
On the Structure of
Parameterized Problems in NP ∗

(Extended Abstract, to appear STACS ’94)

Liming Cai1 Jianer Chen1 Rodney Downey2 Michael Fellows3

July 7, 2010

Abstract

Fixed-parameter intractability of optimization problems in NP is
studied based on computational models with limited nondetermin-
ism. Strong evidence is provided that many NP optimization prob-
lems are not fixed-parameter tractable and that the fixed-parameter
intractability hierarchy (the W -hierarchy) does not collapse.

1 Introduction

A theory of fixed-parameter tractability of NP optimization problems has
been initialized recently by Downey and Fellows [?, ?, ?] with the aim of re-
fining the class of NP optimization problems and of solving NP optimization
problems in practice. They have observed that many NP optimization prob-
lems can be parameterized, while the complexity of these problems may vary
very differently with respect to the parameter. For example, the problem of
finding a size k vertex cover in a graph can be solved in time O(nc), where

∗Cai is supported in part by Engineering Excellence Award from Texas A&M Univer-
sity; Chen is supported in part by NSF Grant CCR-9110824; Downey is supported in
part by a grant from the Victoria University IGC, by the United States/New Zealand
Cooperative Science Foundation under grant INT 90-20558, and by the Mathematical Sci-
ences Institute at Cornell and Cornell University; and Fellows is supported in part by the
National Science and Engineering Research Council of Canada, and by the United States
NSF under grant MIP-8919312.

1

c is a constant independent of the parameter k (in fact, c = 1 by [?]); while
the problem of finding a size k dominating set in a graph has the contrasting
situation where essentially no better algorithm is known than the “trivial”
algorithm of time O(nk+1) that just exhaustively tries all possible solutions.

In order to capture the fixed-parameter intractability of NP optimization
problems, Downey and Fellows have introduced a hierarchy (called the W-
hierarchy)

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P]

Sitting at the bottom of the hierarchy is the class FPT of fixed-parameter
tractable problems that can be solved for each fixed k in time O(nc) where
c is a constant independent of the parameter k. Examples in the class FPT
are Vertex-Cover and Minimum-Genus [?, ?, ?]. More than a dozen prob-
lems, including Independent-Set, have been shown to be complete for the
class W [1] 1, while Dominating-Set and a number of other problems are
shown to be complete for the class W [2]. A typical complete problem for
the “cap class” W [P] of the hierarchy is the Weighted Circuit Satisfiability
problem. it is conjectured that the W -hierarchy is infinite [?]. Therefore,
the completeness of a problem at some level of the W -hierarchy indicates
the computational difficulty of the problem with respect to the parameter.
The completeness theory for parameterized computational complexity has
been shown to have many applications in diverse problem domains includ-
ing familiar graph-theoretical problems, VLSI layout, games, computational
biology, cryptography, and computational learning [?, ?, ?, ?].

Another motivation of the study of fixed-parameter intractability is due
to its close connection to the approximability of NP-hard optimization prob-
lems. As shown by Cai and Chen [?], with a minor restriction, the approx-
imability of an optimization problem implies the fixed-parameter tractability
of the problem. Therefore, the completeness study of the W -hierarchy pro-
vides a useful tool for proving the non-approximability of problems: showing
an optimization problem to be hard for some level in the W -hierarchy implies
that the problem is not approximable unless the W -hierarchy collapses.

Therefore, it has wide-ranging practical and theoretical significance to
show that the W -hierarchy does not collapse. However, it may seem a bit
ambitious to derive a direct proof since any separation result for the W -
hierarchy would imply P 6= NP. Thus, it may be instead more feasible

1The completeness in the W -hierarchy is based on the reduction called “uniform re-
duction” that will be described precisely in Section 2.

2

to show that the collapsing of the W -hierarchy implies unlikely results in
classical complexity theory.

In the present paper we study the structural properties of the W -hierarchy
based on computational models with limited nondeterminism [?]. By tech-
niques of inverse function, we are able to show that a parameterized problem
is fixed-parameter tractable if and only if it can be solved by a polynomial
time algorithm that is allowed to guess a string of length f(k), while a pa-
rameterized problem is in the class W [P] if and only if it can be solved
by a polynomial-time algorithm that is allowed to guess a string of length
g(k) log n, where f(k) and g(k) are arbitrary recursive functions independent
of the input length n. These characterizations of the classes FPT and W [P]
indicates a clear difference between the two classes. Therefore, to find a ver-
tex cover of size k in a graph, we only need to guess a string of length f(k),
no matter how large the graph is, where f(k) is a fixed recursive function
depending only on the parameter k; while to find a weight k satisfying as-
signment for a circuit C, we must be able to guess a string whose length is
of the form g(k) log |C| for some recursive function g(k) and increases with
the size |C| of the circuit C.

We also derive a characterization for each level of the W -hierarchy by
computations with limited nondeterminism, and show a strong evidence sup-
porting the conjecture that the W -hierarchy does not collapse. More specif-
ically, for each level W [t] of the W -hierarchy, we introduce a computation
model with the ability of making limited nondeterminism and show that this
model defines a subclass of W [t] that is equivalent to the class W [t] up to
the uniform reduction. Then we prove that the defined subclass of W [t] and
the defined subclass of W [t + 1] are distinct for all t ≥ 1.

Another interesting question is whether approximability and fixed-parameter
tractability are equivalent for computational optimization problems. Roughly
speaking, approximability implies fixed-parameter tractability [?]. However,
there are problems, such as Longest Path, that are fixed-parameter tractable
but not approximable [?, ?]. Having observed this fact, we further refine the
class FPT with the intention of specifying the approximability of the prob-
lems. We show that the class FPT can be further classified in term of the
ability of guessing and the power of verifying. Strong evidence is given that
these subclasses are distinct.

The paper is organized as follows. In Section 2 we introduce the necessary
definitions and preliminaries. The characterizations of the classes FPT and
W [P] in terms of the computation models with limited nondeterminism are

3

given in Section 3. The structural properties of the W -hierarchy are discussed
in Section 4. Section 5 discusses the refinement of the class FPT. Conclusions
are given in Section 6.

2 Preliminaries

We first give a brief review on the fundamentals of the theory of fixed-
parameter tractability. For detailed description, see [?, ?].

Definition 2.1. A parameterized problem L is a subset of Σ∗ ×N , where Σ
is a fixed alphabet. Therefore, each instance of the parameterized problem L
is a pair 〈x, k〉, where the second component k will be called the parameter.

The complexity of a parameterized problem can be specified in terms of
the two components of its instances.

Definition 2.2. A parameterized problem L is (strongly) fixed-parameter
tractable if there is an algorithm to decide whether 〈x, k〉 is a member of
L in time f(k)|x|c, where f(k) is a recursive function and c is a constant
independent of the parameter k. Let FPT denote the class of fixed-parameter
tractable problems.

Definition 2.3. Let L and L′ be two parameterized problems. We say that
L is (uniformly) reducible to L′ if there is an algorithm M that transforms
〈x, k〉 into 〈x′, g(k)〉 in time f(k)|x|c, where f and g are recursive functions
and c is a constant independent of k, such that 〈x, k〉 ∈ L if and only if
〈x′, g(k)〉 ∈ L′.

It is easy to observe that if L is reducible to L′ and L′ is fixed-parameter
tractable, then so is L.

To define the W -hierarchy, we need the following notations similar to
those introduced by Boppana and Sipser [?]. We say a circuit C is a Πh

t -
circuit if C is of unbounded fan-in and of depth at most t + 1 with an and
gate at the output and gates of fan-in at most h at the input level. Let t and
h be two integers, we define a parameterized problem as follows:

WCS(t, h) = {(C, k) | C is a Πh
t -circuit and accepts a weight k input vector}

Definition 2.4. A parameterized problem L belongs to the class W [t] if L is
reducible to the parameterized problem WCS(t, h) for some constant h.

4

The class W [P] is defined similarly as W [t] with no restriction on the
depth of the circuits. Formally,

Definition 2.5. A parameterized problem L belongs to the class W [P] if L
is reducible to the following Weighted Circuit Satisfiability (WSC) problem:

WCS = {(C, k) | The circuit C accepts an input vector of weight k}

The above leads to an interesting hierarchy (called the W -hierarchy)

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P]

for which a wide variety of natural problems are now known to be complete
or hard for various levels (under the uniform reduction) [?].

The structural properties of the W -hierarchy will be studied based on the
following GC model (for “Guess-then-Check”) introduced by Cai and Chen
[?].

Definition 2.6. Let s(n, k) be a recursive function on two variables. A
parameterized problem L is in GC(s(n, k), P) if there is a deterministic al-
gorithm M and a polynomial q such that for all z = 〈x, k〉, z ∈ L if and only
if ∃y ∈ {0, 1}∗, |y| ≤ s(|x|, k), and M accepts z#y in time O(q(|z|)).

Intuitively, the first component s(n, k) in the GC model specifies the
length of the guessed string y, which is the amount of nondeterminism allowed
to make in the computation, while the second component P (polynomial time
computation) specifies the power of verifying of the computation. Note that
the complexity the verifying algorithm M is measured by the size of z rather
than the size of the input z#y to the algorithm M . Similarly, the GC
model may also be defined by substituting the complexity class P by other
complexity classes such as DL, NL, and R.

The GC model is quite robust. It can be shown that for many functions
s(n, k) and for many complexity classes C, the class GC(s(n, k), C) has nat-
ural complete languages [?]. We also point out that some restricted forms of
the GC model have been studied recently in the literatures [?, ?, ?, ?].

For each fixed integer r, let R(x1, · · · , xr) be the set of all recursive func-
tions of r variables. Let C be an arbitrary complexity class, we will define

GC(R(n, k), C) GC(R(k), C) GC(R(k) log n, C)

5

to be the following classes, respectively.⋃
f∈R(n,k)

GC(f(n, k), C)
⋃

f∈R(k)

GC(f(k), C)
⋃

f∈R(k)

GC(f(k) log n, C)

Remarks:

1. Parameterized problems form a restricted subclass in the class of gen-
eral problems. Therefore, we can talk about the complexity of a pa-
rameterized problem in terms of the instance size. For example, we say
that a parameterized problem is in the class NP if there are a nonde-
terministic algorithm M and a polynomial r such that M can decide
whether a given instance z = 〈x, k〉 is a member of L in time r(|z|).

2. Since a parameterless problem can always be regarded as a parame-
terized problem with a dummy parameter, the model GC can also be
used to define classes of general problems.

3 The characterizations of FPT and W[P]

We start with the following simple observation.

Theorem 3.1. Every parameterized problem in NP is in the class GC(R(n, k), P).

Recall that a function t(n) is time-constructible if there is a determinis-
tic algorithm M of running time O(t(n)) such that given input 1n, M gives
as the output 1t(n) [?]. We need to introduce the concept of log-space con-
structibility of functions.

Definition 3.2. A function s(n) is log-space constructible if there is a de-
terministic algorithm M that runs in space O(log(s(n)) such that given input
1n, M outputs s(n) in binary form.

Lemma 3.3. For any recursive function r(n), there is a log-space con-
structible non-decreasing function f(n) ≥ n such that f(n) ≥ r(n) for all
n ≥ 1.

Let f be an unbounded non-decreasing function. The inverse function
f−1 of f is defined as follows:

f−1(m) = max{n | f(n) ≤ m}

It is easy to see that f−1 is well-defined, unbounded, and non-decreasing.

6

Lemma 3.4. Let f(n) be an unbounded non-decreasing function and let k be
an arbitrary integer. Then f(k) ≤ n if and only if f−1(n) ≥ k.

Lemma 3.5. Let f(n) ≥ n be an unbounded, non-decreasing and log-space
constructible function. Then the inversion function f−1(n) of f is computable
by a deterministic algorithm whose space is bounded by O(log n).

Now we are ready for our main theorems in the section.

Theorem 3.6. Let L be an arbitrary parameterized problem in NP. Then L
is in GC(R(k), P) if and only if L is in FPT.

Proof. (Sketch) Let L ∈ FPT. Then there is a deterministic algorithm M1

deciding whether 〈x, k〉 is in L in time f(k)|x|c, where by Lemma 3.3, we can
assume that f(k) is an unbounded nondecreasing log-space constructable
function and c is a constant independent of k. Moreover, since L is in NP,
there is a nondeterministic algorithm M2 that decides whether z = 〈x, k〉 is
in L in time q(|z|), where q is a polynomial.

Now construct a deterministic algorithm M as follows. Given an input
of the form z#y, where z = 〈x, k〉, the algorithm M first compares f(k) and
|x|. If f(k) ≤ |x| then M simulates the algorithm M1 on input z = 〈x, k〉. If
f(k) > |x| then M simulates the algorithm M2 on input z = 〈x, k〉 following
the computation path specified by the string y.

We analyze the complexity of the algorithm M . By Lemma 3.4, f(k) ≤
|x| is equivalent to f−1(|x|) ≥ k. Moreover, according to Lemma 3.5, the
function value f−1(|x|) can be computed in time O(|x|d) for some constant
d. Therefore, in time O(|x|d) ≤ O(|z|d), the algorithm M can check whether
f(k) ≤ |x|. In case f(k) ≤ |x|, the algorithm M simulates the algorithm
M1 on input z = 〈x, k〉, which runs in time f(k)|x|c ≤ |x|c+1 ≤ |z|c+1, while
in case f(k) > |x|, the algorithm M simulates the algorithm M2 on input
z following the computation path specified by y, which is a deterministic
computation of running time q(|z|). In summary, the running time of the
algorithm M is bounded by a polynomial of |z|.

The construction of M shows that the language L is in the class GC(q(f(k)+
log k), P). In fact, for a given input z = 〈x, k〉, if f(k) ≤ |x|, the algorithm M
can decide whether z ∈ L without consulting the guessed string y; while in
case f(k) > |x|, the length |z| of z = 〈x, k〉 is bounded by f(k)+log k and the
length of the computation path of M2 is bounded by q(|z|) ≤ q(f(k)+ log k).
Therefore, a guessed string y of length at most q(f(k) + log k) is sufficient to
specify an accepting computation path of M2.

7

The other direction of the theorem is relatively easier. Let L be a problem
in GC(f(k), P), where f is a recursive function. Given an input 〈x, k〉, a
deterministic algorithm M simply enumerates all strings y of length f(k)
and simulates the verifier on the input 〈x, k〉#y. It is easy to see that the
running time of the algorithm M is bounded by g(k)nc, where g is a recursive
function and c is a constant independent of the parameter k.

Now we consider the structure of the class W [P]. The class W [P] can
also be characterized by the GC model, as stated in Theorem 3.9. However,
the proof technique is very different.

Lemma 3.7. The problem WCS is in the class GC(k log n, P).

Lemma 3.8. GC(R(k) log n, P) ⊆ W [P].

Proof. (Sketch) Suppose that L ∈ GC(f(k) log n, P), where f(k) is a re-
cursive function. By the definition, there is a deterministic algorithm M
such that for each instance z = 〈x, k〉, z ∈ L if and only if there is a string
y, |y| ≤ f(k) log(|x|) such that z#y ∈ L(M) and the running time of M
is bounded by a polynomial q of |z|. We show how the problem L can be
uniformly reduced to the problem WCS.

Let z = 〈x, k〉 be an instance of L. Since the running time of M is
bounded by q(|z|), in time polynomial in |z|, we can construct a circuit C
such that C accepts z#y if and only if the algorithm M does [?]. Assigning
the input part corresponding to the string z by the value of z gives a circuit
C ′ with f(k) log n input bits. Now construct another circuit C ′′ with f(k)n
input bits such that the circuit C ′′ accepts a weight f(k) input vector if and
only if the circuit C ′ has a satisfiable assignment, which is in turn if and
only if the algorithm M accepts the input z#y for some string y of length
f(k) log n. It can be shown that the above reduction can be done in time
h(k)nc, where h is a recursive function and c is a constant independent of k.
This shows that the problem L is reducible to the problem WCS. Thus, L is
in the class W [P].

Theorem 3.9. Let L be a parameterized problem in NP. Then L is in the
class GC(R(k) log n, P) if and only if L is in the class W [P].

Proof. (Sketch) By Lemma 3.8, we only need to show that if L is in W [P]
then L is in GC(R(k) log n, P).

8

Since the problem L is in NP, there is a nondeterministic algorithm M0

that decides whether 〈x, k〉 is in L in time p(|x|+|k|), where p is a polynomial.
Suppose L ∈ W [P], by definition L is reducible to the problem WCS,

that is, there is a deterministic algorithm M1 running in time f(k)|x|c that
transforms a pair 〈x, k〉 into a pair 〈C, g(k)〉 such that 〈x, k〉 ∈ L if and
only if the circuit C accepts a weight g(k) input vector, here f and g are
recursive functions and by Lemma 3.3, we may assume that the function f
is unbounded, non-decreasing, and log-space constructable.

By Lemma 3.7, the problem WCS is in the class GC(k log n, P). Thus,
there is a deterministic polynomial time algorithm M2 such that 〈C, k〉 is in
WCS if and only if there is a string y of length at most k log |C| and M2

accepts 〈C, k〉#y.
Now we construct a deterministic algorithm M as follows. Given an input

of the form z#y, where z = 〈x, k〉, M first check if f(k) ≤ |x|. As indicated
in the proof of Theorem 3.6, this checking can be done in time |x|d ≤ |z|d
for some constant d. If f(k) ≤ |x|, then M simulates the algorithm M1,
transforms the pair z = 〈x, k〉 into an instance 〈C, g(k)〉 of the problem WCS,
and then simulates the algorithm M2 on input 〈C, g(k)〉#y. If f(k) > |x|,
then M simulates the nondeterministic algorithm M0 on input 〈x, k〉 following
the computation path specified by y. It is easy to show that 〈x, k〉 is in L
if and only if M accepts an input 〈x, k〉#y, where y is a string of length at
most max{p(f(k) + |k|), g(k) log n}. Moreover, it can also be shown that the
running time of M is bounded by a polynomial of |z|. Thus, L is in the class
GC(R(k) log n, P).

Theorem 3.6 and Theorem 3.9 give a strong evidence that the class FPT
is a proper subclass of the class W [P] and point out an intrinsic differ-
ence among various NP-hard optimization problems. For example, by The-
orem 3.6, to find a vertex cover of size k in a graph G, which is a fixed-
parameter tractable problem, we only need to guess a string of length f(k),
no matter how large the graph G is, where f(k) is a fixed recursive function
depending only on the parameter k; while according to Theorem 3.9, to find
a weight k satisfying assignment for a circuit C, for which the corresponding
problem WCS is complete for W [P], we must be able to guess a string whose
length is of the form g(k) log |C| for some recursive function g(k), which
increases with the size |C| of the circuit C.

Formally, using these characterizations and padding techniques, we can
show that W [P] = FPT implies an unlikely consequence in complexity the-

9

ory, as stated in the following theorem.

Theorem 3.10. In the following, (1) and (2) are equivalent, and both implies
(3).
(1) W [P] = FPT;
(2) GC(s(n) log n, P) ⊆ P for some unbounded non-decreasing function
s(n);
(3) NTIME(n) ⊆ DTIME(2o(n)).

4 The structure of the W -hierarchy

In this section, we will characterize the W -hierarchy by the GC model and
show a strong evidence that the W -hierarchy does not collapse.

Definition 4.1. Let C and C ′ be two classes of parameterized problems. The
two classes are equivalent up to the uniform reduction if every problem in
class C can be uniformly reduced to some problem in the class C ′ and vice
versa.

Let Πt (resp. Σt) denote the class of languages accepted by log-time
alternating Turing machine of alternation depth at most t, and that must
begin with ∧ state (resp. ∨ state). For a more careful discussion of this kind
of alternating Turing machines, the reader is referred to [?, ?].

Lemma 4.2. The class GC(R(k) log n,Π2t) is a subclass of the class W [2t],
for all t ≥ 1.

Proof. (Sketch) The proof is similar to that of Lemma 3.8. Suppose that L
is a problem in the class GC(f(k) log n,Π2t), where f is a recursive function.
Then there is an alternating Turing machine M of alternation depth 2t, such
that z = 〈x, k〉 is in L if and only if there is a string y of length f(k) log(|x|)
and M accepts the input z#y in O(log |z|) space. We show how to reduce
the problem L to the problem WCS(2t, h) for some constant h.

Let z = 〈x, k〉 be an instance of L. By Theorem 3.3 in [?], a Πh
2t-circuit C

can be constructed in time polynomial in |z| such as the circuit C accepts the
input z#y if and only if the algorithm M does, where y is a string of length
f(k) log(|z|). Assigning the input part of C corresponding to the string z
results in a Πh

2t-circuit C ′ with f(k) log(|z|) input bits. Now by a technique
more delicate than that of Lemma 3.8, we can construct a Πh

2t-circuit C ′′ of

10

f(k)n input bits without increasing the depth so that the circuit C ′ has a
satisfiable assignment if and only if C ′′ accepts a weight k input vector. This
gives the uniform reduction from the problem L to the problem WCS(2t, h).
Thus, L is in the class W [2t].

Lemma 4.3. For each fixed integer t, the parameterized problem WCS(2t, h)
is in the class GC(k log n,Π2t), for all integer h.

Proof. (Sketch) On an input of form 〈C, k〉#y, where C is a Πh
2t-circuit and

|y| = k log |C|, the log-time alternating Turing machine M of alternation
depth 2t will interpret the string y as k input gate names and check whether
the assignment that assigns all these k inputs 1 and all other inputs 0 is
satisfiable.

Theorem 4.4. The classes GC(R(k) log n,Π2t) and W [2t] are equivalent up
to the uniform reduction.

Proof. Follows directly from Lemma 4.2 and Lemma 4.3 and the definitions.

Therefore, in some sense, the class GC(R(k) log n,Π2t) and the class
W [2t] are of the same fixed-parameter complexity. Surprisingly enough, we
show below that all classes GC(R(k) log n,Πt) are distinct.

Theorem 4.5. The class GC(R(k) log n,Πt) is a proper subclass of the class
GC(R(k) log n,Πt+1) for all t ≥ 1.

Proof. Suppose the theorem is not true so that

GC(R(k) log n,Πt) = GC(R(k) log n,Πi+1)

Let A be a language in the class Πt+1. Fix an integer k0. Consider the
following parameterized problem:

LA = {〈x, k0〉 | x ∈ A}

Then clearly, LA ∈ GC(f(k) log n,Πt+1) for some recursive function f (in
fact, we can choose f(k) ≡ 0). By our assumption, the problem LA is in
the class GC(g(k) log n,Πt) for some recursive function g. Since the param-
eter k in the problemLA is fixed to be k0, the problem LA is in the class
GC(g(k0) log n,Πt). Thus, there is a log-time alternating Turing machine M

11

of alternation depth t such that for any z = 〈x, k0〉, z ∈ LA if and only if
there is a string y of length g(k0) log(|x|) and M accepts z#y. Construct a
new log-time alternating Turing machine M ′ as follows: given an input x, M
first existentially guesses a string y of length g(k0) log n then simulates the
machine M on input 〈x, k0〉#y. It is easy to see that M accepts the language
A. Moreover, the machine M ′ has alternation depth t + 1 and running time
is bounded by O(log n). Thus, the language A is in the class Σt+1.

Since A is an arbitrary language in Πi+1, we conclude that Πi+1 ⊆ Σi+1.
However, this contradicts a result by Sipser [?] (see also [?] and [?]).

Corollary 4.6. For all t ≥ 1, the class GC(R(k) log n,Πt) is a proper subset
of the class GC(R(k) log n, P).

Another natural question for the W -hierarchy is whether the class W [P]
contains all parameterized problems in NP. Interesting enough, we show be-
low that this question is closely related to the question whether the classes
FPT and W [P] are identical.

Lemma 4.7. For recursive functions f and g and a polynomial time con-
structible function h(n) = ω(log n), if GC(f(k)h(n), P)∩NP = GC(g(k) log n, P)∩
NP, then GC(h(n), P) = GC(log n, P).

Theorem 4.8. If W [P] contains all parameterized problems in NP, then
W [P] = FPT.

Proof. Let h(n) be any function = ω(log n). Consider parameterized prob-
lems in GC(R(k)h(n), P)∩NP. By the assumption of the theorem, GC(R(k)h(n), P)∩
NP ⊆ W [P]. By Theorem 3.9, GC(R(k)h(n), P)∩NP ⊆ GC(R(k) log n, P)∩
NP, which implies immediately GC(h(n), P) ⊆ GC(log n, P) = P by Lemma 4.7,
which in turn leads to W [P] = FPT by Theorem 3.10.

5 Subclasses in FPT

All known NP optimization problems with constant approximation ratio have
been shown fixed parameter tractable [?] (the proofs for some problems may
involve nontrivial techniques used in [?]). This strong evidence suggests
us to conjecture that approximability implies fixed parameter tractability
for optimization problems. On the other hand, there are non-approximable
NP optimization problems that are fixed parameter tractable. For example,

12

Longest Path has been shown to have no constant approximation ratio [?]
while it is fixed parameter tractable [?]. Thus, a further refinement of the
class FPT is needed to capture the approximability of optimization problems
in FPT.

A possible refinement has been considered recently, and a variety of prac-
tical problems have been shown to belong to various subclasses of FPT [?].
In the following, we discuss a refinement of the class FPT in terms of the
GC models.

We first consider the GC models with guessing ability strictly limited.

Theorem 5.1. (1) Vertex-cover is in GC(k, P);
(2) MAX-3SAT is in GC(dk, P), where d is a fixed integer;
(3) Varying k-CNF is in GC(k log k, P).

We point out that all above three problems are approximable and they are
in the class GC(p(k), P), for some polynomial p. A contrasting example is the
problem Longest Path, which can be solved in deterministic O(2kk!n) time
[?] and is unknown in the class GC(p(k), P) for any polynomial p. On the
other hand, it is known that the problem Longest Path is not approximable
to a constant ratio in polynomial time [?].

We can also define subclasses of FPT by limiting the verifier in the GC
model. By carefully examining the proofs of Theorem 1.1 and 2.7 in [?], we
have

Theorem 5.2. (1) Vertex-cover is in GC(k log k, L)
(2) k-LEAF SPANNING FOREST is in GC(6k(k + 1) log k, L)
(3) k-LEAF SPANNING TREE is in GC(6k(k + 1) log k,NL)

It is interesting to notice that separation of subclasses of GC(R(k), P)
defined by limiting the verifiers in the GC model implies separation of the
corresponding subclasses in P .

Theorem 5.3. (1) GC(R(k), P) = GC(R(k), NL) if and only if P = NL
(2) GC(R(k), NL) = GC(R(k), L) if and only if NL = L
(3) GC(R(k), P) = GC(R(k), L) if and only if P = L

6 Conclusion

We have characterized the classes in the W -hierarchy by the GC models.
Our results give strong evidence for that the W -hierarchy does not collapse.

13

New techniques have been developed to separate the ability of guessing and
the power of verifying in computations of practical problems. The class
of fixed-parameter tractable problems have been further refined for possible
classifications in order to capture the approximability of problems in the class
FPT. These results should have important impact to the study of compu-
tational optimization problems, in particular for those studies based on the
theory of completeness of parameterized problems.

14

