COMP389 -SOFTWARE ENGINEERING PROJECT, 2001

D4 USER INTERFACE DESIGN 


Computer-Based SPOT


Team 7

Team Meeting: Tuesday 11:00am

Team Leader: 

Rilla Khaled 

(Rilla.Khaled@mcs.vuw.ac.nz)


Team members: 

Daniel Ballinger 
(Daniel.Ballinger@mcs.vuw.ac.nz)

Edward Bedwell 
(Edward.Bedwell@mcs.vuw.ac.nz)

Derek Foo 

(Derek.Foo@mcs.vuw.ac.nz) 


Anna Ladd 

(Anna.Ladd@mcs.vuw.ac.nz) 



Supervisor: Glen Walker 


Client: Dr. Paul Warren


Date: 19/10/01

[image: image1.png]Pl

‘W“

S




Contact details for Client and Supervisor:

Client:
Dr. Paul Warren



Senior Lecturer in Linguistics and Acting Research Director



School of Linguistics and Applied Language Studies



Victoria University of Wellington



PO Box 600



Wellington, New Zealand



tel. +64 4 463 5631



fax. +64 4 463 5604



Paul.Warren@vuw.ac.nz


http://www.vuw.ac.nz/lals/
Supervisor:
Glen Walker



Glen.Walker@mcs.vuw.ac.nz

Table of Contents

1
Brief Introduction

2
Changes to Previous Documents

3
Detailed Design Overview


3.1
Overall Description of Design Solution


3.2
How our detailed design fulfils the design goals of our 


architectural design


3.3
Further design and implementation decisions

4
Detailed Design


4.1
Diagrams of the major parts of the system


4.2
Interfaces and responsibilities of each part of the system

5
Design Analysis


5.1
Sequence diagrams for top ten use cases


5.2 
Justification that our design will meet the acceptance 


criteria for the top five non-functional requirements


6  
Designing, implementation and other considerations

7
Software construction plan

8  
Revised estimates of project risks

9
Glossary

10
Individual Contributions

11
Appendix 1: Complete documentation of interfaces

1  BRIEF INTRODUCTION

This document contains a low-level description of the internal design for the vertical slice that we will develop. It specifies the design in sufficient detail that if given to another programmer, they could implement the system.  As such it is pitched at a level that is suitable for a Java Developer, and (perhaps) not the client.

2  CHANGES TO PREVIOUS DOCUMENTS

The Rose Models of the system have been updated to include the interfaces described in D4. The use cases have also been reprioritised since D2 as certain use cases are now included in others, while other new use cases have surfaced: the new top 10 use cases are described in the sequence diagrams in this document.  

3  DETAILED DESIGN OVERVIEW

3.1 Overall description of the design solution

The design presented in this document expands on and modifies that from the Architecture Design and User Interface Design documents.  As the level of design has become more detailed it has become necessary to make modifications to produce workable solutions to design problems.  

The top layer of design (as discussed in D3) still separates the packages into those that provide the behaviour (User Interface components), the system core, and the services (data storage and network communications).

All behaviour packages are responsible for drawing the GUI and passing the commands and information taken from the GUI to the correct system core classes. An overall controlling GUI called the main menu is present to start the application using the correct sub-application.  These include playing a game, reviewing the game in real time, viewing a textual log of a game, and starting the editing features.

The Game package contains classes that are used to pass information about the current state of the game to any classes that need to know this information. This includes information about moves as they are made and which game boards should currently be used.

The GameBoard package contains all the classes and methods needed to store the state of a board, how to display it on the screen, what pieces are available and how they can be moved.

The Storage package provides permanent storage (and retrieval) of game boards and round records. This should be done using files in a known directory.

The Communications package allows a game between two players to be linked over a network connection.  Messages will then be passed across the network to allow the two game controllers involved to agree on the current state of the game and be aware of what the remote game controller is doing.

3.2 How our detailed design fulfils the design goals of our architectural design.

Our Design process involved three main tasks: service specification, component selection and restructuring/optimisation. During the execution of these tasks we aimed to satisfy the design goals laid out in the Architecture Design Document e.g. to make a system that was Useable, Portable and Extendable.  

Service specification:

Our support for the goal of extendibility can be seen in particular when looking at the cell hierarchy, through the use of polymorphism, and the specification of operations that take similar arguments.  As a consequence it is possible for our system to easily draw, create and modify game boards, as well as to change the manner in which it does so.  This lends itself to ease of future extensions. Furthermore, we have specified functions that are not currently in use by the system but could be potentially used in the future, thus aiding extendibility (for example the updateScore method). Portability was another major motivational factor we took into consideration during this task.  We wanted our system to work across various platforms. Since we had decided that portability would be achievable by implementing the system in Java, we defined all of our operations to take standard Java types as arguments and/or custom built Java objects. Finally, we wanted our system to be reliable as usability was a major concern. This was one of the motivations for using Java which provides built in mechanisms for error handling. We aimed to catch all potential faults.  

Component selection:


Our choice of Java as the main platform for development meant we had access to a comprehensive selection of ready-made components to use or extend. The largest use of these components was in the Graphical User Interfaces where extending the JFC/Swing packages meant we could achieve a consistent look and feel over our system. This was one of the key issues in designing a system that is usable (refer UI Design Document). The use of the Java Input/Output package for things like file reading and writing and communications between the two systems and various data structures (LinkedList, Stack) helped to reduce the number of errors (these components have been thoroughly tested before deployment), which was another consideration in making our system usable. Portability was another factor to consider in our choice to use ready made components. We specified that our system was to operate on major operating system (D3 design goals) so any package we decide to re-use also needs to operate across various platforms. Java has been developed as a cross-platform programming language and implementations of its components are available on most popular operating systems so we did not see any problem with developing our system using these components.

Restructuring and Optimisation:

Although the restructuring and optimisation design task did not directly support the design goals it did fulfil our minor design goal to implement our system easily and in a short space of time. We compromised some modularity to speed up implementation.  For instance to simplify the implementation of the control we had a GameController which had a Round and two Boards. However the Boards knew about the GameController and could call methods on it, which reduced the complexity of the control but increased the coupling. We merged similar classes for simplicity, which in turn aided ease of implementation. For instance, we decided that we no longer needed an inheritance structure for board representation, and hence no longer need to maintain separate Slider and Driver classes. Instead we chose to have one type of board that could act as either a Slider or a Driver board, and to differentiate between the two in the way we drew them.

3.3 Further design and implementation decisions

We decided that instead of listing components i.e. to select which board to load or what round to replay (as we said we would in D3) that we would use JFC/Swing package file browsers to display the component names as they are less susceptible to errors and more usable.

Furthermore, we decided that instead of our Storage System storing the representation for  the moves made in each round as a list of movements in a file, that it would store the Round object itself by serializing it: this is turn meant that every component that Round contained also had to be serializable. As a Round object contains a Board object representing a Slider and another Board for the Driver, it meant that each Board object had to be serializable as well. This was a benefit since we also needed some way of storing representations for boards. 

4  DETAILED DESIGN

4.1 Diagrams of the major parts of the system

<insert here>

4.2 Interfaces and responsibilities of each part of the system

For brevity, only the most important methods and attributes in each class have been documented in this section. For full documentation, refer to Appendix 1.

Package: GUI

Class: Main

Attributes:

int : width - the width of the image displayed in the main menu pane

int : height - the height of the image displayed in the main menu pane

Methods and Procedures:

Main() 

the constructor for the main menu, it creates the frame, panels and buttons that will be displayed within the pane.

void startPlay() 

builds the GUI for setting up a game and hides the main menu from the view of the user.  

void StartReplayRound() 

builds the GUI for viewing a replay of a round and hides the main menu from the view of the user.  

void StartTextualReview() 

builds the GUI for viewing a textual review of a round and hides the main menu from the view of the user.  

void StartEdit()

builds the GUI for editing a board and hides the main menu from the view of the user.  

paintComponent() 

paints the image upon the main menu frame. 

Class: Network

Methods and Procedures:

Network: 

the constructor of the class, determines the size of the window and the event that will occur when the frame is closed

setupConnection: 

opens the Connect GUI, from which the user may set up a network connection between two computers. 

setCommunications: 

sets the communications of the two computers, so they may be able to respond to each others actions during the process of setting up a game.

home: 

disposes of the Network GUI and shows the main menu

openBoard: 

finds the absolute path name of the board file to be opened.

startGame: 

once all the fields have been satisfied the game can then be started, this method creates a new game object and builds the GUI needed for playing the game.  The Network GUI is then disposed of.

Class: Game

Attributes

int : role - an integer which determines the role of the player and thus the board that 
needs to be displayed.

Methods and Procedures:

Game: 

the constructor of the class, determines the size of the window, the event that will occur when the frame is closed and the role that needs to be taken when displaying the board.

home: 

disposes of the Game GUI and shows the main menu

startClock: 

starts the clock that is displayed in the frame.

undoMove: 

calls undo in the GameController when this button is pressed.

Class: Connect

Attributes:

boolean : isClient - determines the role of the computer when setting up a network 
connection, whether it is a client or a host.

Methods and Procedures:

Connect: 

the constructor of the class, determines the size of the window, the event that will occur when the frame is close and initialises the communications.

home: 

disposes of the Connect GUI and shows the main menu

connect: 

begins the connection between the client and the server.

abort: 

aborts any connection that is currently in progress and disposes of the the Connect GUI, returning the Network GUI to the foreground. 

displayResults: 

displays the current stage of the connection within the scroll pane.

Class: Review

Methods and Procedures:

Review:  

the constructor of the class, determines the size of the window and the event that will occur when the frame is close.

home: 

disposes of the Review and shows the main menu

reviewSelect: 

opens a file chooser from which the user may select a round to be replayed. The file chooser only displays files with *.rnd as their extension.  Once a round has been selected the corresponding slider and driver boards are displayed.

startClock: 

once a round has been chosen the user may begin the review by pressing the start clock button. 

Class: Text

Methods and Procedures:

Text:  

the constructor of the class, determines the size of the window and the event that will occur when the frame is close.

home: 

disposes of the Text and shows the main menu.

loadRound:  

opens a file chooser from which the user may select a round to be reviewed. the file chooser only displays files with *.rnd as their extension.  Once a round has been selected the moves are displayed textually in the Text's scroll pane.

displayResult: 

displays the text of a move in the scroll pane.

Package: Game

Class: GameController

Attributes:

long : clockStarted - contains the current date and time the clock was started.

boolean : clockHasStarted - determines whether the clock has been started.

Methods and Procedures:

startClock:

 starts the clock.

board: 

creates the board panel to be displayed in the Game GUI from a board file in the storage system.

round: 

creates the two board panels to be displayed in the Review GUI from a board file in the storage system.

startReplay:

 listens for the start replay button to be pressed and starts the replay of a round.

undoMove: 

listens for the undo button to be pressed and undoes the last move within the round.

move: 

records a move made on the board.

sendMove:

sends the latest move across to the other computer in the network.

saveRound:

once a round has been completed , saveRound saves the round of moves and the board's used to the Storage_System.

Class: Clock

Attributes:

int : sec - the number of seconds that will be displayed on the clock.

int : min - the number of minutes that will be displayed on the clock.

boolean : paused - determines whether the clock has been paused or not.

Methods and Procedures:

Clock: 

the constructor of the clock, initially displays the clock label as the "0:00".

start:

 creates a clock thread to be run and starts that thread.

run: 

runs the thread continuously until the program has been closed, calls updateClockLabel every second.

updateClockLabel: 

redisplays the label every second to imitate a clock.

Package: Communication

Class: Communication - extends Java's Thread class

Attributes:

int : portnum - this is the default port number the server will try and listen on.

int : timeout - this value will set the time-out length for the server port.

String : host - the host address or IP number to connect to.  This should be passed 
straight to the connecting socket.


Connect : invoker - this is the object that most likely created the current instance of 
Connection.  The state of the connection will be returned to this object.

TCPClient : client - this machine has assumed the role of client and will send 
messages using this class.

TCPServer : server - this machine has assumed the role of server and will send 
messages using this class.

Methods and Procedures:

Communication(String host, int portnum, int timeout, String role, Connect invoker)

This creates a new Communications object and initialises the values to those passed as arguments.  The invoker argument is used to provide feedback that the connection has been established.

void run()

When start() is called on any instance of this class this run method will be called by Java's thread schedular. A TCPServer or TCPClient will be started based on the value of the host attribute.  After the Server or client has returned a message will be sent beck to the invoker (if it has been set) to inform it of the state of the link.

void send(String message)

This will give the message to the client or server to be passed to the other side of the connection.

void setFeedback(Feedback fb)

Passes fb on to either the client or the server attributes.

Class: TCPClient

Attributes:

Receiver : receiver - this is a thread that will take messages off the port and pass 
them to the current Feedback object.

Sender : sender - all outgoing messages will be passed to here.

Socket : clientSocket - this is the socket that is connected to the remote machine.

Methods  and Procedures:

TCPClient(String host, int portnum)

The constructor for TCPClient will first create a new Socket to the passed host and port.  If the connection succeeds a Receiver will be created (and started) using the Socket. Next a Sender should be created, again passing it the Socket.

void send(String message)

The message will be passed on to the sender.

Class: TCPServer

Attributes:

Receiver : receiver -this is a thread that will take messages off the port and pass 
them to the current Feedback object.

Sender : sender -all outgoing messages will be passed to here.

ServerSocket : welcomeSocket -this is the socket that is used to listen for 
connections.

Socket : connectionSocket -this is the socket that is connected to the remote machine.

Methods  and Procedures:

TCPServer(int port)

The constructor for TCPServer creates a SeverSocket and waits for a connection.  If the port is already bound, the port number will be incremented.  Once the connection has been established a Receiver will be created (and started) using the Socket. Next a Sender will be created, again passing it the Socket.

void send(String message)

The message will be passed on to the sender.

void setFeedback(Feedback fb)

Sets the Feedback object in the receiver.

Class: Receiver extends Java's Thread class

Attributes:

Socket : socket - this is the socket that is connected to the remote machine.

BufferedReader : in - this is used to read information (Strings) off the socket.

Feedback : fb - when a message is read off the socket it is passed to this object for 
decoding

Methods and Procedures:

Receiver(Socket sendSocket)

This constructor creates a buffered reader for the passed socket and assigns it to in.  The time-out is set to prevent the system waiting indefinitely. 

void setFeedback(Feedback fb)

Sets the fb attribute to the one passed.

void run()

When run this thread will loop forever.  Firstly it will try and read a line off the socket.  If it times out it will come around and try again.  If it receives null, it will be assumed that the connection has been lost.  Otherwise receiveMessage will be called with the message as the argument.

void receiveMessage(String message)

This method will pass the message to the Feedback object.

Class: Sender

Attributes:

Socket : socket - the socket to send the data on.

DataOutputStream : out - used to put messages out on the socket.

Methods and Procedures:

Sender(Socket socket)

This will set the socket attribute to the passed one and create a DataOutputStream to be used with the send method.

void send(String data)

This will write the passed data out on to the socket.

Package: Storage

Class: Storage System

Attributes:

FileOutputStream: streamOut_- a stream to a file being saved to.

FileInputStream : streamIn - a stream to a file being saved to.

ObjectOutputStream : objectOut - a stream that uses streamOut to save objects to file

ObjectInputStream : objectIn - a stream that uses streamIn to read objects from a file

Methods and Procedures:

Round getRoundRecord(File round_number)

Opens a file stream using the File being passed and builds an ObjectOutputStream using the file stream to read in a Round_Record. Return the Round stored in the Round Record

Board getBoard(File boardID)

Opens a file stream using the File being passed and builds an ObjectOutputStream using the file stream to read in a Round_Record. Return the Round stored in the Round Record

void saveRound(Round r)

Constructs a Round_Record and places the Round that's passed into it. Then opens a file stream using the Rounds round_no and builds an ObjectOutputStream using the file stream and writes out the Round_Record.

void saveBoard(Board b, String id)

Constructs a Board_Record and places the Board that's passed into it. Then opens a file stream using the id that is passed and builds an ObjectOutputStream using the file stream and writes out the Board_Record.

Class: Round_Record

Attributes:

Round : round - holds a Round object

String : id - stores the id for the Round 

Methods and Procedures:

Round_Record(Round r, String id)

Constructor that sets the Round and id fields for this Round_Record. Also nullifies the Boards that this Round contains as they will get reloaded when reading the Round from a file. 

Class: Board_Record

Attributes:

Board : board - holds a Board object

String : board_id - stores the id for the Board 

Methods and Procedures:

Board_Record(Board b, String id)

Constructor that sets the Board and id fields for this Board_Record. Also nullifies the images contained within the Board as these cannot be written out to the File.

Package: Game Board

Class: Board

Attributes:

int: cellsWide - width in terms of grid cells wide

int: cellsHigh - height in terms grid cells high

int: score - game score

Methods and Procedures:

void setUpBoard(int boardNum)


creates board pieces

void paintComponent(Graphics g)


redraws entire board i.e. every single grid square - has different functionality


based on whether it is a slider or a driver board being drawn - if it is a 


driver board, movable pieces and end pieces are displayed, if it is a slider 
board, movable pieces and hazards and rewards are displayed.


Also works grid square coordinate information for the last "movement" made by the 
user and calls makemove, passing these grid co-ordinates

void undoMove()


undoes the last move made - calls move(move, boolean)

makemove(int x, int y, int x1, int y2)


figures out direction i.e. left, right, up, down, that mouse press and release is 
going in and calls move(x, y, direction) whilst specifying a direction 
(represented by a number) and passing along coordinates of grid square

void move(Move move, boolean undoing)


works out how far piece in cell clicked in can move and attempts to move


this piece as far as possible. Also checks whether this piece is pushing


a square or whether this move is an "undoing" move in which case.


Next, replaces an empty cell with the cell that was "moved", and passes the 
Move to GameController. Finally, it checks if board is in a final state - if it is, it sets a 
boolean flag and tells the GameController to save the Round.

boolean finished()


returns true or false depending on whether the game is finished or not

Class: Cell

Attributes:

int: cellType - int represents what type of cell this is i.e. Cookie, Triangle, Wall etc.

Methods and Procedures:

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls a java graphics function to draw a rectangle starting at x, y of cellWidth and 
cellHeight

void drawTriangle(int x, int y, int cellWidth, int cellHeight, Color color)


draws a triangle that will fit into the rectangle as described in the draw function above

void drawCircle(int x, int y, int cellWidth, int cellHeight, Color color)


draws a circle that will fit into the rectangle as described in the draw function above

void drawBlock(int x, int y, int cellWidth, int cellHeight, Color color)


draws a block that will fit into the rectangle as described in the draw function above

void drawHouse(int x, int y, int cellWidth, int cellHeight, Color color1, Color color2)


draws a triangle in a square that will fit into the rectangle as described in the 
draw function above

void drawEmpty(int x, int y, int cellWidth, int cellHeight, Color color)


draws the same thing as the draw function 

void drawGoat(Image img, int x, int y, int cellWidth, int cellHeight)


draws the image specified by img of a size that will fit into rectangle drawn by


draw function

void drawCookie(Image img, int x, int y, int cellWidth, int cellHeight)


draws the image specified by img of a size that will fit into rectangle drawn by


draw function

Other classes in the Cell hierarchy (Cookie, Goat, Space, Wall, Triangle, Square, House, Circle) have not been documented in this section. Neither has the Move class: refer to Appendix 1 for more details.

5  DESIGN ANALYSIS

5.1 Sequence diagrams for top ten use cases

<insert here please>

5.2 Justification that our design will meet the acceptance criteria for the top five non-functional requirements

Throughout the past documents we have presented the following, five non-functional requirements for the SPOT program:

1. Usable

2. Portable

3. Extendable

4. High level of performance

5. Reliable.

In the following section an introduction will be given as to what the non-functional requirements entail and what criteria must be fulfilled for each non-functional requirements, and finally how the SPOT program fulfils the criteria for these non-functional requirements.

1) Usable: usability encompasses  learnability, memorability, a low error rate,

satisfaction and efficiency.

The players of the system are assumed to have very low computer literacy,

hence the learnability criteria applies mostly to them. As each game lasts for a maximum of two hours, it is important that the system be easily learnable. Players will only have to deal with the "playing" aspect of the "play game" module, and all "playing" entails is clicking on board squares to specify the direction and possibly clicking a button that says "undo" to undo moves. These are simple actions which should be easy to learn. These actions should also be satisfying as every board click will either result in the movement of a piece or no movement, which should signal in an unobtrusive manner that the intended move was illegal. This also lends itself to efficiency and a low error rate, as when an "illegal" move is made, no pieces are moved and the system remains in a constant state.

Our system was to be designed with a separate demo board function (a unique and separate board from the other game boards that encompassed the entire number of moves that could be made within the game). The demo board would have enabled the player to learn the game quickly and easily. However the updated design includes an option to increase the usability of the SPOT program: rather than the demo board being a separate feature, the "demo function" has become a "mode", so real boards can be used to practise on. The real game boards encompass all the moves available and give a greater sense of what real game play entails, and hence the user can lean quickly and easily what game playing involves.

All other aspects of the module (setting up a game) and other modules of the system (replaying, reviewing and editing) will be dealt with by the client. With the exception of setting up games, it is anticipated that the client will not use the other modules often, hence they should be memorable. We have achieved this by keeping the number of interfaces presented to the user to a minimum. Furthermore, user selection is restricted as much as possible so where possible, we used file browsers to select input. While maintaining a consistent look, this helps maintain a low error rate and is also efficient and satisfying from the user's point of view as less typing is involved. As for situations where incorrect actions or inputs cause error states, the user is notified by messages in pop up windows e.g. when the "Set Up Network Interface" has an incorrect IP address entered into it, a message telling the user that an invalid IP has been entered is displayed on the interface window - this further ensures satisfaction and efficiency as the user will know from that point on what not to do.

2) Extendable: The SPOT program must be easily adaptable to cater for future changes and extensions to the project, as the client has requested that the SPOT program should be developed while keeping possible future enhancements in mind. These enhancements include the adding of sound recording to the system instead of having external recordings (as is currently done), changing the application into an applet which will enable the SPOT program to be accessible over a web browser, creation of a database to increase the efficiency of storing audio recordings, results and  boards,  the ability to run the SPOT program without a network connection and the addition of a web camera to track the movement of player's eyes during movements across the board.

We have addressed each of these issues with the following solutions:

· The Java programming language will be used to create the SPOT program. Java is fairly flexible and it ensures adaptability in the near future.  Java also provides us with the ability to easily change the SPOT program into an applet.

· We have designed a separate storage module, which initially will store serialised data to files. This will allow the client at a later date to replace this with a module that stores data to a database. It is perceived that when this module is updated to support databases, it will retain support of raw files also.  By doing this the system will be able to better adapt to different system configurations.

· Another extension to the storage module includes being able to co-ordinate the storage of both the round records and audio recordings in one centralised location. Again this would be achieved by adding functionality to the storage module.

· As the network services available at the time the experiment will be run are uncertain, the communication module will be developed as to allow maximum flexibility.  In the event that no network connection is available between the driver and slider boards the application will function in a stand-alone mode.  This may be due to no physical network connection between the two computers or a technical error preventing a TCP connection being created.  In the stand-alone mode both applications will create a single round record containing just the moves made on that computer.  In the event that a connection can be made between the two systems, the combined results of the experiment can be stored on a single system.

3) Portable: The SPOT program must be easily transferable between platforms. The client has two computers, each of which has two platforms, which are Windows and Linux.  The client would prefer the SPOT program to run on the Windows OS.  The client would also like the program to be easily carried, to show to his colleagues in the USA and other interested parties, therefore the SPOT program must be easily portable via a floppy disk or the hard drive of a laptop. Portability across the internet was also discussed with the client.

· We have chosen to program in Java specifically for this. Java was designed to be portable across all major operating platforms.  We have tested the SPOT program prototype on both platforms, Windows and Linux, as well as Unix. Each platform runs the prototype as efficiently and effectively as the other. A network connection across the two different platforms runs efficiently and effectively as well. 

· The program needs to be transportable, that is, able to be carried on a portable storage medium. We do not envisage our system requiring more storage space than that of a 1.44Mb floppy disk. If more space is needed our system is designed is such a way that each of the three applications can be separated from the other two and still operate. This may cause the common code to be repeated by all three applications, but each application will require less space for transportation than the system as a whole will require, making transport on multiple floppy disks possible.  

· As mentioned previously, Java provides us with the ability to easily change the SPOT program into an applet, enabling the SPOT program to be portable across the internet.

4) Performance: The system needs to have a response time of less than one second. Studies have shown that users become frustrated with systems that introduce delays that do not match their mental models. We anticipate users will expect the system to have little to no delay in processing their actions based on other computerised games i.e. Tetris, Mine Sweeper and Solitaire. The replay functionality is also delay intolerant, as it will be run in real time and parallel with an audio recording.

· Our applications will only support one game or replay to be run at any one time on a machine. This will allow our system to devote all of its resources available to the task currently being executed.

· The replay application will be developed to use the same modules as the game play application to ensure the replay function will match the audio recording of the game play as close as possible.

· Due to the possibility of delays occurring in the network connection, the game play application will support a non-networked mode to optimise performance. This mode still allows result logging, but results of the Slider and Driver must be merged using the review application. 

· Timestamps will be made during the playing of a game, each timestamp will be compared  with each other when displaying a replay of a game. This enables the replay to be run in real time removing the possibility of a delay.

· During the playing of a game, any movement of a piece simply repaints the game board, this call is quick and efficient reducing the amount of delay experienced by the player.

5) Reliable: The maximum length of a game is two hours. Therefore this is the minimum time that the game play application needs to be able to operate for.  Reliability is also measured as to how well the system operates, that is, if it does "what it was designed to do", without the presence of errors.

· We have designed our system as a stand-alone application primarily to reduce the complexity of the system and to avoid some of the problems that can arise when combining multiple technologies (in particular web-based technologies). By reducing the complexity of the system we hope to improve its overall reliability. 

· The system's reliability will be affected by our choice of programming language. We have chosen Java as it provides a host of functionality built in that we can utilise to make the system more reliable, e.g. a garbage collector to prevent memory leaks, no explicit use of pointers is required and built in exception handling. All team members have experience programming in Java so we believe we will be able to create a more reliable system by using this language rather than using a language we may be unfamiliar with.

· By dividing the software into several modules we plan to gain advantages by sharing several common modules between the three applications. Advantages of this approach include: reduced complexity for each module, reduced verification and debugging time, and parallelism of development between modules.

· In the main case where the system state deviates from what is expected, e.g. when there is no network connection, we have provided alternative case: game play without a network connection.

· Extensive testing of the system will be done to ensure the SPOT program can run reliably for 2 hours if not more. This means continuously playing, replaying,  reviewing and editing the game over a period of more than two hours to ensure the SPOT program is perpetually reliable.

6  DESIGNING, IMPLEMENTATION AND OTHER CONSIDERATIONS

Hardware Requirements

The SPOT program will require minimum requirements of:

· Pentium Processor 

· 16Mb of memory

· 6Mb of disk space

Software Requirements

1. Windows 95/98/Me/Nt/2000 or UNIX

2. Java Runtime Environment 1.3

Programming Languages

1. Java Development Kit 1.3

2. Swing/JFC 1.1

Tools to create the SPOT program

1. StarOffice 5.2

2. PaintShop Pro

3. Emacs

4. Rational Rose 98e/2000e/2001e

Development Environments

1. COMP300 Labs

2. School for Linguistics and Applied Language Studies (for testing)

3. Personal Computer Environments 

7  SOFTWARE CONSTRUCTION PLAN

Construction techniques, methods, practices or/and standards

We have decided to adopt standard Java coding practise i.e. internal capitalisation of function names etc.

Construction milestones by date

September 10th: Completion of the Board class, a working self drawing board that may be played upon.

September 24th: Completion of the Game Playing Graphical User Interface to display the board in an interface that is user friendly. 

September 28th:  Completion of the Main Menu graphical user interface, the Game Setup graphical user interface and the Connection Setup graphical user interface. Each user interface is made accessible from each other, and the arguments will have been set for each action performed upon these graphical user interfaces

October 8th: Completion of the GameController and Round to determine the behaviour when setting up and playing a game.

October 10th: Completion of the Editing Graphical User Interface to create game boards and modifications to the GameController and Round classes to determine that behaviour.  Completion of the Clock class to determine the timing of moves.

October 12th: Completion of the Storage_System to store boards and round records created by the editing of a board and the playing of a game.  Completion of the Communications package to enable two computers to communicate with each other when setting up and playing a game.  Completion of modifications to the GameController and Round classes to enable the storing and communicating behaviour.

October 15th : Completion of the Round Replay and Textual Review Graphical User Interfaces to display real time replays and textual reviews of previously played rounds.  Completion of modifications to the GameContoller and Round classes to determine the reviewing behaviour. 

Responsibilities of each team member

Daniel Ballinger: Communications, Game, GameBoard and  PlayGame packages.

Edward Bedwell: Storage, Game, GameBoard and ReplayRound packages.

Derek Foo: MainMenu, PlayGame, TextReview, Game and GameBoard packages.

Rilla Khaled: Game, GameBoard, ReplayRound and Storage packages.

Anna Ladd: Game, GameBoard, ReplayRound and Storage packages.

8  REVISED ESTIMATES OF PROJECT RISKS

Risk and type


Likelihood and potential impact
Mitigation strategy

Technical: Team chooses an inappropriate implementation technology.
Unlikely and high impact

Development of small-scale prototypes to test the appropriateness of the technology.

Technical: Design of a system that cannot be implemented with the available technologies

Possible and high impact
Scale down the system. Additionally, take note of comments from the supervisor and marker.


Technical: Designing an overly complex system due to having too many interacting modules.  
Likely and high impact
There is a trade off between complexity of the modules versus complexity of the system as a whole. We aim to find a balance between the two. 

Technical: Choosing a vertical slice that is too broad 
Fairly unlikely and high impact
We will find a balance between what the client wants implemented and what we are able to do within the given timeframe.

Technical: choosing an irrelevant vertical slice (i.e. Implementing features that the client does not want)
Fairly unlikely and high impact
We will negotiate what will be implemented with client and make adjustments to the vertical slice as necessary.

Technical: Too many layered APIs add some processing overhead.
Likely and low impact.
We will attempt to follow layering heuristics (have 7± 2 layers).

Managerial: Client changes requirements during project.

Unlikely and high impact

We will keep the design reasonably flexible and keep in close contact with the client.


Managerial: Communication problems within the group. 

Not so likely and high impact

We plan to do the following: have at least one weekly meeting, file share via group accounts, use email to update team members of progress and make use of the discussion board.


Managerial: Deadlines for deliverables not met.
 

Likely and high impact
Regular status reports to ensure the project is on track.


Managerial: Team member is unable to continue work on the project
 

Unlikely and high impact
Ensure that all team members keep up to date with work of all other team members so roles can be delegated if necessary. 


Managerial: Team members are cast in roles that do not extend them. 
Likely and low impact (with regards to completion of the project, but high impact in terms of team members' personal development).
Discuss role allocation at team meetings to force team members out of their comfort zones.  

Managerial:

Breakdown of team relations due to unfair allocation of work
Likely and low impact 
We will attempt to break up work evenly. However this is not always possible, so we will rotate "chunky" work blocks amongst members for different milestones.

9 GLOSSARY

Abstract Base Class: a class that defines an interface between a set of common classes.

Actor: a generalisation of people that initiate events within the system.

API: Application Program Interface.

Architecture: a general system design model, which can be used as a starting point for system design.

Block: a piece of the game that can be moved.

Board: a grid containing pieces that can be moved upon the grid.

Boolean: a computer representation of a true or false statement.

CGI: Common Gateway Interface, a programming tool.

Class:  a class is a program module for grouping data (fields) and behaviour/operations (methods).

Client:  a network application, the end system that initiates the communication is the client host.

Database: an application that provides persistent, safe and organised storage of information.

Debugging: the process undertaken to remove "errors" in the system.

Driver: a player whose role is to move pieces on a board and pass instructions onto the slider.

Editor: a person whose primary role is to edit a board of the game SPOT.

Exception: a deviation from the expected behaviour.

GUI: Graphical User Interface

int: a computer representation of an integer.

Interface: the point of interaction or communication between a computer and any other entity (i.e. human, package).

Java: an object oriented programming language that is portable across platforms.

LALS: School for Linguistics and Applied Language Studies.

Mental Model: internal representation of the system that the user has.

Milestone: a significant point in time and productivity.

Module: a group of classes.

Object: a computer structure that attempts to represent a part of the real world.

Online Help: a computer aid to guide a user in using a specific application

Package: a collection of related classes, grouped by common functionality or goal.

Parallelism in development: an approach whereby modules can be developed independently and simultaneously.

Partition: a subsystem in a peer to peer architecture

Platform: operating system.

Player: participant of a game of SPOT

Port: the address for sending and receiving packets between computers.

Reviewer: a person whose primary role is to review the moves played within SPOT.

Server: a network application, the end system that waits for clients to initiate communication is the server host.

Slider: a player whose role is to follow the instructions of a driver by moving pieces on a board.

Socket: a host-local, application created interface into which the application process can both send messages to and receive message from another application process.

SPOT: a game, which attempts to understand the ambiguities of the English language

Stack: a container of information from which we can add and remove information from.

Start Time: the time recorded when a game is begun.

Storage System: the system that stores all information about the boards and the rounds to disk or to a database.

String: computer representation of a sequence of characters.

TCP: transmission control protocol, used for reliable sending of packets between a client and a server.

Thread: a single path of control within the SPOT application.

Vertical Slice: the core components of the system, which will be implemented first.

10 INDIVIDUAL CONTRIBUTIONS TO THE DOCUMENT

Daniel Ballinger: Brief Introduction, Detailed Design Overview Description, design diagrams, sequence diagrams, component interfaces

Edward Bedwell: Design diagrams, component interfaces, sequence diagrams, design goal fulfilment, non-functional requirements.

Derek Foo: Design diagrams, component interfaces, sequence diagrams, non-functional requirements justification, software construction plan.

Rilla Khaled: Design diagrams, component interfaces, sequence diagrams, design goal fulfilment, non-functional requirements.

Anna Ladd: Design diagrams, component interfaces, sequence diagrams, design goal fulfilment.

APPENDIX 1: COMPLETE DOCUMENTATION OF INTERFACES

Package: GUI

Class: Main

Attributes:

int : width - the width of the image displayed in the main menu pane

int : height - the height of the image displayed in the main menu pane

Methods and Procedures:

Main() 

the constructor for the main menu, it creates the frame, panels and buttons that will be displayed within the pane.

static void main(String[] args) 

the main method needed for running a Java program.  It creates a Main object for which the user interface is created

void actionPerformed(ActionEvent action)

the actions that can be performed from the main menu GUI.

void startPlay() 

builds the GUI for setting up a game and hides the main menu from the view of the user.  

void StartReplayRound() 

builds the GUI for viewing a replay of a round and hides the main menu from the view of the user.  

void StartTextualReview() 

builds the GUI for viewing a textual review of a round and hides the main menu from the view of the user.  

void StartEdit()

builds the GUI for editing a board and hides the main menu from the view of the user.  

GoatPanel: 

this class creates the image to be displayed in the main menu frame.

paintComponent() 

paints the image upon the main menu frame. 

Class: Network

Attributes:

boolean : isDriver - describes the role of the player and the board that will be 
displayed.  

boolean : roleChanged - sets to true when a role has been selected, prevents the role 
on the two connected computers from being the same.

String : gID - the game identifier, used to describe the current game.

String : rID - the round identifier, used to describe the current round.

Methods and Procedures:

Network: 

the constructor of the class, determines the size of the window and the event that will occur when the frame is closed

buildUI: 

creates the frame, panels and button for the Network GUI

keyTyped: 

looks at what is typed within the text fields, Round ID and Game ID, for one computer and passes that character to the other computer for it to be displayed within it's text fields.

actionPerformed: 

the actions that can be performed from the network GUI.

start: once all the fields have been satisfied and a board has been chosen the start button will be enabled to build the GUI for playing the game.  The Network GUI will then be disposed of.

home: 

disposes of the Network GUI and shows the main menu

browse: 

opens a file chooser from which the user may choose a board to be played upon.  Once the board has been selected it's name will be displayed in the board text field.

setupConnection: 

opens the Connect GUI, from which the user may set up a network connection between two computers. 

setCommunications: 

sets the communications of the two computers, so they may be able to respond to each others actions during the process of setting up a game.

getCommunications: 

returns the communications object.

setSlider: 

sets the role of the player to a slider.

setDriver: 

sets the role of the player to a driver.

setgID: 

sets the gID to the value entered into the Game ID text field by the user.

setrID: 

sets the rID to the value entered into the Round ID text field by the user.

openBoard: 

finds the absolute path name of the board file to be opened.

startGame: 

once all the fields have been satisfied the game can then be started, this method creates a new game object and builds the GUI needed for playing the game.  The Network GUI is then disposed of.

Class: Game

Attributes

int : role - an integer which determines the role of the player and thus the board that 
needs to be displayed.

Methods and Procedures:

Game: 

the constructor of the class, determines the size of the window, the event that will occur when the frame is closed and the role that needs to be taken when displaying the board.

buildUI: 

creates the frame, panels and button for the Game GUI

actionPerformed:  

the actions that can be performed from the Game GUI.

home: 

disposes of the Game GUI and shows the main menu

startClock: 

starts the clock that is displayed in the frame.

resetClock: 

resets the clock back to zero minutes and zero seconds that is displayed in the frame.

pauseClock: 

pauses the clock that is displayed in the Game frame.  Can only happen if the clock is not paused already.

unpauseClock: 

unpauses a clock that is displayed in the Game frame .  Can only happen if the clock is paused already.

undoMove: 

calls undo in the GameController when this button is pressed.

Class: Connect

Attributes:

boolean : isClient - determines the role of the computer when setting up a network 
connection, whether it is a client or a host.

int : timeout - the length of time before a timeout occurs when setting up a network 
connection.

String : hIP - the IP address of the host.

String : cIP - the IP address of the client.

Methods and Procedures:

Connect: 

the constructor of the class, determines the size of the window, the event that will occur when the frame is close and initialises the communications.

buildUI: 

creates the frame, panels and button for the Connect GUI

actionPerformed: 

the actions that can be performed from the Connect GUI.

home: 

disposes of the Connect GUI and shows the main menu

connect: 

begins the connection between the client and the server.

abort: 

aborts any connection that is currently in progress and disposes of the the Connect GUI, returning the Network GUI to the foreground. 

setHost: 

sets the role of the computer as a host.

setClient: 

sets the role of the computer as a client.

setHostIP: 

sets the hIP to the IP address entered into the Host IP text field by the user.

setClientIP: 

sets the cIP to the IP address entered into the Client IP text field by the user.

displayResults: 

displays the current stage of the connection within the scroll pane.

connected: 

informs the Connect GUI whether or not a connection between the two computers has been created.

Class: Review

Methods and Procedures:

Review:  

the constructor of the class, determines the size of the window and the event that will occur when the frame is close.

buildUI: 

creates the frame, panels and button for the Review.

actionPerformed: 

the actions that can be performed from the Review.

home: 

disposes of the Review and shows the main menu

reviewSelect: 

opens a file chooser from which the user may select a round to be replayed. The file chooser only displays files with *.rnd as their extension.  Once a round has been selected the corresponding slider and driver boards are displayed.

startClock: 

once a round has been chosen the user may begin the review by pressing the start clock button. 

resetClock: 

resets the  clock and the slider and driver boards, back to their beginning positions.

pauseClock: 

pauses the current replay that is in progress and the clock.

unpauseClock: 

resumes a paused replay and the clock.

Class: Text

Attributes:

int : startx - the starting x co-ordinate of a particular move.

int : starty - the starting y co-ordinate of a particular move.

int : dirx - the x direction that a particular move is made in.

int : diry - the x direction that a particular move is made in.

int : finalx - the finishing x co-ordinate of a particular move.

int : finaly - the finishing x co-ordinate of a particular move.

Methods and Procedures:

Text:  

the constructor of the class, determines the size of the window and the event that will occur when the frame is close.

buildUI: 

creates the frame, panels and button for the Text.

actionPerformed: 

the actions that can be performed from the Text

home: 

disposes of the Text and shows the main menu.

loadRound:  

opens a file chooser from which the user may select a round to be reviewed. the file chooser only displays files with *.rnd as their extension.  Once a round has been selected the moves are displayed textually in the Text's scroll pane.

displayResult: 

displays the text of a move in the scroll pane.

Package: Game

Class: GameController

Attributes:

long : clockStarted - contains the current date and time the clock was started.

boolean : clockHasStarted - determines whether the clock has been started.

Methods and Procedures:

setClock: 

receives the current clock object for the GameController.

setCommunications: 

receives the current communications object for the GameController.

startClock:

 starts the clock.

getClockStarted: 

return whether or not the clock has started.

board: 

creates the board panel to be displayed in the Game GUI from a board file in the storage system.

round: 

creates the two board panels to be displayed in the Review GUI from a board file in the storage system.

startReplay:

 listens for the start replay button to be pressed and starts the replay of a round.

resetReplay: 

listens for the reset button to be pressed and resets the replay of a round.

pauseReplay:

 listens for the pause button to be pressed and pauses the replay of a round unless it already has been paused.

unpauseReplay: 

listens for the unpause button to be pressed and resumes the replay of a round unless it already is running.

undoMove: 

listens for the undo button to be pressed and undoes the last move within the round.

move: 

records a move made on the board.

sendMove:

sends the latest move across to the other computer in the network.

saveRound:

once a round has been completed , saveRound saves the round of moves and the board's used to the Storage_System.

Class: Clock

Attributes:

int : sec - the number of seconds that will be displayed on the clock.

int : min - the number of minutes that will be displayed on the clock.

boolean : paused - determines whether the clock has been paused or not.

Methods and Procedures:

Clock: 

the constructor of the clock, initially displays the clock label as the "0:00".

buildUI: 

creates the clock panel to be displayed in the Game GUI.

start:

 creates a clock thread to be run and starts that thread.

run: 

runs the thread continuously until the program has been closed, calls updateClockLabel every second.

updateClockLabel: 

redisplays the label every second to imitate a clock.

resetClock:

 resets the clock label to display "0:00".

unpauseClock: 

start redisplaying the label each second, enables moves from being made upon the board, may only be resumed if it is currently paused.

pauseClock: 

stop redisplaying the label each second, disables moves from being made upon the board, may only be paused if it is currently unpaused.

Package: Communication

Class: Communication - extends Java's Thread class

Attributes:

int : portnum - this is the default port number the server will try and listen on.

int : timeout - this value will set the time-out length for the server port.

String : host - the host address or IP number to connect to.  This should be passed 
straight to the connecting socket.


Connect : invoker - this is the object that most likely created the current instance of 
Connection.  The state of the connection will be returned to this object.

TCPClient : client - this machine has assumed the role of client and will send 
messages using this class.

TCPServer : server - this machine has assumed the role of server and will send 
messages using this class.

Methods and Procedures:

Communication(String host, int portnum, int timeout, String role, Connect invoker)

This creates a new Communications object and initialises the values to those passed as arguments.  The invoker argument is used to provide feedback that the connection has been established.

Communication(String host, int portnum, int timeout, String role)

This is the same as the above constructor except it doesn't take an invoker as the argument

void run()

When start() is called on any instance of this class this run method will be called by Java's thread schedular. A TCPServer or TCPClient will be started based on the value of the host attribute.  After the Server or client has returned a message will be sent beck to the invoker (if it has been set) to inform it of the state of the link.

void send(String message)

This will give the message to the client or server to be passed to the other side of the connection.

InetAddress getRemoteIP()

This will return the InetAddress object that contains information about the computer on the other end of the connection.

static InetAddress getLocal()

This will return the local InetAddress object for the computer the program is being run on.  From this object it will be possible to extract the IP address and machine name.

static String getHostIP()

This will return the IP address of the current machine as a String.  

void setFeedback(Feedback fb)

Passes fb on to either the client or the server attributes.

Class: TCPClient

Attributes:

Receiver : receiver - this is a thread that will take messages off the port and pass 
them to the current Feedback object.

Sender : sender - all outgoing messages will be passed to here.

Socket : clientSocket - this is the socket that is connected to the remote machine.

Methods  and Procedures:

TCPClient(String host, int portnum)

The constructor for TCPClient will first create a new Socket to the passed host and port.  If the connection succeeds a Receiver will be created (and started) using the Socket. Next a Sender should be created, again passing it the Socket.

void send(String message)

The message will be passed on to the sender.

InetAddress getLocalIP()

Returns a InetAddress for the local machine from the connected port.

void setFeedback(Feedback fb)

Sets the Feedback object in the receiver.

Class: TCPServer

Attributes:

Receiver : receiver -this is a thread that will take messages off the port and pass 
them to the current Feedback object.

Sender : sender -all outgoing messages will be passed to here.

ServerSocket : welcomeSocket -this is the socket that is used to listen for 
connections.

Socket : connectionSocket -this is the socket that is connected to the remote machine.

Methods  and Procedures:

TCPServer(int port)

The constructor for TCPServer creates a SeverSocket and waits for a connection.  If the port is already bound, the port number will be incremented.  Once the connection has been established a Receiver will be created (and started) using the Socket. Next a Sender will be created, again passing it the Socket.

void send(String message)

The message will be passed on to the sender.

InetAddress getLocalIP()

Returns a InetAddress for the local machine from the connected port.

InetAddress getServerIP()


Retruns a InetAddress for the local machine.

void setFeedback(Feedback fb)

Sets the Feedback object in the receiver.

Class: Receiver extends Java's Thread class

Attributes:

Socket : socket - this is the socket that is connected to the remote machine.

BufferedReader : in - this is used to read information (Strings) off the socket.

Feedback : fb - when a message is read off the socket it is passed to this object for 
decoding

Methods and Procedures:

Receiver(Socket sendSocket)

This constructor creates a buffered reader for the passed socket and assigns it to in.  The time-out is set to prevent the system waiting indefinitely. 

void setFeedback(Feedback fb)

Sets the fb attribute to the one passed.

void run()

When run this thread will loop forever.  Firstly it will try and read a line off the socket.  If it times out it will come around and try again.  If it receives null, it will be assumed that the connection has been lost.  Otherwise receiveMessage will be called with the message as the argument.

void receiveMessage(String message)

This method will pass the message to the Feedback object.

Class: Sender

Attributes:

Socket : socket - the socket to send the data on.

DataOutputStream : out - used to put messages out on the socket.

Methods and Procedures:

Sender(Socket socket)

This will set the socket attribute to the passed one and create a DataOutputStream to be used with the send method.

void send(String data)

This will write the passed data out on to the socket.

Package: Storage

Class: Storage System

Attributes:

FileOutputStream: streamOut_- a stream to a file being saved to.

FileInputStream : streamIn - a stream to a file being saved to.

ObjectOutputStream : objectOut - a stream that uses streamOut to save objects to file

ObjectInputStream : objectIn - a stream that uses streamIn to read objects from a file

Methods and Procedures:

Round getRoundRecord(File round_number)

Opens a file stream using the File being passed and builds an ObjectOutputStream using the file stream to read in a Round_Record. Return the Round stored in the Round Record

Board getBoard(File boardID)

Opens a file stream using the File being passed and builds an ObjectOutputStream using the file stream to read in a Round_Record. Return the Round stored in the Round Record

void saveRound(Round r)

Constructs a Round_Record and places the Round that's passed into it. Then opens a file stream using the Rounds round_no and builds an ObjectOutputStream using the file stream and writes out the Round_Record.

void saveBoard(Board b, String id)

Constructs a Board_Record and places the Board that's passed into it. Then opens a file stream using the id that is passed and builds an ObjectOutputStream using the file stream and writes out the Board_Record.

Class: Round_Record

Attributes:

Round : round - holds a Round object

String : id - stores the id for the Round 

Methods and Procedures:

Round_Record(Round r, String id)

Constructor that sets the Round and id fields for this Round_Record. Also nullifies the Boards that this Round contains as they will get reloaded when reading the Round from a file. 

Round getRound()

Returns the Round contained in this Round Record. 

Class: Board_Record

Attributes:

Board : board - holds a Board object

String : board_id - stores the id for the Board 

Methods and Procedures:

Board_Record(Board b, String id)

Constructor that sets the Board and id fields for this Board_Record. Also nullifies the images contained within the Board as these cannot be written out to the File. 

Board getBoard()

Returns the Board contained in this Board Record and restores the images that this Board contained before being written out to file.

Package: Game Board

Class: Board

Attributes:

int: cellsWide - width in terms of grid cells wide

int: cellsHigh - height in terms grid cells high

int: gridWidth - width in terms of pixels (resizeable)

int: gridHeight - height in terms of pixels (resizeable)

int: firstX - pixel position of start of leftmost grid square

int: firstY - pixel position of start of topmost grid quare

boolean: finished = false - represents whether game is finished

long: lastMoveTime - time last move was made

boolean: reviewing - whether this is a replay

int: score - game score

boolean: isGhost - whether or not board should be drawn

int: role - slider or driver role

int: cookieCount - number of cookies encountered

boolean: eventEnabled - whether events have been enabled

Methods and Procedures:

void setUpBoard(int boardNum)


creates board pieces

Dimension getPreferredSize()


returns size of grid square

void setReviewing()


sets this to be a reviewing game

void setRoleGhost(int role, boolean ghost)


tells this Board that it should not be drawn

void paintComponent(Graphics g)


redraws entire board i.e. every single grid square - has different functionality


based on whether it is a slider or a driver board being drawn - if it is a 


driver board, movable pieces and end pieces are displayed, if it is a slider 
board, movable pieces and hazards and rewards are displayed.


Also works grid square coordinate information for the last "movement" made 
by the user and calls makemove, passing these grid co-ordinates

void drawBlock(int x, int y, int width, int height, Colour c)


draws a solid rectangle - calls a java graphics function

int cellx(int x)


returns x co-ordinate of what grid square this x pixel co-ordinate is in

int celly(int y)


returns y co-ordinate of what grid square this y pixel co-ordinate is in

int drawx(int x)


returns what pixel co-ordinate to draw this grid co-ordinate in

int drawy(int y)


returns what pixel co-ordinate to draw this grid co-ordinate in

Move lookAtStackTop()


returns the move on top of the move stack

void undoMove()


undoes the last move made - calls move(move, boolean)

void updateScore()


updates the current board score - takes goats and cookies into account


makemove(int x, int y, int x1, int y2)


figures out direction i.e. left, right, up, down, that mouse press and release is 
going in and calls move(x, y, direction) whilst specifying a direction 
(represented by a number) and passing along coordinates of grid square

move(int x, int y, int direction)


checks if piece being moved is a movable piece and if it is, calls moveLeft,


moveRight, moveUp or moveDown according to specified direction

void nullifyImage()


goes through the grid, nullifying each cell

void resetImage()


goes through the grid, resetting images in each cell

void moveLeft(int x, int y, int fX, int fY)


finds out the type and colour of each movable piece and calls move(x, y, dirX, 
dirY, fX, fY, type, colour) where dirX and dirY represent a movement vector

void moveRight(int x, int y, int fX, int fY)


like moveLeft

void moveUp(int x, int y, int fX, int fY)


like moveLeft

void moveDown(int x, int y, int fX, int fY)


like moveLeft

void move(int x, int y, int dirX, int dirY, int fX, int fY, String name, Colour c)


makes a Move object with all the parameters passed in and then calls


move(move, undoing)

void move(Move move, boolean undoing)


works out how far piece in cell clicked in can move and attempts to move


this piece as far as possible. Also checks whether this piece is pushing


a square or whether this move is an "undoing" move in which case.


Next, replaces an empty cell with the cell that was "moved", and passes the 
Move to GameController. Finally, it checks if board is in a final state - if it is, 
it sets a boolean flag and tells the GameController to save the Round.

boolean canMove(int posx, int posy, int newx, int newy)


checks whether it is possible to move to the grid square [newx][newy]

GameController getGC()


returns the GameController

void enable()


sets eventEnabled boolean to be true

void disable()


sets eventEnabled boolean to be false

boolean stackNotEmpty()


returns true or false depending on emptiness state of stack

boolean finished()


returns true or false depending on whether the game is finished or not

void decreaseTime(long time)


changes the time of the last move made

Class: Cell

Attributes:

int: xPos - current x co-ordinate of this cell

int: yPos - current y co-ordinate of this cell

int: cellType - int represents what type of cell this is i.e. Cookie, Triangle, Wall etc.

int: height - height in terms of pixels (resizeable)

int: width - width in terms of pixels (resizeable)

Methods and Procedures:

boolean contains(String s)


returns a boolean based on whether cell "is" what String s is: used to check 
whether cell contains Cookie, Goat, Square, etc.

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls a java graphics function to draw a rectangle starting at x, y of cellWidth 
and cellHeight

Color getColor()


returns the color of this piece, if it has one

void nullifyImage()


nullifies image in this cell

void resetImage()


resets the image in this cell

void drawTriangle(int x, int y, int cellWidth, int cellHeight, Color color)


draws a triangle that will fit into the rectangle as described in the draw 
function above

void drawCircle(int x, int y, int cellWidth, int cellHeight, Color color)


draws a circle that will fit into the rectangle as described in the draw 
function above

void drawBlock(int x, int y, int cellWidth, int cellHeight, Color color)


draws a block that will fit into the rectangle as described in the draw 
function above

void drawHouse(int x, int y, int cellWidth, int cellHeight, Color color1, Color color2)


draws a triangle in a square that will fit into the rectangle as described in the 
draw function above

void drawEmpty(int x, int y, int cellWidth, int cellHeight, Color color)


draws the same thing as the draw function 

void drawGoat(Image img, int x, int y, int cellWidth, int cellHeight)


draws the image specified by img of a size that will fit into rectangle drawn by


draw function

void drawCookie(Image img, int x, int y, int cellWidth, int cellHeight)


draws the image specified by img of a size that will fit into rectangle drawn by


draw function

Class: Space - extends Cell

Methods and Procedures:

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls Cell's drawEmpty

void drawFinal(String s, Graphics g, int x, int y, int cellWidth, int cellHeight, Color c1, Color c2)


depending on what String s is, function calls any one of the following 
methods:

void drawFTriangle(Graphics g, int x, int y, int cellWidth, int cellHeight, Color c)


calls Cell's drawTriangle to draw a small triangle

void drawFCircle(Graphics g, int x, int y, int cellWidth, int cellHeight, Color c)


calls Cell's drawCircle to draw a small circle

void drawFHouse(Graphics g, int x, int y, int cellWidth, int cellHeight, Color c1, Color c2)


calls Cell's drawHouse to draw a small "house"

void drawFSquare(Graphics g, int x, int y, int cellWidth, int cellHeight, Color c)


calls Cell's drawBlock to draw a small block.

Class: Wall - extends Cell

Methods and Procedures:

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


draws a block

Class: Block - extends Cell

Attributes:

int: finalX - final x pos of this block

int: finalY - final y pos of this block

boolean: finalReached - whether or not final position for this piece has been reached

Methods and Procedures:

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls Cell's drawEmpty method

void setFinal()


sets this block's finalReached boolean to true

void notFinal()


sets this block's finalReached boolean to be false

int getFinX()


returns finalX

int getFinY()


returns finalY

boolean inFinalPos()


returns finalReached

Color getColor()


returns the color for this Block

Color getColor2()


returns the color2 for this Block (really only applicable for "house" piece)

Class: Cookie: extends Cell

Attributes:

boolean: isCollected - whether or not cookie has been collected

Image: cookie - cookie image

Methods and Procedures:

Cookie(int x, int y)


initialises cookie attribute.

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls Cell's drawCookie method

void nullifyImage()


nullifies the cookie attribute

void resetImage()


re-initialises the cookie attribute

Class: Goat: extends Cell

Attributes:

boolean: isFed - whether or not goat has been fed

Image: goat - goat image

Methods and Procedures:

Goat(int x, int y)


initialises goat attribute.

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls Cell's drawGoat method

void nullifyImage()


nullifies the goat attribute

void resetImage()


re-initialises the goat attribute

Class: House: extends Block

Methods and Procedures:

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls Cell's drawHouse method.

Class: Circle: extends Block

Methods and Procedures:

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls Cell's drawCircle method.

Class: Triangle: extends Block

Methods and Procedures:

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls Cell's drawTriangle method.

Class: Square: extends Block

Methods and Procedures:

void draw(Graphics g, int x, int y, int cellWidth, int cellHeight)


calls Cell's drawSquare method

Class: Move

Attributes: 

int: startx 

int: starty

int: dirx

int: diry

int: finx

int: finy

boolean: pushed

boolean: drivermove

boolean: undo

long: timestamp

Methods and Procedures:

String[] toArray()


places all attributes in a string array

void fromArray(String[] input)


instantiates attributes with these values

