THE UPWARD CLOSURE OF A PERFECT THIN CLASS

ROD DOWNEY, NOAM GREENBERG, AND JOSEPH S. MILLER

Abstract

There is a perfect thin Π_{1}^{0} class whose upward closure in the Turing degrees has full measure (and indeed contains every 2 -random degree.) Thus, in the Muchnik lattice of Π_{1}^{0} classes, the degree of 2-random reals is comparable with the degree of some perfect thin class. This solves a question of Simpson [15].

1. Introduction

Our concern in this paper is with computably bounded Π_{1}^{0} classes. Without loss of generality, we consider these as being subclasses of Cantor space 2^{ω}. In particular we shall be concerned with the Turing degrees of members of perfect thin Π_{1}^{0} classes. Recall that a Π_{1}^{0} class \mathcal{P} is called thin if \mathcal{P} is infinite and for all Π_{1}^{0} subclasses $\hat{\mathcal{P}}$ of \mathcal{P}, there is a clopen \mathcal{U} with $\hat{\mathcal{P}}=\mathcal{P} \cap \mathcal{U}$. A thin class is perfect (contains no isolated points) if and only if it has no computable members. Thin classes were essentially introduced by Martin and Pour-El [13] under duality, and have come to occupy a central area in the study of Π_{1}^{0} classes, as can be found in $[1,2,3,4]$, which will serve as background material for thin Π_{1}^{0} classes.

The perfect thin classes are an extremely interesting subclass of the thin classes, in that they form an orbit in the automorphism group of the lattice of Π_{1}^{0} classes, and form an invariant class for the "array noncomputable degrees" as found in Cholak, Coles, Downey and Herrmann [5]. Thus they are analogues of the maximal sets in the lattice of computably enumerable sets.

The motivation of the present paper comes from Simpson's paper [15], where he relates randomness considerations to his study of an extension of the c.e. degrees (Simpson [16]). Given two classes of reals \mathcal{A} and \mathcal{B}, we say that \mathcal{A} is Muchnik reducible to \mathcal{B} if every element of \mathcal{B} computes some element of \mathcal{A}. This transitive relation gives rise to a degree structure: the Muchnik (or weak degrees), which turns out to be a distributive lattice (indeed, isomorphic to the lattice of upwards closed sets of Turing degrees under inclusion, union and intersection.) Of particular interest is the lattice \mathscr{P}_{w} of Muchnik degrees of Π_{1}^{0} classes, whose greatest element is pa, the degree of the class of completions of Peano Arithmetic, and least element is $\mathbf{0}$, the degree of classes which contain computable elements. Simpson showed that the mapping $\operatorname{deg}_{T} W \mapsto \operatorname{deg}_{w}\{W\} \wedge$ pa is an embedding of the c.e. degrees \mathscr{R} into \mathscr{P}_{w}.

Simpson found that in \mathscr{P}_{w} there are natural intermediate degrees. For example, if \mathbf{r}_{1} denotes the degree of the class of 1-random reals and \mathbf{r}_{2} is the degree of the

[^0]class of 2-random reals ${ }^{1}$, then Simpson showed [16, Theorem 3.6] that $\mathbf{r}_{1} \in \mathscr{P}_{w}$, $\mathbf{r}_{2} \wedge \mathbf{p a} \in \mathscr{P}_{w}$, and
$$
\mathbf{0}<\mathbf{r}_{1}<\mathbf{r}_{2} \wedge \mathbf{p a}<\mathbf{p a}
$$

Now, Simpson [15, Theorem 9.15] proved that if a is the Muchnik degree of a thin perfect Π_{1}^{0} class, then \mathbf{a} is incomparable with $\mathbf{r}_{\mathbf{1}}$. It is natural to ask whether $\mathbf{r}_{2} \wedge \mathbf{p a}$ is also incomparable with the degrees of perfect thin classes. It turns out that for a Π_{1}^{0} class $\mathcal{P}, \operatorname{deg}_{w} \mathcal{P} \leqslant \mathbf{r}_{2}$ iff the Lebesgue measure of the upward closure of the Turing degrees of the elements of \mathcal{P} is 1 (by a $0-1$ law, a measurable set of Turing degrees has measure either 0 or 1). This implies that the degrees of some perfect thin classes are incomparable with $\mathbf{r}_{2} \wedge \mathbf{p a}$. In particular, the existence of a perfect thin separating class follows from Martin and Pour-El [13]; the upward closure in the Turing degrees of such a class must have measure 0 by Jockush and Soare [10, Theorem 5.3]. Is this true of every perfect thin class? Simpson [15] proved that the Lebesgue measure of thin Π_{1}^{0} classes is always 0 . On the other hand, we prove that the upward closure of a perfect thin class can have measure 1 , proving that some perfect thin classes have degrees comparable with $\mathbf{r}_{2} \wedge \mathbf{p a}$.

Theorem 1.1. There is a perfect, thin Π_{1}^{0} class \mathcal{P} such that the set of reals which compute elements of \mathcal{P} has full measure.

Our proof uses the idea of "risking measure", which goes back to Paris [14], Martin (see [8]) and Kurtz [11], as well as an effective 0-1 law, as discussed in Downey and Hirschfeldt [8].

Notation is standard and follows Soare [17].

2. The Proof

We build a Π_{1}^{0} class \mathcal{P} by defining a computable tree $P \subset 2^{<\omega}$. At stage s of the construction we define P_{s}, the $s^{\text {th }}$ level of the tree. In general, for all $\sigma \in P_{s}$, we would include both $\sigma 0$ and $\sigma 1$ in P_{s+1}, unless we decide to terminate σ in which case we include neither.

Additionally, we build a Π_{2}^{0} class \mathcal{C} and a procedure for computing an element of \mathcal{P} from any element of \mathcal{C}. By the effective $0-1$ law, in order to guarantee that the class of reals which compute elements of \mathcal{P} has full measure, it is sufficient to ensure that \mathcal{C} has positive Lebesgue measure. For notational convenience, we prefer to build \mathcal{C} not as a subclass of Cantor space 2^{ω} but rather as a subclass of the Euclidean interval $[0,1)$. We note that after removing countable sets (the binary rationals on one side, and the finite and cofinite sequences on the other), there is an effective measure-preserving isomorphism between Cantor space and the interval $[0,1)$, and so our construction also implies the result for Cantor space.

To define the (effective, hence continuous) mapping from \mathcal{C} to \mathcal{P}, we map rational intervals to strings. We thus define a partial computable function Γ which maps sub-intervals of $[0,1)$ with rational endpoints to strings in $P ; \Gamma$ is consistent (like a Turing functional) in that if I, J are intervals in the domain of Γ and $I \subset J$, then $\Gamma(I)$ is a string that extends $\Gamma(J)$. At stage s, we ensure that Γ is onto P_{s}.

[^1]To define the reduction, for any $x \in[0,1)$, we let

$$
\Gamma^{x}=\bigcup\{\Gamma(I): I \in \operatorname{dom} \Gamma \text { and } x \in I\}
$$

and let

$$
\mathcal{C}=\left\{x \in[0,1): \Gamma^{x} \in 2^{\omega}\right\}
$$

Since \mathcal{P} is closed and the range of Γ is in P, we get that if $x \in \mathcal{C}$ then Γ^{x}, which is clearly computable from x, is in \mathcal{P}.

Let T_{0}, T_{1}, \ldots be an effective enumeration of all Π_{1}^{0} subtrees of $2^{<\omega}$ (so $T_{e}=\bigcap_{s} T_{e, s}$ where $T_{e, s}$ are uniformly computable trees.) To ensure that \mathcal{P} is thin, we must meet the requirements
$R_{e}:$ If $\left[T_{e}\right] \subseteq \mathcal{P}$ then there is some clopen set \mathcal{U} such that $\left[T_{e}\right]=\mathcal{P} \cap \mathcal{U}$.
Recall for a moment the standard way of meeting these requirements, for example, R_{0}. We wait for a stage s at which we discover that there is some string $\sigma \in P_{s}-T_{0, s}$. We then terminate all other strings of length s (so we ensure that $\mathcal{P} \subset[\sigma]$. . Since $\left[T_{0}\right] \cap[\sigma]=\emptyset$, we get that if $\left[T_{0}\right] \subseteq \mathcal{P}$ then $\left[T_{0}\right]=\emptyset$ and so we can pick $\mathcal{U}=\emptyset$ to witness R_{0}.

For our purposes, the problem with this approach outlined above is that when σ is found, too much measure is permanently thrown out of \mathcal{C}. We need to be able to control the size of the set that we fail on if we hope for \mathcal{C} to have positive measure. If we follow this naïve approach, Γ will end up being the identity function and \mathcal{C} will equal \mathcal{P}, and hence have measure 0 since the measure of a thin class is always 0 . Thus our idea will be to modify the approach above by risking measure.

What we will do is the following. We note that if we knew σ in advance, then we could define $\Gamma([0,1))=\sigma$, and so even though the measure of \mathcal{P} is small, all reals can still compute elements of \mathcal{P}. However, we cannot know whether such a σ will ever occur in $P_{s}-T_{0, s}$. The idea is to set aside some measure to test this hypothesis. This is an amount of measure that the requirement R_{0} is allowed to waste (by removing it from \mathcal{C}). If we ensure that the total amount of measure risked by all requirements is smaller than 1 , then we will have ensured that \mathcal{C} is not null.

Suppose for simplicity that R_{0} is allowed to risk a measure of $1 / 2$. We would then divide the domain $[0,1)$ into two intervals: say $I_{0}=[0,1 / 2)$ and $I_{1}=[1 / 2,1)$. To begin with, we leave I_{0} out of the domain of Γ and only define Γ on I_{1} and its subintervals (according to the action done for weaker requirements). If no string σ ever occurs in $P_{s}-T_{0, s}$, then $\mathcal{C} \subset I_{1}$, but R_{0} is met vacuously: if $\left[T_{0}\right] \subseteq \mathcal{P}$ then $\left[T_{0}\right]=\mathcal{P}$ and so we can let $\mathcal{U}=2^{\omega}$ witness R_{0}. If, on the other hand, we find some $\sigma \in P_{s}-T_{0, s}$, then we define $\Gamma\left(I_{0}\right)=\sigma$ and stop defining Γ on subintervals of I_{1} (in fact, we only define it on subintervals of I_{0} from now on.) As in the naïve strategy, we trim P to ensure that $\mathcal{P} \subset[\sigma]$, so R_{0} is met and has only wasted I_{1}.

We need to modify this strategy if we are allowed to waste less than $1 / 2$ of the full measure. Suppose, for example, that R_{0} is allowed to waste measure $1 / 3$. At first, we divide the domain into $I_{0}=[0,1 / 3)$ and $I_{1}=[1 / 3,1)$. We colour I_{0} red (reserved for future action) and I_{1} blue (free for weaker requirements, for now, but may be claimed later). We only define Γ on I_{1} and its subintervals, while we wait for a stage s at which we find some $\sigma \in P_{s}-T_{0, s}$.

If there is such a stage s, we define $\Gamma\left(I_{0}\right)=\sigma$. On $[\sigma]$ we won R_{0} and so I_{0} and its subintervals are free for weaker requirements. Every interval J such that $\Gamma(J)=\sigma$ (including of course I_{0}) is coloured white (positively processed). For every other
string $\sigma^{\prime} \in P_{s}$, since Γ is onto P_{s}, there are intervals J such that $\Gamma(J)=\sigma^{\prime}$. On each such interval J we can play the $1 / 2$-module relative to $\left[\sigma^{\prime}\right]$: we break J into two subintervals J_{0} and J_{1} of equal length, colour J_{0} red and J_{1} blue. We allow Γ to be defined on subintervals of J_{1} but not of J_{0} (so we define $\Gamma\left(J_{1}\right)=\Gamma(J)=\sigma^{\prime}$.) If at a later stage t we discover some string τ extending σ^{\prime} which is in $P_{t}-T_{0, t}$, we define $\Gamma\left(J_{0}\right)=\tau$, colour J_{0} white, and this time colour J_{1} black (permanently removed from \mathcal{C}), never allow Γ to be defined on subintervals of J_{1}, and ensure that $\mathcal{P} \cap\left[\sigma^{\prime}\right] \subset[\tau]$ by terminating all strings in P_{t} which extend σ^{\prime} and are distinct from τ.

The reason that we can play the $1 / 2$-module is that we have already ensured that R_{0} passes at least $1 / 3$ measure (the white intervals) to weaker requirements. It then risks $1 / 2$ of the other $2 / 3$, namely, not more than the $1 / 3$ which it is allowed.

In all eventualities, R_{0} is met. Assume that $\left[T_{0}\right] \subseteq \mathcal{P}$. If no initial stage s is found, then $\left[T_{0}\right]=\mathcal{P}$ and we can let $\mathcal{U}=2^{\omega}$. Otherwise, for each $\sigma^{\prime} \in P_{s}$ different from σ, if no stage t as above is found, then $\mathcal{P} \cap\left[\sigma^{\prime}\right]=\left[T_{0}\right] \cap\left[\sigma^{\prime}\right]$, and so we can let \mathcal{U} be the union of those $\left[\sigma^{\prime}\right]$ for which no stage t is found (and no subintervals coloured white and black).

In general, a $1 / k$-module for R_{0} will have $k-1$ iterations: first colouring an interval of length $1 / k$ red (and the rest blue), waiting for a string σ as above, and if one is found, then the red turns white, the blue is broken into small subintervals on which the $1 /(k-1)$-module is played with red and blue colours, until we get to play the $1 / 2$-module. Only the $1 / 2$-module is allowed to terminate any strings from P (and colour intervals black). At each stage of the process, no more than $1 / k$-much measure is risked by R_{0}.

There are two more issues we need to discuss to complete the proof: how weaker requirements are affected and behave, and how to ensure that \mathcal{P} is perfect.

The key to the solution of both issues is that each requirement acts finitely many times, that is, this is a finite injury construction. This is why every requirement acts on the basis of the belief that all stronger requirements have already ceased all action. If some requirement acts on some interval, then it initialises the actions of weaker requirements on any subinterval. This means that all the colourings done by the initialised requirement are removed, in essence bringing back into \mathcal{C} intervals that the initialised requirement may have previously coloured red. We cannot, however, remove black markings, since they are mapped to strings already terminated on P and so the corresponding black intervals cannot be returned to \mathcal{C}. To compensate, we also keep the white intervals, since they represent a definite win for the corresponding requirement. ${ }^{2}$

Take R_{1}. Whenever it starts (after each stage at which R_{0} acts and initialises R_{1}) it will start with the $1 / 8$-module (in general, R_{e} will be allowed to waste, say, $2^{-(e+2)}$-much measure, which will ensure that $\left.\mu(\mathcal{C}) \geqslant 1 / 2\right)$.

When R_{1} starts at stage s, it is given a collection of (pairwise disjoint) intervals which R_{0} marked as either blue or white. These intervals are mapped onto P_{s}. (To verify this, note that whenever an interval J_{0} is marked red, another subinterval J_{1} of its superinterval J is marked blue and is mapped by Γ to the same string.) Now R_{1} plays the $1 / 8$-module separately on each of these intervals, as described in

[^2]the second stage of the $1 / k$-module for R_{0} : each such interval J is partitioned into subintervals J_{0} and J_{1} (the first of length $\mu(J) / 8$); J_{0} is coloured red by R_{1} and J_{1} is coloured blue by J_{1} (and mapped to $\left.\Gamma(J)\right) ; J_{1}$ is available for requirement R_{2}. A search for a string τ extending $\Gamma(J)$ and in $P_{t}-T_{1, t}$ commences; the rest is the same. The total measure risked by R_{1} at any stage is $1 / 8$ of what is passed to it by R_{0}, which is of course no more that $1 / 8$ of the total measure.

To ensure that \mathcal{P} is perfect, we need to ensure that if $\sigma \in P$ is extendible (i.e. $\mathcal{P} \cap[\sigma] \neq \emptyset)$, then there are incomparable extendible nodes on P extending σ. Note, however, that if R_{1} starts action at stage s and is not injured after that stage, then every node in P_{s} is extendible. This is because if J is mapped to σ at stage s, then some subclass of J of positive measure remains in \mathcal{C} (and is mapped to $\mathcal{P} \cap[\sigma]$). To ensure splitting, we only need to modify the construction as follows: each time R_{e} is initialised, before starting its module, we split every interval J as in the instructions to two subintervals J^{\prime} and $J^{\prime \prime}$, extend Γ by mapping $\Gamma\left(J^{\prime}\right)=\Gamma(J) 0$ and $\Gamma\left(J^{\prime \prime}\right)=\Gamma(J) 1$ and starting the module for R_{e} only in the next stage (starting with J^{\prime} and $J^{\prime \prime}$ instead of J), thus ensuring that if indeed R_{e} is not injured later, then both $\Gamma(J) 0$ and $\Gamma(J) 1$ are extendible on P. This is of course done for all R_{e}, $e \geqslant 1$.

3. The formal details

We construct a partial computable mapping Γ from intervals $[a, b) \subseteq[0,1)$ with rational endpoints to $2^{<\omega}$. At stage s, we decide which intervals are mapped to strings of length s. We let $P_{s}=2^{s} \cap$ range Γ. At any given moment, let G_{s} be the set of minimal intervals in $\Gamma^{-1} P_{s}$ [note that we can have intervals $J^{\prime} \supsetneq J$ both in $\Gamma^{-1} P_{s}$; in this case, because of consistency, we'd have $\Gamma\left(J^{\prime}\right)=\Gamma(J)$.]

For all $e<\omega$ we also enumerate sets White e_{e} and Black_{e} of intervals. [These sets will actually be uniformly computable.] We let Black $=\bigcup_{e} \mathrm{Black}_{e}$ and White $=\bigcup_{e}$ White $_{e}$.

We also approximate a d.c.e. set A_{e} of pairs of intervals. These sets are partitioned into subsets $A_{e, k}$ (for $2 \leqslant k \leqslant 2^{e+2}$). We let Red_{e} be the domain of A_{e} (the projection of A_{e} onto the first coordinate) and Blue e be the image of A_{e} (the projection of A_{e} onto the second coordinate). We define A, Red, Blue as expected.

The $1 / k$-module for R_{e} on interval I has two parts. It is started as follows:
Partition I into two subintervals I_{0} and I_{1} such that the length of I_{0} is $1 / k$ the length of I. Enumerate $\left(I_{0}, I_{1}\right)$ into $A_{e, k}$. Define $\Gamma\left(I_{1}\right)=\Gamma(I)$.
To release the module (associated with $\left.\left(I_{0}, I_{1}\right) \in A_{e, k}\right)$ at stage s using a string σ, we do the following:
(1) Extract $\left(I_{0}, I_{1}\right)$ from A_{e}.
(2) Define $\Gamma\left(I_{0}\right)=\sigma$.
(3) For all $\left(J_{0}, J_{1}\right) \in A$ such that $J_{0} \cup J_{1} \subseteq I_{1}$, remove the pair $\left(J_{0}, J_{1}\right)$ from A and define $\Gamma\left(J_{0}\right)$ to be some string in P_{s} which extends $\Gamma\left(J_{1}\right)$.
(4) For all $J \subseteq I_{0} \cup I_{1}$ in G_{s} such that $\Gamma(J)=\sigma$ (including I_{0}, and possibly intervals such as J_{0} from (3)), enumerate J into White $_{e}$.
(5) For all $J \subseteq I_{1}$ in G_{s} such that $\Gamma(J) \neq \sigma$ (including possibly intervals such as J_{0} from (3)),
(a) If $k=2$, enumerate J into Black_{e}.
(b) If $k>2$, start the $1 /(k-1)$-module for R_{e} on J.

Construction. At stage 0 , we let $\Gamma([0,1))=\langle \rangle$ and start the $1 / 4$-module for R_{0} on the interval $[0,1)$.

Let $s>0$. Stage s has three phases:
(1) Define P_{s} by letting, for all $J \in G_{s-1} \backslash$ Black, $\Gamma\left(J_{i}\right)=\Gamma(J) i$, where $i<2$ and J_{0}, J_{1} is a partition of J into two subintervals (say of equal length).
(2) Search for pairs $\left(J_{0}, J_{1}\right)$ which for some $e<s$ we have $\left(J_{0}, J_{1}\right) \in A_{e}$ and there is some $\sigma \supseteq \Gamma\left(J_{1}\right)$ in P_{s} which is not on $T_{e, s}$, and such that $J_{0} \cup J_{1}$ is maximal (by containment) with respect to this property. For each such pair, release the module associated with $\left(J_{0}, J_{1}\right)$ using σ.
(3) For $I \in G_{s}$ such that no module on $J \supseteq I$ was released at the second phase, find some $J \supset I$ in $\left(\right.$ Blue $_{e} \cup$ White $\left._{e}\right) \cap G_{s-1}$ for some e, find the least $e^{\prime}>e$ such that there is no $J^{\prime} \supseteq J$ in White $e_{e^{\prime}}$, and start the $1 / 2^{e^{\prime}+2}$-module for $R_{e^{\prime}}$ on I.

Verification. We consider dom Γ as a partial ordering, ordered by reverse inclusion. Let Γ_{s} be Γ, as it is defined at the end of stage s. Also let $\operatorname{Red}_{e, s}, A_{s}, A_{e, s}$, $A_{e, k, s}$ etc., denote the approximated sets at the end of stage s.

Note that indeed, at stage s, we only map intervals (by Γ) to strings of length s. Thus the value of G_{s} is fixed after the end of stage s, and $s \mapsto P_{s}$ is a computable function.

Lemma 3.1.

(1) $\operatorname{dom} \Gamma_{s}$ is a tree: for all $I \in \operatorname{dom} \Gamma_{s},\left\{J \in \operatorname{dom} \Gamma_{s}: J \supseteq I\right\}$ is finite and linearly ordered by \supseteq. Indeed, if $I, J \in \operatorname{dom} \Gamma$ are not comparable then they are disjoint.
(2) G_{s} is a set of leaves of $\operatorname{dom} \Gamma_{s}$.
(3) If $I_{0} \in \operatorname{Red}_{s}$ then there is no $J \subseteq I$ in $\operatorname{dom} \Gamma_{s}$.

Proof. By induction on s. Suppose the lemma holds for s; we prove it for $s+1$. There are two main points:
(i) If $\left(I_{0}, I_{1}\right) \in A_{s},\left(J_{0}, J_{1}\right) \in A_{s}$ are distinct and $I_{0} \cup I_{1}, J_{0} \cup J_{1}$ are not disjoint, then either $J_{0} \cup J_{1} \subseteq I_{1}$ or $I_{0} \cup I_{1} \subseteq J_{1}$. This is because all of $I_{0} \cup I_{1}, I_{1}, J_{0} \cup J_{1}, J_{1}$ are in dom Γ_{s} and because no subinterval of J_{0} or I_{0} is in dom Γ_{s}, I_{1} is the unique immediate successor of $I_{0} \cup I_{1}$ in dom Γ_{s} (and similarly for the J 's).
(ii) $\operatorname{dom} \Gamma_{s+1}$ is an end-extension of $\operatorname{dom} \Gamma_{s}$; if $I \in \operatorname{dom} \Gamma_{s+1}-\operatorname{dom} \Gamma_{s}$ then one of two holds:
(a) either there is some $J \in G_{s}$ such that $J \subset I$; or
(b) $I \in \operatorname{Red}_{s} \backslash \operatorname{Red}_{s+1}$.

This (together with the splitting of intervals which occurs at stage $s+1$) ensures that (1) holds for $s+1 ;(2)$ is immediate. For (3), say $\left(I_{0}, I_{1}\right) \in A_{s+1}$. If $\left(I_{0}, I_{1}\right) \in A_{s}$ then by induction, no subinterval of I_{0} is in $\operatorname{dom} \Gamma_{s}$, and none are added at stage $s+1$ (or we'd remove the pair from A). Certainly if $\left(I_{0}, I_{1}\right)$ is added to A at stage $s+1$ then $I_{0} \cup I_{1}$ is in G_{s+1} when the module is started, so is a leaf of dom Γ at the time, and no subinterval of I_{0} is added to dom Γ_{s+1} after the module is started.

Note that as mentioned, we only place strings in Black or White at stage s if they are in G_{s}. Thus both sets are computable.
Lemma 3.2. For every $I \in \mathrm{Blue}_{s}$ there is some $J \subseteq I$ in $G_{s} \backslash$ Black.

Proof. By induction on s; assume this holds at the end of stage s. Let $I \in \operatorname{Blue}_{e, s+1}$. Of course if I is added to Blue $_{e}$ during stage $s+1$ then we can take $J=I$, so we assume that $I \in \mathrm{Blue}_{e, s}$. By induction, there is some $J \subseteq I$ in $G_{s} \backslash$ Black. At phase one of stage $s+1, J$ is split into subintervals in G_{s+1}. We're done unless they are all coloured black during phase two of stage $s+1$. But if this happens, since I is not removed from Blue at stage $s+1$, there must be some $\left(J_{0}, J_{1}\right)$ for which a module is terminated at stage $s+1$ and $J_{0} \cup J_{1} \subseteq I$. Then we can take $J=J_{0}$.

We say that requirement R_{e} acts at stage s if a module for R_{e} is either started or released at stage s. We say that R_{e} acts on J at stage s if a module for R_{e} is started on J at stage s, or if a module on J for R_{e} is released at stage s.

Lemma 3.3. $G_{s} \subseteq \mathrm{Blue}_{s} \cup \mathrm{Black}_{s} \cup$ White $_{s}$.
Proof. By induction on s. Suppose that the lemma holds for $s-1$. Let $I \in G_{s}$. There are two cases:

- Some R_{e} acts at stage s on some $J \supset I$. Then J is enumerated at stage s into Black $_{e} \cup$ White $_{e} \cup$ Blue $_{e}$.
- Otherwise there is some $I^{\prime} \supset I$ in G_{s-1}. By induction, $I^{\prime} \in$ Blue $_{e} \cup$ White $_{e}$ for some e. Then at stage s, I is enumerated into $\mathrm{Blue}_{e^{\prime}}$ for some $e^{\prime}>e$.

As a corollary of the lemma and its proof, we get:
Corollary 3.4. The instructions of the construction can always be carried out.
Proof. There are two points to verify.
(1) Step (3) of the release of a module can always be performed. This is guaranteed by Lemma 3.2.
(2) For every $I \in G_{s}$ treated in phase three (so no requirement acted on some $J \supseteq I$ at phase two of stage s), there is (in fact a unique) $J \supset I$ in $G_{s-1} \cap\left(\mathrm{Blue}_{s} \cup\right.$ White $\left._{s}\right)$. This is guaranteed by Lemma 3.3.

Corollary 3.5. Γ is monotone: if $I, J \in \operatorname{dom} \Gamma$ and $I \subset J$ then $\Gamma(I) \supseteq \Gamma(J)$.
Proof. Follows from the instructions, once we realise that every extension of dom Γ is an end-extension.

For all $I \in G_{s}$, let e_{I} be the unique $e \leqslant s$ which acts during stage s on some $J \supset I$.

Lemma 3.6. For all $I \in G_{s}$, for all $e^{\prime} \leqslant e_{I}$, there is some $J \supseteq I$ in Blue $_{e^{\prime}, s} \cup$ White $_{e^{\prime}, s}$.
Proof. By induction on s. At stage $0, R_{0}$ acts on $[0,1)=I_{0} \cup I_{1}$ and $G_{0}=$ Blue $_{0,0}=\left\{I_{1}\right\}$.
Assume the lemma holds for stage $s-1$, and let $I \in G_{s}$. Again, there are two cases.

- If some R_{e} acts during phase two of stage s on some $J \supset I$ then $e_{I}=e$. Say $J=J_{0} \cup J_{1}$ and $\left(J_{0}, J_{1}\right) \in A_{e, s-1} \backslash A_{e, s}$. Then if $I \subset I_{1}$ then $I \in \mathrm{Black}_{e, s} \cup$ Blue $_{e, s}$ and if $I \subseteq J_{0}$ then $I=J_{0} \in$ White $_{e, s}$.

For $e^{\prime}<e$, let $t<s$ be the stage at which $\left(J_{0}, J_{1}\right)$ was enumerated into A_{e}. Then $J_{1} \in G_{t}$ and so by induction, there is some $K \supset J_{1}$ in White $_{e^{\prime}, t} \cup$ Blue $_{e^{\prime}, t}$. Then since J is the immediate predecessor of J_{1} in $\operatorname{dom} \Gamma$, we have $K \subseteq J$, so $K \subseteq I$. Also, since $\left(J_{0}, J_{1}\right)$ was not extracted from A_{e} between stages t and s, we still have $K \in$ Blue $_{e^{\prime}, s} \cup$ White $_{e^{\prime}, s}$ as required.

- Otherwise, some R_{e} acts during phase three of stage s on some $J \supset I$ (we have $e=e_{I}$ of course); there is some $e^{*}<e$ and some $J \supset I$ in $G_{s-1} \cap\left(\right.$ Blue $_{e^{*}, s-1} \cup$ White $\left._{e^{*}, s-1}\right)$. Let $e^{\prime} \leqslant e$. There are four cases:
- If $e=e^{\prime}$, then we note that R_{e} places I into $\mathrm{Blue}_{e, s}$ at stage s.
- If $e^{*}<e^{\prime}<e$ then by the instructions, there is some $K \supset J$ in White ${ }_{e^{\prime}, s}$.
- If $e^{\prime}=e$, then of course we use the fact that no requirement acted on an interval containing I to see that $J \in \mathrm{Blue}_{e^{*}, s}$.
- If $e^{\prime}<e$ then we use induction to see that there is some $K \supset J$ in Blue $_{e^{\prime}, s-1} \cup$ White $_{e^{\prime}, s-1}$ and again the fact that no requirement acted below I shows that $K \in$ Blue $_{e^{\prime}, s} \cup$ White $_{e^{\prime}, s}$.

Lemma 3.7. Every requirement acts only finitely many times.
Proof. By induction on e. Suppose that at no stage $s \geqslant s^{*}$ does any requirement $R_{e^{\prime}}$ for $e^{\prime}<e$ act.

At any stage $s>s^{*}$, no new run of a module for R_{e} is started at the third phase, simply because for all $e^{\prime}<e, R_{e^{\prime}}$ doesn't act at stage $s-1$ and so no intervals in G_{s-1} are ever coloured White ${ }_{e^{\prime}}$ or Blue $e_{e^{\prime}}$.

So after stage s^{*}, the actions for R_{e} are well-founded: every pair of intervals in $A_{e, k}$ is possibly replaced by finitely many pairs in $A_{e, k-1}$ and so the process must halt.

Together with Lemma 3.6, we get:
Corollary 3.8. For every e, for almost all s, for every $I \in G_{s}$ there is some $J \supset I$ in White $_{e} \cup$ Blue $_{e}$.

Let $P=\bigcup_{s} P_{s}$. From the instructions it is clear that every string in P_{s+1} extends one in P_{s}, so P is a computable tree and $\mathcal{P}=[P]$ is a Π_{1}^{0} subclass of 2^{ω}.
Lemma 3.9. Every requirement R_{e} is met. Thus \mathcal{P} is thin.
Proof. Fix $e<\omega$. By Corollary 3.8,

$$
\left\{[\Gamma(I)]: I \in \text { White }_{e} \cup \text { Blue }_{e}\right\}
$$

is a finite clopen cover of \mathcal{P}.
If $I \in$ White $_{e}$, then $[\Gamma(I)] \cap\left[T_{e}\right]=\emptyset$.
If $I \in$ Blue $_{e}$, then since I is never removed from Blue e_{e}, we have $\mathcal{P} \cap[\Gamma(I)] \subset\left[T_{e}\right]$.
So R_{e} is met.

We say that an interval I which is added to dom Γ at stage s is injured at a stage $t>s$ if at stage t, some requirement releases a module on some $J^{\prime} \supsetneq J$.
Lemma 3.10. Suppose that $I \in$ Blue \cup White and is never injured. Then $[\Gamma(I)] \cap \mathcal{P} \neq \emptyset$.

Proof. If $I \in$ Blue then for almost all $t, I \in$ Blue $_{t}$. By Lemma 3.2, for almost all t there is some $J \subset I$ in G_{t} and so there is some $\sigma \supset \Gamma(I)$ in P_{t}. By compactness, $[\Gamma(I)] \cap \mathcal{P} \neq \emptyset$.

Suppose that $I \in$ White and is never injured. Say I is enumerated into White at stage s. Then at stage $s+1$ there is some $I^{\prime} \subset I$ on which a new module is begun, and that module is never injured. Then either the module is released, in which case there is some $I_{1} \subsetneq I$ in White (which is never injured), or there is some $J \subset I$ in Blue (which is never removed from Blue). In the second case, The argument for Blue from the first paragraph gives the desired result for I. Otherwise, we keep arguing for I_{1} to get I_{2}, I_{3}, etc. Either at some point we get some $J \subset I_{n} \subset I$ which is permanently in Blue, or we get a path in dom Γ which maps by Γ to a path in P extending $\Gamma(I)$.
Lemma 3.11. Suppose that a module is started on some interval J and J is never injured. Then $[\Gamma(J)] \cap \mathcal{P} \neq \emptyset$.
Proof. Say $J=J_{0} \cup J_{1}$ and $\left(J_{0}, J_{1}\right) \in A_{s}$. If at a later stage $\left(J_{0}, J_{1}\right)$ is removed from A_{s} then by assumption this must be because the module on J is released; so $J_{0} \in$ White, J_{0} is never injured and so by Lemma 3.10, $[\Gamma(J)] \cap \mathcal{P} \supset\left[\Gamma\left(J_{0}\right)\right] \cap \mathcal{P} \neq \emptyset$. Otherwise, $J_{1} \in$ Blue and is never injured and so again by Lemma 3.10, $[\Gamma(J)] \cap \mathcal{P}=\left[\Gamma\left(J_{1}\right)\right] \cap \mathcal{P} \neq \emptyset$.
Corollary 3.12. \mathcal{P} is perfect.
Proof. Let $\sigma \in P$ be extendible. By Corollary 3.8, and the arguments preceding it, there is some $I \in$ White \cup Blue which is never injured such that $\Gamma(I) \supset \sigma$. Say I is enumerated into White \cup Blue at stage s. At the first phase of stage $s+1, I$ is split into two subintervals I_{0} and I_{1}, and then at the third phase, modules are started on both. Neither interval is every injured. Thus by Lemma 3.11, both $\mathcal{P} \cap[\Gamma(I) 0]$ and $\mathcal{P} \cap[\Gamma(I) 1]$ are non-empty.

Let μ be Lebesgue measure on $[0,1)$.
Suppose that a $1 / k$-module is started for R_{e} on an interval I at a stage s. Let $t>s$ be the stage at which the module is injured (or $t=\infty$ if the module is never injured).

Let $B_{I}=I \cap \bigcup\left(\mathrm{Black}_{e, t}\right), W_{I}=I \cap \bigcup\left(\right.$ White $\left._{e, t}\right)$ and $R_{I}=I \cap \bigcup \operatorname{Red}_{e, t}$.
We make two calculations.
Lemma 3.13. $k \mu\left(B_{I} \cup R_{I}\right) \leqslant \mu(I)$.
Proof. We prove the lemma by induction on k.
Suppose that $I=I_{0} \cup I_{1}$ is the partition for the module. First, if the module is never released (before stage t), then $B_{I}=\emptyset$; if $t<\infty$ then $R_{I}=\emptyset$ and if $t=\infty$ then $R_{I}=I_{0}$. As $\mu\left(I_{0}\right)=\mu(I) / k$ we have in both cases $k \mu\left(R_{I} \cup B_{I}\right) \leqslant \mu(I)$.

Suppose that the module is released at a stage $s^{\prime}<t$. If $k=2$ then $B_{I} \subseteq I_{1}$ and $R_{I}=\emptyset$ so (as $\left.\mu\left(I_{1}\right)=\mu(I) / 2\right)$ we have $2 \mu\left(B_{I} \cup R_{I}\right) \leqslant \mu(I)$.

Suppose that $k>2$. Then at stage s^{\prime}, a $1 /(k-1)$-module is started on several (disjoint) intervals $J \subset I_{1}$; let \mathcal{J} be the set of such intervals. For each $J \in \mathcal{J}$, by induction, $(k-1) \mu\left(B_{J} \cup R_{J}\right) \leqslant \mu(J)$. However, $R_{I}=\bigcup_{J \in \mathcal{J}} R_{J}$ and $B_{I}=\bigcup_{J \in \mathcal{J}} B_{J}$,

$$
\sum_{J \in \mathcal{J}} \mu(J) \leqslant \mu\left(I_{1}\right)=\frac{k-1}{k} \mu(I)
$$

and so in total,

$$
k \mu\left(B_{I} \cup R_{I}\right)=\frac{k}{k-1} \sum_{J \in \mathcal{J}}(k-1) \mu\left(B_{J} \cup R_{J}\right) \leqslant \frac{k}{k-1} \mu\left(I_{1}\right)=\mu(I)
$$

as required.
Lemma 3.14. $k \mu\left(B_{I}\right) \leqslant \mu\left(W_{I} \cup B_{I}\right)$.
Proof. Again by induction on k. Again suppose that $I=I_{0} \cup I_{1}$ is the partition for the module. If the module is never released (before stage t), then $B_{I}=\emptyset$ and the inequality is immediate.

Suppose that the module is released at a stage $s^{\prime}<t$. If $k=2$ then $B_{I} \subseteq I_{1}$ and $I_{0} \subseteq W_{I}$ and so (as $\left.\mu\left(I_{0}\right)=\mu\left(I_{1}\right)\right)$ we have $\mu\left(B_{I}\right) \leqslant \mu\left(W_{I}\right)$ as required.

Suppose that $k>2$. Then at stage s^{\prime}, a $1 /(k-1)$-module is started on several (disjoint) intervals $J \subset I_{1}$; let \mathcal{J} be the set of such intervals. For each $J \in \mathcal{J}$, by induction, $(k-1) \mu\left(B_{J}\right) \leqslant \mu\left(W_{J} \cup B_{J}\right)$. Now $W_{I} \supseteq I_{0} \cup \bigcup_{J \in \mathcal{J}} W_{J}$ and $B_{I}=\bigcup_{J \in \mathcal{J}} B_{J}$. Thus

$$
\mu\left(B_{I}\right)=\sum_{J \in \mathcal{J}} \mu\left(B_{J}\right) \leqslant \frac{1}{k-1} \sum_{J \in \mathcal{J}} \mu\left(B_{J} \cup W_{J}\right)
$$

and

$$
\mu\left(I_{0}\right)=\frac{1}{k} \mu(I)=\frac{1}{k-1} \mu\left(I_{1}\right) \geqslant \frac{1}{k-1} \sum_{J \in \mathcal{J}} \mu\left(B_{J} \cup W_{J}\right)
$$

So

$$
k \sum_{J \in \mathcal{J}} \mu\left(B_{J} \cup W_{J}\right) \leqslant(k-1)\left(\mu\left(I_{0}\right)+\sum_{J \in \mathcal{J}} \mu\left(B_{J} \cup W_{J}\right)\right) \leqslant(k-1) \mu\left(B_{I} \cup W_{I}\right)
$$

which all together give the desired inequality.
Corollary 3.15. For every $e, \mu\left(\operatorname{Red}_{e} \cup \mathrm{Black}_{e}\right) \leqslant 2^{-(e+2)}$.
Proof. Let \mathcal{I}_{e} be the collection of intervals I on which a $2^{-(e+2)}$-module is started for R_{e}. Let \mathcal{I}_{e}^{\prime} be the collection of those $I \in \mathcal{I}_{e}$ such that the module on I is eventually injured. For $I \in \mathcal{I}_{e}^{\prime}$ let $\hat{I}=B_{I} \cup W_{I}$. Then

$$
\left(\mathcal{I}_{e} \backslash \mathcal{I}_{e}^{\prime}\right) \cup\left\{\hat{I}: I \in \mathcal{I}_{e}^{\prime}\right\}
$$

consists of pairwise disjoint subsets of $[0,1)$, and

$$
\bigcup \operatorname{Red}_{e} \cup \bigcup \mathrm{Black}_{e}=\bigcup\left\{B_{I} \cup R_{I}: I \in \mathcal{I}_{e} \backslash \mathcal{I}_{e}^{\prime}\right\} \cup \bigcup\left\{B_{I}: I \in \mathcal{I}_{e}^{\prime}\right\}
$$

noting that if $I \in \mathcal{I}_{e}^{\prime}$ then $B_{I} \subset \hat{I}$.
If $I \in \mathcal{I}_{e} \backslash \mathcal{I}_{e}^{\prime}$, then Lemma 3.13 ensures that $\mu\left(R_{I} \cup B_{I}\right) \leqslant 2^{-(e+2)} \mu(I)$. If $I \in \mathcal{I}_{e}^{\prime}$ then Lemma 3.14 ensures that $\mu\left(B_{I}\right) \leqslant 2^{-(e+2)} \mu(\hat{I})$. Together we get the result.

As planned, we let, for $x \in[0,1), \Gamma^{x}=\bigcup\{\Gamma(I): I \in \operatorname{dom} \Gamma \& x \in I\}$. Then for all $x \in[0,1), \Gamma^{x} \in 2^{\leqslant \omega}$. Let $\mathcal{C}=\left\{x \in[0,1): \Gamma^{x} \in 2^{\omega}\right\}$. Then \mathcal{C} is a Π_{2}^{0} subclass of $[0,1)$, and for all $x \in \mathcal{C}, \Gamma^{x} \in \mathcal{P}$.

Lemma 3.16. $\mathcal{C}=[0,1) \backslash($ Red $\cup B l a c k)$.

Proof. By induction on s we can show that

$$
\bigcup G_{s} \cup \bigcup \operatorname{Red}_{s} \cup \bigcup \mathrm{Black}_{s}=[0,1)
$$

The lemma follows.
Corollary 3.17. $\mu(\mathcal{C}) \geqslant 1 / 2$.

References

[1] Cenzer, D., Π_{1}^{0} classes in computability theory, in Handbook of Computability, Elsevier, Amsterdam, 1999, 37-85.
[2] Cenzer, D., Downey, R., Jockusch C., and Shore, R. A., Countable thin Π_{1}^{0} classes, Annals of Pure and Applied Logic, Vol. 59 (1993) 79-139,
[3] Cenzer, D., and Jockusch, C., Π_{1}^{0} classes-structure and applications, in Computability Theory and its Applications, (ed. P. Cholak, S. Lempp, M. Lerman, and R. Shore) Contemporary Mathematics, Vol. 257, AMS Publications, Rhode Island, 2000, 39-60.
[4] Cenzer, D., and Remmel, J., Π_{1}^{0} classes in mathematics, in Handbook of Recursive Mathematics, Vol II (ed. Y. Ershov, S. Goncharov, A. Nerode, and J. Remmel), Elsevier, Amsterdam, (1998), 623-822.
[5] Cholak, P., Coles, R., Downey, R. and Herrmann, E., Automorphisms of the lattice of Π_{1}^{0} classes: perfect thin classes and anc degrees, Transactions of the American Mathematical Society, Vol. 353 (2001), 4899-4924.
[6] Downey, R., Abstract Dependence, Recursion Theory and the Lattice of Recursively Enumerable Filters, Ph.D. Thesis, Monash University, Clayton, Victoria, Australia, 1982.
[7] Downey, R., Maximal theories, Annals of Pure and Applied Logic, Vol. 33 (1987) 245-282.
[8] Downey, R. and Hirschfeldt, D., Algorithmic Randomness and Complexity, Springer-Verlag, to appear.
[9] Downey, R., Hirschfeldt, D., Nies, A. and Terwijn, S., Calibrating randomness, Bulletin of Symbolic Logic, Vol. 3 (2006), 411-491.
[10] Jockusch, C. and Soare, R., Π_{1}^{0} classes and degrees of theories, Transactions of the American Mathematical Society, Vol. 173 (1972), 33-56.
[11] Kurtz, S., Randomness and Genericity in the Degrees of Unsolvability, Ph.D. Thesis, University of Illinois at Urbana, 1981.
[12] Li, M. and Vitanyi, P., Kolmogorov Complexity and its Applications, Springer-Verlag, 1993.
[13] Martin, D. A. and Pour-El, M., Axiomatizable theories with few axiomatizable extensions, J. Symbolic Logic, Vol. 35 (1970), 205-209.
[14] Paris, J., Measure and minimal degrees, Annals of Mathematical Logic, Vol. 11 (1977), 203216.
[15] Simpson, S., Mass problems and randomness, Bulletin of Symbolic Logic, Vol. 11 (2005), 1-27.
[16] Simpson, S., An extension of the recursively enumerable Turing degrees, Journal of the London Mathematical Society, Vol. 75 (2007), 287-297.
[17] Soare, R., Recursively enumerable sets and degrees, Springer, Berlin, 1987.
School of Mathematics, Statistics and Computer Science, Victoria University, P.O. Box 600, Wellington, New Zealand

E-mail address: Rod.Downey@vuw.ac.nz
School of Mathematics, Statistics and Computer Science, Victoria University, P.O. Box 600, Wellington, New Zealand

E-mail address: greenberg@mcs.vuw.ac.nz
Department of Mathematics, 196 Auditorium Road, University of Connecticut, Unit 3009, Storrs, CT 06269-3009

E-mail address: joseph.miller@math.uconn.edu

[^0]: The first author's research was supported by the Marsden Fund of New Zealand. The third author was supported by the US National Science Foundation under grant DMS-0601021. This research was carried out during a visit by Miller to Victoria University partially supported by the Marsden Fund.

[^1]: ${ }^{1}$ Recall that a real A is n-random iff $A \notin \bigcap_{n \in \omega} U_{n}$ for every effective sequence of Σ_{n}^{0} classes $\left\{U_{n}\right\}_{n \in \omega}$ with the measure of U_{n} bounded by 2^{-n}. See, for instance, Downey and Hirschfeldt [8], or Li-Vitanyi [12] for more background here.

[^2]: ${ }^{2}$ Another possible approach is to remove the white markings and further restrict the amount of measure R_{e} can spend, say to 2^{-s} where s is the stage at which the initialisation occurs.

