
SPLITTING THEOREMS AND LOW DEGREES

ELLEN CHIH AND ROD G. DOWNEY

Abstract. We prove that if A is a non-low c.e. set, then there exists non-

computable sets A1 tA2 = A splitting A with A1 non-low.

1. Introduction

Some of the earliest theorems in computability theory are those concerning split-
tings of computably enumerable (c.e.) sets. We say that A1 tA2 = A is a splitting
of A if A1, A2 are c.e., disjoint and A1 ∪ A2 = A. One of the earliest results is
Friedberg’s splitting theorem [13] which asserts that each noncomputable c.e. set
has a nontrivial split, meaning that neither A1 nor A2 are computable.

One of the reasons that splitting theorems have interest is their interactions
with the c.e. degrees. If A1 t A2 = A, then deg(A1)∨deg(A2) =deg(A) holds in
the Turing (and in fact weak truth table) degrees. Thus Sacks famous splitting
theorem [18] asserts that for each noncomputable c.e. set A and noncomputable
∆0

2 set B there is a splitting A1 tA2 = A with B 6≤T Ai for i ∈ {1, 2}. Thus there
is no least c.e. degree and all c.e. degrees are join reducible.

For more on the extensive interactions of splittings of c.e. sets with the c.e.
degrees and other topics in classical computability theory, we refer to the somewhat
dated but extensive paper Downey-Stob [12].

The current paper is concerned with interactions of splitting theorems and the
jump operator. As observed by Soare, the standard proof of Sacks’ splitting theorem
automatically give low c.e. sets A1, A2, meaning that A′i ≡T ∅′.

A natural question is to ask whether this is tight in some sense. Can c.e. sets
always be nontrivially be split into non-low c.e. sets? Of course this question is
only meaningful if A is non-low.

A strong counterexample would be provided by showing that each c.e. set A
was mitotic meaning that it has a splitting A1 t A2 = A where A1 ≡T A2 ≡T A.
Unfortunately Ladner [16] proved that not every c.e. set was mitotic, but also
proved [17] that there were nonzero c.e. degrees containing only mitotic sets. For
more on this see Downey and Slaman [11], and Griffiths [14].

Perhaps a weak example could be provided by only looking at jumps. However,
Ingrassia and Lempp [15] proved that there are c.e. sets A such that there is no
splitting A1 tA2 = A with A′1 ≡T A′2 ≡T A′.

Towards the other direction, Ambos-Spies [1] proved that there is a complete c.e.
set A such that if A1 t A2 = A is a splitting, then at least one of A1 or A2 is low.
Can we have that both sides of every nontrivial splitting of a complete set always
low? That is, the only splits with both sides noncomputable are essentially Sacks’
splits? Downey and Stob [12] showed that the answer is no since if A is prompt

Downey thanks to the Marsden Fund of New Zealand. Many thanks to Leo Harrington for a
long discussion about this result, and to Rutger Kuyper for many corrections of false claims.

1

2 ELLEN CHIH AND ROD G. DOWNEY

(i.e. of promptly simple degree) then there is a splitting A1 t A2 = A with with
A2 6≡T ∅ and A1 ≡T A.

Finally Downey and Shore [10] proved the following

Theorem 1.1 (Downey and Shore [10]). There is a high c.e. set A (i.e. A′ ≡T ∅′′)
such that if A1 t A2 = A is a nontrivial splitting (i.e. neither A1 nor A2 are
computable) of A then both A1 and A2 are low2. (i.e. A′′ ≡T ∅′′)

In terms of the jump operator, we show that Theorem 1.1 settles the matter
since we prove the following definitive result.

Theorem 1.2. If A is any non-low c.e. set, then there exists a non-low c.e. set
A1 and a non-computable c.e. set A2 with A1 tA2 = A.

The question we answer with Theorem 1.2 has attracted several conjectures.
Theorem 1.2 certainly conjectured to be true around 1990, but no proof appeared;
and in recent years conjectured to be not true.

Our proof is somewhat subtle (and surprisingly difficult) in that we will es-
sentially use that fact that we can begin with A non-prompt. To the authors’
knowledge, this is the first proof that nonuniformly splits into two cases, depending
on whether A is prompt or tardy. Technically, we will use the tardy assumption to
force certain “gaps” to remain open that we can argue that certain small numbers
don’t enter sets capriciously. This is done by trying to build noncomputable sets
Qα at nodes α on the true path, with the Qα below a minimal pair. This must
fail on some witness since they are a minimal pair, and it is here that we meet the
requirement. The technique should be useful elsewhere.

We will work up to the proof by first establishing the result with the assumption
that A is high. Once this is done we modify the proof for the non-low case, which
involves significant surgery on the tree from the high case for purely technical
reasons. Certain fundamental ideas from the high case remain, and there are most
easily understood without the additional nonuniformity present in the non-high
case.

We remark that Downey and Ng [9] have shown that if we consider splitting
with low replaced by superlow1 then the splitting result fails more spectacularly,
even for degrees. Downey and Ng showed that there is a c.e. degree a such that if
a1 ∪ a2 = a in the c.e. degrees, then one of a1 or a2 is not totally ω-c.a.. Being
totally ω-c.a. is a weakening of being superlow (and array computable) and means
that if f ≤T ai then f has a computable approximation f(n) = lims f(n, s) with
a computable function h, such that |{s | f(n, s + 1) 6= f(n, s)}| ≤ h(n). Downey
and Ng also showed that every high c.e. degree is the join of two totally ω-c.a.
c.e. degrees. This extends a classical theorem of Bickford and Mills [4] who showed
that 0′ is the join of two superlow c.e. degrees. However, in [9] it is shown that
there are (super-)high c.e. degrees that are not the joins of two superlow degrees.
Finally, Ambos-Spies, Downey and Monath have proven

Theorem 1.3 (Ambos-Spies, Downey, and Monath [2]). Every c.e. set can be split
into a pair of c.e. sets which are totally ω3-c.a..

Here a is totally ωn-c.a. means that every f ≤T a has an ωn-approximation,
given by effective Cantor Normal Form. (See Downey and Greenberg [7].) It is
unknown if Theorem 1.3 can be improved to ω2, even for degrees.

1That is, A′
i ≡tt ∅′.

SPLITTING THEOREMS AND LOW DEGREES 3

We refer to Soare [19] or the computability section of Downey-Hirschfeldt [6] as
a general reference to our notation and terminology. We tend to use the Lachlan
convention that appending [s] to a parameter, indicates its state at stage s. We
denote the jump function JA(e) = {e | ΦAe (e) ↓}. The use of the jump function
will be denoted by j(e), and more generally, uses will be lower case letters of
the functionals. Parameters don’t change from stage to stage unless indicated
otherwise.

2. The evolution of the present paper

Ellen Chih established a sketch of a proof of the result proven in this paper, but
no details have appeared, or are likely to, for various reasons.

Independently, and thinking Chih had claimed the opposite direction, the second
author also worked on the problem. Both authors independently split the proof into
the non-prompt and prompt case, which seems essential. In an e-mail to Downey,
Leo Harrington described Chih’s proof which otherwise worked quite differently,
and involved a lemma about lowness of independent interest. We give a proof of
this Lemma in section 5. Chih’s proof involved yet another level of nonuniformity,
than the proof here. Our proof works through the Downey, Jockusch, Schupp
non-lowness permitting machinery ([8]).

The point of all of this is that all errors in the present paper are due entirely to
Downey. Given the long history of the problem, at least since 1990, it is important
to get a proof in the literature.

3. The high case

We are given a c.e. set A of high degree and need to construct disjoint c.e. sets
X and Y so that X t Y = A and meet the requirements

Re : JX 6= lim
s
ϕe(·, s).

Pe : Y 6= We.

3.1. Using Highness. We will begin by proving the result for the more familiar
case that A is of high degree. This proof has most of the elements we need and we
later modify the proof to the situation of A only assumed non-low, in Section 4.

Since A is high we are given an A-computable function ΓA such that for any
computable function h,

(a.a.z)ΓA(z) > h(z).

Of course, we will have a ∆0
2 approximation ΓA(z)[s] with use function γ(z)[s]. This

is sped up so that at every stage s, ΓA(p) ↓ [s] for p < s.
For each requirement R or P we will build computable functions h and use them

to force elements into A. Namely, if a function h is associated with a requirement
and for its sake we wish to enumerate a element into A to put into one of X or Y ,
we will arrange things so that the relevant element needed is bigger than γ(z)[s],
and we have not as yet defined h(z). (In fact it will be that this is the least such z
with h(z) undefined.) Note that γ(z)[s] can only change if some element a ≤ γ(z)[s]
enters A−As. Now, we will define h(z) > ΓA(z)[s].

The opponent only have two options. Either it gives up on z and admits that
ΓA(z) < h(z), or it can change its stage s value to make ΓA(z) > h(z). In the latter
case we are supplied with a permission.

4 ELLEN CHIH AND ROD G. DOWNEY

If the requirement is infinitely active, then we can ensure that h is computable.
Hence option 1 can only occur for finitely many z, as ΓA is dominant. Option 2, will
therefore occur almost always and hence almost always we get permissions from A.

Remark 3.1. We remark that with this methodology, as will also happen in the
case that A is only non-low and not necessarily high, that although almost always
A will permit, the opponent won’t let this happen promptly. Naturally, while we
await a permission, some new strategy is begun with the assumption that this z
does not permit. For a single requirement this is of no consequence, but as we later
see, the lack or promptness is the essence of difficulties we have when we consider
interactions of requirements.

3.2. The Basic Re-Module. Meeting Re works as follows. We will pick an index
i = i0, potentially computable function h, and start argument 0 for h.

(i) We will keep JX(i0) ↑ [s] until a stage s is found where ϕe(i0, s) = 0.
(ii) At this stage, we will declare that JX(i0) ↓ [s + 1] with use j(i0)[s + 1] >

γ(p)[s+ 1]. where p is the first argument for which we have not yet defined
h(p).

(iii) For stages t ≥ s + 1, until we see ϕe(i0, s) = 1, we keep j(i0)[t] > γ(p)[t].
To do this, whenever some number q ≤ γ(p)[t] enters At+1−At we will put
at least one such number into Xt+1 −Xt. Notice for a fixed argument p of
ΓA, this will only effect a finite number of numbers entering A, essentially
bounded by γ(p).

(iv) Should we see a stage u > s where ϕe(i0, u) = 1, then we will try to make
JX(i0) ↑ [u′] for some u′ > u.

The way we will implement this idea is to now define h(p) > γ(p)[u].
(v) The strategy for i0 now stalls until we see a stage u′ > u (if any) where

A � γ(p)[u′] changes. If we see such a stage u′ we would return to step (i).
i0 would now assert control of the strategy and we would not do further
work until (ii) is again found for i0.

(vi) While the i0 strategy is stalled in (v), we’d begin the i1-strategy for a newly
chosen argument i1, and whilst i0 is stalled we would run through the same
steps for i1, which would assert control of the first unused argument for h.
In general, the ik strategy is initialized each time an ik−1 strategy is no
longer stalled. We always ensure that j(ik)[s] > j(ik−1)[s].

There are several outcomes to the module above. The module could get stuck
in (i) for some fixed ik. This is outcome w which satisfies the requirement since
JX(ik) ↑6= lims ϕe(ik, s) = 1, the Σ0

2-outcome. Otherwise we see that the Re
module is infinitely often active, and hence h is total. Because ΓA is dominant,
only finitely many ik can be permanently stuck in (v), and hence there is a least k
with the outcome (k,∞), saying that ik[s] has come to a limit, and the whole cycle
repeats infinitely often for this least ik. We would conclude that lims ϕe(ik, s) fails
to exist. We would organize the outcomes as (0,∞) <L (1,∞) <L · · · <L w, an
ω + 1 list on the tree.

Remark 3.2. In the case of outcome w, the Re-module has finite effect on the
construction. In the case of outcome (k,∞), id for d < k never again active, from
some stage s′ onwards, but thereafter there will be infinitely many stages where
JX(ik) ↑ [s]. At such stages s, the Re-module does not care if a number enters A,

SPLITTING THEOREMS AND LOW DEGREES 5

in the sense that we would not be forced by (iii) or (v) to put such a number into
X.

3.3. The Basic Pf -Module. This is essentially Friedberg Strategy.

(i) Pick some d0.
(ii) We see that Y � d0 = Wf � d0[s]. Declare d0 as active. We would begin a

strategy on d1 > d0
(iii) We see some number a < dp for some active p enter A. In this case we put

a into Y and win Pf .

This strategy has two outcomes s <L w. (More thematically, we could use
1 +ω∗+ 1, where the left 1 represents s and the order type ω∗ the number of times
we play (ii). Using this, each time we play (ii) we can initialize on the priority tree
to the right.) The second means that we get stuck waiting for (ii) on some dk, the
first means we invoke (iii).

This module is finitary. The strategy wins because A is noncomputable, and
hence some a must so enter.

3.4. The Conflicts and Their Resolution. The first thing to note is that there
are no conflicts between Re strategies. They want to put numbers into X. So we
concentrate on Pf vs Re. A Pf above a Re is finitary and this simply works by
initialization (by moving left on the tree).

So we will concentrate upon Pf below an Re. As we said in Remark 3.1, the
conflicts between the strategies above all revolve around the fact that it is the op-
ponent who chooses when to enumerate elements into A to witness the domination
of ΓA. Consider a version of Pf guessing the outcome of Re is (k,∞). It would
like to see it’s witnessing element a enter A at a stage where JX(ik) ↑ [s]. That is
because at such a stage s, an element entering A would be free to enter Y to meet
Pf .

Certainly Pf could begin it’s attack as per (ii) in Re’s cycle at a stage where
JX(ik) ↑ [s]. But there is no a priori reason that such an element would enter while
Re is not in (iii) or (v) for Re, when JX(ik) ↓ [t]. If such an a entered At when Re
is in that part of its cycle, we’d be forced to put a into X, otherwise the strategy for
Re would be invalidated. We would no longer have the ability to correct JX(ik).

This conflict seems to be nearly fatal, and can be turned around to give a proof
that there is no uniform method of constructing the split X t Y = A.

The method of solving the problem we use is rather unusual. We know that
there is no problem is A is prompt by Downey and Stob [12], as mentioned earlier.

We desire that no small number like a ≤ dp enters A while JX(ik) ↓ . The
plan is to try to impose restraint on A for stages while this is true. Of course,
A is played by the opponent, so any restraint must be indirect. This restraint is
imposed by utilizing the fact that since A is not prompt, it must be cappable. That
is, if A is not prompt then there is a noncomputable c.e. set B such that degT (A)∧
degT (B) = 0, by Ambos-Spies, Jockusch, Shore and Soare [3].

The idea is the following. We will build a c.e. set Q ≤T A,B and try to meet
the requirements

Mm : Q 6= Wm.

We will amalgamate these requirements with the outcomes of Re, (k,∞) met
before. The outcomes will now read as of the form (k,m,∞) of Re. These are

6 ELLEN CHIH AND ROD G. DOWNEY

ordered by regarding k,m as a pairing function, hence give a list, again of order
type ω, below Re.

Now each of these subrequirements of Re will have associated with it a follower
ik,m[s] (for the jump function JX(ik,m)) serving the role of ik discussed above. The
rules of the basic module apply in that if something to the left acts then this witness
is initialized.

The driver is that we don’t want random small numbers entering A which should
be usable for some Pf requirements being forced into X because JX(n) ↓, and either
we want to change the value of this ((v) of the basic module) or maintain the value
((iii) of the basic module). The plan is to use the fact that for some m we must
fail to meet Mm, since A and B form a minimal pair.

The (k,m)-strategy for Re.
The (k,m) strategy works by generating a stream of numbers {qmj : j ∈ ω} with

(dropping the superscript) q0 < q1 < We will say that qi is realized when we
see qi ∈ Mm[s]. qi+1 is defined as large and picked after qi becomes realized. qi is
said to be B-permitted at stage s if it is realized and Bs � qi 6= Bs−1 � qi.

We modify the basic module as follows. We do this while (k,m) is not yet
diagonalized.

(i) We will keep JX(ik,m) ↑ [s] until a stage s is found where ϕe(ik,m, s) = 0,
and some qi (the largest such) has been permitted since the last stage we
visited the node representing Re.

(ii) At this stage, we will declare that JX(ik,m) ↓ [s+1] with use j(ik,m)[s+1] >
γ(p)[s+ 1], where p is the first argument for which we have not yet defined
h(p).

(iii) For stages t ≥ s+1, until we see ϕe(ik,m, s) = 1, we keep j(ik,m)[t] > γ(p)[t].
To do this, whenever some number n ≤ γ(p)[t] enters At+1−At we will put
at least one such number into Xt+1 −Xt. Notice for argument p, this will
only affect a finite number of numbers entering A.

(iv) Should we see a stage u > s where ϕe(ik,m, u) = 1, then we will try to make
JX(ik,m) ↑ [u′] for some u′ > u.

The way we will implement this idea is to now define h(p) > γ(p)[u].
The following is new.

(ivb) While this is happening, (i.e. since we began (iii)) should some number
≤ γ(qi)[s] enter At, then we will put qi into Qt and declare that all sub-
requirements of Re of the form (k′,m) for some k′ are diagonalized. That
would finish the stage, and ik,m would be discarded.

(v) The strategy for ik,m now stalls until we see a stage u′ > u (if any) where
A � γ(p)[u′] changes. If we see such a stage u′ we would return to step (i),
with JX(ik,m) ↑. We would declare that qi is no longer permitted.

As in the Basic Module,
(vi) While the ik,m strategy is stalled in (v), we’d begin the ik′,m′ -strategy for

the next not yet diagonalized (k′,m) with a newly chosen argument ik′,m′ .
In general, the ik strategy is initialized each time an ik−1 strategy is no
longer stalled. We always ensure that j(ik)[s] > j(ik−1)[s].

So why does this work? First note that if we get stuck in (i) or (iii) waiting for
a flip in the value of ϕe(ik,m, s) then this is a global win for Re, and the outcome
will be w. (Note, however, we could get stuck in (iv).)

SPLITTING THEOREMS AND LOW DEGREES 7

Since there are infinitely many permitted qi (as B is noncomputable), Thus if the
ϕe behaves honestly, we will infinitely often play outcomes of the form (k,m,∞).
We first claim that there is a least such (k,m).

Suppose not. We can move to a stage s0 where we are never again left of
(k,m,∞), and hence thereafter ik,m[s0] = ik,m is immortal. The stream of qi
associated with (k,m,∞) is growing with time and hence there are infinitely many
stages where (k,m,∞) asserts control of the Re-module. We cannot get stuck in
(i) or (iii) by assumption, and hence the only way this can only act finitely often is
either by being diagonalized (so that Q ∩Wm 6= ∅), or by being stuck in (v).

Lemma 3.3. Assuming that we are dealing with an infinitely active version of Re
on the true path, Q ≤T B,A.

Proof. For the same reason as the basic module, only finitely many (k,m) modules
can be stuck in (v), as ΓA is dominant. If we assume that the node representing Re
is on the true path, then for any qxi , once it is B-permitted, either that permission
will be initialized because of a higher priority (r, z) < (w, x) acting at the next Re-
stage, or we will begin an attack for the outcome (w, x,∞) associated with that qxi .
Now either that attack is initialized, or for almost all qxi ’s the attack reaches (v), or
a diagonalization occurs using qxi via a γ(qxi)-permission. Therefore Q ≤T B,A. �

It follows that for some least (k,m), (k,m,∞) is on the true path and Wm = Q,
no qmi is ever enumerated into Q. Moreover, if we call this the true (k,m), then
the following holds.

Lemma 3.4. For the true (k,m), every ik,m cycle runs from (i) to (v). Suppose
that a cycle is begun following a permission on qi at stage s0 and reaches (v) at
stage s1. Then no number enters A below γ(qi)[s] for any stage s ∈ [s0, s1].

So now we see how we can make no small numbers enter A whilst Re would put
them into X. During a cycle, Lemma 3.4 says no small numbers enter A during
a cycle. Between cycles, ΓX(ik,m) ↑ so outcome (k,m,∞) does not care about
numbers entering A.

The Pf strategy remains the same. It does not care about B, only the noncom-
putabilty of A. The point is that some Re strategy at left of a node τ representing
Pf could ask that a number entering A go into X for the sake of (iii). Since ΓA is
total this can only happen finitely often and we can afford to initialize each time
this request happens. Thus, in the case of A high, there is only finite injury from
the left. In the later non-low case things are more complex.

The remainder of the argument is to put this on a tree in a standard way; and
this is routine.

4. The case that A is only non-low

.
Being non-low resembles being “nonuniformly locally high”. This has been made

precise in, for example, Downey, Jockusch and Schupp [8] where the methodology
is used to show that non-low c.e. degrees contain c.e. sets of density 1 with no
computable subset of density 1.

The idea is to try to build a proof that A is low, and we see that for some
argument k this proof will fail. It will be here that we succeed.

8 ELLEN CHIH AND ROD G. DOWNEY

In more detail, for the basic module first, we again split Re into infinitely many
subrequirements Re,k. This time subrequirement k is attempting to give a limit
lemma definition of ∅′(k), lims Θ(k, s).

Initially, Θ(k, t) = 0 indicating that we believe that ΦAk (k) ↑ . At some stage s
we see ΦAk (k)[s] ↓. The question is, should we change Θ(k, s) = 1? What we will
do in synchronise this belief with attempts to meet Re. We will have a current ik[s]
devoted to this subrequirement, as in the Basic Module of Subsection 3.2.

What we will do is now is to invoke the basic module; a modification of the
one from the previous section. Currently we are keeping Θ(k, u) = 0, until we
hit (v) below. If, during the execution of the below, before we reach (iii) we see
ΦAk (k) ↑ [u] then we abandon this attack. Note we are not yet initializing anything
right of (k,∞).

(i) We will keep JX(ik) ↑ [s] until a stage s is found where ϕe(ik, s) = 0.
(ii) At this stage, we will declare that JX(ik) ↓ [s+ 1] with use j(ip)[s+ 1] > p.

Here p is some number chosen with p > φk(k)[s] (which denotes φAk (k)[s]).
(iii) For stages t ≥ s+1, until we see ϕe(ik, s) = 1, we will monitor the situation,

and if some number ≤ φk(k)[s] enters At we declare JX(ik) ↑ [t] by putting
said number into X.

(iv) Should we see a stage u > s where ϕe(ik, u) = 1, then we will try to make
JX(i0) ↑ [u′] for some u′ > u.

New: The new way we do this is that we will finally define Θ(k, u′) = 1
(with big use, in particular > φk(k)[u]), for u′ > u unless (v) below occurs.

(v) The strategy for i0 now stalls until we see a stage u′ > u (if any) where
A � φk(k)[u′] changes. If we see such a stage u′ we would return to step (i).
i0 would now assert control of the strategy and we would not do further
work until (ii) is again found for i0. Also making Θ(k, u′′) = 0, for u′′ ≥ u′
unless otherwise specified.

(vi) While the i0 strategy is stalled in (v), we’d begin the i1-strategy for a newly
chosen argument i1, and whilst i0 is stalled we would run through the same
steps for i1. It is here that initialization occurs. In general, the ik strategy
is initialized each time an ik−1 strategy is no longer stalled. We always
ensure that j(ik)[s] > j(ik−1)[s].

Now the argument that the new Re-module succeeds is similar. Suppose that
for all k, the k-module fails, and the Σ0

2 outcome is not on the true path. Then
each k module can only reach (v) finitely often. We claim that A is low, and Θ(k, ·)
is correct. The only time we change the value of Θ(k, s) is when we reach (v).
This will be correct, unless a stage u′ as above occurs, and then the value will be
changed back to 0. The fact that each k-module only acts finitely often means that
lims Θ(k, s) exists for all s. The fact that w is not correct, means that each cycle
of the basic module is either completed or the ΦAk (k) ↓ [s] computation goes away
before the cycle if completed. The fact that we only initialize to the right at step
(v), means that no false initiation of k-modules can upset our actions.

Therefore, some k module must succeed. If the Σ0
2-outcome is not correct, then

this means that there is some least k which reaches (v) infinitely often and hence
lims ϕe(ik, s) has no limit, and cannot compute JX(ik) where ik = lims ik[s].

Finally adding the B-permitting is exactly as before with the changes according
to the module above.

SPLITTING THEOREMS AND LOW DEGREES 9

So here is how the construction looks at a node ρ devoted to Re. For undiag-
onalized k,m, if we hit ρ, then we will either play the outcome w or be in some
attack as described below.

(a) If, during the execution of the below, before we reach (iii), we see ΦAk (k) ↑
[u] then we abandon this attack at any stage u between the stage where the
attack was begun and we hit ρ this time. Note we are not yet initializing
anything right of (k,m,∞). If this occurs, qi is no longer permitted.

(b) We do not allow a k,m strategy to initialize outcome to the right unless we
hit (iv) where we define Θ(k, s). i.e. qi is no longer permitted.

A consequence of these two outcomes is that there may be many k′,m′-strategies
played in parallel, because of the capriciousness of the ΦAk′(k

′). This is of no con-
sequence, because we do not play nodes extending ρ̂(k,m,∞) until we play (v) in
the module.

(i) We will keep JX(ik,m) ↑ [s] until a stage s is found where ϕe(ik,m, s) = 0,
ΦAk (k) ↓ [s], Θ(k, s) = 0, and some qi (the largest such) has been permitted
since the last stage we visited ρ. (Note that the requirement Θ(k, s) = 0
means that at most one k,m has defined Θ(k, s) = 1 at a stage.)

(ii) At this stage, we will declare that JX(ik,m) ↓ [s+1] with use j(ik,m)[s+1] >
p. Here p is some number chosen with p > φk(k)[s].

(iii) For any stages t ≥ s + 1, until this module is resolved, until we see
ϕe(ik,m, s) = 1, we will monitor the situation, and if some number ≤
φk(k)[s] enters At we declare JX(ik) ↑ [t] by putting said number into
X.

(iv) Should we see a stage u > s where ϕe(ik,m, u) = 1, then we will try to make
JX(ik,m) ↑ [u′] for some u′ > u. (i.e. using Θ.)

(iva) While this is happening, (i.e. since we began (iii)) should some number qi
enter At, then we will put qi into Qt and declare that all subrequirements
of Re of the form (k′,m) for some k′ are diagonalized. That would finish
the stage, and ik,m would be discarded.

(ivb) Else we will finally define Θ(k, u′) = 1, for u′ > u unless (v) below occurs.
It is at this stage that we would initialize (k′,m′) right of (k,m)

(v) The strategy for ik,m now stalls until we see a stage u′ > u (if any) where
A � φk(k)[u′] changes. If we see such a stage u′ we would return to step (i),
with JX(ik,m) ↑, putting the number entering A into X. We would decare
that qi is no longer permitted.

When (v) occurs it is now that we would allow the construction to play
strategies at nodes ν with ρ̂(k,m,∞) � ν.

(vi) While the ik,m strategy is stalled in (v), we’d begin the ik′,m′ -strategy for
the next not yet diagonalized (k′,m′) with a newly chosen argument ik′,m′ .
In general, the ik strategy is initialized each time an ik−1 strategy is no
longer stalled. We always ensure that j(ik)[s] > j(ik−1)[s].

Now, in the construction, as opposed to the basic module, it is (iii) that causes
a problem. It could be that some (k′,m′) < (k,m) is working with a fake ΦAk′(k

′)
and during its cycle it sees a number entering A from the right and this number is
below ϕAk′(k

′)[s], forcing this number into X, to correct JX(ik′,m′). This can only
occur finitely in the high case as γ(k′)[s] has a limit. But in the non-high case, it is
conceivable it might happen infinitely often. Because of this, the Pf modules below
need to know if this happens. Thus for each outcome of the form ρ̂(k,m,∞) we

10 ELLEN CHIH AND ROD G. DOWNEY

will have a second layer of outcomes guessing this Π0
2 behaviour. To wit, we would

have finite sets Fn coding the (k′,m′) <L (k,m) for which this fake behaviour, and
it would be enough to order them numerically.

The plan would be that if a Pf is guessing that (k′,m′) ∈ Fn is acting in this
way infinitely often, it would demand that its di < qi′ where qi′ is the permitted
qj associated with φk′(k

′)[s]. This means that if some small a from this version is
pulled by ρ̂(k′,m′,∞), then it will be so small that qi′ will succeed in diagonalizing
Mm′ . Hence, this set-up allows for infinitely many numbes to enter A left of the
true path for (k′,m′), but conclude that they are so large that they are of no
consequence for (k,m,∞).

Being Π0
2 behaviour, we can play this each time this event fires as the outcome

of ρ̂(k,m,∞) by reaching (v).
Next suppose that τ is a Pf -node. The strategy is similar, but takes the com-

ments above into account.
First if τ is infinitely often accessible, then it will be allowed to cycle through its

definitions of di as desired. If it was infinitely often active, as A is noncomputable,
this will produce infinitely many active a’s, and by construction, these are small.
On the assumption that all the nodes ρ̂(k′,m′,∞) above are on the true path, a
cannot enter A at a stage where JX(ik′,m′) ↓ [s] lest m′ become diagonalized. Note
that if this number a is forced into X, it can only be because of some strategy left
of τ . In particular, it is some strategy of the form ρ̂(p,m,∞), with ΦAp (p) ↓ [s],
and a < ϕp(p)[s]. If we are dealing with the leftmost version of τ on the true path
we would have a < qp,mi , since if this happens infinitely often, then qp,mi →∞ and
ϕp(p)[s]→∞. But then we would put qp,mi into Mm, diagonalizing Mm henceforth.
Therefore, only finitely many such a can be pulled into X for version of Pf at τ ,
assuming it is on the true path. Thus after some stage, they enter when JX(ik′,m′) ↑
and can successfully be put into Y and not X.

The result now follows.

5. Characterization of lowness

The proof sketch communicated to Downey by Harrington used a different strat-
egy. This strategy involved a new characterization of lowness that is worth record-
ing, and we do so here.

Lemma 5.1 (Chih-Harrington). A computably enumerable set A is low iff there is
a computable order (i.e. increasing computable function) such that for all e,

∃∞s∀t ∈ [s, f(s)](ΦAe (e)[s] ↓) =⇒ ΦAe (e) ↓ .
(Indeed, this will also hold for all orders f∗ growing faster than f .)

Proof. First suppose that the hypothesis holds. Define Θ(e, s) = 1 iff Φe(e) ↓ [s]
and ∀t ∈ [s, f(s)](ΦAe (e)[s] ↓ . Define Θ(e, s) = 0 otherwise. Then by hypothesis
and the Limit Lemma JA(e) is determined by lims Θ(e, s), and hence JA ≤T ∅′.

Conversely, suppose that A is low. We define a computable function f . Since
A is low we know that X = {j | (∃n ∈ Wj)[Dn ⊆ A} ≤T ∅′. (See Soare [19], XI,
Lemma 3.1.) Hence by the Limit Lemma, there is a computable function h, and
an enumeration of the c.e. sets, such that, for each stage s Xs = {j ≤ s | (∃n ∈
Wj)[Dn ⊆ A][s] = ra(h(·, s)). We build uniformly for each e a c.e. set Ve whose
index Wg(e) is given by the Recursion Theorem. Initially, Ve = ∅. Thus, initially,
h(g(e), s) = 0.

SPLITTING THEOREMS AND LOW DEGREES 11

Stage s. We are ready to define f(s).
e ≤ s will either be active or inactive. If e is inactive, then ΦAe (e) ↓ [t] for all

t ∈ [u, s] where u was the stage where it was declared inactive. If e was inactive at
stage s− 1 but now ΦA(e) ↑ [s] we will declare that e is active.

Suppose we see a stage s where ΦAe (e)[s] ↓, for some active e.
Then for all active e′ ≤ s, we do the following. While the active requirements e′

are unconfirmed for all s′ > s if we see ΦAe′(e
′) ↓ [s′] (so that s′ = s for e), we will

put ϕAe′(e
′) ∩ A[s′] into Ve′ [s

′], and hence Wg(e′)[t(s
′)] at some stage t(s′) given by

the s-m-n Theorem, and we wait for a stage u > s′ where either (i) h(g(e′), u) = 1
or (ii) ΦAe′(e

′) ↑ [u] (Here we are using the hat convention, that if a computation
changes on its use, it must diverge for at least one stage.) When we see this, we will
declare that e′ is confirmed. Once confirmed we do not allow a requirement active
at stage s to become unconfirmed until stage f(s) defined below, so that each e ≤ s
will have at most one activity cycle before we define f(s).

We then define f(s) to be the first stage where all arguments n, active at stage
s are confirmed, or for which during the confirmation process for active e′ ≤ s,
ΦAn (n) ↑ [s′] for all s′.

Then f is clearly computable, and works. For suppose ΦAe (e) ↓ [t] for all t ∈
[s, f(s)]. Then it must be that h(g(e), u) = 1 for some u ∈ [s, f(s)]. Then the only
way that ΦAe (e) ↑ [v] for some v > f(s), is that h(g(e), v) = 0 by the conventions on
X. By the Limit Lemma, this can happen only finitely often. The result follows. �

References

[1] K. Ambos-Spies, Antimitotic recursively enumerable sets, Z. Math. Logik Grundlagen Math.

31 (1985), 461-467.

[2] K. Ambos-Spies, Rod Downey, and Martin Monath, Notes on Sacks Splitting Theorem, in
preparation.

[3] Ambos-Spies K., C. Jockusch, R. Shore, and R. Soare, An algebraic decomposition of recur-

sively enumerable degrees and the coincidence of several degree classes with the promptly
simple degrees, Trans. Amer. Math. Soc., Vol. 281 (1984), 109-128.

[4] M. Bickford and C. F. Mills, Lowness properties of r.e. sets, unpublished.

[5] E. Chih, Non-splitting of recursively enumerable sets, J. Symb. Logic, 80 (2015), 609-635
[6] R. G. Downey and D. R. Hirschfeldt, Algorithmic Randomness and Complexity, Springer-

Verlag, 2010.

[7] R. Downey and N. Greenberg, A Hierarchy of Low Computably Enumerable Degrees, Unifying
Classes and Natural Definability, 172pp, Submitted.

[8] R. Downey, C. Jockush, P. E. Schupp, Asymptotic density and computably enumerable
sets, Journal of Mathematical Logic Vol. 13 (2013) (43 pages) https://doi.org/10.1142/

S0219061313500050.

[9] R. G. Downey and Keng Meng Ng, Splitting into degrees with low computational strength,
accepted, Annals of Pure and Applied Logic.

[10] R. G. Downey and R. Shore, Splitting theorems and the jump operator, Annals Pure and

Applied Logic, 94 (1998), 45-52.
[11] R. G. Downey and T. A. Slaman, Completely mitotic r.e. degrees, Ann. Pure Appl. Logic 41

(1989), 119-152.

[12] R. G. Downey and M. Stob, Splitting theorems in recursion theory, Ann. Pure Appl. Logic
65 (1993), 1-106.

[13] R. Friedberg, Three theorems on recursive enumeration, J. Symbolic Logic, 23 (1958), 308-

316.
[14] E. Griffiths, Completely mitotic c.e. degrees and non-jump inversion, Annals of Pure and

Applied Logic, 132 (2005), 181-207
[15] M. Ingrassia and S. Lempp, Jumps of nontrivial splittings of r.e. sets, Z math. Logic. Grund-

lagen Math., 36 (1990), 285-292.

12 ELLEN CHIH AND ROD G. DOWNEY

[16] R. Ladner, Mitotic recursively enumerable sets, J. Symbolic Logic, 38 (1973), 199-211.

[17] R. Ladner, A completely mitotic nonrecursive recursively enumerable degree, Trans. Amer.

Math. Soc. 184 (1973), 479-507.
[18] G. E. Sacks, On the degrees less than 0′, Ann. Math. (2) 77 (1963), 211-231.

[19] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1987.

Rod G. Downey School of Mathematics and Statistics, Victoria University, P.O.

Box 600, Wellington, New Zealand.
E-mail address: rod.downey@vuw.ac.nz

Ellen Chih Mathematics Department, University of California, Berkeley, CA 94720,
USA.

