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ON THE ORBITS OF COMPUTABLY
ENUMERABLE SETS
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1. Introduction

In this paper we work completely within the c.e. sets with inclusion. This struc-
ture is called E .

Definition 1.1. A ≈ Â iff there is a map, Φ, from the c.e. sets to the c.e. sets
preserving inclusion, ⊆ (so Φ ∈ Aut(E)) such that Φ(A) = Â.

By Soare [18], E can be replaced with E∗, E modulo the filter of finite sets, as
long as A is not finite or cofinite. The following conjecture was made by Ted Slaman
and Hugh Woodin in 1989.

Conjecture 1.2 (Slaman and Woodin [17]). The set {〈i, j〉 : Wi ≈ Wj)} is Σ1
1-

complete.

This conjecture was claimed to be true by the authors in the mid 1990s; but no
proof appeared. One of the roles of this paper is to correct that omission. The
proof we will present is far simpler than all previous proofs. The other important
role is to prove a stronger result.

Theorem 1.3 (The Main Theorem). There is a c.e. set A such that the index set
{i : Wi ≈ A} is Σ1

1-complete.

This theorem has a number of nice corollaries.

Corollary 1.4. Not all orbits are elementarily definable; there is no arithmetic
description of all orbits of E .

Corollary 1.5. The Scott rank of E is ωCK
1 + 1.

Proof. Our definition that a structure has Scott rank ωCK
1 + 1 is that there is an

orbit such that membership in that orbit is Σ1
1-complete. There are other equivalent

definitions of a structure having Scott rank ωCK
1 + 1 and we refer the readers to

Ash and Knight [1]. �

Received by the editors April 6, 2007.
2000 Mathematics Subject Classification. Primary 03D25.
The first author’s research was partially supported by NSF Grants DMS-96-34565, 99-88716,

02-45167.
The second author’s research was partially supported by the Marsden Fund of New Zealand.
Some of the work involved was done partially while the first and second authors were visiting

the Institute for Mathematical Sciences, National University of Singapore in 2005. These visits
were supported by the Institute.

The third author’s research was partially supported by DMS-96-22290 and DMS-99-71137.

c©XXXX American Mathematical Society

1



2 P. CHOLAK, R. DOWNEY, AND L. HARRINGTON

Theorem 1.6. For all finite α > 8 there is a properly ∆0
α orbit.

Proof. Section 3 will focus on this proof. �

1.1. Why make such a conjecture? Before we turn to the proof of Theorem 1.3,
we will discuss the background to the Slaman-Woodin Conjecture. Certainly the
set {〈i, j〉 : Wi ≈ Wj)} is Σ1

1. Why would we believe it to be Σ1
1-complete?

Theorem 1.7 (Folklore1). There is a computable listing, Bi, of computable Boolean
algebras such that the set {〈i, j〉 : Bi

∼= Bj} is Σ1
1-complete.

Definition 1.8. We define L(A) = ({W ∪ A : W a c.e. set},⊆) and L∗(A) to be
the structure L(A) modulo the ideal of finite sets, F .

That is, L(A) is the substructure of E consisting of all c.e. sets containing A.
Here L(A) is definable in E with a parameter for A. A set X is finite iff all subsets
of X are computable. So being finite is also definable in E . Hence L∗(A) is a
definable structure in E with a parameter for A. The following result says that the
full complexity of the isomorphism problem for Boolean algebras of Theorem 1.7 is
present in the supersets of a c.e. set.

Theorem 1.9 (Lachlan [13]). Effectively in i there is a c.e. set Hi such that
L∗(Hi) ∼= Bi.

Corollary 1.10. The set {〈i, j〉 : L∗(Hi) ∼= L∗(Hj)} is Σ1
1-complete.

Slaman and Woodin’s idea was to replace “L∗(Hi) ∼= L∗(Hj)” with “Hi ≈ Hj”.
This is a great idea which we now know cannot work, as we discuss below.

Definition 1.11 (The sets disjoint from A).

D(A) = ({B : ∃W (B ⊆ A ∪ W and W ∩ A =∗ ∅)},⊆).

Let ED(A) be E modulo D(A).

Lemma 1.12. If A is simple, then ED(A)
∼=∆0

3
L∗(A).

A is D-hhsimple iff ED(A) is a Boolean algebra. Except for the creative sets, until
recently all known orbits were orbits of D-hhsimple sets. We direct the reader to
Cholak and Harrington [3] for a further discussion of this claim and for an orbit of
E which does not contain any D-hhsimple sets. The following are relevant theorems
from Cholak and Harrington [3].

Theorem 1.13. If A is D-hhsimple and A and Â are in the same orbit, then
ED(A)

∼=∆0
3
ED(Â).

Theorem 1.14 (Using Maass [14]). If A is D-hhsimple and simple (i.e., hhsimple),
then A≈ Â iff L∗(A) ∼=∆0

3
L∗(Â).

Hence the Slaman-Woodin plan of attack fails. In fact even more is true.

Theorem 1.15. If A and Â are automorphic, then ED(A) and ED(Â) are ∆0
6-

isomorphic.

1See Section 5.1 for more information and a proof.
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Hence in order to prove Theorem 1.3 we must code everything into D(A). This
is completely contrary to all approaches used to try to prove the Slaman-Woodin
Conjecture over the years. We will point out two more theorems from Cholak and
Harrington [3] to show how far the sets we use for the proof must be from simple
sets, in order to prove Theorem 1.3.

Theorem 1.16. If A is simple, then A ≈ Â iff A ≈∆0
6

Â.

Theorem 1.17. If A and Â are both promptly simple, then A ≈ Â iff A ≈∆0
3

Â.

1.2. Past work and other connections. This current paper is the fourth paper
in a series of loosely connected papers: Cholak and Harrington [4], Cholak and
Harrington [5], and Cholak and Harrington [3]. We have seen above that results
from Cholak and Harrington [3] determine the direction one must take to prove
Theorem 1.3. The above results from Cholak and Harrington [3] depend heavily
on the main result in Cholak and Harrington [5] whose proof depends on special
L-patterns and several theorems about them which can be found in Cholak and
Harrington [4]. It is not necessary to understand any of the above-mentioned the-
orems from any of these papers to understand the proof of Theorem 1.3.

But the proof of Theorem 1.3 does depend on Theorems 2.16, 2.17, and 5.10 of
Cholak and Harrington [3]; see Section 2.6.1. The proof of Theorem 1.6 also needs
Theorem 6.3 of Cholak and Harrington [3]. The first two theorems are straightfor-
ward but the third and fourth require work. The third is what we call an “extension
theorem.” The fourth is what we might call a “restriction theorem”; it restricts the
possibilities for automorphisms. Fortunately, we are able to use these four theorems
from Cholak and Harrington [3] as black boxes. These four theorems provide a clean
interface between the two papers. If one wants to understand the proofs of these
four theorems, one must go to Cholak and Harrington [3]; otherwise, this paper is
completely independent from its three predecessors.

1.3. Future work and degrees of the constructed orbits. While this work
does answer many open questions about the orbits of c.e. sets, there are many
questions left open. But perhaps these open questions are of a more degree-theoretic
flavor. We will list three questions here.

Question 1.18 (Completeness). Which c.e. sets are automorphic to complete sets?

Of course, by Harrington and Soare [10], we know that not every c.e. set is
automorphic to a complete set, and partial classifications of precisely which sets
can be found in Downey and Stob [7] and Harrington and Soare [11, 9].

Question 1.19 (Cone avoidance). Given an incomplete c.e. degree d and an in-
complete c.e. set A, is there an Â automorphic to A such that d �≤T Â?

In a technical sense, these may not have a “reasonable” answer. Thus the fol-
lowing seems a reasonable question.

Question 1.20. Are these arithmetical questions?

In this paper we do not have the space to discuss the import of these questions.
Furthermore, it is not clear how this current work impacts possible approaches to
these questions. At this point we will just direct the reader to slides of a presentation
of Cholak [2]; perhaps a paper reflecting on these issues will appear later.
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One of the issues that will impact all of these questions is which degrees can be
realized in the orbits that we construct in Theorems 1.3 and 1.6. A set is hemi-
maximal iff it is the nontrivial split of a maximal set. A degree is hemimaximal iff
it contains a hemimaximal set. Downey and Stob [7] proved that the hemimaximal
sets form an orbit.

We will show that we can construct these orbits to contain at least a fixed hemi-
maximal degree (possibly along with others) or contain all hemimaximal degrees
(again possibly along with others). However, what is open is if every such orbit
must contain a representative of every hemimaximal degree or only hemimaximal
degrees. For the proofs of these claims, we direct the reader to Section 4.

1.4. Toward the proof of Theorem 1.3. The proof of Theorem 1.3 is quite
complex and involves several ingredients. The proof will be easiest to understand
if we introduce each of the relevant ingredients in context.

The following theorem will prove be to useful.

Theorem 1.21 (Folklore2). There is a computable listing Ti of computable infinite
branching trees and a computable infinite branching tree TΣ1

1
such that the set {i :

TΣ1
1
∼= Ti} is Σ1

1-complete.

The idea for the proof of Theorem 1.3 is to code each of the above Ti’s into
the orbit of ATi

. Informally let T (AT ) denote this encoding; T (AT ) is defined in
Definition 2.53. The game plan is as follows:

(1) Coding: For each T build an AT such that T ∼= T (AT ) via an isomorphism
Λ ≤T 0(2). (See Remark 2.54 for more details.)

(2) Coding is preserved under automorphic images: If Â ≈ AT via an
automorphism Φ, then T (Â) exists and T (Â) ∼= T via an isomorphism ΛΦ,
where ΛΦ ≤T Φ ⊕ 0(2). (See Lemma 2.55.)

(3) Sets coding isomorphic trees belong to the same orbit: If T ∼= T̂
via isomorphism Λ, then AT ≈ AT̂ via an automorphism ΦΛ where ΦΛ ≤T

Λ ⊕ 0(2).

So ATΣ1
1

and ATi
are in the same orbit iff TΣ1

1
and Ti are isomorphic. Since the

latter question is Σ1
1-complete so is the former question.

We should also point out that work from Cholak and Harrington [3] plays a large
role in part (3) of our game plan; see Section 2.6.1.

1.5. Notation. Most of our notation is standard. However, we have two trees
involved in this proof. We will let T be a computable infinite branching tree as
described above in Theorem 1.21. For the time being it will be convenient to think
of the construction as occurring for each tree independently, but this will later
change in Section 2.4. Trees T we will think of as growing upward. There will also
be the tree of strategies which we will denote by Tr (which will grow downward).
Here λ is always the empty node (in all trees). It is standard to use α, β, δ, γ to
range over nodes of Tr. We will add the restriction that α, β, δ, γ range only over
Tr. We will use ξ, ζ, χ to range exclusively over T .

2See Section 5.1 for more information and a proof.
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2. The proof of Theorem 1.3

2.1. Coding, the first approximation. The main difficulty in this proof is to
build a list of pairwise disjoint computable sets with certain properties to be de-
scribed later. Work from Cholak and Harrington [3], see Theorem 2.60, shows that
an essential ingredient to constructing an automorphism between two computably
enumerable sets is an extendible algebra for each of the sets. In addition to helping
with the coding, this list of pairwise disjoint computable sets will also provide the
extendible algebras for each of the sets ATi

; see Lemma 2.61.
We are going to assume that we have this list of computable sets and slowly

understand how these undescribed properties arise. For each node χ ∈ ω<ω and
each i, we will build disjoint computable sets Rχ,i. Inside each Rχ,i we will construct
a c.e. set Mχ,i.

We need to have an effective listing of these sets. Fix a computable one-to-one
onto listing l(e) from positive integers to the set of pairs (χ, k), where χ ∈ ω<ω

and k ∈ ω such that for all χ and n, if ξ � χ, m ≤ n, and l(i) = (χ, n), then
there is a j ≤ i such that l(j) = (ξ, m). Assume that l(e) = (χ, k); then we will
let R2e = Rχ,2k, R2e+1 = Rχ,2k+1, M2e = Mχ,2k, and M2e+1 = Mχ,2k+1. Which
listing of the R’s we use will depend on the situation. We do this as there will be
situations where one listing is evidently better than the other.

Definition 2.1. M is maximal in R iff M ⊂ R, R is a computable set, and M �R
is maximal.

The construction will ensure that either Mχ,i will be maximal in Rχ,i or Mχ,i =∗

Rχ,i. If i is odd, we will let Mχ,i = Rχ,i. In this case we say Mχ,i is known to be
computable. This is an artifact of the construction; the odd sets are errors resulting
from the tree construction. More details will be provided later.

To build Mχ,i maximal, we will use the construction in Theorem 3.3 of Soare
[19]. The maximal set construction uses markers. The marker Γe is used to denote
the eth element of the complement of the maximal set. At stage s, the marker Γe

is placed on the eth element of the complement of the maximal set at stage s. In
the standard way, we allow the marker Γe to “pull” elements of Ms at stage s + 1
such that the element marked by Γe has the highest possible e-state and we dump
the remaining elements into M .

However, at times we will have to destroy this construction of Mχ,i with some
priority p. If we decide that we must destroy Mχ,i with some priority p at stage
s, we will just enumerate the element that Γp is marking into Mχ,i at stage s. If
this occurs infinitely many times, then Mχ,i =∗ Rχ,i. With this twist, we will just
appeal to the construction in Soare [19].

To code T , for all χ, such that χ ∈ T , we will build pairwise disjoint computably
enumerable sets Dχ. We will let A = Dλ. If l(i) = (χ, 0), then we will let Di = Dχ.
If l(i) �= (ζ, 0), then we will let Di = ∅. These sets will be constructed as follows.

Remark 2.2 (Splitting M). Let l(j) = (χ, i). We will use the Friedberg Splitting
Theorem; we will split Mχ,2i into i + 3 parts. Again we will just appeal to the
standard proof of the Friedberg Splitting Theorem. We will put one of the parts
into Dχ. For 0 ≤ l ≤ i, if χ l̂ ∈ T and there is a j′ < j such that l(j′) = (χ l̂, 0),
then we put one of the parts into Dχˆl. The remaining part(s) remain(s) disjoint
from the union of the D’s; we will name this remaining infinite part Hχ,i. This
construction works even if we later decide to destroy Mχ,i by making Mχ,i =∗ Rχ,i.
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If Mχ,i is known to be computable, we will split Rχ,i into i + 3 computable
parts distributed as above. However in this case we cannot appeal to the Friedberg
Splitting Theorem since many of the elements in the D under question will have
entered the D’s prior to entering Mχ,i = Rχ,i. We will have to deal with this case
in more detail later.

Lemma 2.3. This construction implies that
⊔

χ Dχ ⊆
⊔

(χ,i)(Rχ,i − Hχ,i).

At this time we should point out a possible problem. If the list of computable
sets is effective, then we have legally constructed c.e. sets. If not, we could be in
trouble.

However, we want our list to satisfy the following requirement. This requirement
will have a number of roles. Its main function is to control where the sets We live
within our construction.

Requirement 2.4. For all e, there is an ie such that either

We ∪
⊔

j≤ie

Ri ∪
⊔

j≤ie

Di =∗ ω or(2.5)

We ⊆∗
⊔

j≤ie

Ri or(2.6)

We ⊆∗
⊔

j≤ie

Ri �
( ⊔

j<ie

Di −
⊔

j≤ie

Ri

)
.(2.7)

Equation (2.7) implies equation (2.6), but this separation will be useful later. If
equation (2.5) holds, then there is a computable RWe

such that

(2.8) RWe
⊆

⊔
j≤ie

Ri ∪
⊔

j≤ie

Di and We ∪ RWe
= ω.

If we have an effective list of all the Re, then we have an effective list of He. Let
hi be the ith element of Hi. Then the collection of all hi is a computable set, say
We. But e contradicts Requirement 2.4. It follows that our list cannot be effective,
but it will be effective enough to ensure the D are computably enumerable.

At this point we are going to have to bite the bullet and admit that there will
be an underlying tree construction. We are going to have to decide how the sets
we want to construct will be placed on the tree.

Assume that α is in our tree of strategies and l(|α|) = (χ, n). At node α we will
construct two computable sets Rα and Eα. Here Eα will be the error forced on us
by the tree construction. If χ ∈ T and n = 0, then at α we will also construct Dα.

Assume α is on the true path and l(|α|) = (χ, n). Then Rχ,2n = Rα and Eα is
Rχ,2n+1 = Mχ,2n+1 = Eα. This is the explanation of why Mχ,i is computable for
i odd; Rχ,i is the error. If χ ∈ T and n = 0, then Dχ = Dα. Hence the listing of
computable sets we want is along the true path. Therefore, from now on, when we
mention Rχ,i, Dχ, Re, or De, we assume we are working along the true path. When
we mention Rα or Dα, we are working somewhere within the tree of strategies but
not necessarily on the true path.

2.2. Meeting Requirement 2.4. Our tree of strategies will be a ∆0
3 branching

tree. Hence at α we can receive a guess to a finite number of ∆0
3 questions asked at

α−. Using the Recursion Theorem, these questions might involve the sets Rβ , Eβ,
and Dβ for β ≺ α. The correct answers are given along the true path, f . There is a
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standard approximation to the true path, fs. Constructions of this sort are found
all over the c.e. set literature.

These constructions are equipped with a computable position function α(x, s),
the node in Tr where x is at stage s. All balls x enter Tr at λ. If the approximation
to the true path is to the left of x’s position, x will be moved upward to be on this
approximation and will never be allowed to move right of this approximation. To
move a ball x downward from α− to α, α must be on the approximation to the true
path and x must be α−-allowed. When we α−-allow x depends on equations (2.5)
and (2.7).

So, formally, α(x, x) = λ. If fs+1 <L α(x, s), then we will let α(x, s + 1) =
fs+1 ∩ α(x, s). If α(x, s) = α−, x has been α−-allowed, α ⊆ fs, and, for all stages
t, if x ≤ t < s, then ft �<L α; then we will let α(x, s + 1) = α.

Exactly when a ball will be α-allowed is the key to this construction and will be
addressed shortly. However, given these rules, it is clear that if f <L α, then there
are no balls x with lims α(x, s) = α and if α <L fs, then there are at most finitely
many balls x with lims α(x, s) = α. Of course, the question remains, what happens
at α ⊂ f?

The question we ask at α− is a Π0
2 question: if the set of x such that there is a

stage s with

x ∈ We,s, α
− ⊆ α(x, s), x is α−-allowed at stage s,

and x /∈ (
⊔

β�α−

Rβ,s ∪
⊔

β�α−

Eβ,s ∪
⊔

β�α−

Dβ,s)(2.9)

is infinite, where e = |α−|.

2.2.1. A positive answer. Assume that α believes the answer is yes. Then for each
time α ⊂ fs, α will be allowed to pull three such balls to α. That is, α will look for
three balls x1, x2, x3 and stages t1, t2, t3 such that equation (2.9) holds for xi and
ti, xi > s, α(xi, ti) �<L α, xi �∈ Eα,ti

∪ Rα,ti
, and x is not α-allowed at stage ti.

When such a ball xi and stage ti are found, we will let α(xi, ti +1) = α. For the
first such ball x1 we will add x1 to Eα at stage t1. Throughout the whole stagewise
construction we will enumerate x1 into various disjoint Dβ at stage t1 to ensure
that Hα = Eα −

⊔
β�α Dβ and, for each β � α, Dβ ∩ Eα is an infinite set. For the

second such ball x2 we will add x2 to Rα at stage t2. For the third such ball x3 we
will α-allow x3 and place all balls y such that α(y, t3) = α, y �∈ Rα,t3 , and y is not
α-allowed into Eα,t3 (without any extra enumeration into the Dβ).

It is not hard to see that when balls are α-allowed at stage s, they are not in⊔
β�α−

Rβ,s ∪
⊔

β�α−

Eβ,s ∪
⊔

β�α

Dβ,s;

once a ball is α-allowed it never enters Rα or Eα, and, for almost all x, if lims α(x, s)
= α, then x ∈ Eα � Rα (finitely many of the α-allowed balls may live at α in the
limit).

Assume α ⊂ f . Then every search for a triple of such balls will be successful; both
Rα and Eα are disjoint infinite computable sets; infinitely many balls are α-allowed
and hence almost all of the α-allowed balls move downward in Tr; Eα−

⊔
β�α Dβ is

infinite and computable; for each β � α, Dβ ∩Eα is infinite and computable; Rα ⊂
We, and most importantly, for all β � α, Rβ � Eβ ⊆ We and hence equation (2.5)
holds.
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2.2.2. A negative answer. Assume that α believes the answer is no. Assume α ⊂ f
and that infinitely many balls are α−-allowed. This is certainly the case if α−

corresponds to the above positive answer. If We intersect the sets of balls which
are α−-allowed is finite, then

We ⊆∗
⊔

β�α−

Rβ ∪
⊔

β�α−

Eβ

and hence equation (2.6) holds. Assume this is not the case. Since equation (2.9)
does not hold for infinitely many balls x and stages s, for almost all x if

x ∈ We,s, α
− ⊆ α(x, s), x is α−-allowed at stage s,

then x ∈
⊔

β�α− Dβ,s. Hence,

We ⊆∗
⊔

β�α−

Rβ ∪
⊔

β�α−

Eβ ∪
⊔

β�α−

Dβ

and equation (2.7) holds.
Either way there are infinitely many balls x and stages s such that

α− ⊆ α(x, s), x is α−-allowed at stage s,

and x /∈ (
⊔

β�α−

Rβ,s ∪
⊔

β�α−

Eβ,s ∪
⊔

β�α−

Dβ,s) .(2.10)

In the same way as when α corresponds to the positive answer, we will pull three
such balls to α. The action we take with these balls is exactly the same as in the
positive answer. Hence, among other things, infinitely many balls are α-allowed,
allowing us to inductively continue.

2.2.3. The maximal sets and their splits. To build Mα, we will appeal to the stan-
dard maximal set construction as suggested above. But we will label the markers as
Γα

e or Γχ,i
e rather than Γe just to keep track of things. As suggested in Remark 2.2,

to build the Dβ within Rα, for β � α, we will appeal to the Friedberg Splitting
Theorem.

At this point, we will step away from the construction and see what we have
managed to achieve and what more needs to be achieved. We will be careful to
point out where we use the above requirement and where it is not enough for our
goals.

2.3. A definable view of our coding. For each χ ∈ T we will construct pairwise
disjoint c.e. sets Dχ. The reader might wonder how this helps. In particular, how
do these sets code T? Moreover, if Â is in the orbit of A, how do we recover an
isomorphic copy of T? To address these issues, we will need some sort of “definable
structure.” Unfortunately, the definition of the kind of structure we need is rather
involved. To motivate the definition, we need to recall how nontrivial splits of
maximal sets behave and then see what the above construction does with these
splits in a definable fashion.

Definition 2.11. A split D of M is a Friedberg split iff, for all W , if W − M is
not a c.e. set, then neither is W − D.

Lemma 2.12 (Downey and Stob [7]). Assume M is maximal in R. Then D is a
nontrivial split of M iff D is a Friedberg split of M .
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Proof. In each direction we prove the counterpositive. Let D̆ be such that D� D̆ =
M .

Assume that D is not Friedberg. Hence for some W , W − D is c.e. but W − M
is not. If W ⊆∗ (M ∪R), then (W −M) ⊆∗ R and hence W −M =∗ W ∩R, a c.e.
set. Therefore M � R = (R − M) ⊆∗ W . Therefore D � ((W − D) ∪ D̆ ∪ R) = ω
and D is computable.

The set R−M is not a c.e. set. Assume D is computable. Then R−D = R∩D.
Hence D witnesses that D is not a Friedberg split. �

Lemma 2.13. Assume that Mi are maximal in R and D is a nontrivial split of
both Mi. Then M1 =∗ M2.

Proof. M1 ∪R is maximal and M1 ∪ R = R−M1. Since M2 ∪R is maximal either
M1 ⊆∗ M2 or (R − M1) ⊆∗ M2. In the former case, M2 ⊆∗ M1 ∪ R so M1 =∗ M2.

Assume the later case. Let D∪D̆ = M2. Since D is a split of M1, (R−M1) ⊆∗ D̆.
Now D̆ − M1 = R − M1 is not a c.e. set but D̆ − D = D̆ is a c.e. set. So D is
not a Friedberg split of M1. So by Lemma 2.12, D is not a nontrivial split of M1.
Contradiction. �

It turns out that we will need a more complex version of the above lemmas.

Definition 2.14. W ≡R Ŵ iff W�Ŵ = (W − Ŵ ) � (Ŵ − W ) is computable.

Lemma 2.15. Assume that Mi is maximal in Ri and D ∩ Ri is a nontrivial split
of Mi. Either

(1) there are disjoint R̃i such that (Mi ∩ R̃i) is maximal in R̃i, D ∩ R̃i is a
nontrivial split of Mi, and either R̃1 = R1 − R2 and R̃2 = R2 or R̃1 = R1

and R̃2 = R2 − R1 or
(2) M̃ = M1∩M2 is maximal in R̃ = R1∩R2. So R̃−Mi =∗ R̃−M̃ and hence

M̃ ≡R M1 ≡R M2. Furthermore, if R1 = R2, then M̃ =∗ M1 =∗ M2.

Proof. Mi ∪ Ri is maximal and Mi ∪ Ri = Ri − Mi. Also, Ri − Mi is not split
into two infinite pieces by any c.e. set. Since M2 ∪ R is maximal, either (M1 ∪
R1) ⊆∗ (M2 ∪ R2) or (R1 − M1) ⊆∗ (M2 ∪ R2). If (R1 − M1) ⊆∗ (M2 ∪ R2), then
(R1 − M1) ⊆∗ M2 or (R1 − M1) ⊆∗ R2.

Assume (R1 − M1) ⊆∗ M2. So M2 − (M1 ∪ R1) = R1 − M1 is not a c.e. set.
Let (D ∩ R2) ∪ D̃ = M2. Therefore (R1 − M1) ⊆∗ D̃ or (R1 − M1) ⊆∗ (D ∩ R2).
In the former case (D ∩ R2) − (M1 ∪ R1) = ∅ is a c.e. set. In the latter case
D̃ − (M1 ∪ R1) = ∅ is a c.e. set. Either way, by Lemma 2.12, (D ∩ R2) is not a
nontrivial split of M2. Contradiction.

Now assume (R1 −M1) ⊆∗ R2. Let R̃1 = R1 −R2 and R̃2 = R2. Let (D∩R1)�
D̃ = M1 be a nontrivial split. Let M̃ = M1 −R2. Then (D ∩ R̃1) � (D̃ −R2) = M̃

is a nontrivial split of M̃ . (Otherwise (D ∩ R1) � D̃ = M1 is a trivial split.)
We can argue dually switching the roles of M1 and M2. We are left with the case

(M1∪R1) ⊆∗ (M2∪R2) and (M2∪R2) ⊆∗ (M1∪R1). Hence (M1∪R1) =∗ (M2∪R2)
and R1−M1 =∗ R2−M2. Therefore M̃ = M1∩M2 is maximal in R̃ = R1∩R2. �

Definition 2.16. D lives inside R witnessed by M iff M maximal in R and D∩R
is a nontrivial split of M .
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By Lemma 2.13, if D lives in R witnessed by Mi, then M1 =∗ M2. Hence at
times we will drop the “witnessed by M .” If D lives in R, then we will say D
lives in R witnessed by MR. The point is that MR is well defined modulo finite
difference.

Lemma 2.17. If D lives in R1, R1 ∩ R2 = ∅, and D ∩ R2 is computable, then D
lives in R1 � R2.

Lemma 2.18. If R is computable and D ∩ R is computable, then D does not live
in R.

Lemma 2.19. If χ ∈ T , then Dχ lives in Rχ,2i or Mχ,i =∗ Rχ,i.

Proof. Follows from the construction. �

Lemma 2.20. For all Rχ,i, if Mχ,i is maximal in Rχ,i, there is a subset Hχ,i ⊂
Mχ,i such that Hχ,i lives in Rχ,i and Hχ,i ∩

⊔
ξ Dξ = ∅.

Proof. Follows from the construction. �

Lemma 2.21. If Dξ ∩ Rχ,i �= ∅, then ξ = χ or |ξ| = |χ| + 1. Furthermore, if Dξ

lives in Rχ,i, then i is even.

Proof. Again follows from the construction. �

Lemma 2.22. If χ l̂ ∈ T , then there is a least i′ and j′ such that l(j′) = (χ, i′),
and, for all i ≥ 2i′, Dχ ∩Rχ,i �=∗ ∅, Dχˆl ∩Rχ,i �=∗ ∅, and either both Dχ and Dχˆl

live in Rχ,i or Mχ,i =∗ Rχ,i. So, in particular, both Dχ and Dχˆl live in R2j′ or
M2j′ =∗ R2j′ . Furthermore i′ and j′ can be found effectively.

Proof. Assume χ l̂ ∈ T . Let j be such that l(j) = (χ l̂, 0). Let j′ be the least such
that j < j′ and l(j′) = (χ, i′). (See Section 2.2.3.) �

Requirement 2.23. For each χ ∈ T there are infinitely many i such that Mχ,i �=∗

Rχ,i.

Currently we meet this requirement since if i is even, then Mχ,i �=∗ Rχ,i. But
for later requirements we will have to destroy some of these Mχ,i, so some care will
be needed to ensure that it is met.

The following definition is a complex inductive one. This definition is designed
so that if A and Â are in the same orbit witnessed by Φ, we can recover a possible
image for Dχ without knowing Φ. In reality, we want more: we want to be able to
recover T . But the ability to recover T will take a lot more work. In any case, the
definition below is only a piece of what is needed.

Definition 2.24.

(1) An RA list (or, equivalently, an RDλ list) is an infinite list of disjoint
computable sets RA

i such that, for all i, A lives in RA
i witnessed by MA

i

and, for all computable R, if A lives in R witnessed by M , then there is
exactly one i such that R − M =∗ RA

i − MA
i .

(2) We say that D is a 1-successor of D̃ over some RD̃ list if D and D̃ are
disjoint, and, for almost all i, D lives in RD̃

i .
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(3) Let D be a 1-successor of D̃ witnessed by an RD̃ list. An RD list over
an RD̃ list is an infinite list of disjoint computable sets RD

i such that,
for all i, D lives in RD

i and, for all computable R, if D lives in R, then
there is exactly one i such that exactly one of R − M =∗ RD

i − MD
i or

R − M =∗ RD̃
i − M D̃

i hold.

Lemma 2.25. If χ ∈ T , then let R
Dχ
e = Rχ,g(e), where g(e) is the eth set of all

those Rχ,i where Mχ,i �=∗ Rχ,i. (By Requirement 2.23, such a g exists). This list
is an RDχ list over RDχ− (where RD−

λ is the empty list.)

Proof. We argue inductively. We are going to take two lists RDχ− and RDχ and
merge them to get a new list. To each set of this new list we will add at most finitely
different Rξ,j , where for all i, Rξ,j − Mξ,j �=∗ R

Dχ−
i − M

Dχ−
i and Rξ,j − Mξ,j �=∗

R
Dχ

i −M
Dχ

i such that all such Rξ,j are added to some set in our new list. Call the
nth set of this resulting list R̃n. By Lemmas 2.19 and 2.17 and Definition 2.24, Dχ

lives in almost all R̃n.
Fix R such that Dχ lives in R. For each n, apply Lemma 2.15 to R and R̃n.

If case (2) applies, then R behaves like R̃n and we are done. Otherwise we can
assume R is disjoint from R̃n.

If this happens for all n, then R and
⊔

i R̃i are disjoint. Split R into two infinite
computable pieces R1 and R2. Since

⊔
D ⊆

⊔
R̃, Ri cannot be a subset of

⊔
D.

Therefore Ri �⊆∗ ⊔
R̃ ∪

⊔
D. Furthermore, Ri ∪

⊔
R̃ ∪

⊔
D �=∗ ω. But assuming

that we meet Requirement 2.4, this cannot occur. Contradiction. �

Corollary 2.26. Assume χ l̂ ∈ T . By Lemmas 2.25 and 2.22, Dχˆl is a 1-successor
of Dχ over RDχ. Furthermore, if F is finite, then Dχˆl −

⊔
i∈F Ri is a 1-successor

of Dχ over RDχ.

Corollary 2.27. If disjoint Di are 1-successors of D̃ over RD̃, then so is D1�D2.
In particular, for all χ, ζ ∈ T , if χ �= ζ and |χ| = |ξ|, then D = Dχ � Dξ is a
1-successor of Dχ− over RDχ− and the elementwise union of the lists RDχ and
RDξ is an RD list over RDχ− .

Lemma 2.28. If χ does not have a successor in T , then there are no 1-successors
of Dχ over RDχ.

Proof. Assume that D is a 1-successor of Dχ over RDχ . By Requirement 2.4, there
is a finite F such that D ⊆∗ ⊔

j∈F Rj ∪
⊔

j∈F Dj . Since D is a 1-successor of Dχ, so
is D −

⊔
j∈F Rj . Since D and Dχ are disjoint, we can assume that if l(j) = (χ, 0),

then j �∈ F . Now if j ∈ F , then Dj ∩ Rχ,i = ∅. Contradiction. �

Definition 2.29.
(1) D is a 0-successor witnessed by RD iff D = A and the lists, RA and RD,

are identical.
(2) D is a 1-successor of A over RA was defined in Definition 2.24(2).
(3) Let D̃ be an n-successor of A witnessed by RW . If an RD̃ list over RW

exists and D is a 1-successor of D̃ over RD̃, then D is an n + 1-successor
of A witnessed by RD̃.

(4) D is a successor of A iff, for some n ≥ 0, D is an n-successor.
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Corollary 2.30. Let χ ∈ T . Then Dχ is a |χ|-successor of A over RDχ− . Fur-
thermore, if F is finite, then Dχ −

⊔
i∈F Ri is a |χ|-successor of A over RDχ− .

Corollary 2.31. For all χ, ζ ∈ T , if χ �= ζ and |χ| = |ξ|, then Dχ � Dξ is a
|χ|-successor of A witnesses by RDχ− .

We want to transfer these results to the hatted side. We want to find n-successors
of Â, without using the Φ, witnessing that A and Â are in the same orbit. Just from
knowing A and Â are in the same orbit, we want to be able to recover all successors
of Â. But first we need the following lemmas.

Lemma 2.32 (Schwarz; see Theorem XII.4.13(ii) of Soare [19]). The index set of
maximal sets is Π0

4-complete and hence computable in 0(4).

Lemma 2.33. The index set of computable sets is Σ0
3-complete and hence com-

putable in 0(3).

Corollary 2.34. The set {〈e1, e2〉 : We1 lives in We2} is Σ0
5 and hence computable

in 0(5).

Lemma 2.35. An RÂ list exists and can be found in an oracle for 0(5).

Proof. First we know RDλ is an RA list. So RD̂λ
i = Φ(RDλ

i ) is an RD̂λ list. Hence
an RÂ list exists. However, using Φ in this fashion does not necessarily bound the
complexity of RÂ.

Inductively, using an oracle for 0(5), we will create an RÂ list. Assume that R̂Â
i

are known for i < j, and that for e < j, if Â lives in We, then there is an i < j such
that We − M̂We =∗ R̂Â

i − M̂ R̂Â
i . Look for the least e ≥ j such that Â lives in We

and for all i < j such that We − M̂We �=∗ R̂Â
i − M̂ R̂Â

i . Such an e must exist since
an RÂ list exists. Let R̂Â

j = We. Apply the hatted version of Lemma 2.15 to get
the R̂Â

j disjoint from R̂Â
i . �

Definition 2.36. Let g be such that Wg(i) = R
ˆ̃D
i . Then we will say that g is a

presentation of R ˆ̃D.

Lemma 2.37. Let ˆ̃D and an R ˆ̃D list be given. Assume that g is a presentation
of R ˆ̃D. Then all the 1-successors of ˆ̃D over R ˆ̃D can be found using an oracle for
(g ⊕ 0(5))(2).

Proof. Asking “whether an e such that We = Wg(i) and D̂ lives in We” is com-

putable in g ⊕ 0(5). Here D̂ is a 1-successor of ˆ̃D over R ˆ̃D iff there is a k, for all
i ≥ k [there is an e such that We = Wg(i) and D̂ lives in We]. �

Corollary 2.38. The 1-successors of Â can be found with an oracle for 0(7).

A word of caution: For all χ ∈ T of length one, Φ(Dχ) is a 1-successor of Â

and, for Φ(Dχ), an infinite RΦ(Dχ) list over RÂ exists. But, by Corollary 2.31, not
every 1-successor D̂ of Â is the image of some such Dχ even modulo finite many
Rξ,i. Furthermore, there is no reason to believe that if D̂ is a 1-successor of Â,
then an RD̂ list over RÂ exists. Unfortunately, we must fix this situation before
continuing.
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Definition 2.39. Let D1 and D2 be 1-successors of D̃ over some RD̃ list. Let an
RDi list be given. Then D1 and D2 are T -equivalent iff for almost all m, there is
an n such that RD1

m − MRD1
m =∗ RD2

n − MRD2
n and for almost all m, there is an n

such that RD2
m − MRD2

m =∗ RD1
n − MRD1

n .

Lemma 2.40. If χ ∈ T and F is finite, then Dχ and Dχ−
⊔

i∈F Ri are T -equivalent
1-successors of Dχ− over RDχ− .

Lemma 2.41. For all χ, ζ ∈ T , if χ �= ξ and |χ| = |ξ|, then Dχ, Dξ and Dχ � Dξ

are pairwise T -nonequivalent 1-successors of Dχ− over RDχ− .

Lemma 2.42. D1 and D2 are T -equivalent iff their automorphic images are T -
equivalent.

Lemma 2.43. Whether “D̂1 and D̂2 are T -equivalent” can be determined with an
oracle for (g1 ⊕ g2 ⊕ g̃ ⊕ 0(5))(2), where gi and g̃ are representatives of needed lists.

So Dχ and Dχ − Ri are T -equivalent. Therefore, we need to look at the T -
equivalence class of Dχ rather than just Dχ; Dχ is just a nice representative of
the T -equivalence class of Dχ. Also, T -equivalence allows us to separate Dχ for χ
of the same length; they are not T -equivalent. However, we cannot eliminate the
image of the disjoint union of two different Dχ as a possible successor of the image
of D̂χ− . For that we need another notion.

Definition 2.44. Let D be a 1-successor of D̃ over some RD̃ list. Let an RD list
be given. We say that D is atomic iff for all nontrivial splits D1 �D2 = D, if Di is
a 1-successor of D̃, then, for almost all m, Di lives in RD

m.

Lemma 2.45. Assume D is an atomic 1-successor of D̃ over some RD̃, an RD

list exists, and D1 �D2 is a nontrivial split of D. If Di is a 1-successor of D̃, then
an RDi list exists and D and Di are T -equivalent.

Definition 2.46. A T -equivalent class C is called an atomic T -equivalent class if
every member of C is atomic.

The following lemma says that the notion of being atomic indeed eliminates the
disjoint union possibility.

Lemma 2.47. If χ �= ξ and |χ| = |ξ|, then Dχ � Dξ is not atomic.

Lemma 2.48. Let D be a 1-successor of D̃ over some RD̃ list. Let an RD list be
given. Then D is atomic iff its automorphic image is atomic.

Lemma 2.49. Let D̂ be a 1-successor of ˆ̃D over some R ˆ̃D list. Let an RD̂ list
be given. Determining “whether D̂ is atomic” can be done using an oracle for
(g ⊕ g̃ ⊕ 0(5))(3), where g and g̃ are representatives of needed lists.

Unfortunately, with the construction as given so far, there is no reason to believe
that each Dχ is atomic. We are going to have to modify the construction so that
each Dχ is atomic. Thus, we are going to have to add this as another requirement.

Requirement 2.50. Fix χ such that χ ∈ T . Then Dχ is an atomic 1-successor of
Dχ− .
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We will have to modify the construction so that we can meet the above require-
ment. This will be done in Section 2.5. Until that section, we will work under the
assumption we have met the above requirement.

These next two lemmas must be proved simultaneously by induction. They are
crucial in that they reduce the apparent complexity down to something arithmetical.

Lemma 2.51. Fix an automorphism Φ of E taking A to Â. Let Cn+1 be the class
formed by taking all sets of the form Φ(Dχ), where χ ∈ T and has length n + 1,
and closing under T -equivalence. The collection of all atomic n + 1-successors of
Â and Cn+1 are the same class.

Proof. For the base case, by Lemma 2.35, an RÂ list exists. Now apply Lemma 2.48.
For the inductive case, use the following lemma and then Lemma 2.48. �

Lemma 2.52. Let ˆ̃D be an atomic n-successor of Â witnessed by RŴ . Assume
an R ˆ̃D list over RŴ exists and D̂ is an atomic 1-successor of ˆ̃D over R ˆ̃D. (Then

D̂ is an atomic n + 1-successor of Â witnessed by R ˆ̃D.) Then an RD̂ list over R ˆ̃D

can be constructed with an oracle for g ⊕ 0(5), where g is representative for R ˆ̃D.

Proof. First we will show an RD̂ list must exist. By the above lemma, D̂ is T -
equivalent to Φ(Dχ), where χ has length n + 1. An RDχ list exists; hence, so does
an RD̂ list.

Because of the given properties of ˆ̃D, the RŴ list, and R ˆ̃D, if R̂ is a set in the
RD̂ list, then ˆ̃D does not live in R̂. (This is true for the pre-images of these sets
and hence for these sets.)

Inductively using an oracle for g ⊕ 0(5), we will create an RD̂ list. Assume that
R̂D̂

i are known for i < j and that for e < j if D̂ lives in We, then there is an i < j

such that We − M̂We =∗ R̂D̂
i − M̂ R̂D̂

i . Look for the least e ≥ j such that D̂ lives in

We,
ˆ̃D does not live in We, and for all i < j such that We − M̂We �=∗ R̂D̂

i − M̂ R̂D̂
i .

Such an e must exist. Let R̂D̂
j = We. Apply the hatted version of Lemma 2.15 to

get the R̂Â
j disjoint from R̂Â

i . �

Definition 2.53. Let T (A) denote the class of atomic T -equivalence classes of
successors (of A) with the binary relation of 1-successor restricted to successors of
A.

Remark 2.54. So the map Λ(χ) = Dχ is a map from T to T (A) taking a node to a
representative of an atomic T -equivalent class of successors. Furthermore, ζ is an
immediate successor of χ iff Dζ is a 1-successor of Dχ. Hence Λ is an isomorphism.
Recall Dχ = Dα if l(α) = (χ, 0). Hence Λ is computable along the true path which
is computable in 0(2).

Lemma 2.55. If A and Â are in the same orbit witnessed by Φ, then T (Â) must
exist and must be isomorphic to T (A) via an isomorphism induced by Φ and com-
putable in Φ⊕0′′. The composition of this induced isomorphism and the above Λ is
an isomorphism between T (Â) and T . (This addresses part two of our game plan.)

Our coding is not elementary; it is not even in Lω1,ω. The coding depends on
the infinite lists RDχ. One cannot say such a list exists in Lω1,ω. It is open if there
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is another coding of T which is elementary or in Lω1,ω. This is another excellent
open question.

Lemma 2.56. T (Â) has a presentation computable in 0(8).

2.4. More requirements; the homogeneity requirements. Let χ, ξ ∈ T be
such that χ− = ξ−. Then in terms of the above coding, the atomic T -equivalence
classes of Dχ and Dξ cannot be differentiated. For almost all i, Dχ and Dξ live in
Rχ−,2i (if Mχ−,i is maximal in Rχ−,i) and

(2.57) for all i (Dχ lives in Rχ,i iff Dξ lives in Rξ,i).

In this sense, these sets are homogeneous. What we are about to do has the potential
to destroy this homogeneity. We must be careful not to destroy this homogeneity.

In fact, we must do far more than just restore this homogeneity. For each Ti we
will construct an ATi

. For all χTk ∈ Tk, we will construct DχTk , RχTk ,i, and MχTk ,i.
In order to complete part (3) of our game plan (that is, sets coded by isomorphic
trees belong to the same orbit), we must ensure that the following homogeneity
requirement holds.

Requirement 2.58. For all k, k̂, if χTk ∈ Tk, χTk̂ ∈ Tk̂, and |χTk | = |χTk̂ |, then,
for all i,

MχTk ,i is maximal in RχTk ,i iff M
χ

T
k̂ ,i

is maximal in R
χ

T
k̂ ,i

, and

MχTk ,i =∗ RχTk ,i iff M
χ

T
k̂ ,i

=∗ R
χ

T
k̂ ,i

.

Remark 2.59. We cannot overstate the importance of this requirement. It is key to
the construction of all of the needed automorphisms; see Section 2.6.3. Note that
we use Section 2.6.3 twice; once in this proof and once in the proof of Theorem 1.6.

One consequence of this requirement is that we must construct all the sets, DχTk ,
RχTk ,i, and MχTk ,i, simultaneously using the same tree of strategies. Up to this
point we have been working with a single T . To dovetail all the trees into our
construction at the node α ∈ Tr where |α| = k, we will start coding tree Tk.
Since at each node we only needed answers to a finite number of ∆0

3 questions, this
dovetailing is legal in terms of the tree argument. Note that each tree T gets its
own copy of ω to work with.

So at each α ∈ Tr, we will construct, for k < |α|, Rk
α, Ek

α, Mk
α, and Dk

α as above.
The eth marker for Mk

α be will denoted Γα,k
e . Assume that α ⊂ f , k < |α|, and

l(|α| − k) = (χ, i); then Rk
α = RχTk ,2i, Mk

α = MχTk ,2i, Γα,k
e = ΓχTk ,2i

e , Eα =
RχTk ,2i+1 = MχTk ,2i+1, and if i = 0, then Dα = DχTk . In the following, when the
meaning is clear, we drop the subscript k and assume we are working with a tree
T .

2.5. Meeting the remaining requirements. The goal in this section is to un-
derstand what it takes to show Dχ is atomic when χ ∈ T ∪ {λ}. We have to do
this and meet Requirements 2.23 and 2.58. Since we will meet Requirement 2.23,
an RDχ list exists. The fact Dχ is potentially not atomic witnessed by a c.e. set
W ⊆ Dχ if the set of i, such that W lives in an R

Dχ

i , is an infinite coinfinite set.
We must make sure that W behaves cohesively on the sets R

Dχ

i .
We will meet Requirement 2.50 by an e-state argument on the Rχ,2i’s; this is

similar to a maximal set construction. With the maximal set construction, for each
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e, s and x, there are two states, either state 0 iff x �∈ We,s or 1 iff x ∈ We,s. Here
the situation is more complex.

Here we define that R has state 1 w.r.t. a single e iff We ∩ R =∗ ∅; R has state
2 w.r.t. a single e iff We ∩ R �=∗ ∅; R has state 3 w.r.t. a single e iff there is an ĕ
such that We �Wĕ = MR; R has state 4 w.r.t. a single e iff there is an ĕ such that
We � Wĕ = R. (The state 0 will be used later.)

If the highest state of R is 3 w.r.t. a single e, then We is a nontrivial split of
MR. Determining the state of R w.r.t. e is Σ0

3.
Let se′ be the state of R w.r.t. e′. The e-state of R is the string s0s1s2 . . . se.

An e-state σ1 is greater than σ2 iff σ1 <L σ2. We will do an e-state construction
along the true path for the tree Tk.

Assume α ∈ Tr, e = |α| − k, and l(e) = (χ, i). Since at α we can get answers
to a finite number of ∆0

3 questions, at α we will have encoded answers to which, if
any, β ≺ α, if l(|β| − k) = (χ, i′) is We ∩ Rk

β is infinite; for which of the above β’s
and for which j < e, does Wl, for l < e, witness that Wj is a split of Mk

β ; and for
which of the above β’s, and for which j < e, does Wl, for l < e, witness that Wj is
a split of Rk

β?
Using this information, α will determine βα,k

0 , βα,k
1 , . . . such that Rk

βα,k
e

has the
greatest possible e-state according to the information encoded at α. This listing
does not change w.r.t. stage. For all other β ≺ α such that l(|β|−k) = (χ, i′), when
α ⊆ fs, α will dump Γβ,k

|α| into Mk
β . If α ⊂ f , then, for the above β, Rk

β =∗ Mk
β .

One can show, for each e, there is an αe ⊂ f such that, for all γ with αe � γ ⊂ f ,
βαe,k

e = βγ,k
e . Hence Mk

αe
is maximal in Rk

αe
and Requirement 2.23 is met. In

addition, one can show that, for almost all i, such that MχTk ,i �=∗ RχTk ,i, RχTk ,i

have the same e-state and hence Dχ is atomic.
However, equation (2.57) no longer holds and hence Requirement 2.58 is not met.

The problem is that we can dump MχTk ,i into RχTk ,i without dumping M
χ

T
k̂ ,i

into
R

χ
T

k̂ ,i
.

The solution is that when we dump MχTk ,i, we also must dump M
χ

T
k̂ ,i

, for all
possible χTk̂ . This means that we have to do the above e-state construction for Tk

simultaneously for all Tk. So, for each n, we have one e-state construction, for all
DχTk and DξTk , for all k and for all χTk , ξTk ∈ Tk with |χTk | = |ξTk | = n.

To do this, we need the following notation: Let {ξi : i ∈ ω} be a computable
listing of all nodes of length n in ω<ω. Fix some nice one-to-one onto computable
listing, 〈−,−,−〉, of all triples (e, k, l) and, furthermore, assume if (e, k, l) is the
mth triple listed, then 〈e, k, l〉 = m.

Assume l(|β|) = (ξ, i) and |ξ| = n. If there is a β′ � β and a k ≤ |β| such that
l(|β′| − k) = (ξ′, i) (the same i as above) and |ξ′| = n and, furthermore, β′ is the
lth such β′, then the state of β w.r.t. 〈e, k, l〉 is the state of Rk

β′ w.r.t. e. Otherwise
the state of β w.r.t. 〈e, k, l〉 is 0. Let s〈e′,k′,l′〉 be the state of β w.r.t. 〈e′, k′, l′〉. The
〈e, k, l〉-state of β is the string s〈e0,k0,l0〉s〈e1,k1,l1〉s〈e2,k2,l2〉 . . . s〈e,k,l〉.

Using the additional information we encoded into α for the single e-state con-
struction, α has enough information to determine the 〈e, k, l〉-state of β � α. Using
this information, α will determine βα

〈e0,k0,l0〉, β
α
〈e1,k1,l1〉, . . . such that βα

〈e,k,l〉 has the
greatest possible 〈e, k, l〉-state according to the information encoded at α. Again
this listing does not change w.r.t. stage.
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For all other β ≺ α such that l(|β|) = (ξj′ , i′) and |ξj′ | = n, when α ⊆ fs, for all
k, for all χ ∈ T k of length n, α will dump ΓχTk ,2i′

|α| into MχTk ,2i′ . If α ⊂ f , then,
for the above i′, for all k, for all χ ∈ T k of length n, MχTk ,2i′ =∗ RχTk ,2i′ .

One can show, for each 〈e, k, l〉, there is an α〈e,k,l〉 ⊂ f such that for all γ with
α〈e,k,l〉 � γ ⊂ f , β

α〈e,k,l〉
〈e,k,l〉 = βγ

〈e,k,l〉. Assume l(|βα〈e,k,l〉
〈e,k,l〉 |) = (χ, i). Then, for all k, for

all χTk ∈ T k of length n, MχTk ,2i is maximal in RχTk ,2i. Hence Requirements 2.23
and 2.58 are met.

In addition, one can show that, for all e, for all k, for all χTk ∈ T k of length n,
for almost all i, if MχTk ,2i′ is maximal in RχTk ,2i′ , then RχTk ,i has the same state
w.r.t. e and, hence, DχTk is atomic. Thus Requirement 2.50 is met.

2.6. Same orbit. Let T and T̂ be isomorphic trees via an isomorphism Λ. We
must build an automorphism ΦΛ of E taking A to Â. We want to do this piecewise.
That is, we want to build isomorphisms between the E∗(Dχ) and E∗(D̂Λ(χ)) and
piece them together in some fashion to get an automorphism. Examples of auto-
morphisms constructed in such a manner can be found in Section 5 of Cholak et al.
[6] and Section 7 of Cholak and Harrington [3].

In reality T = Tk and T̂ = Tk̂. The sets in question for Tk are DχTk , RχTk ,i, and
MχTk ,i. Here we will just drop the Tk̂ superscript from χ. The sets in question for
Tk̂ are D

χ
T

k̂
, R

χ
T

k̂ ,i
, and M

χ
T

k̂ ,i
. Here we will “hat” the sets involved and drop

the Tk̂ superscript from χ.
However, before we shift to our standard notation changes, we would like to point

out the following. Since Λ is an isomorphism between Tk and Tk̂, |χT
k | = |Λ(χTk)|.

Therefore, by Requirement 2.58, for all i,

MχTk ,i is maximal in RχTk ,i iff MΛ(χTk ),i is maximal in RΛ(χTk ),i,

and MχTk ,i =∗ RχTk ,i iff MΛ(χTk ),i =∗ RΛ(χTk ),i.

2.6.1. Extendible algebras of computable sets. The workhorse for constructing ΦΛ

is the following theorem and lemmas.

Theorem 2.60 (Theorem 5.10 of Cholak and Harrington [3]). Let B be an ex-
tendible algebra of computable sets and similarly for B̂. Assume the two are ex-
tendibly isomorphic via Π. Then there is a Φ such that Φ is a ∆0

3 isomorphism
between E∗(A) and E∗(Â), Φ maps computable subsets to computable subsets, and,
for all R ∈ B, (Π(R) − Â) � Φ(R ∩ A) is computable (and dually).

Lemma 2.61. Let χ ∈ T . The collection of all Rχ,i forms an extendible algebra,
Bχ, of computable sets.

Proof. Apply Theorem 2.17 of Cholak and Harrington [3] to A = ω to get an
extendible algebra of SR(ω) of all computable sets with representation B. Let
j ∈ Bχ iff there is an i ≤ j such that Sj = Rχ,i. Now take the subalgebra
generated by Bχ to get Bχ. �

Lemma 2.62. Let χ ∈ T ; then the join of Bχ− and Bχ is an extendible algebra of
computable sets, Bχ−⊕χ.

Proof. See Lemma 2.16 of Cholak and Harrington [3]. �

Lemma 2.63. For all i, if Rξ,j �≡R Rχ,i and Rξ,j �≡R Rχ−,i, then Dχ ∩ Rξ,j = ∅.
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Proof. See Lemma 2.21. �

Lemma 2.64. If χ, ξ ∈ T and |χ| = |ξ|, then Bχ−⊕χ and B̂ξ−⊕ξ are extendibly iso-
morphic via Φχ,ξ where Φχ,ξ(Rχ−,i) = R̂ξ−,i and Φχ,ξ(Rχ,i) = R̂ξ,i. Furthermore,
Φχ,ξ is ∆0

3.

2.6.2. Building ΦΛ on the D’s and M ’s. The idea is to use Theorem 2.60 to map
E∗(Dχ) to E∗(D̂Λ(χ)). By the above lemmas, there is little question that the ex-
tendible algebras we need are some nice subalgebras of Bχ−⊕χ and B̂Λ(χ−)⊕Λ(χ)

and the isomorphism between these nice subalgebras is induced by the isomorphism
Φχ,Λ(χ).

We will use the following stepwise procedure to define part of ΦΛ. This is not a
computable procedure but computable in Λ⊕0′′. Here χ is added to N at step s iff
we determined the image of Dχ (modulo finitely many Rχ−,j). The parameter iχ,s

will be used to keep track of the Mχ,i which we have handled and will be increasing
stepwise. This procedure does not completely define ΦΛ; we will have to deal with
those W which are not subsets of

⊔
M ∪

⊔
D.

Step 0: Let N0 = {λ}. By the above lemmas Bλ is isomorphic to B̂λ via Φλ,λ.
Let iλ,0 = 0. Now apply Theorem 2.60 to define ΦΛ for W ⊆ A = Dλ and dually.

Step s + 1: Part χ ŝ: For each χ ∈ Ns such that χ ŝ ∈ T do the following:
Add χ ŝ to Ns+1. Let iχˆs,s+1 = 0. Apply Lemma 2.22 to χ ŝ to get i′. Apply
the hatted version of Lemma 2.22 to Λ(χ ŝ) to get î′. Let iχ,s+1 be the max of
i′, î′ and iχ,s + 1. Let B∗

χ,χˆs be the extendible algebra generated by Rχ,i, for
i ≥ iχ,s+1, and, for all j, Rχˆs,j . Define B∗

Λ(χ),Λ(χˆs) in a dual fashion. Now
Φχˆs,Λ(χˆs) induces an isomorphism between these two extendible algebras. Now
apply Theorem 2.60 to define ΦΛ for W ⊆

(
Dχˆs −

⊔
i<iχ,s+1

Rχ,i

)
and Φ−1

Λ for

Ŵ ⊆
(
D̂Λ(χˆs) −

⊔
i<iχ,s+1

R̂Λ(χ),i

)
.

Step s+1: Part iχ,s+1: For all χ ∈ Ns and for all i such that iχ,s ≤ i < iχ,s+1, do
the following: Let Sχ,i =

(
Mχ,i −

⊔
ξ∈Ns

Dξ

)
and ŜΛ(χ),i =

(
M̂χ,i −

⊔
ξ∈Ns

D̂Λ(ξ)

)
.

So Hχ,i ⊆ Sχ,i and Ĥχ,i ⊆ ŜΛ(χ),i. Here Sχ,i and ŜΛ(χ),i are both infinite and
furthermore, by equation (2.57), the one is computable iff the other is computable.

Subpart H: If both Sχ,i and ŜΛ(χ),i are noncomputable, then apply Theorem 2.60
(using the empty extendible algebras) to define ΦΛ for W ⊆ Sχ,i and Φ−1

Λ for
Ŵ ⊆ ŜΛ(χ),i. If both Sχ,i and ŜΛ(χ),i are computable, then such ΦΛ can be found
by far easier means.

One can show that T = lims Ns and that, for all i, χ ∈ T , there is step s such
that, for all t ≥ s, iχ,t ≥ i. For all χ ∈ T , let sχ be the step that χ enters N and
let sχ,i be the first stage such that iχ,sχ,i

> i.

2.6.3. Defining ΦΛ on Rχ,i. Let s = sχ,i. By Section 2.6.2, ΦΛ is defined on

Mχ,i = Sχ,i �
⊔

ξ∈Ns

(Rχ,i ∩ Dξ);

ΦΛ(Mχ,i) = ŜΛ(χ),i �
⊔

ξ∈Ns

ΦΛ(Rχ,i ∩ Dξ).

Hence ΦΛ is defined on subsets W of Mχ,i. Furthermore, if such a W is computable,
so is ΦΛ(W ).
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Let ξ ∈ Ns. Then

Rχ,i ∩
(

Dξ −
⊔

j<iξ−,sξ

Rξ−,j

)
= Rχ,i ∩ Dξ,

R̂Λ(χ),i −
(

D̂Λ(ξ) −
⊔

j<iξ−,sξ

R̂Λ(ξ−),j

)
= R̂Λ(χ),i − D̂Λ(ξ),

and Φχ,Λ(χ)(Rχ,i) = R̂Λ(χ),i. Therefore, by Theorem 2.60,

R̂Λ(χ),i − D̂Λ(ξ)) � ΦΛ(Rχ,i ∩ Dξ) = X̂ξ

is computable. Since ΦΛ(Rχ,i ∩ Dξ) ⊂ D̂Λ(ξ), R̂Λ(χ),i�X̂ξ ⊆ D̂Λ(ξ) (recall � is the
symmetric difference between two sets). Fix computable sets R̃in

ξ and R̃out
ξ such

that X̂ξ =
(
R̂Λ(χ),i � R̃in

ξ

)
− R̃out

ξ .
Consider the computable set

R̃ =
(
R̂Λ(χ),i �

⊔
ξ∈Ns

R̃in
ξ

)
−

⊔
ξ∈Ns

R̃out
ξ .

Then

R̃ −
⊔

ξ∈Ns

ΦΛ(Rχ,i ∩ Dξ) = ŜΛ(χ),i �
(

R̂Λ(χ),i − MΛ(χ),i

)
.

Therefore
R̃ − ΦΛ(Mχ,i) = R̂Λ(χ),i − MΛ(χ),i.

Since Mχ,i is maximal in Rχ,i or Mχ,i =∗ Rχ,i, if W ⊆ Rχ,i, either W ⊆∗ Mχ,i

or there is a computable R such that R ⊆ Mχ,i and RW ∪W = Rχ,i. In the former
case, ΦΛ(W ) is defined. In the latter case, let

ΦΛ(W ) = (R̃ − ΦΛ(RW )) � ΦΛ(W ∩ RW ).

Hence ΦΛ(Rχ,i) = R̃.
Since Λ is an isomorphism between T and T̂ , |χ| = |Λ(χ)|. Therefore, as we noted

above, by Requirement 2.58, either Mχ,i is maximal in Rχ,i and M̂χ,i is maximal
in R̂Λ(χ),i or Mχ,i =∗ Rχ,i and M̂χ,i =∗ R̂Λ(χ),i. In either case, ΦΛ induces an
isomorphism between E∗(Rχ,i) and E∗(R̃). Here Φ−1

Λ on E∗(R̂Λ(χ),i) is handled in
the dual fashion.

2.6.4. Putting ΦΛ together. By Requirement 2.4 and our construction, for all e,
there are finite sets FD and FR such that either

(2.65) We ⊆∗
( ⊔

χ∈FD

Dχ ∪
⊔

(χ,i)∈FR

Rχ,i

)

or there is an RWe
such that

(2.66) RWe
⊆

( ⊔
χ∈FD

Dχ ∪
⊔

(χ,i)∈FR

Rχ,i

)
and We ∪ RWe

= ω.

It is possible to rewrite the set⊔
χ∈FD

Dχ ∪
⊔

(χ,i)∈FR

Rχ,i
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as

(2.67)
⊔

χ∈FD

(
Dχ −

⊔
(ξ,j)∈Fχ

Rξ,j

)
�

⊔
(χ,i)∈F∗

R

Rχ,i,

where F ∗
R ⊆ FR ∪

⋃
χ∈FD

Fχ and Fχ is finite and includes the set {(χ−, l) : l <

iχ−,sχ
}. Here ΦΛ as defined in the Section 2.6.2 is well behaved on the first union

in equation (2.67) and, furthermore, on these unions computable sets are sent to
computable sets. Similarly, by Section 2.6.3, ΦΛ is well behaved on the second
union in equation (2.67) and, furthermore, on these unions computable sets are
sent to computable sets.

If equation (2.65) for e holds, then Φ(We) is determined. Otherwise equa-
tion (2.66) holds and map We = RWe

� (W ∩ RWe
) to Φ(RWe

) � Φ(W ∩ RWe
).

Here Φ−1
Λ is handled in the dual fashion. So ΦΛ is an automorphism.

3. Invariants and properly ∆0
α orbits

It might appear that T (A) is an invariant which determines the orbit of A. But
there is no reason to believe for an arbitrary A that T (A) is well defined. The
following theorem shows that T (Â) is an invariant as far as the orbits of the AT ’s
are concerned. In Section 3.2, we prove a more technical version of the following
theorem.

Theorem 3.1. If Â and AT are automorphic via Ψ and T ∼= T (Â) via Λ, then
AT ≈ Â via ΦΛ where ΦΛ ≤T Λ ⊕ 0(8).

Proof. See Section 3.1. �
Theorem 3.2 (Folklore3). For all finite α there is a computable tree Tiα

from the
list in Theorem 1.21 such that, for all computable trees T , T and Tiα

are isomorphic
iff T and Tiα

are isomorphic via an isomorphism computable in deg(T ) ⊕ 0(α).
But, for all β < α there is an i∗β such that Ti∗β

and Tiα
are isomorphic but are not

isomorphic via an isomorphism computable in 0(β).

It is open if the above theorem holds for all α such that ω ≥ α < ωCK
1 . But if it

does, then so does the theorem below.

Theorem 3.3. For all finite α > 8 there is a properly ∆0
α orbit.

Proof. Assume that ATiα
and Â are automorphic via an automorphism Φ. Hence,

by part (2) of the game plan, T (Â) and Tiα
are isomorphic. Since T (Â) is com-

putable in 0(8), α > 8, and by Theorem 3.2, T (Â) and Tiα
are isomorphic via a

Λ ≤T 0(α). By Theorem 3.1, Â and ATiα
are automorphic via an automorphism

computable in 0(α).
Fix β such that 8 ≥ β < α. By part (3) of the game plan and the above

paragraph, ATiα
and ATi∗

β
are automorphic via an automorphism computable in

0(α). Now assume ATi∗
β

≈ ATiα
via Φ. By Lemma 2.55, T (ATi∗

β
) ∼= Tiα

via

ΛΦ, where ΛΦ ≤T Φ ⊕ 0(2). Since T (ATi∗
β
) is computable in 0(8) and T (ATi∗

β
) is

isomorphic to Ti∗β
via an isomorphism computable in 0(β) (part (1) of the game

plan), by Theorem 3.2, ΛΦ >T 0(β). Hence Φ >T 0(β). �
3See Section 5.2 for more information and a proof.
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3.1. Proof of Theorem 3.1. For AT the above construction gives us a 0′′ listing of
the sets Dχ, Rχ,i, and Mχ,i. So they are available for us to use here. Our goal here
is to redo the work in Section 2.6 without having a 0′′ listing of the sets D̂χ, R̂χ,i,
and M̂χ,i. Our goal is to find a suitable listing of these sets and the isomorphisms
Φχ,Λ(χ) and then start working from Section 2.6.2 onward to construct the desired
automorphism using the replacement parts we have constructed. We work with an
oracle for Λ and 0(8).

Here Λ is an isomorphism between T and T (Â). By Lemma 2.56, using 0(8)

as an oracle, we can find a representative of each atomic T -equivalence class of n-
successors of Â. Furthermore, we can assume that when choosing a representative,
we always choose a maximal representative of terms of T -equivalence. Hence we
can consider Λ as a map that takes Dχ to a representative of the equivalent class
which codes χ. Let D̂Λ(χ) = Λ(Dχ).

We recall that each Rχ,i is broken into a number of pieces. First there is a subset
Mχ,i which is either maximal in Rχ,i or almost equal to Rχ,i. Then Mχ,i is split
into several parts: Hχ,i and if ξ = χ l̂ ∈ T and l−1(ξ, 0) ≤ l−1(χ, i) or ξ = χ, then
Dξ ∩Mχ,i = Dξ ∩Rχ,i is an infinite split of Mχ,i. Furthermore Mχ,i is computable
iff all of these pieces are computable. Effectively in each χ and i we can give a finite
set Fχ,i such that

Rχ,i = (Rχ,i − Mχ,i) � Hχ,i �
⊔

ξ∈Fχ,i

(Dξ ∩ Rχ,i)

and either, for all ξ ∈ Fχ,i, Mχ,i is maximal in Rχ,i and Dξ ∩ Rχ,i is a nontrivial
split of Mχ,i or, for all ξ ∈ Fχ,i, Mχ,i = Rχ,i and Dξ ∩Rχ,i is computable. Now we
must find R̂Λ(χ),i such that it has the same properties.

We need the following two lemmas. The first follows from the definition of an
extendible subalgebra. The second lemma follows from the construction of AT and
the fact that, for almost all i, Dξ lives in Rξ−,i iff Dξ− lives in Rξ−,i. The second
part of the second lemma follows in particular from the homogeneity requirements.

Lemma 3.4. The collection of the sets

{(Rξ−,i ∩ Dξ) : i ≥ j}, {(Rξ−,i ∩ Dξ) : i ≥ j},
{(Rξ,i ∩ Dξ) : i ≥ 0}, and {(Rξ,i ∩ Dξ) : i ≥ 0}

(3.5)

form an extendible subalgebra, Bξ,j, of the splits of Dξ.

Lemma 3.6. If |ξ| = |ζ|, then there is a jξ,ζ such that Bξ,jξ,ζ
is extendibly ∆0

3-
isomorphic to Bζ,jξ,ζ

via the identity map. (The identity map sends Rξ,i ∩ Dξ to
Rζ,i ∩ Dζ , etc.) Furthermore, for all i, Dξ lives in Rχ,i iff Dζ lives in Rχ,i and,
for all i ≥ jξ,ζ , Dξ lives in Rχ−,i iff Dζ lives in Rχ−,i.

Now we must use another theorem from Cholak and Harrington [3].

Theorem 3.7 (Theorem 6.3 of Cholak and Harrington [3]). Assume D and D̂ are
automorphic via Ψ. Then D and D̂ are automorphic via Θ where Θ � E(D) is ∆0

3.

Lemma 3.8. For some jξ, there is an extendible subalgebra, B̂Λ(ξ),jξ
, of the splits

of DΛ(ξ) which is extendibly ∆0
3-isomorphic via Θξ to Bξ,jξ

. Furthermore, for all
i ≥ jξ, Dξ ∩ Rξ−,i is the split of a maximal set iff Θξ(Dξ ∩ Rξ−,i) is the split of a
maximal set, and Dξ ∩Rξ−,i is computable iff Θξ(Dξ ∩Rξ−,i) is computable. Also,
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for all i, Dξ ∩ Rξ,i is the split of a maximal set iff Θξ(Dξ ∩ Rξ,i) is the split of a
maximal set, and Dξ∩Rξ,i is computable iff Θξ(Dξ∩Rξ,i) is computable. Moreover,
we can find jξ, B̂Λ(ξ),jξ

, and Θξ with an oracle for 0(8).

Proof. Recall A and Â are automorphic via Ψ and the image of a Dξ must also
code a node of length |ξ|. By Lemma 2.51, D̂Λ(ξ) is the pre-image under Ψ of
some DΨ−1(Λ(ξ)) =∗ Dη −

⊔
j<j′ Rη−,j , where |η| = |ξ|. Now apply Theorem 3.7

to get Θξ. Find the least jξ such that, for all i ≥ jξ, DΛ(ξ) lives in RΛ(ξ)−,i iff
DΛ(ξ)− lives in RΛ(ξ)−,i and similarly for DΨ−1(Λ(ξ)) and DΨ−1(Λ(ξ))− , and Dξ and
Dξ− . The image of BΨ−1(Λ(ξ)),jξ

under Θξ is an extendible subalgebra B̂Λ(ξ),jξ

and, furthermore, these subalgebras are extendibly ∆0
3-isomorphic. By Lemma 3.6,

Bξ,jξ
is extendibly ∆0

3-isomorphic to BΨ−1(Λ(ξ)),jξ
. Since Θξ is an automorphism,

the needed homogeneous properties are preserved.
Now that we know these items exist, we know that we can successfully search

for them. Look for a jξ and Θξ such that Θξ(Bξ,jξ
) = B̂Λ(ξ),jξ

is extendibly ∆0
3-

isomorphic to Bξ,jξ
via Θξ; these items also satisfiy the second sentence of the

above lemma and the additional property that, for all R̂, if R̂ is an infinite sub-
set of DΛ(ξ), then there are finitely many R̃i such that R̂ ⊆∗ ⋃

Θξ(R̃i). Since,
by Requirement 2.4, this last property is true of Dξ, and Θξ is generated by an
automorphism, it also must be true of DΛ(ξ). This extra property ensures that Θξ

is onto. By carefully counting quantifiers, we see that 0(8) is more than enough to
find these items. �

Let F̃χ,i be such that ξ ∈ F̃χ,i iff ξ ∈ Fχ,i and i ≥ jξ. For all χ and i, let

˘̂
HΛ(χ),i =

⊔
ξ∈F̃χ,i

Θξ(Dξ ∩ Rχ,i).

Either ˘̂
HΛ(χ),i is computable or the split of a maximal set. This follows from the

projection through the above lemmas of the homogeneity requirements. In the
latter case, ˘̂

HΛ(χ),i lives inside ω̂.

We repeatly apply the dual of Lemma 2.15 to all those ˘̂
HΛ(χ),i that live inside

ω̂ to get R̃Λ(χ),i which are all pairwise disjoint. This determines the ˜̂
MΛ(χ),i which

witness that ˘̂
HΛ(χ),i lives in R̃Λ(χ),i. Let ˘̂

RΛ(χ),i be a computable infinite subset

of ˜̂
MΛ(χ),i − ˘̂

HΛ(χ),i (we call this set subtraction). Let R̂Λ(χ),i = R̃Λ(χ),i − ˘̂
RΛ(χ),i.

Here ˘̂
HΛ(χ),i lives inside R̂Λ(χ),i. In this case, again, by the dual of Lemma 2.15,

we have determined M̂Λ(χ),i and hence we have determined ĤΛ(χ),i.

So it remains to find R̂Λ(χ),i and M̂Λ(χ),i, where ˘̂
HΛ(χ),i is computable. For such

i once we find R̂Λ(χ),i we will let R̂Λ(χ),i = M̂Λ(χ),i.
By Requirement 2.4 and our construction, for all e, there are finite sets FD and

FR such that either

We ⊆∗
( ⊔

χ∈FD

Dχ ∪
⊔

(χ,i)∈FR

Rχ,i

)
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or there is an RWe
such that

RWe
⊆

( ⊔
χ∈FD

Dχ ∪
⊔

(χ,i)∈FR

Rχ,i

)
and We ∪ RWe

= ω.

By Lemma 2.51, as a collection the D̂Λ(χ)’s are the isomorphic images of the col-
lection of the Dχ and similarly with the collection of all Rχ,i’s. Hence we should

be able to define R̂Λ(χ),i, where ˘̂
HΛ(χ),i is computable such that, for all e, there are

finite sets F̂D and F̂R with either

(3.9) Ŵe ⊆∗
( ⊔

χ∈F̂D

D̂Λ(χ) ∪
⊔

(χ,i)∈F̂R

R̂Λ(χ),i

)

or there is an RŴe
such that

(3.10) RŴe
⊆

( ⊔
χ∈F̂D

D̂Λ(χ) ∪
⊔

(χ,i)∈F̂R

R̂Λ(χ),i

)
and Ŵe ∪ RŴe

= ω̂.

Fix some nice listing of the (χ, i) such that R̂Λ(χ),i has yet to be defined (as
above). Assume that (χ, i) is the eth member in our list and the first e−1 of R̂Λ(χ),i

have been defined such that, for all e′ < e, one of the two equations above holds.
For all e, either there are finitely many (ξ, j) where R̂Λ(ξ),j is defined such that
R̂Λ(ξ),j ∩ Ŵe �=∗ ∅ or, for almost all (ξ, j), where R̂Λ(ξ),j is defined, R̂Λ(ξ),i ⊆∗ Ŵe

(this is true for any possible pre-image of Ŵe).
In the first case find a computable R̂, a finite F̂R, and a finite F̂D such that

if (ξ, j) ∈ F̂R, then R̂Λ(ξ),j is defined; if R̂Λ(ξ),j is defined, then R̂ ∩ R̂Λ(ξ),j = ∅;
˘̂
HΛ(χ),i ⊆ R̂; (R̂ − ˘̂

HΛ(χ),i) ∩
⊔

ξ D̂Λ(ξ) = ∅ (these last three clauses are possible
because of the above set subtraction); and

Ŵe ⊆∗
(

R̂ ∪
⊔

ξ∈F̂D

D̂Λ(ξ) ∪
⊔

(ξ,i)∈F̂R

R̂Λ(ξ),i

)
.

In the second case find a computable R̂, a finite F̂R, and a finite F̂D such that
all of the above except for the last clause hold and

Ŵe ⊆∗
(

R̂ ∪
⊔

ξ∈F̂D

D̂Λ(ξ) ∪
⊔

(ξ,i)∈F̂R

R̂Λ(ξ),i

)
.

Either way let RΛ(χ),i = R̂. Since the sets we have defined so far cannot be all the
images of the Rξ,l, there must be enough of ω̂ for us to continue the induction.

Now we have to find a replacement for the isomorphisms given to us by
Lemma 2.64; we cannot. But as we work through Section 2.6.2, we see that we
want to apply Theorem 5.10 of Cholak and Harrington [3] to Dξ −

⊔
j<jξ

Rξ−,j

and DΛ(ξ) −
⊔

j<jξ
Θξ(Rξ−,j), we need these isomorphisms to meet the hypothesis,

and, furthermore, this is the only place these isomorphisms are used. However, the
first step of the proof of Theorem 5.10 of Cholak and Harrington [3] is to use the
given isomorphisms (given by Lemma 2.64) to create an extendible isomorphism
between the extendible subalgebra generated by Rχ,i ∩ Dξ and the one generated
by R̂χ,i ∩ D̂Λ(ξ) and, furthermore, this is the only place these given isomorphisms
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are used in the proof. These subalgebras are Bξ,jξ
and B̂Λ(ξ),jξ

which are isomor-
phic via Θξ. Hence we can assume that we can apply Theorem 5.10 of Cholak and
Harrington [3].

At this point we have all the needed sets and isomorphisms with the desired ho-
mogeneity between these sets (in terms of Requirement 2.58). Now we have enough
to apply part (3) of our game plan to construct the desired automorphism. That
is, start working from Section 2.6.2 onward to construct the desired automorphism.

3.2. A technical invariant for the orbit of AT . The goal of this section is to
prove a theorem like Theorem 3.1 but without the hypothesis that A and Â are in
the same orbit. Reflecting back through the past section, we see that the fact that
A and Â are in the same orbit was used twice: in the proof of Lemma 3.8 and in
showing that equations (3.9) and (3.10) hold. Hence we assume these two items
would allow us to weaken the hypothesis as desired. Since the notation from the
above section is independent of the fact that A and Â are in the same orbit, we
borrow it wholesale for the following.

Theorem 3.11. Assume
(1) T ∼= T (Â) via Λ,
(2) the conclusion of Lemma 3.8 (the whole statement of the lemma is the

conclusion), and
(3) equations (3.9) and (3.10) hold.

Then AT ≈ Â via ΦΛ where ΦΛ ≤T Λ ⊕ 0(8).

Corollary 3.12. AT ≈ Â iff
(1) T ∼= T (Â) via Λ,
(2) the conclusion of Lemma 3.8 (the whole statement of the lemma is the

conclusion), and
(3) equations (3.9) and (3.10) hold.

4. Our orbits and hemimaximal degrees

A set is hemimaximal iff it is the nontrivial split of a maximal set. A degree is
hemimaximal iff it contains a hemimaximal set.

Let T be given. Construction AT as above. For all i, either AT lives in Ri or
AT∩Ri is computable. If AT lives in Ri, then AT∩Ri is a split of maximal set M�Ri

and hence AT = (AT ∩ Ri) is a hemimaximal set. So AT =
⊔

i∈ω(AT ∩ Ri) where
AT ∩ Ri is either hemimaximal or computable. So the degree of AT is the infinite
join of hemimaximal degrees. It is not known if the (infinite) join of hemimaximal
degrees is hemimaximal. Moreover, this is not an effective infinite join. But if we
control the degrees of AT ∩ Ri, we can control the degree of AT .

Theorem 4.1. Let H be hemimaximal. We can construct AT such that AT ≡T H.
Call this AT , AH

T , to be careful.

Proof. Consider those α and k such that l(|α|−k) = (λ, n), for some n. Only at such
α do we construct pieces of Dk

λ = ATk
. Uniformly we can find partial computable

mapping, pk
α, from ω to Rk

α such that if Rk
α is an infinite computable set, then pk

α is
one-to-one, onto, and computable. Since H is hemimaximal, there is a maximal set
M and a split H̆ witnessing that H is hemimaximal. Then pk

α(M)�R
k

α is maximal
and pk

α(H) is a nontrivial split of pk
α(M) � R

k

α with the same degree as H.
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The idea is that at α we would like to let Mk
α = pk

α(M) but because of the
dumping this does not work. Dumping allows us to control whether Rk

α =∗ Mk
α or

not. Let M̃k
α = pk

α(M). If

pk
α(Ms) ∩ Rk

α = {mα,k
0 , mα,k

1 , mα,k
2 , . . .},

then place the marker Γα,k
e on mα,k

e at stage s. Now when dumping the element
marked by marker Γα,k

e , we will just dump that single element (this not the case
in the standard dumping arguments). Now assume that the dumping is done effec-
tively (this is the case in the construction of AT ). Let Mk

α,s+1 = M̃k
α,s+1∪Mk

α,s plus
those mα

e which are dumped via Γα,k
e at stage s+1. Here Mk

α is c.e. and M̃k
α ⊆ Mk

α.
Since M̃k

α�R
k

α is maximal, either Mk
α =∗ M̃k

α or Mk
α =∗ Rk

α. In the first case pk
α(H)

and pk
α(H̆) � R

k

α are nontrivial splits of Mk
α. The second case occurs iff there is a

least Γα,k
e which is dumped into Mk

α infinitely often. The above construction of Mk
α

is uniformly in α.
In Section 2.2.3, when we construct Mk

α and its splits, rather than using the
maximal set construction and the Friedberg splitting construction, we use the above
construction of Mk

α; we will put the split pk
α(H) into Dk

λ = AT and use the Fried-
berg splitting construction to split pk

α(H̆) into enough pieces as determined by the
construction. �

There is no reason to believe that if Â is in the same orbit as AH
T , then Â ≡T H.

Nor is there a reason to believe Â must have hemimaximal degree. Notice that for
each H we have a separate construction. Hence the homogeneity requirement need
not hold between these different constructions. Therefore, we cannot prove that
the sets AH

T are in the same orbit. It might be for H �= H̃ that AH
T and AH̃

T are
in different orbits. We conjecture, using Corollary 3.12, it is possible to construct
two different versions of AT which are not in the same orbit. But we can do the
following.

Theorem 4.2. There is an AT whose orbits contain a representative of every
hemimaximal degree.

Proof. The idea is for all hemimaximal H to do the above construction simultane-
ously. This way the homogeneous requirement will be met between the different
AH

T ’s.
Notice the above construction is uniformly in the triple e = 〈m, h, h̆〉 where

Wm = M, Wh = H, and Wh̆ = H̆.
We want to reorder the trees from Theorem 1.21. Let T̃〈e,i〉 = Ti. Now do the

construction in Section 2 with two expectations: use the trees T̃〈e,i〉 and, for those
α and k such that l(|α| − k) = (λ, n), for some n, we use the construction of Mk

α

outlined in the proof of Theorem 4.1.
For all i and e coding a hemimaximal set, we construct a set AT̃〈e,i〉

. If e′ codes
another hemimaximal set, then AT̃〈e,i〉

and AT̃〈e′,i〉
are in the same orbit.

If e′ does not code sets such that Wm = Wh � Wh̆, then construction of AT̃〈e′,i〉

is impaired but this does not impact the simultaneous construction of the other
AT̃〈e,i〉

. �
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5. On the isomorphism problem for Boolean algebras and trees

5.1. Σ1
1-completeness. We think it is well known that the isomorphism problem

for Boolean algebras and the isomorphism problem for trees are Σ1
1-complete, at

least in the form stated in Theorems 1.7 and 1.21. We have searched for a reference
to a proof for these theorems without success. It seems very likely that these
theorems were known to Kleene. There are a number of places where something
close to what we want appears; for example, see White [20], Hirschfeldt and White
[12], and the example at the end of Section 5 of Goncharov et al. [8]. Surely there
are other examples. All of these work by coding the Harrison ordering, as will
the construction below. To be complete, we include a proof in this section. The
material we present below is similar to results in the three papers mentioned above.
We are thankful to Noam Greenberg for providing the included proof.

Remark 5.1 (Notation). For cardinals κ, λ, etc. (we use 2 and ω), a tree on κ × λ
is a downward-closed subset of ⋃

n<ω

κn × λn,

so that the set of paths of the tree is a closed subset of κω × λω. We may use more
or fewer coordinates. For a tree R, [R] is the set of paths through R. For a subset
A of a product space κω ×λω (for example), pA is the projection of A onto the first
coordinate.

Lemma 5.2. There is an effective operation I such that, given a computable
infinite-branching tree T , I(T ) is a computable linear ordering such that

(1) if T is well-founded, then I(T ) is a well-ordering;
(2) if T is not well-founded, then I(T ) ∼= ωCK

1 (1 + Q).

Proof. Suppose that a computable tree T0 ⊆ ω<ω is given. Unpair to get a tree T1

on 2 × ω such that [T0] = {X ⊕ f : (X, f) ∈ [T1]}.
Now let T2 = T1 × 2<ω, the latter inserted as a second coordinate (so T2 =

{(σ, τ, ρ) : (σ, ρ) ∈ T1 & τ ∈ 2<ω & |τ | = |σ| = |ρ|}). Let T3 be the tree on 2 × ω
which is obtained by pairing the first two coordinates of T2.

The class HYP of hyperarithmetic reals is Π1
1, and so p[T3] − HYP is Σ1

1; let T4

be a computable tree such that p[T4] = p[T3] − HYP.
Let L5 be the Kleene-Brouwer linear ordering obtained from T4; finally, let

I(T ) = L5ω = L5 + L5 + · · · .
The point is this: p[T2] = p[T1] × 2ω. Thus if T is not well-founded, then p[T1]

is nonempty and so p[T2] is uncountable and so p[T4], and hence [T4], is nonempty.
If T is well-founded, then p[T4] is empty; that is, T4 is well-founded. Also, p[T4]
contains no hyperarithmetic sets, and so T4 has no hyperarithmetic paths.

It follows that if T is well-founded, then L5, and so I(T ), is a well-ordering. If
T is not well-founded, then L5 is a computable linear ordering which is not a well-
ordering but has no hyperarithmetic infinite descending chains, that is, a Harrison
linear ordering. This has order-type ωCK

1 (1 + Q) + γ for some computable ordinal
γ. For any computable γ we have γ+ωCK

1 = ωCK
1 (as ωCK

1 is closed under addition)
and so I(T ) has order-type ωCK

1 (1 + Q + 1 + Q + 1 + Q + · · · ) ∼= ωCK
1 (1 + Q). �

Corollary 5.3 (Proposition 5.4.1 of White [20]). For any Σ1
1 set A, there is a

computable sequence 〈Ln〉 of (computable) linear orderings such that, for all n,
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(1) if n ∈ A, then Ln
∼= ωCK

1 (1 + Q);
(2) if n /∈ A, then Ln is a well-ordering.

Proof. Let A be a Σ1
1 set. There is a computable sequence 〈Tn〉 of trees on ω such

that, for all n, n /∈ A iff Tn is well-founded. Now apply I to each Tn. �
Corollary 5.4 (Theorem 1.21). There is a computable tree T on ω such that the
collection of computable trees S which are isomorphic to T is Σ1

1-complete.

Proof. Use the operation that converts a linear ordering L to the tree TL of finite
descending sequences in L. The point is that if L is an ordinal, then TL is well-
founded and so cannot be isomorphic to TωCK

1 (1+Q). �

Corollary 5.5 (Theorem 1.7). There is a computable Boolean algebra B such that
the collection of Boolean algebras C that are isomorphic to B is Σ1

1-complete.

Proof. Similar; use the interval algebra BL. If L is an ordinal, then BL is super-
atomic. �
5.2. Π0

n-completeness. Again we believe it is known that there are trees TΠn
such

that the isomorphism problem for TΠn
is Π0

n-complete, at least in the form stated
in Theorem 3.2. The closest we could find was work in White [20], which does
not quite work. To be complete, we include a proof in this section. The details
are similar in style but different from what is found in White [20]. The trees in
White [20] do not provide precise bounds; they are hard for the appropriate class
but not known to be complete (see Remark 5.10). We wonder if Theorem 3.2 is
true for all computable ordinals, the case α = ω being a good test case. The
following construction is joint work with Noam Greenberg. The following lemma
is well known, but we include a proof for completeness; it is a partial version of
uniformalization.

Lemma 5.6. Let A(n, x) be a Π0
1 relation. Then there is a Π0

1 partial function f
such that dom A = dom f .

Proof. We give an effective construction of a computable predicate R such that
f(n) = x ⇐⇒ ∀y R(n, x, y). If n ≥ s or x ≥ s, then R(n, x, s) always holds; so
to make R computable, at stage s of the construction we define R(n, x, s) for all
x, n < s. In fact, for all n < s, at stage s we define R(n, x, s) to hold for at most
one x < s. This will imply that f is indeed a function.

Let S be a computable predicate such that A(n, x) ⇐⇒ ∀y S(n, x, y).
For every n and x we have a moving marker c(n, x). We start with c(n, x) = x.

At stage s, for every n < s, find the least x < s such that for all y < s we have
S(n, x, y) (if one exists). For x′ �= x, initialize c(n, x′) by redefining it to be large.
Now define R by letting R(n, c(n, x), s) hold but R(n, z, s) not hold for all z < s
different from c(n, x).

Let n < ω. Suppose that n ∈ dom f . For all s > max{n, f(n)}, R(n, f(n), s)
holds, which means that at stage s, f(n) = c(n, x) for some x. Different markers
get different values and so there is just one such x, independent of s. By the
instructions, for all s > max{n, f(n)}, for all y < s, S(n, x, y) holds; this shows
that n ∈ dom A.

Suppose that n ∈ dom A. Let x be the least such that for all y, S(n, x, y) holds.
There is some stage after which c(n, x) does not get initialized (wait for some stage
s that bounds, for all z < x, some y such that S(n, z, y) does not hold). Let s
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be the last stage at which c(n, x) gets initialized. At stage s, a final, large value
a = c(n, x) is chosen. For all t > a, R(n, a, t) holds because t > s. Thus a witnesses
that n ∈ dom f . �

By relativizing the above to 0(n−2), we see that for every n ≥ 2, for every Σ0
n

set A, there is a Π0
n−1 function f such that A = dom f .

A tree is a downward closed subset of ω<ω. The collection Tree of all computable
trees (i.e., indices for total, computable characteristic functions of trees) is Π0

2. For
any tree T , let IsomT be the collection of S ∈ Tree which is isomorphic to T .

Lemma 5.7. Let TΠ2 be the infinite tree of height 1. Then IsomTΠ2
is Π0

2-complete.

Proof. A tree is isomorphic to TΠ2 iff it has height 1 and it is infinite. Certainly
this is a Π0

2 property.
Let A be a Π0

2 set; say that A(n) ⇐⇒ ∀x∃yR(n, x, y) where R is computable.
For n and s, let l(n, s) be the greatest l such that for all x ≤ l there is some y < s
such that R(n, x, y) holds. Say that s is expansionary for n if l(n, s) > l(n, s − 1).

For each n define a tree T2,A(n): this is a tree of height 1, and a string 〈s〉 is on
the tree iff s is expansionary for n. Then n �→ T2,A(n) reduces A to IsomTΠ2

. �
For the next level we use trees of height 2. We use two trees: the tree TΠ3 is

the tree of height 2 such that for each n there are infinitely many level 1 nodes
which have exactly n children, and no level 1 node has infinitely many children.
The tree TΣ3 is like TΠ3 , except that we add one level 1 node which has infinitely
many children.

Lemma 5.8. IsomTΠ3
is Π0

3 and IsomTΣ3
is Π0

3 ∧ Σ0
3.

Proof. If T is a computable tree, then the predicate “〈x〉 has exactly n children
in T” is Σ0

2, uniformly in a computable index for T . So is the predicate “〈x〉 has
finitely many children in T”. The predicate “there are infinitely many level 1 nodes
on T which have n children” is Π0

3.
Also, to say that the height of a tree T is at most 2 is Π0

1 (once we know that
T ∈ Tree).

A tree T is isomorphic to TΠ3 if it has height at most 2 and for every n, there are
infinitely many level 1 nodes on T which have n children, and every level 1 node
on T has finitely many successors.

The predicate “〈x〉 has infinitely many children in T” is Π0
2; and so the predicate

“at most one level 1 node on T has infinitely many children” is Π0
3.

A tree T is isomorphic to TΣ3 if it has height at most 2 and for every n, there
are infinitely many level 1 nodes on T which have n children, at most one level 1
node on T has infinitely many children, and some level 1 node has infinitely many
children. The last condition is Σ0

3 and all previous ones are Π0
3. �

Lemma 5.9. (Σ0
3, Π0

3) ≤1 (IsomTΣ3
, IsomTΠ3

).

Proof. Let A be a Σ0
3 set. By Lemma 5.6, there is some Π0

2-definable function f
such that A = dom f .

For any n, we define a tree T3,A(n) of height 2. First, it contains a copy of TΠ3 .
Then, for every x, there is a level 1 node 〈mx〉 such that T3,A(n)[mx] = T2,f (n, x)
(that is, for all y, 〈mx, y〉 ∈ T3,A(n) iff 〈y〉 ∈ T2,f (n, x).)

Then n �→ T3,A(n) reduces (A,¬A) to (IsomTΣ3
, IsomTΠ3

) because for all but
perhaps one x we have T2,f (n, x) finite. �



ORBITS 29

Remark 5.10 (Walker’s TΣ3). Walker defined his TΣ3 such that it has infinitely
many TΠ2 children. Walker’s IsomTΣ3

is Π0
4. The above lemma still holds (via a

slightly different reduction), but we only get hardness, not completeness. It is not
known if Walker’s TΣ3 is Π4-complete. To avoid using infinitely many TΠ2 children,
we have to be more careful. Here we get around this problem by using Lemma 5.6.

We can now lift it up.

Lemma 5.11. For all n ≥ 3 there are trees TΣn
and TΠn

such that
(1) IsomTΠn

is Π0
n;

(2) IsomTΣn
is Π0

n ∧ Σ0
n;

(3) (Σ0
n, Π0

n) ≤1 (IsomTΣn
, IsomTΠn

).

Thus IsomTΠn
is Π0

n-complete.

Proof. By induction; we know this for n = 3.
The tree TΠn+1 is a tree of height n which has infinitely many level 1 nodes, the

tree above each of which is TΣn
. The tree TΣn+1 is the tree TΠn+1 , together with

one other level 1 node above which we have TΠn
.

A tree T is isomorphic to TΠn+1 iff it has infinitely many level 1 nodes (this is
Π0

2!), and for every level 1 node 〈x〉, the tree T [x] above 〈x〉 is isomorphic to TΣn
.

A tree T is isomorphic to TΣn+1 iff it has infinitely many level 1 nodes; for every
level 1 node 〈x〉, the tree T [x] is isomorphic to either TΣn

or to TΠn
; there is at

most one 〈x〉 such that T [x] is isomorphic to TΠn
; and there is some 〈x〉 ∈ T such

that T [x] ∼= TΠn
.

Note again that if we had infinitely many TΠn
’s (which is what White’s trees

had), then we’d have had to pay another quantifier.
The reduction is similar to that of the case n = 3: given a Σ0

n+1 set A, we get
a Π0

n function f such that A = dom f ; we construct Tn+1,A(m) to be a tree such
that for all x, 〈x〉 ∈ Tn+1,A(m) and the tree Tn+1,A(m)[x] = Tn,f (m, x). �

For the case α ≥ ω, the situation is murkier. Using the trees from White [20], for
example, gives a reduction of, say, Σ0

ω+1 to a tree T such that IsomT is computable
from something like 0(ω+3). With more work it seems that this can be reduced to
0(ω+2), but it seems difficult to reduce this to 0(ω). We remark that “things catch
up with themselves” at limit levels, which is why we get +2 for α ≥ ω.
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Abstract. The goal of this paper is to show there is a single orbit of the
c.e. sets with inclusion, E, such that the question of membership in this orbit
is Σ1

1-complete. This result and proof have a number of nice corollaries: the

Scott rank of E is ωCK
1 +1; not all orbits are elementarily definable; there is no

arithmetic description of all orbits of E; for all finite α ≥ 9, there is a properly
∆0

α orbit (from the proof).
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