
A weakly-2-generic which bounds a minimal degree

Rodney G. Downey Satyadev Nandakumar

September 22, 2017

Abstract

Jockusch showed that 2-generic degrees are downward dense below
a 2-generic degree. That is, if a is 2-generic, and 0 < b < a, then
there is a 2-generic g with 0 < g < b. In the case of 1-generic de-
grees Kumabe, and independently Chong and Downey, constructed a
minimal degree computable from a 1-generic degree. We explore the
tightness of these results.

We solve a question of Barmpalias and Lewis-Pye by construct-
ing a minimal degree computable from a weakly 2-generic one. While
there have been full approximation constructions of ∆0

3 minimal de-
grees before, our proof is rather novel since it is a computable full
approximation construction where both the generic and the minimal
degrees are ∆0

3 −∆0
2.

1 Introduction

Two of the fundamental construction techniques in set theory and com-
putability theory are Cohen and Sacks/Spector forcing. The first uses (fi-
nite) strings1 as conditions and the second perfect trees. Computability
theory allows us to look at fine grained restricted versions of these notions.
Cohen forcing gives us various forms of genericity and Sacks/Spector allows
for various forms of minimality and computable domination.

This paper follows a tradition asking “How can these two notions inter-
act?”. In their unrestricted forms the notions are incompatible, no Cohen
generic degree has minimal degree. But there are restricted forms of gener-
icity sometimes that can interact via Turing reducibility.

1Here, and henceforth, “string” is meant to mean finite string.

1



The reader should recall the following definitions (which are really theo-
rems due to Jockusch and Posner, but have become standard in the literature
as definitions.).

Definition 1. Let n ≥ 1.

1. A set A is called n-generic iff A meets or avoids all Σ0
n sets of strings.

That is, if S is a Σ0
n set of strings, then either ∃σ ∈ S(σ ≺ A) (σ is an

initial segment of A) (A meets S) or ∃τ ≺ A∀σ ∈ S(τ ̸≼ σ). (A avoids

S)

2. A set of strings B is called dense if for all ν ∈ 2<ω, there is a ρ ∈ B
such that ν ≼ ρ. We say that a set C is weakly n-generic iff for all
dense Σ0

n sets of strings S, C meets S.

3. We say a degree a is (weakly) n-generic is it contains a (weakly) n-
generic set.

The natural relationship is that weak n+1-genericity is implied by n+1-
genericity and implies n-genericity, and these implications cannot be re-
versed. (For example, see Kurtz [14], or Downey and Hirschfeldt [9], for a
more readily available reference.) How do n-genericity and minimality re-
late? First, it is easy to see that no 1-generic degree can be minimal, but
Kurtz showed that every hyperimmune degree is weakly 1-generic and hence
there can be minimal degrees containing weakly 1-generic sets. Jockusch
[12] was the first person to give a detailed analysis of notions of (weak)
n-genericity and their relationship with Turing reducibility. In particular,
Jockusch showed that if a is a nonzero degree below a 2-generic degree, then
a bounds a 2-generic degree. As a consequence, no 2-generic degree can
bound a minimal degree.

This result was extended by Chong and Jockusch [4] who proved that if
g is 1-generic and 0 < a < g < 0′ then a bounds a 1-generic degree. Later
Haught [11] extended this result to prove the very attractive result that if g
is 1-generic and 0 < a < g < 0′ then in fact a is 1-generic.

At the time, it seemed reasonable to conjecture that the restriction that
g < 0′ could be removed. Independently, Kumabe [13] and Chong and
Downey [3] proved that this restriction cannot be removed, both papers
constructing a 1-generic degree g < 0′′ bounding a minimal degree m < 0′.
Indeed, Chong and Downey [3] gave a local iff condition (now called “having
no tight cover”) which characterized when a set B could be computed from a

2



1-generic set. In [5], they used this local condition to construct a minimal de-
gree below 0′ not computable from a 1-generic, and Downey and Hirschfeldt
[9] (page 387) also used this characterization to show that almost every set
is not computable from a 1-generic, although this was known earlier by the
work of Kurtz [14]. Finally, Downey and Yu [7] used this characterization
to construct a hyperimmune-free (minimal) degree computable from a 1-
generic, this being of interest since the construction of a hyperimmune-free
degree is a much “purer” form of perfect set forcing than is the construction
of a minimal degree which can use various approximation techniques.

Thus, we know no 2-generic degree can bound a minimal degree, but
a 1-generic degree can bound a minimal degree. In this paper, we give an
affirmative answer to the natural question of Barmpalias and Lewis-Pye [2]
(see also [1]) who asked whether a weakly 2-generic degree can bound a
minimal degree.

Theorem 2. There exist M <T G <T ∅′′ with M of minimal Turing degree

and G weakly 2-generic.

On general grounds, we point out that this theorem is unlikely to be
proven by forcing, and hence some kind of limit/approximation construc-
tion will be needed. It is true that both weak 2-genericity and minimality
constructions are easily done by using finite extension and perfect set forc-
ing, respectively. Minimality can also be achieved using forcing with par-
tial computable trees. The difficulty is the construction of the reduction2

ΓG = M . Thus to use two forcing-type constructions to construct G and
M , you would somehow need to specify Γ in advance, and hence likely a
truth table construction, or find a local condition like that of Chong and
Downey (but more complex), and then run a second construction like they
did. While we acknowledge one of these might be possible, they both seem
extremely difficult. The simplest thing seems to be to construct Γ along
with the construction, and since Γ needs to be computable, this will entail
the construction being computable.

Moreover, as we first prove, if G is weakly 2-generic then the degree of
G forms a minimal pair with 0′ (something that might have been already
known, but we could not find in the literature). Thus we will need a com-
putable construction to construct both G and M , neither of which is ∆0

2 and

2In this paper we will always view a reduction as a partial computable map Γ from
strings to strings, such that if Γσ ↓ and Γτ ↓, σ ≺ τ , then Γσ ≼ Γτ , and limσ≺G∧Γσ↓ Γ

σ =
M . Occasionally, to emphasise this view, we might write Γ(σ) in place of Γσ.

3



hence at no stage will initial segments come to limits. Full approximation
constructions of ∆0

3 sets have occurred in the literature such as Downey [8],
but they are rare and complex. Moreover, no full approximation construc-
tion of a weakly 2-generic has previously occurred. Thus the proof here
is also of some technical interest as it involves techniques which may have
wider applications.

The proof consists of two interacting full approximation arguments one of
a weakly 2-generic and the other of a minimal degree, where the interactions
are controlled by a priority tree of strategies.

2 Notation

The set of binary strings is denoted by 2<ω and the set of infinite binary
sequences by 2ω. We will also use strings from ω<ω, finite sequences of nat-
ural numbers. We point out that, up to Turing degree, (weak) n-genericity
in ω<ω and 2<ω are identical. If σ is a finite string, then [σ] denotes the
cylinder determined by σ, i.e. the set of infinite binary sequences with pre-
fix σ. If S is a set of strings, then [S] is the set of all infinite sequences with
some prefix in S. We say that σ ≼ τ if the finite string σ is a prefix of the
finite string or infinite sequence τ . We also use the relation <L to denote
the lexicographic ordering of strings.

We remind the reader that our view that procedures/reductions/functionals
ΘZ = Y are partial computable maps from strings to strings such that if
σ ≺ τ and Θσ ↓,Θτ ↓, then Θσ ≼ Θτ , and limσ≼Z Θσ = Y .

3 Minimal Pair

In this section we prove the following easy result, surely known to anyone
who thought about it.

Proposition 3. Suppose that X ≤T G, ∅′ and G is weakly 2-generic. Then

X is computable.

Proof. Suppose that ΦG = X with X ≤T ∅′, X = limsXs, and G weakly
2-generic.

4



Let S = {σ | [∃s0∀s > s0(Φσ ↓ [s] ̸≺ Xs) ∨ (∃n∀τ∀s)(σ ≼ τ → Φτ (n) ↑
[s])]}.

If S is dense then G meets S which is a contradiction. Thus S is not
dense.

Therefore there is some σ0 such that for all σ ∈ S, σ0 ̸≼ σ.

Then for all σ extending σ0 there is some τ , σ ≼ τ and Φτ ↓ . But also
for such a τ , Φτ ≺ X, so that X is computable.

4 The Proof of Theorem 2

We build a weakly 2-generic G and a set M of minimal degree and a pro-
cedure Γ with ΓG = M . Proposition 3 imposes some restrictions on the
constructions of both G and M . Typically in computable constructions of
sets X and Y , with functionals Θ being built in the constructions, we would
ensure that from some point onwards Θσ = τ for some σ ≺ X and τ ≺ Y ,
and for all stages s beyond some point σ ≺ Xs and τ ≺ Ys. This is impos-
sible here as it would make X and Y both ∆0

2, since initial segments have
come to limits, by Proposition 3.

While the initial segments of both G and M do not come to limits in
the construction, we will be able to read them off the true path of the
construction and the construction will ensure that there are arbitrarily long
initial segments ρ ≺ G,σ ≺ M with Γρ ↓= σ.

It is most convenient to build M in Cantor Space and G in Baire space.
We will think of G as being the “left” construction and M the “right”
construction with Γ the partial computable mapping of strings in the left
construction to strings in the right construction.

As usual, Φe denoted the e-th Turing procedure, and we will let S0, S1, . . .
be a standard enumeration of the Σ0

2 sets of strings in Baire space. For ex-
ample, if Qi denotes the i-th partial computable binary relation, we can
let σ ∈ Si iff ∃s∀tQi(σ, s, t). As is well known, we can choose Qi here to
be the i-th primitive recursive 3-place relation, so not worry about halting
considerations.

Hat convention It is most convenient to use certain conventions about
the approximation to Si. We will adopt a kind of “hat” convention. That is,

5



suppose that σ appears in Si at stage s, with witness s0. By this statement
we mean that

• Qi(σ, s0, t) holds for all t ≤ s.

• s0 is least with this property.

Then if Qi(σ, s0, s+1) fails to hold, we will regard σ to not appear to be
in Si at stage s+1, even if there is some s1 with Qi(σ, s1, t) for all t ≤ s+1.

Further Conventions When we write τ ∈ Si,s we mean that τ appears
to be in Si,s in the sense above. Additionally, if τ appears to be in Si,s

with witness s0, then we will ask that s0 > |τ |. That is, we ask that long
strings τ must have large witnesses s0. This additional convention helps
when it comes to choosing strings appearing to be in Si,s during the priority
construction. These conventions are more or less standard.

The requirements we must meet are the following.

Re : Se dense ⇒ G meets Se [Weak-2-Genericity]

Ne : Φ
M
e total ⇒ (ΦM

e ≡T ∅) ∨ (M ≤T ΦM
e ) [minimality]

Additionally, we will need to make M noncomputable. This could be
added as an explicit feature of the construction, but in fact, noncomputabil-
ity of M will be a consequence of the construction method and the Recursion
Theorem, in a way we will later discuss.

We will discuss the meeting of the requirements in isolation and then
later analyze the interactions of the requirements. We begin with Re.

5 Weakly-2 generic construction - Basic module

for Re

Now, in isolation the idea is the following. We will assume Re has at its
disposal an initial segment ρ(e, s) of G. Of course, in the real construction,
there will be several versions of such ρ which depend upon what seems
correct at the current stage. However, for the present discussion, we assume
that ρ(e, s) is a true initial segment of G, and moreover Γρ(e,s) ↓ [s]. In

6



particular, in the real construction, we will also have that Γρ(e,s) lies in a
tree Te,s where we are building the minimal degree and this image is in a
good “e-state”, a concept we will discuss in the next section where we are
discussing the minimal degree construction. The only relevance for us here
is that we are assuming that the minimality machinery won’t initialize this
string.

Now, the idea is to set aside the cones [ρ(e, s)̂ 1̂ n] for n ∈ ω as the parts
of ω<ω where we try to meet Re, should Se be dense, and [ρ(e, s)̂ 0̂ n] is
where we will meet Re if we are in the lucky case that Se is not dense.

The most important of these cones for this discussion are [ρ(e, s)̂ î 0] for
i ∈ {0, 1}. This is because we will simplify things and pretend that the left
hand side will be built in the same e-state as that of ρ(e, s). All of the other
[ρ(e, s)̂ î j] for j ≥ 1 play a role in forcing this simplification to be true, or
we will gain some higher priority progress, as we later see 3.

So concentrating on these two strings, we work as follows. It will be
convenient in the construction to also make sure that Γρ(e,s)̂ 0̂0 ↓ [s] and
Γρ(e,s)̂ 1̂0 ↓ [s] are incompatible extensions of Γρ(e,s). As we see, this will
necessitate certain complexities in the construction, but will be discussed
later.

The strategy is the obvious one. If we see some τ(e, s) ≻ ρ(e, s)̂ 1̂ 0 and
τ(e, s) ∈ Se,s, then we would like to route Gs+1 ≻ τ(e, s). Should it be the
case that τ(e, s) ∈ Se,t for all t ≥ s, we will be done as now G meets Se.
This is outcome f on the priority tree.

While we are waiting for such a τ(e, s) to occur, we route Gt through
ρ(e, s)̂ 0̂ 0. That is, until we see such a τ ∈ Se,s, we have ρ(e, s)̂ 0̂ 0 ≺ Gt.
We regard this as outcome ∞4

Now should we think we have found τ(e, s) and the τ(e, s) /∈ Se,t at
t ≥ s + 1, our action would be to re-route Gt through ρ(e, s)̂ 0̂ 0 again.
When we move back to ρ(e, s)̂ 0̂ 0, we would play outcome ∞, for at least
one stage. At stage t + 1 we would again seek a τ(e, t) ∈ Se,t extending
ρ(e, s)̂ 1̂ 0.

3In some sense, this shows the length 2 extensions of ρ have two roles. One is to meet
Re and the other will be to reveal information about the behavior of splitting for Ne.

4Originally, we had a separate waiting outcome w, but have chosen to simplify the
combinatorics of the construction to have only two outcomes ∞ <L f , where ∞ will
either mean waiting for Se to provide a string forever, or infinitely many stages occur
where candidate strings τ leave Se, as we see below.

7



Consider a stage u ≥ t + 1. Now the question is “Which τ(e, u) to
pick?”, since there could be many possible choices of strings appearing in
Se,u. As with most Π2/Σ2 arguments, we would pick the τ(e, u) which has
been there the longest time. That is, if we think τi ∈ Se,u with witnesses si
for i ∈ {1, 2}, then choose the one with the least si, and then if both have
the same si, choose the lexicographically least one5.

Note that if Se is really dense, eventually we would find τ = lims τ(e, s)
to get stuck on extending ρ(e, s)̂ 1̂ 0. This is the Σ0

2 outcome f . If no such
τ is found, then we would either switch to ρ̂ 0̂ 0 infinitely often (outcome
∞, the Π0

2 outcome) or get stuck from some point on, also outcome ∞. On
the priority tree, we have ∞ <L f , as mentioned above.

Of course, as mentioned earlier, the above is a simplification for the
Basic Module, as there will be several versions of ρ on the guesses as per the
behaviour of higher priority requirements, but the reader should keep this
model in mind.

Note also, in the background, we will also be mapping ΓG
s → Ms in

conjunction with the above. We point out that Re has no actual desire to
make Γ total. For example, in the basic module, we would naturally map
Γτ(e,s) = Γρ(e,s)̂ 1̂0 and potentially Γ maps all extensions of ρ(e, s)̂ 0̂ 0 to
Γρ(e,s)̂ 0̂0. Plainly there are problems with this idea since we need to make
Γ total. Problems are revealed when we consider the strategy in combination
with others. See Figure 1 below.

Remark 4. We point out that Re does not care about the totality of Γ for
its satisfaction. As we will see, it is the definition of Γ itself which causes
difficulties with the satisfaction of Re if we are careless. The point is that
if we decide to move to some τ ∈ Se,s and Γτ is already defined, firstly it
needs to be the case that Γτ extends Γρ(e,s)̂ 1̂0. Secondly, it must not be
that this action causes us to injure higher priority minimality requirements
by forcing us off the “e-splitting” part of the relevant tree, something we
glossed over in the discussion above and something we now discuss. We
mention these points in passing, for the reader to keep in mind when we
discuss the requirements below6

5The reader here should pay attention to the second convention concerning Se, in that

long strings cannot have small witnesses.
6More specifically, as we discuss later, we cannot allow Re to move us off a higher

priority “e-state” for M . The point is, if at some stage we define Γη = σ and we see some

τ ∈ Se,s with τ ≼ η, then we would be forced to make Ms+1 ≽ σ if Gs+1 ≽ τ . This will
generate the key tension in the construction.

8



Figure 1: Basic Module for Re

0
1

Γs

Γs

has no extension of
τ (e, s)̂ 1 in Se

G seeks extensions
of τ (e, s)̂ 1

τ (e, s)

G built here if Se

6 Minimal degree construction: Basic Module for

Ne

The standard minimal degree construction using e-splitting trees and full
trees is well-known to computability theorists. That is, a 0′′ oracle is used
with perfect trees as conditions. At step e, we either put all paths on an “e-
splitting tree”, or there is some σ on Te such that if we take Te+1 as the full
subtree of Te above σ, then either we force divergence or force computability.
(Precise definitions are given below.)

Less well known are full approximation constructions, and this is partic-
ularly true in the setting where M ̸≤T ∅′. Thus we will take the liberty of
describing in detail how this will work.

The reader should recall that a function T : 2<ω → 2<ω is called a
(function) tree if for every finite binary string σ, T (σ0) and T (σ1) are in-
compatible extensions of T (σ). A string σ is said to be on T if it is an
element of the range of T . We write σ ∈ T . The set of paths in T are
denoted by [T ], where P ∈ 2ω is a path iff for all σ ≼ P , there exists σ′ ≻ σ
with σ′ on T and σ′ ≺ P . A set M is said to be a on T if infinitely many

9



prefixes of M are on T . Recall the following standard definition.

Definition 5. A string σ on a function tree T is said to e-split if there
are incompatible extensions τ and ρ of σ on T , and an input n such that
Φτ
e(n) ↓≠ Φρ

e(n) ↓. A string σ on T is said to be non-e-splittable if for every
pair of extensions τ , ρ of σ and every n ∈ N, if both Φτ

e(n) ↓ and Φρ
e(n) ↓,

then Φτ
e(n) = Φρ

e(n).

A set M is said to be e-splittable on T if every prefix of M on the tree
T , is e-splittable. M is said to be non-e-splittable on T if M has a non-e-
splittable prefix on T .

Finally a tree T is called e-splitting iff for all ν, T (ν0) and T (ν1) e-split.

Henceforth, we drop “function” where it is obvious. The notion of e-
splitting trees is useful for the construction of sets of minimal degrees because
of the following fundamental property.

Lemma 6 (Essentially, Spector [18]). Let T be e-splitting and M ∈ [T ]. If

ΦM
e is total, then M ≤T ΦM

e .

In the classical Spector construction7, construct a nested sequence of
computable trees T0 ⊇ T1 ⊇ . . . , and at step e, see if we can find a full
subtree of Te which is not e-splittable (in which case ΦM will be computable
if it is total), or construct Te+1, an e-splitting subtree of Te.

Remark 7. We will try to describe the full approximation construction,
concentrating on the devices we introduce to make it work. One of the diffi-
culties is that many things are interacting, both dynamically, and simultane-
ously, so looking at things in isolation (as one can in an oracle construction)
is a bit misleading.

In the full approximation construction used here, the first difference is
that we focus on some approximation to M , Ms for our attention. So, for
example, if we never see ΦMs

e (n) ↓ for some n, then we will conclude ΦM
e (n) ↑

even though there might be strings σ on the relevant tree Te where Φσ
e (n) ↓ .

The basic module for N0 is to build a tree T0,s as follows. For any stage
s, we set T−1,s = 2<ω. At stage s, Ms will be a length s (i.e. T0,s(ξ) for some
length ξ although this is not important) path on T0,s. Initially, T0,0 = T−1,0,

7Or at least as re-formulated by Shoenfield [16].

10



so that T0,0(ν) = ν. At each stage s, we will associate with each node ν in
dom(T ) a 0-state which is one of ∞ or f . Abusing notation, we also will
regard T0,s(ν) as having the 0-state of ν on T0,s. This 0-state will indicate
whether we think that T0,s(ν) 0-splits or not. f means that we don’t think
ν 0-splits, and ∞ means we do. Anticipating things somewhat, we will
use e-states which will be a string of length e + 1 from {∞, f}e+1 where
∞ <L f . “Raising” and “lowering”, “higher” and “lower”, states refer to this
lexicographic ordering. The interpretation of a node ν having a 2-state∞f∞
would be that the node with this 2-state is on T2,s, it has two extensions on
this tree which are both 0 and 2-splitting, but also thinks it is is part of T1,s

and also T2,s, as we see, where we believe that we won’t again see a 1-split.
The notion of e-state goes back to Friedberg’s maximal set construction [10].
Their use in full approximation minimal degree constructions goes back to
the original papers of Yates [19] and of Cooper [6].

This is done in a somewhat obvious inductive way. We will begin with
ν = λ, the empty string. Initially we have no computations. We give T0,s(λ)
the 0-state f8. As the construction proceeds, we monitor At the first stage
s, if any we see ΦMs(0) ↓ [s] we would like to issue a description of ΦM

0 (0),
and argue that this is correct. Hence ΦM

0 is computable. Notice that this
has no other effect on T0,s other than raising the state of λ.

More generally, suppose that we have issued descriptions of ΦM
0 (m) for

m < n, and we are dealing with some ν ≺ Ms of length n. We’d await a
stage where ΦMt

e (n) ↓, and issue a description of ΦM
0 (n).

The only time we would be wrong would be that we saw some n where
Φν0
0 (n) and Φν2

0 (n) 0-split for some ν0, ν1 on T−1,s
9. If at some stage we

observe this, then, supposing wlog ν0 <L ν1, we would raise the 0-state of
λ = T0,s(λ) to ∞, refining the tree T0,s+1 so that we define, for all ξ ∈ 2<ω,
T0,s+1(0̂ ξ) = T−1,s(η0 ξ̂) where T−1,s(η0) is the use of Φν0

0 (n) on T−1,s, and
T0,s+1(1̂ ξ) = T−1,s(η1 ξ̂), where T0,s(η1) is the use of Φν1

0 (n). In the T0,s

construction, the actual use (here regarded as the whole string up to the
largest number used in the computation) will be on T−1,s as it is initially
the identity tree. In the inductive strategies, we will use the shortest string
extending the use actually on the tree.

8It is possible to separate the three states, non-halting, all extensions giving the same
answer on all arguments (i.e. ΦM

0 computable), or 0-splitting, but using three 0-states the
construction even more elaborate, so we choose to combine the first two possibilities as f .

9And, in particular, Φ
Ms1

0 (n) and Φ
Ms2

0 (n) 0-split Φν0
0 (n) and Φν1

0 (n) 0-split, after we

issued a description of Φ
Ms1

0 , say.

11



In the full construction, we implement the strategy outlined above with
a parameter we call Test. In the above, initially Test(∞, s) would be the
empty setting λ, which is being tested to see if it has a 0-split above it.
Should a 0-split be found, one of the extensions of the split would be the next
Test(∞, s). For example, we would choose Test(∞, s + 1) = T0,s+1(0), if no
other requirements are around, and have Ms+1 ≻ Test(∞, s+1). In the full
construction, it might be that genericity requirements ask that Test(∞, s+
1) = T0,s+1(1), because we think that we might be able to have the f
outcome for it, and Γ−1(Test(∞, s + 1)) = T0,s+1(1) might be sympathetic
to this cause, as we see below.

In the real construction, the test parameter is not for a single procedure
0, but will be an e-state and this is testing for a split of some kind in matching
e− 1-state on Te−1,s. Test locations can be moved by the interactions of the
requirements, but the reader should keep the following guiding principle. If
we have a test location for some e-split at some string ν we are pressing Φe

to prove that it e-splits above ν on Te−1. If no splits are to be found, then
this is a global win on Φe since we have that ΦM

e is computable or ΦM
e is

not total, should we keep the construction within [ν] in Te. The play-offs as
to when and how we pursue this pressing strategy is one of the key tensions
in the proof.

The construction is seeking to put M on a 0-splitting partial computable
subtree of T0. At stage s, this corresponds to part of the tree T0,s containing
M as one of its paths, where the 0-state of the initial segments of M on
T0 = lims T0,s is ∞, in the limit. Should we hit some place ν on T0,s which
is a fixed initial segment of M where we can’t raise the 0-state of ν, then we
will have M ∈ [ν] in T0, and hence either ΦM

0 is partial or it is computable.

As far as the Basic Module is concerned, this will mean that for each s,
Ms is a length s path on T0,s in the sense that at each stage s we will have
a shortest ν as a test where T0,s(σ) ≺ Ms and T0,s(σ) has 0-state f .

Figure 1 below gives a general position of the construction in the tree
T0,s.

Remark 8. We point out that this discussion cannot be completely correct
as it would make M ∆0

2 which is impossible. The reason is that potentially
each Te could limitwise pick some cone for M to be built in. But it is a good
“image” for the reader to keep in mind.

More generally, at each stage s, we now build a sequence of total com-

12



Figure 2: Basic Module for N0

Test(∞, s)

Ms

All strings in T0,s have
0-state ∞

0-state f

no 0-splitting observed

either untested or unsplit

putable function trees with the following property : for any stage s and any
e, we have a total computable tree Te,s which represents the s-stage approx-
imation to a tree Te. Further, we will ensure that (paths in) the trees form
a nested sequence as follows.

[T−1,s] ⊇ [T0,s] ⊇ · · · ⊇ [Ts,s].

For any index e, we will consider the following tree constructed in the limit.

Te = lim
s→∞

Te,s,

where the limit is defined pointwise — i.e., for every string σ, Te(σ) =
lims→∞ Te,s(σ). This has the consequence that the limit tree Te may not be
computable. 10

At each stage we will associate with a string ρ on Te,s(σ) an e-state.
These are changed as above according to whether the construction observes
Te,s(σ) e-splits on Te,s (i.e. the splitting nodes must be on Te,s). That is,
attention was focused on ρ ≺ Ms by a test, and we saw a e-split on ρ of σ
on Te,s with the same e − 1-state as that of ρ. We then raise e-states by
replacing the last symbol f by ∞ if splits are observed and refining the tree
Te,s. (In the construction, this is reflected as follows: if a string ν on the

10However, we will argue that Te will contain a partial computable function tree T ∗
e

satisfying Ne.

13



priority tree represents Ne and we see a new e-split, as described above, at
a stage where ν looks correct, we would say that the stage is a ν̂∞ stage,
else a ν f̂ stage.)

e-states have the nice property that the highest one is the one beginning
with ∞ in the first place. Thus maximizing them means that we are placing
M on a 0-splitting tree. If we can do this using the tests above, we will.
Thus the action of N0 in refining T0,s has implications on Te,s for e > 0.
To wit: We might see that Te,s(σ) raises its state to α̂ ∞ as we see a split,
but later it might be that this split is removed from the tree Te,t (t > s).
If this happens then it will be the case that the state increases to α̂̂ f for
some α̂ <L α where ∞ <L f , meaning that some tree Tê,t becomes refined
(ê < e).

We can visualize this using the notion of “boundaries” on the various
trees. 11 On tree T0,s, there is a boundary below which every string σ is
0-splittable in the sense here described, and above which T0,s is the full tree.
For the tree T1,s, there are four boundaries. The nodes below the bottom-
most boundary consists of nodes which have 1-splits in the 0-splitting subtree
of T0,s. Above that, is a layer of strings which lie in the 0-splitting part of
T0,s, but not the 1-splitting part of T1,s which is also in the 0-splitting part
of T0,s. The third layer from the bottom consists of strings in the non-0-
splitting part of T0,s but in this section have 1-splits in T1,s. The topmost
layer consists of nodes which are neither 0-splittable nor 1-splittable. The
reader should refer to Fig 3.

As with all full approximation constructions, the details are very messy
but the idea is straightforward.

Remark 9. We remark in passing that the above is not quite correct when
the inductive strategies are considered, in the sense that there might be
play-offs between the priorities of the actions. For instance, consider the
situation that we have a requirement Ne of lower priority than Rj. The
latter might force certain nodes to remain on Te−1,s for the sake of keeping
a witness ρ(j, s) (for instance) on the left tree because Γρ(j,s) has an image
in Tj,s, and hence Te−1,s. This image string cannot be removed with priority
Rj . So it is unreasonable for Ne to be allowed to remove it as we think we
are currently meeting Rj with it. This is implemented by where the relevant
test string is, at any stage. The point is that we make e-states a finite string,
and only initially raise e states on Te−1 for nodes Te−1,s(σ) with |σ| > e.

11
Note: Here we refer to the nodes in the domain of the trees.

14



Figure 3:

all 0-split and 1-split
all have state ∞ ∞

Test(∞∞, s)

Test(f∞,s)

State ∞ f

Test(∞f , s)

State f f

State f ∞

Ms

Higher priority strategies might lengthen the places we are allowed to raise
e-states. In this example, to |σ| > |Γρ(1,s)|. More on this later.

7 The inductive strategies

We will now discuss the inductive strategies, which Soare [17] refers to as
the “α-module”. Certain modifications, some of which we have already
foreshadowed, are needed to make the requirements live with each other.

First, consider how a single Re requirement copes with a single Nj of
higher priority. We begin by looking at N0 being of highest overall priority
and consider R0.

The driver for N0 is to build M in a high 0-state tree T0. It is natural
for R0 to guess the eventual state of N0. Initially, R0 must guess state f ,
and Rf

0 would have erected a genericity location ρ = ρ0. (For R0, ρ0 would
be λ on the left hand tree.) As mentioned earlier, satisfaction is pursued on
ρ̂ 0̂ n and ρ̂ 1̂ n for n ∈ ω.

Now at any one time only four of these nodes are in action. ρ̂ 0̂ 0 and
ρ̂ 1̂ 0 are never initialized, and will be the possible locations use to meet R0

should it turn out that the true outcome of N0 is ∞ so that M lies on a
0-splitting subtree of T0.

15



The construction will ensure that for every string η in either [ρ̂ 0̂ 0] and
[ρ̂ 1̂ 0] if Γη ↓, then Γη has 0 state ∞ in T0.

Also, at each stage s, there will be two other uncancelled strings of the
form ρ̂ 0̂ n and ρ̂ 1̂ n with n ≠ 0 which will be currently serving the role of ρ
in the case that f is the final state of M in T0. The current string ρ̂ î n being
used will be denoted by ρi,f,s for i ∈ {0, 1}. They each will have two length
1 extensions, ρi,f,ŝ 0 and ρi,f,ŝ 1, each mapped to incomparable strings in
T0,s extending Test(∞, s). These attempt to meet R0, on the assumption

that Γρi,f,s is now stuck in the low 0-state and ∞ never again looks correct

for N0. That is, while this assumption looks correct, we will play ρi,f,ŝ 0
when R0 looks like it has the ∞ outcome, and ρi,f,ŝ 1 will be played at
stage when we believe that we have a τ ∈ S0,s extending ρi,f,ŝ 1. We remark
that each time the hypothesis that ρi,f,s is being built upon proves false
(i.e. Test(∞, s) reveals another 0-split), ρi,f,s is cancelled forever, and a new
ρi,f,s+1 is picked.

How this all works is as follows. Initially, ρi,f,s = ρ̂ î 1. We would
route the construction through ρ0,f,s and Γ-map its two extensions ρi,f,ŝ j
for j ∈ {0, 1} to incompatible extensions η0|η112 in T0,s. Since this is the
first action, we could simply pick ⟨0⟩ , ⟨1⟩ as the two ηj .

Denote the version of R0 guessing ∞ as R∞

0 . While waiting for R∞

0 to
act, we will work on the assumption that it won’t, and we will pursue the
basic R0-strategy exactly as we discussed it in Section 5, with ρ0,f,s taking

the role of ρ there. This is called the correct Rf
0 strategy. That is, whilst we

don’t see a 0-split, we would either extend ρ0,f,s+1̂ 0 infinitely often, where

Rf
0 has the ∞ outcome, or from some point onwards we extend some τ

extending ρ0,f,s+1̂ 1; this all assumes that this is the true version with guess
f about N0. We remark that in the second case, we would also protect
τ -while it appears in S0,t- from removal from the left hand tree, by keeping
its image in all the right hand trees as discussed below in more detail in
Remark 10 below.

Remark 10. In the construction, we will have defined Γ(τ) = κ for some κ
on T0,t. Anticipating things somewhat, to aide in the meeting of R0, whilst τ
remains good, we would not like lower priorityNq removing κ from any of the

12In the construction many such immediate extension strings are labelled ξi for i ∈ {0, 1}
and we will always be meaning that ξ0 is left of ξ1. We will adopt this convention so as
not to clutter the construction. Here η0 <L η1. The idea is that the leftmost path (visited
infinitely often) on the right construction will be mapped by Γ to the leftmost path in the
right; and this correlates to the leftmost path of the priority tree, i.e. the true path, TP .

16



trees Tq. The N0 requirements do this removal via the q-state machinery13.
So what we would do is ensure that all such trees contain this κ and only
work to raise the q-states for extensions of κ. We would do this by redefining
their Tests, described below, to extend κ. In the construction, we will do
this by initializing all the relevant parts of the trees Tq,v each time we play
N0 with a new τ.

Back to the construction, we consider the version of R∞

0 . We would also
define the parameter Test(∞, s) to be λ, the empty string, in T0,s. Now,
what the version of R0 guessing ∞ is waiting for is to see some 0-split of in
T0,s before defining Γ. This would happen in two steps as we now discuss.

First, we see an n where Φν0
0 (n) and Φν1

0 (n) 0-split λ for some ν0, ν1. In
this case, we would refine the T0,s-tree to make T0,s+1, with T0,s+1(j) = νj .
and otherwise leaving T0,s unchanged. That is, nothing happens, except we
re-define T0,s+1(jξ) = νjξ. (This formula works because T0,s is initially 2<ω.
If we wrote this with an eye towards the inductive strategies, the formula
would be T0,s+1(jξ) = T0,s(ζjξ) where T0,s(ζj) = νj.)

At this stage, we would not yet play the version of R∞

0 , as our fundamen-

tal guiding principle is that we only allow Γ to be mapped by this strategy
to strings in the high state in T0,s and we don’t yet have proof that either
of the T0(j) are in the high state. Thus our only actions would be to

• Define Γ(ρ, s + 1) = λ (as we know λ now has the high state.)

• Initialize ρi,f,s and define ρi,f,s+1 = ρ̂ 0̂ 2. (If this was a general step
of the construction, this formula would read as ρi,f,s+1 = ρ̂ î ⟨n+ 1⟩
where ρi,f,s = ρ̂ î ⟨n⟩.)

• Set Test(∞, s + 1) = ⟨0⟩. (Now we are testing to see if ⟨0⟩ 0-splits in
T0.

• Give ρi,f,s+1 for i ∈ {0, 1}, two length 1 extensions, ρi,f,s+1̂ 0 and
ρi,f,s+1̂ 1, each mapped to incomparable strings in T0,s extending νi.
(Hence, in particular, the extensions of ρ0,f,s+1̂ 0 extend Test(∞, s +
1).)

Note that [ρi,f,s] are now both abandoned forever, and, in particular,

neither R∞

0 nor Rf
0 will ever again seek witnesses there. (See Fig 4.)

13It is only the N -requirements which will remove strings from the range of Γ, and

consequently the pre-images from the right hand side

17



Figure 4:

now here

0 1

0 1 2

Γ

Γ

now here
M construction

Abandoned

ρ(0, t, s + 1) ρ(1, t, s + 1)

ρ

G construction

The second step in the strategy is similar, but in this step we will really
only deal with [ρ̂ 0], until it is resolved. While we await a further ∞ “con-
firmation” by N0, we will continue our construction in [ρ0,f,s+1], as in the

basic module of Section 5 and as above with the Rf
0 strategy.

We pursue the Rf
0 strategy with base ρ0,f,s+1, until we see a stage where

we find in T0,t a 0-split of Test(∞, s+1) at some stage t ≥ s+1. Should no
0-split of Test(∞, s+1) occur, then the left construction will be carried out
in the cone [ρ0,f,s+1], and right construction will be carried out in the cone
[Test(∞, s+1)]; that is, in [ν0]. In this case, again we have globally met N0

as we have proof that Φ<
0 is nor total or ΦM

0 is not computable.

Finally, should a 0-split ζ0, ζ1 of Test(∞, t+1) be found in [Test(∞, s+1)],
we would

• Refine T0,t+1 using this 0-split above ν0. (i.e. T0,t+1(0i) = ζ0, for
i ∈ {0, 1}, etc.)

• Define Γ(ρ̂ 0̂ 0, t+ 1) = ν0 (as we know ν0 now has the high state.)

• For i ∈ {0, 1}, initialize ρi,f,t and define ρi,f,t+1 = ρ̂ 0̂ 314. (If this

14Actually, there is no reason in this step to initialize ρ1,f,t. That is because we will
either stay in [ρ̂ 0], as we see below, or move to [ρ̂ 1] for the first time; and we have not
yet proven that ν1 has a 0-split in T0. However, in the construction, we can regard each
time we verify that the ∞ outcome for N0 looks correct, all strategies Re guessing that

18



Figure 5:

if τ

Abandoned

G here

G here

M construction M constructionAbandonedif no
τ τ

here if no
found
here if τ

found

was a general step of the construction, this formula would read as
ρi,f,t+1 = ρ̂ î ⟨n+ 1⟩ where ρi,f,t = ρ̂ î ⟨n⟩.)

• Get ready to redefine Test(∞, t + 1). This is slightly more complex
than the first case and is described below.

• Give ρi,f,t+1 for i ∈ {0, 1}. two length 1 extensions, ρi,f,t+1 0̂ and
ρi,f,t+1̂ 1, each mapped to incomparable strings in T0,t+1 extending νi,
(e.g. ζ0, ζ1 for ν0.)

Redefining Test(∞, t+1) The re-definition of Test(∞, t+1) is slightly
more complex. We first look to see if we should switch to trying to go to
some τ ∈ S0,t extending ρ̂ 1̂ 0 on the left hand side.

Case 1. If there is no such τ , there is no reason to leave our current
location, so we would simply set Test(∞, t + 1) = ζ0, and repeat the above
inductively.

See Fig 5 below.

Case 2. The other possibility is that we see some such candidate string
τ . We would like to take this string to try to meet R∞

0 , but this necessitates
that τ can or will be mapped to something on the right hand side in the

it has the f -outcome will be initialized. This make the presentation of the construction
smoother. All we have to say is “initialize strategies right of TPs”.

19



high 0-state. Before we can do this mapping again, we would force this to
happen as above.

To wit: In this τ -case, we will define Test(∞, t+ 1) = ν1. The construc-
tion will then proceed in the cone [ρ1,f,t+1] = [ρ1,f,s+1] on the left hand side
(guessing that no 0-split of ν1 is found). If a split α0,α1, is found at stage
v, akin to the above, we will

• Refine T0,v+1 to have this 0-split above ν1.

• Define Γ(ρ̂ 1̂ 0) = ν1.

• Initialize ρ1,f,v and make define ρ1,f,v+1 the next string right, as before
for 0, and map two length 1 extensions to direct extensions αi of ν1.

Now need to make a decision. Can we still work to win R0 here? Cer-
tainly, we would need to see that τ has remained in S0,v since S0,t. If the
answer is yes, then in this initial attack, we would simply ask that the con-
struction now be carried out in the cone [τ ] on the left hand side. In this case
we would define Γ(τ) = ν1. And in this case we’d have Test(∞, v+1) = α0.

We remark that in subsequent attacks, later in the construction, we
might already have a definition of Γ(τ̂) = κ for some longest τ̂ ≼ τ . The
construction will have ensured that κ already has 0-state ∞ in T0,v. Thus,
we will also be safe to map Γ(τ) = κ.

Finally, if τ is no longer in S0,v or has entered and left, we would move the
left construction back to the cone [ρ0,f,t+1], and now make Test(∞, v+1) =
ζ0.

In the case that we found τ the construction on the right hand side R∞

0

will continue to either

(i) work in [τ ] each time the Test(∞, p) returns a new relevant 0-split, or

(ii) will eventually get stuck on some cone [ρ1,f,p] mapping to strings in
some cone [Test(∞, p)] on the right hand side in T0 (which is a subcone
of [ν1]), or

(iii) discover that τ /∈ S0,p for some larger p.

In Case (i), R∞

0 has outcome f and wishes to remain in [τ ]. However,
the rules of engagement are that in this cone, only strings ξ with 0-state

20



∞ in T0 can be of the form Γ(α) = ξ. The construction will, of course, be
making an infinite extension of τ , so part of the construction is to wait for
more and more such ξ to occur. While we wait for such ξ, while τ remains
good, so that (iii) is not invoked, we will either be in [τ ] at a ∞-stage for
N0, or we will be working in some [ρ1,f,u] which is cancelled each time we
move above [τ ]. We would then move back to [ρ1,f,u+1] after playing above
τ with a new Test(∞, u + 1) above ν1.

In the Case (iii), as above we would move the left construction back to
the cone [ρ0,f,p+1], and now make Test(∞, p + 1) = ζ0.

See Figure 5 for the situation at this point, where we are about to con-
sider our alternatives for ρ∞ 1̂.

The above is a two step process on each side. That is because we will
initially have to verify the base λ on T0,s. Once this is done the verification
process-that the true outcome of N0 is ∞-will only need one step; verifying
that Test(∞, s) 0-splits on T−1,s.

Summary. First we might get stuck on some Rf
0 strategy, and this will

only happen if N0 has the f -outcome, and we are stuck on the left hand side
in some cone [ρi,f,s] from some point onwards. In this case, G ≻ ρi,f,ŝ j for
some j ∈ {0, 1}. In the case j = 1 there is some τ ∈ Se with ρi,f,ŝ 1 ≼ τ ≺ G,
and Γτ has 0-state f in T0. In the case that j = 0, there is no τ ∈ Se

extending ρi,f,ŝ 1, so Se is not dense.

If we don’t get stuck on some Rf
0 strategy, then the R∞

0 strategy is
correct. In this case, the first possibility is that we only play to try to
extend ρ̂ 1 finitely often. The first possibility for this case is that from some
point onwards, there is some fixed τ ∈ Se,s extending ρ̂ 1̂ 0. and G ≻ τ.
Then we would infinitely often alternate between working above ρ̂ 1̂ 0 in [τ ]
and working above [ρ1,f,u]. The {ρ1,f,u | u ∈ ω} have no limit.

The other possibility for this case is that no stable τ is found. Thus
Case (iii) is invoked infinitely often. In this case, G ≻ ρ̂ 0̂ 0, and there is no
τ ∈ Se extending ρ̂ 1̂ 0.

The remaining case is that we play in [ρ̂ 0] infinitely often, and in this
case there is no τ ∈ Se extending ρ̂ 1̂ 0.

More requirements The only remaining details we need for more
strategies is the discussion of how we allow for the inclusion of more trees
etc.

21



The R0 decides how we work with T1. If the true version of R0 is
Rf

0 then we will eventually get stuck on some ρi,f,s forever, for s ≥ s0.
Then Test(∞, s0) never gets 0-state ∞ on T0,s, and Test(∞, s0) =Test(∞, s),

s ≥ s0. If the true outcome ofRf
0 is∞, so that we return to ρi,f,s0 0̂ infinitely

often (including from some point onwards), then we would be free to try to
meet R1, by declaring its version of ρ, ρ1 as ρ1,f,s0 0̂. This version of R1

has guess f about N0. But it should also have a guess about N1. What
we would do is to define Test(f∞, s0) =Test(∞, s0). This N1 strategy is
attempting to refine T1,u for u ≥ s0 to state f∞ by looking for 1-splits in
T0 above Test(f∞, s0). This would refine the T1-tree within the T0-tree.
Assuming that ρ1,f,s0 0̂ is the final location for R1, the strategy works in
exactly the same way as we did for R0, within this cone.

Test(f∞, s) might change infinitely often, but it will always extend

Test(∞, s0). We would call this the Rf∞
1 -strategy, meaning that it is guess-

ing f for N0 and ∞ for R0.

The other possibility in the case that Test(f∞, s0) has reached its limit

at some τ extending ρi,f,s0 1̂ and the true outcome of Rf
0 is f . In this

case all of the above is the same, except that we would try to meet R1, by
declaring its version of ρ, ρ1 as τ which extends ρ1,f,s0 1̂, and declare that
Test(f∞, s0) = Γ(τ). This latter condition is to make sure that we don’t
remove τ from the left hand side by raising the 1-state of something on the
right. We would call this the Rff

1 strategy, meaning that it is guessing f for
N0 and f for R0.

The other strategies for R1 and N1 are entirely similar. If they guess the
infinite outcome for N0, then they live in one of the cones provided by the
R∞

0 strategy. The R∞∞

1 strategy would work in ρ̂ 0̂ 0 and would be able to
make ρ1 equal to that. N0 would be allowed to try to raise 1-states inside
[Γ(ρ̂ 0̂ 0)] inside of T1. It would seek 1-splits which were already in 0-state
∞ in T0. Test(∞∞, s) ≼Test(∞, s) at every stage s. As above, precisely
where this test starts from depends on the outcome of R∞

0 . The outcome
∞ would allow us to use Γ(ρ̂ 0̂ 0) as Test(∞∞, s), whereas the outcome f
would again need Γ(τ) as above.

One subtle point is that there is no reason that the same 1-state will
appear above Γ(ρ̂ 0̂ i) for both i ∈ {0, 1}. We could have included the
outcome of R0 as part of the 1-states but this adds even more notation.

The rest simply works inductively. We now turn to some details.

22



Construction

The construction proceeds in substeps where we generate a string TPs+1 ∈
{∞, f} the apparent true path at stage s + 1, which gradually gets longer
with s.

The construction works more or less precisely as described above. Begin-
ning at λ in the priority tree PT , we will see if Test(∞, s) returns a 0-split
on T0,s. If so then s is an ∞-stage, and otherwise it is an f -stage. In the

first case we invoke strategy R∞

0 and otherwise Rf
0 , as described above.

More generally, at substep t ≤ s we will have generated TP t
s+1 which is

a string in {∞, f}t+1. The even bits will correspond to g-states on trees Tg,s

for 2g ≤ t. The odd bits will be the current state of the Rσ
k -strategy where

σ is the initial segment of TP t
s+1 of length 2k + 1.

We first suppose that t = 2e > 0. Let α be the string of length e − 1
consisting of the first e−1 even bits of TP t

s+1. Test(α∞, s)t (i.e. the version
at substep t) will have been determined by the previous substage t− 1. See
if Te,s contains two e-splitting extensions of e− 1-state α. If so, then refine
the tree Te,s+1 to have these two splits, and give Test(α∞, s)t state α∞.
Then we will say s + 1 is an TP t

s+1∞-stage. The determination of what
Test(α∞, s + 1) will be will be decided by the next substage.

If there is no such e-split, then we will say s + 1 is an TP t
s+1f -stage.

Test(α∞, s + 1) =Test(α∞, s).

Suppose that t = 2e + 1. Let α be the string of even bits of TP t
s+1 of

length e− 1.

Case A. Suppose that substage t says that s + 1 is a β =def TP
t−1
s+1f -

stage. Also we suppose that we have built M t
s+1. We invoke the Rβ

e strategy.

(i) If there is no string ραf,s,t already defined, then let this be M t
s+1, give

this two length 1 extensions ραf,s,t̂ i for i ∈ {0, 1}, and map them to
two strings immediately extending Γ(M t

s+1) in Te,s which we claim will
have e-state αf .

(ii) If ραf,s,t is currently defined, we claim that M t
s+1 ≼ ραf,s,t. We will

play the Rβ
e strategy, as with the basic module. That is, we seek some

extension τ ∈ Se,s of ραf,s,t̂ 1.

(iia) If no such τ is found, then we will define TP t+1
s+1 = β∞ and

23



M t+1
s+1 = ραf,s,t̂ 0. Test(αf∞, s + 1) =Test(αf∞, u), where u is

the most recent β∞-stage.

(iib) If τ is found, we will set M t+1
s+1 = τ , and define Γ(τ) = Γ(τ̂) = κ

where τ̂ is the longest substring of τ with Γ(τ̂) ↓ [s]. We claim
that κ will have e-state αf on Te,s.

Subcase 1. The first subcase is that that τ ∈ Se,s is un-
changed since the last βf -stage. In this case, Set Test(αf∞, s +
1) =Test(αf∞, v).

Subcase 2. τ ∈ Se,s is new and there has been a previous βf -
stage, or there has not been a previous βf -stage.

Set Test(αf∞, s + 1) = κ.

In either subcase, declare that s+ 1 is a βf -stage. In Subcase 2,
this ends the stage, otherwise we move on to the next substage.

Case B. Suppose that substage t says that s + 1 is a δ =def TP
t−1
s+1∞-

stage. Also we suppose that we have built M t
s+1. We invoke the Rδ

e strategy.
Again, this is entirely analogous to the Basic Module.

Rather than writing out many subcases we will describe the Rδ
e strategy.

If there is no string ρ = ρα∞,s,t already defined, then let this be M t
s+1,

give this four length 2 extensions ρ̂ î k for i, k ∈ {0, 1}.

If this was the first time, we would map have Test(α∞, s+1) = Γ(M t
s+1).

This would complete the stage.

Then we would test to see whether we can safely define Γ(ρ̂ 0̂ 0) to a
string in the high e-state α∞. Note that at the next v we visit ρ (assuming
it is not initialized) it will necessarily be a α-stage.

If this is an αf -stage, then we would pursue Case A, using ρ0,α∞f,v =
ρ̂ 0̂ 1, and defining Test(αf∞, v) = Γ(ρ̂ 0̂ 1).

We would pursue Case A each time we visit ρ, until we see a new e-split.
We will do this with the two step process, and hence need e-splits until
we will be safe to define Γ(ρ0,α∞f,v) = ν0 where this is some immediate
extension of Test(α∞, s + 1) in Tt,v.

If we reach a stage q we finally do this, we would then need to decide
whether to try to move above ρ̂ 1̂ 0, according to whether we see some τ ∈
Se,s extending ρ̂ 1̂ 0. If we do, we would pursue the analogous strategy in the
cone [ρ̂ 1]. If not we would define Test(α∞∞, q+1) =Test(α∞, q+1) = ν0.
Then s+ 1 would be a TP t

q+1∞-stage.

24



The remainder of the Rδ
e strategy is entirely analogous, and leads to no

further insight.

At the end of the stage, initialize all work based on guesses right of TPs.

End of Construction

Now we verify the construction.

Let TP be the true path of the construction. That is, the leftmost path
visited infinitely often.

Lemma 11. TP exists.

Proof. There is nothing to prove for length 1 since the tree is finitely branch-
ing, and one of ∞ or f will be on TP . Inductively suppose that β ≺ TPs is
leftmost visited infinitely often. Let α be the set of even positions of β.

The only time we don’t construct a length s string for TPs is when we
deal with the Rβ

e -strategies. Thus let β ≼ TP and let s0 be a stage after
which we are never left of β.

When we next visit β we will erect ρ’s for Rβ∞
e and Rβf

e . The ones for
β∞ are never initialized and the ones for βf are initialized each time we
visit β∞. One of β∞ or βf are therefore visited infinitely often, and in the
latter case there will be a final version of ρi,βf,s for one of i ∈ {0, 1}.

Because the construction only delays extending the relevant node until
the e-state of the guess is verified for the image to be defined, and this delay
can happen at most 4 times once we have a stable ρ, we conclude that for
almost all stages where the appropriate guess looks correct and we visit ρ (in
whatever the correct case is), we will play a proper extension of it. Hence
TP is infinite.

The remainder of the verification is more or less along the lines of the
discussions of the Basic Modules.

First we note that the construction maps strings in the leftmost part of
the right construction to the same in the left one.

Let β ≺ TP , and let α be the string of even positions in β.

If β and has odd length 2e+ 1, then Rβ
e has one of two outcomes, ∞ or

f . Depending on what α is there is a final ρ which is visited infinitely often

25



at α-stages from some point onwards. Then one of either ρ̂ 0̂ 0 or ρ̂ 1̂ 0 will
meet Rβ

e in the base that α = α∞, or ρ̂ 0, ρ̂ 1 in the other case. Which it
is, is determined exactly as in the Basic Module.

Inductively we can conclude that Rβ
e meets Re, and maps extensions of

whichever length 1 or 2 extension meets it to strings of state α in Te. In the
case of an f outcome, there will be a fixed string τ extending one of ρ̂ 1,
ρ̂ 1̂ 0 (depending on what α is) and its e-state in Te is α and is protected
from raising its e+ 1-state.

Finally, if β has length 2e, inductively it will be building a tree within
Te−1. First suppose that β = δf . Let ρ denote the final ρ of Rδ

e−1. Without
loss of generality, we suppose that ρ̂ 1 is the final string, the case ρ̂ 0̂ 1
entirely analogous. Let τ be the witness string. The Test(α, s) will have
been set to be Γτ = κ on Te−1, and this will not be removed from Te−1.

Thereafter, no extension of κ can ever be removed from Tj,s for any
j ≤ e− 1. By induction, there is a partial computable sub-tree of e− 1-state
γ within Te−1 where γq = β for some q ∈ {f,∞}. If this q was f , since
this is inductively the final τ , no further e-splits of κ can be found on Te−1

and hence Te and Te−1 agree on extensions of κ. The final e-state will be
α, and we conclude that ΦG

e lies in a cone in Te with no e-splits. Therefore
ΦG
e is either partial or computable. The case that q = ∞ is analogously the

one where Te in this cone will be e-splitting, and we can invoke Spector’s
Lemma.

Finally the case that β = δ∞ is entirely similar, using extensions with
last bit 0.

This concludes the proof.

8 Summary and Open Questions

We have constructed a weakly 2-generic degree computing a minimal one.

Chong and Downey gave a characterization of provides a characterization
of when a set is computable from a 1-generic degree.

Definition 12 (Chong and Downey[5, 3]). • We say that a computably
enumerable set of strings S is a proper cover 15 of a set X iff for all

15In the original paper this was called a Σ1-dense set of strings.

26



σ ≺ X, there exists τ ∈ S, such that σ ≼ τ , and no σ ∈ S is an initial
segment of X.

• We say that X has a tight cover S if S is a proper cover and for all
proper covers Ŝ, ∃σ ∈ S∃τ ∈ Ŝ(σ ≼ τ).

Theorem 13 (Chong and Downey-[5, 3]). • A set X is computable from

a 1-generic set iff X has no tight cover.

• Moreover, there exists a procedure Φ such that for all sets X, if X has

no tight cover, then there is a 1-generic G ≤T X ′′ such that ΦG = X.

This characterization had certain consequences.

The first was the result by Kumabe [13] and independently Chong and
Downey [5]: There is a minimal degree below 0′ computable from a 1-generic

degree below 0′′. Other consequences include:

Theorem 14 (Chong and Downey [3] ). There is a minimal degree below

0′ not computable from a 1-generic degree.

Theorem 15 (Kurtz-thesis). Almost no degree is computable from a 1-

generic.

Clearly Kurtz’s result was first obtained by direct methods. Thus the
question arises whether there is a similar local characterization of when a
set is computable from a weakly 2-generic. We would guess that the answer
would be something like

X has no Σ0
2 “tight proper dense cover”.

The problem is that the Chong-Downey proof (even when the slight error
was corrected in McInerney’s Thesis [15]) is already itself full approxima-
tion 0′′ argument, and any analogue would be to extend the approximation
argument above, as well. Thus we would guess that any extension would
add another quantifier, making it a 0′′′-full approximation argument; as the
things that need approximating are very complex.

The other question which is implicit in our work is whether the theorem
can be obtained using forcing techniques. In all likelihood, this would give a
reduction M ≤ G with a reduction stronger than ≤T , probably truth-table

27



reductions. This leads to the obvious question about whether such strong
reductions are possible.

Finally, we believe that the minimal degree deg(M) of our result can
also be made to be of hyperimmune-free degree. This would entail the proof
we have given combined with the methods of Downey [8] where degree of
Cantor-Bendixson rank one is given. Such methods involve the construction
of M traversing the relevant trees from left to right over and over again,
each time verifying that computations converge. Probably this is possible,
but the argument would be significantly more complex than the present one.

Acknowledgments

This research was initiated during a visit to André Nies’ research center
at Whiritoa. This research was supported by the Marsden Fund through
grants to Rod Downey and André Nies enabling Nandakumar’s visit to New
Zealand. Nandakumar’s research was partly supported by DST SERB grant
SB/FTP/ETA-0249/2013.

References

[1] George Barmpalias, Adam R. Day, and Andy E. M. Lewis-Pye. The
typical Turing degree. Proceedings of the London Mathematical Society.
Third Series, 109(1):1–39, 2014.

[2] George Barmpalias and Andy Lewis-Pye. The information con-
tent of typical reals. In Turing’s revolution, pages 207–224.
Birkhäuser/Springer, Cham, 2015.

[3] C. T. Chong and Rodney G. Downey. Minimal degrees recursive in
1-generic degrees. Annals of Pure and Applied Logic, 48:215–225, 1990.

[4] C. T. Chong and C. G. Jockusch. Minimal degrees and 1-generic sets
below 0′. In Computation and proof theory (Aachen, 1983), volume
1104 of Lecture Notes in Math., pages 63–77. Springer, Berlin, 1984.

[5] Chi-Tat Chong and Rodney G. Downey. Degrees bounding minimal
degrees. Mathematical Proceedings of the Cambridge Philosophical So-
ciety, 105, 1989.

28



[6] S. B. Cooper. Minimal degrees and the jump operator. The Journal of

Symbolic Logic, 38, 1973.

[7] Rod Downey and Liang Yu. Arithmetical Sacks forcing. Arch. Math.

Logic, 45(6):715–720, 2006.

[8] Rodney G. Downey. On π0
1 classes and their ranked points. Notre Dame

Journal of Formal Logic, 32:499–512, 1991.

[9] Rodney G. Downey and Denis Hirschfeldt. Algorithmic Randomness

and Complexity. Springer, 2010.

[10] Richard M. Friedberg. Three theorems on recursive enumeration. I.
Decomposition. II. Maximal set. III. Enumeration without duplication.
The The Journal of Symbolic Logic, 23:309–316, 1958.

[11] Christine Ann Haught. The degrees below a 1-generic degree < 0′. J.

Symbolic Logic, 51(3):770–777, 1986.

[12] Carl Jokusch. Degrees of generic sets. In F. R. Drake and S. S. Wainer,
editors, Recursion Theory: its Generalizations and Applications, pages
110–139. Cambridge University Press, 1980.

[13] Masahiro Kumabe. A 1-generic degree which bounds a minimal degree.
The Journal of Symbolic Logic, 55:733–743, 1990.

[14] Stuart Alan Kurtz. RANDOMNESS AND GENERICITY IN THE

DEGREES OF UNSOLVABILITY. ProQuest LLC, Ann Arbor, MI,
1981. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign.

[15] Michael McInerney. Topics in Algorithmic Randomness and Com-

putability Theory. PhD thesis, Victoria University Wellington, New
Zealand, 2016.

[16] Joseph R. Shoenfield. Degrees of unsolvability. North-Holland Publish-
ing Co., Amsterdam-London; American Elsevier Publishing Co., Inc.,
New York, 1971. Dedicated to S. C. Kleene, North-Holland Mathemat-
ics Studies, No. 2.

[17] Robert I. Soare. Recursively Enumerable Sets and Degrees. Springer,
1987.

[18] Clifford Spector. On degrees of recursive unsolvability. Annals of Math-

ematics. Second Series, 64:581–592, 1956.

29



[19] C. E. M. Yates. Initial segments of the degrees of unsolvability part ii:
Minimal degrees. The Journal of Symbolic Logic, 35, 1970.

30


