
ing Systems, (Vol. 1, Information Visualization), ACM
Press, New York, 1994, pp. 318-322.

12. M. Spenke, C. Beilken, and T. Berlage, “Focus: The Inter-
active Table for Product Comparison and Selection,”
Proc. ACM Siggraph Symp. on User Interface Software and
Technology, ACM Press, New York, 1996, pp. 41-50.

13. A. Varshney and A. Kaufman, “Finesse: A Financial
Information Spreadsheet,” Proc. |IEEE Information Visu-
alization Symp. 96, IEEE CS Press, Los Alamitos, Calif.,
1996, pp. 70-71.

14. N. Wilde and C. Lewis, “Spreadsheet-based Interactive
Graphics: From Prototype to Tool,” Proc. ACM CHI 90
Conf. on Human Factors in Computing Systems (Applica-
tion Areas), ACM Press, New York, 1990, pp. 153-159.

ent visual representations set up for visualizing a series
of matrices. Simply applying other matrix values to the
cells enables multiple analysis. Configuring the spread-
sheet lets us see how templates can adapt to a wide vari-
ety of tasks, such as showing the time dimension,
different data sets, or different visual representations.

As these examples show, the tabular layout’s flexibil-
ity lets users construct different analysis templates for
different tasks and thus contributes to the power of
spreadsheet-based environments. Spreadsheets are
familiar, flexible, easily configurable, and excellent for
interactive comparison tasks. Coupled with simple,
direct, manipulation operations applied in parallel, we
see how users can tailor the spreadsheet to individual
situations on-the-fly.

Conclusion

Visualization research spans a remarkable range of
scientific disciplines and corresponding visualization

IEEE Computer Graphics and Applications

37

Information Visualization

38

techniques, with certain operations needed across the
entire range. These operations include visually com-
paring visualizations of two different data sets and per-
forming algebraic operations on two or more
visualizations, such as visualizing the difference
between two data sets. Furthermore, the need to explore
multiple visual representations simultaneously arises
in information visualization in particular because dif-
ferent techniques often extract different visual features.

Over the past year we learned that a spreadsheet
approach to visualization provides a powerful and intu-
itive technique for addressing these interaction issues.
The principles discussed in this article apply across a
wide range of visualization applications, helping spread-
sheet users understand how to take advantage of the
power of the paradigm and assisting spreadsheet devel-
opers understand how to structure their tools.

You should not use a visualization spreadsheet in cer-
tain situations, however. First, if a single view of the data
suffices in a particular application domain, then a task-
specific visualization program should be used. Second, a
traditional data-flow system works wonderfully when
one single view suffices and the ability to specify complex
operations using a point-and-click interface is important.
The spreadsheet emphasizes the intermediate operands,
while the data-flow systems tend to emphasize the oper-
ators needed to achieve a desired result.

Future work includes better understanding how to
make the framework flexible for easy extension into
many application domains and dealing with screen real-
estate issues by employing multiple fixed-head monitors
or a large-screen device like the PowerWall. We intend
to involve more end users in the evaluation process to
better understand the spreadsheet design paradigm. m

Acknowledgments

This work has been supported in part by the Nation-
al Science Foundation under grants BIR 9402380 and
CDA 9414015. We wish to thank the reviewers and the
members of the genomic database group at the Univer-
sity of Minnesota for their advice and suggestions.

References

1. M. Levoy, “Spreadsheet for Images,” Computer Graphics
(Proc. Siggraph 94), Vol. 28, No. 4, ACM Press, New York,
1994, pp. 139-146.

2. A.F. Hasler, K. Palaniappan, and M. Manyin, “A High-Per-
formance Interactive Image Spreadsheet (IISS),” Comput-
ers Physics, Vol. 8, No. 3, May/June 1994, pp. 325-342.

3. E.H. Chi et al., “A Spreadsheet Approach to Information
Visualization,” Proc. Information Visualization Symp. 97,
IEEE CS Press, Los Alamitos, Calif., 1997, pp. 17-24, 116.

4. A.Varshney and A. Kaufman, “Finesse: A Financial Infor-
mation Spreadsheet,” IEEE Information Visualization Symp.
1996, IEEE CS Press, Los Alamitos, Calif., 1996, pp. 70-71,
125.

5. W.J. Schroeder, K.M. Martin, and W.E. Lorensen, The Visu-
alization Toolkit: An Object-Oriented Approach to 3D Graph-
ics, Prentice Hall, Englewood Cliffs, N.J., 1996.

6. E.H. Chi et al., “Flexible Information Visualization of Mul-

July/August 1998

tivariate Data from Biological Sequence Similarity Search-
es,” IEEE Visualization 96, ACM Press, New York, Calif.,
1996, pp. 133-140, 477.

7. E. Tufte, The Visual Display of Quantitative Information,
Graphics Press, Cheshire, Conn., 1992.

8. S. Henikoff and J. Henikoff, “Performance Evaluation of
Amino Acid Substitution Matrices,” Proteins: Structure,
Function, and Genetics, Vol. 17, 1993, pp. 49-61.

Ed H. Chi is a PhD candidate in
computer science at the University of
Minnesota, where he works on infor-
mation visualization. His area of
expertise is software systems for visu-
alization, user interfaces, and com-

. puter-human interaction. He
received his BS in 1994 and MS in 1996 in computer sci-
ence from the University of Minnesota. He expects to receive
his PhD in late 1998.

John Riedl is an associate profes-
sor in computer science at the Uni-
versity of Minnesota. His research
interests include collaborative sys-
tems, distributed database systems,
and scientific visualization. He
received a BS degree in mathematics
from the University of Notre Dame in 1983 and MS and
PhD degrees in computer science from Purdue University in
1985 and 1990, respectively.

Phillip Barry has been in the Com-
puter Science and Engineering
Department at the University of Min-
nesota since 1989. His areas of exper-
tise are computer-aided geometric
design, scientific visualization, and
computer graphics. He received his
BS and MS from Idaho State University and his PhD from
the University of Utah.

Joseph A. Konstan is an assistant
professor of computer science and
engineering at the University of Min-
nesota. His area of expertise and
research is software systems for
human-computer interaction,
including multimedia systems for
flexible presentation, scientific visualization, collabora-
tive filtering, and constraint-based programming tools.
He has a PhD in computer science from the University of
California at Berkeley.

Readers may contact Chi at the Dept. of Computer Sci-
ence, University of Minnesota, 4-192 EE/CS Bldg., Min-
neapolis, MN 55455, e-mail echi@cs.umn.edu.

