
EFFECTIVELY CATEGORICAL ABELIAN GROUPS

RODNEY DOWNEY AND ALEXANDER G. MELNIKOV

Abstract. We study effective categoricity of computable abelian groups of

the form
⊕

i∈ω H, where H is a subgroup of (Q,+). Such groups are called

homogeneous completely decomposable. It is well-known that a homogeneous
completely decomposable group is computably categorical if and only if its

rank is finite.

We study ∆0
n-categoricity in this class of groups, for n > 1. We introduce a

new algebraic concept of S-independence which is a generalization of the well-

known notion of p-independence. We develop the theory of P -independent

sets. We apply these techniques to show that every homogeneous completely
decomposable group is ∆0

3-categorical.

We prove that a homogeneous completely decomposable group of infinite
rank is ∆0

2-categorical if and only if it is isomorphic to the free module over

the localization of Z by a computably enumerable set of primes P with the

semi-low complement (within the set of all primes).
Finally, we apply these results and techniques to study the complexity of

generating bases of computable free modules over localizations of integers,

including the free abelian group.

Keywords: abelian groups and modules, computable model theory, effective
categoricity

1. Introduction

1.1. Computable structures and effective categoricity. Remarkably, the study
of effective procedures in group theory pre-dates the clarification of what is meant
by a computably process; beginning at least with the work of Max Dehn in 1911
([8]) who studied word, conjugacy and isomorphisms in finitely presented groups.
While the original questions concerned themselves with finitely presented groups,
it turned out that they were intrinsically connected with questions about infinite
presentations with computable properties. In [22], Graham Higman proved what is
now called the Higman Embedding Theorem ([22]) which stated that a finitely gen-
erated group could be embedded into a finitely presented one iff it had a computable
presentation (in a certain sense).

The current paper is centered in the line of research of effective procedures in
computably presented groups. By computable group, we mean groups where the
domian is computable and the algebraic operation is computable upon that domain.

Such studies can be generalized to other algebraic structures such as fields, rings,
vector spaces and the like, a tradition going back to Grete Herrmann [21], van ver
Waerden [44], and explicitly using computability theory, Rabin [40], Maltsev [32]
and Frölich and Shepherdson [17].

Alexander is grateful to his advisor Andre Nies who read through the manuscript. Many thanks
to Iskander Kalimullin for useful and motivative discussions at different stages of the project. We
acknowledge suppport of the Marsden Fund for this project.
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More generally, computably presentable algebraic structures are the main ob-
jects of study in computable model theory and effective algebra. Recall that for an
infinite countable algebraic structure A, a structure B isomorphic to A is called a
computable presentation of A if the domain of B is (coded by) N, and the atomic
diagram of B is a computable set. If a structure has a computable presentation
then it is computably presentable. In the same way that isomorphism is the canoni-
cal classification tool in classical algebra, when we take presentations into account,
computable isomorphism becomes the main tool. Now two presentations are re-
garded as the same if the agree up to computable isomorphism. However, an infinite
computably presentable structure A may have many of different computable pre-
sentations. Such differing presentations reflect differing computational properties.
For example, a computable copy of the order type of the natural numbers might
have the successor relation computable (as the familiar presentation does), whereas
another might have this successor relation non-computable. Such copies cannot be
computably isomorphic.

An infinite countable structure A is computably categorical or autostable if every
two computable presentations of A have a computable isomorphism between them.
This would mean that the computability-theortical properties of every copy are
identical. Cantor’s back-and-forth argument shows that the dense linear ordering
without endpoints forms a computably categorical structure. Computable cate-
goricity is one of the central notions of computable model theory (see [15] or [3]).
For certain familiar classes of structures we can characterize computable categoric-
ity by algebraic invariants. For instance, a computably presentable Boolean alge-
bra is computably categorical exactly if it has only finitely many atoms ([19], [29]),
a computably presentable linear order is computably categorical if and only if it has
only finitely many successive pairs [41], and a computably presentable torsion-free
abelian group is computably categorical if and only if its rank is finite ([20], [39]).

Computably categorical structures tend to be quite rare, and it is natural to
ask the question of how close to being computably categorical a structure is. As
mentioned above, we know that a linear ordering or order type N is not computably
categorical since there is the canonical example where the successor relation is
computable, and another where the successor relation is not. But if we are given
an oracle for the successor relation, the then structure is computably categorical
relative to that. The halting problem would be enough to decide whether y is the
successor of x in such an ordering. This motivates the followin definition.

We say that a structure A is ∆0
n-categorical if every two computable presen-

tations of A have an isomorphism between them which is computable with ora-
cle ∅(n−1), where ∅(n−1) is the (n-1)-th iteration of the Halting problem. Once
computably categorical structures in a given class are characterized, it is natural
to ask which members of this class are ∆0

2-categorical. Here the situation becomes
more complex. There are only few results in this area, most of them are partial.
For instance, McCoy [34] characterizes ∆0

2-categorical linear orders and Boolean
algebras under some extra effectiveness conditions. Also it is known that in general
∆0
n+1-categoricity does not imply ∆0

n-categoricity in the classes of linear orders [2],
Boolean algebras [3], abelian p-groups [5], and ordered abelian groups [36].

Our goal will be to give such a higher level classification of effective categoricity
for a certain basic class of torsion-free abelian groups.
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1.2. Effective categoricity of torsion-free abelian groups. We study ∆0
2-

categorical and ∆0
3-categorical torsion-free abelian groups. Recall that an abelian

group is torsion-free if every nonzero element of this group is of infinite order.

Question. Which computably presentable torsion-free abelian groups are ∆0
n-

categorical, for n ≥ 2?

It is not even clear how to build an example of an ∆0
n+1-categorical but not

∆0
n-categorical torsion-free abelian group, for each n > 2. As with the classical the-

ory of torsion-free abelian groups, genral questions about isomorphism classes are
either extremely difficult or (in a sense described below) impossible. The main dif-
ficulty is the absence of satisfactory invariants for computable torsion-free abelian
groups which would characterize these groups up to isomorphism [14]. For instance,
Downey and Montalbán showed that the isomorphism problem for computable
torsion-free abelian groups is Σ1

1-complete. To say that a problem is Σ1
1 means

that it can be expressed as ∃f∀nR(f(n)) where here the existential quantification
is over functions, and R is a computable relation. To say that an isomorphism
problem is Σ1

1-complete means that you cannot make the isomorphism problem
any simpler, and hence there are no invariants (like dimension) other than the iso-
morphism type. Therefore, there cannot be a set of invariants which make the
complexity of the problem any simpler.

There are better understood subclasses of the torsion-free abelian groups such
as the rank one groups, the additive subgroups of the rationals. As we remind the
reader in the next section, these groups have a nice structure theory via Baer’s
theory of types (Baer [4]). This theory can be extended to groups that are of the
form ⊕iHi where each Hi has rank 1, a class called the completely decomposable
groups. As is well-known, Baer’s theory extends to this class so we would have
some hope of understanding the computable algebra in this setting.

For the present paper, we restrict ourselves to a natural subclass, the homoge-
neous completely decomposable groups which are countable direct powers of a sub-
group of the rationals. More formally, we consider the groups of the form

⊕
i∈ωH,

where H is an additive subgroup of (Q,+). These groups in the classical setting
were first studied by Baer [4]. The class of homogeneous completely decomposable
groups of rank ω is certainly the simplest and most well-understood class of torsion-
free abelian groups of infinite rank. Note that, from the computability-theoretic
point of view, this is the simplest possible non-trivial case we may consider: every
torsion-free abelian group of finite rank is computably categorical. As we will see,
even in this classically simplest case the complete answer to the problem does not
seem to be straightforward.

To understand the effective cagericity of these groups, we will need both new
uses of computability theory in the study of torsion-free abelian groups, and some
new algebraic structure theory, as described in the next section.

1.3. A new algebraic notion, and ∆0
3-categoricity. To study effective cat-

egoricity of homogeneous completely decomposable groups, we introduce a new
purely algebraic notion of S-independence, where S is a set of primes. This is
a generalization of the well-known notion of p-independence for a single prime p.
In the theory of primary abelian groups, p-independence plays an important role.
See Chapter VI of [18] for the theory of p-independent sets and p-basic subgroups.
We establish several technical facts about S-independent subsets of homogeneous
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completely decomposable groups. These facts are of independent interest from the
purely algebraic point of view. For instance, Theorem 4.10 essentially shows that
S-independence and free modules over a localization of Z play a similar role in the
theory of completely decomposable groups as p-independence and p-basic subgroups
do in the theory of primary abelian groups.

This paper essentially studies the effective content of S-independence. We will
observe that S-independence in general implies linear independence. Effective con-
tent of linearly independent sets was studied in the theory of computable vector
spaces (see, e.g., [38]). The notion of S-independence seems to be an adequate
replacement of linear independence in the case of free modules over a localization
of Z (see Lemma 4.4).

We apply the algebraic techniques developed for S-independent sets to establish
an upper bound on the complexity of isomorphisms.

Theorem. Every homogeneous completely decomposable group is ∆0
3 - categorical.

This result is sharp: there exist homogeneous completely decomposable groups
which are not ∆0

2-categorical so that we cannot replace ∆0
3 by ∆0

2. Also, a homo-
geneous completely decomposable group of rank ω is never computably categorical
(folklore). It is natural to ask for a necessary and sufficient condition for a homo-
geneous completely decomposable group to be ∆0

2-categorical. Remarkably, there
is a natural condition on the group classifying exactly when this happens.

1.4. Free modules, semi-low sets, and ∆0
2-categoricity. Certain homogeneous

completely decomposable groups may be viewed as free modules over localizations
of integers by sets of primes. More specifically, let P be a set of primes which is not
the set of all primes, and let Q(P ) be the additive subgroup of the rationals (Q,+)
generated by fractions of the form 1

pm , where p ∈ P and m ∈ ω. Let GP be the

direct sum of countably many presentations of Q(P ): GP =
⊕

i∈ω Q
(P ). Baer [4]

showed that the classical isomorphism of a homogeneous completely decomposable
group

⊕
i∈ωH is determined by the characteristic of H (see Definition 2.4). If the

reader is familiar with the concept of characteristic, then she or he may observe
that a characteristic consisting of only ∞ and 0 correspond to a group of the
form GP . We characterize the case where a computable completely decomposable
homogeneous group is ∆0

2 categorical via a combination of an algebraic (the group
must be of the form GP ) and a mild effectiveness consideration (the complement
of the corresponding set P is semi-low). That is, P must resemble a computable
set in the sense that it has a weak guessing procedure for membership, called semi-
lowness.

We say that a set S is semi-low if the set HS = {e : We ∩ S 6= ∅} is computable
in the Halting problem. As the name suggests (for c.e. sets) this is weaker than
being low (meaning that A′ ≡T ∅′, since every low c.e. set is one with a semi-low
complement, but not conversely (see Soare [42, 43]). Semi-low sets are connected
with the ability to give a fastest enumeration of a computably enumerable set as
discovered by Soare [42]. In that paper, Soare showed that if a is a c.e. degree which
is nonlow, then it contains a c.e. set whose complement is not semi-low. Semi-
low sets also appear naturally when one studies automorphisms of the lattice E
of computably enumerable sets under the set-theoretical inclusion. Soare (see,
e.g., [43], Theorem 1.1 on page 375) showed that if a c.e. set S has a semi-low
complement, then the lattice of all c.e. sets is isomorphic to the principle filter
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L(S) of c.e. supersets of S. Furthermore, if a c.e. set S has a semi-low complement,
then L(A)/F is effectively isomorphic to E/F , where F stands for the ideal of finite
sets. There exist variations of semi-lowness which appear naturally in the study
of lattice-theoretic properties of c.e. sets. We say that a set S is semi-low1.5 if
{e : We ∩ S is finite} is computable in ∅′′. Maass [31] showed that if A is c.e. and
coinfinite, then L(A)/F is effectively isomorphic to E/F if and only if A is semi-
low1.5. For more information about semi-low and semi-low1.5 sets see [43]. We
mention that a c.e. degree is low if and only if it contains only semi-low1.5 c.e.
set [11].

It is rather interesting that semi-lowness appears in the characterization of ∆0
2-

categorical abelian groups:

Theorem. A computable homogeneous completely decomposable group A of rank ω
is ∆0

2 - categorical if and only if A is isomorphic to GP , where P is a c.e. set of
primes such that {p : p prime and p /∈ P} is semi-low.

In particular, if P is low, then GP is ∆0
2 categorical. As far as we know, this

is the first application of semi-low sets in effective algebra. Also, the proof of
Theorem above is of some technical interest as it splits into several cases depending
on the manner by which the type of the group A is enumerated. The flavour of this
proof is that of the “limitwise monotonic” proofs in the literature but is a lot more
subtle. The method has a number of new ideas which would seem to have other
applications.

1.5. A coding, and further applications. Note that the map P → GP gives
an effective coding of a computably enumerable set of primes into a computable
abelian group. Furthermore, P defines GP uniquely up to isomorphism.

Before we pass to the next result, we briefly discuss similar codings of sets into
isomorphism types of various classically simple structures. Effective content of such
codings have been intensively studied in recent years. In the theory of computable
abelian groups, at least two examples of this kind should be mentioned. See [10]
for similar examples in the class of linear orders which led to the notions of η-
presentable sets and strongly η-presentable sets.

The first example is the coding of a given set of primes S into the abelian group
G(S) =

⊕
p∈S Q

({p}), where Q({p}) was defined above. Khisamiev [25] showed that

G(S) has a computable representation with a certain strong basis exactly if the
set S belongs to a certain proper subclass of non-hh-immune Σ0

2-sets. Khisamiev
also asked for a necessary and sufficient condition for the group G(S) to have
a computable (decidable) presentation. Downey, Goncharov, Knight et al. [12]
showed that G(S) has a computable (decidable) presentation if and only if S is Σ0

3

(Σ0
2). Although the group is classically simple, the proof is not straightforward.
The second example of this kind is the coding of a given set of natural numbers

S into the abelian p-group which is the direct sum of cyclic groups of orders ps, one
component for each s. Khisamiev [24] showed that this group has a computable
presentation if and only if the set S has an effective monotonic approximation from
below. Such sets are often called limitwise monotonic [26]. Khisamiev built an
example of a ∆0

2 set which has no such a monotonic approximation ([24]; see [26]
for an alternate proof). Limitwise monotonic sets have applications in other fields
of computable model theory ([26], [23] and [6]), and have connections to degree
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theory [13]. This example also illustrates that the arithmetical complexity does not
always reflect the needed effective properties of abelian groups.

We observe that the following are equivalent: (1) GP is computably presentable,
(2) GP is computably presentable as a module over Q(P ) (to be specified), (3) the
set of primes P is computably enumerable. See Proposition 3.6 for the proof.
Nonetheless, the complexity of a c.e. set P is reflected in GP via the complexities of
possible isomorphisms between computable presentations of GP . As a consequence
of the main results of the paper, we have:

Theorem. For a c.e. set P of primes, the group GP is ∆0
2-categorical if and only

if P̂ = {p : p prime and p /∈ P} is semi-low.

This gives an characterization of semi-low co-c.e. sets in terms of effective algebra.
Using the techniques of the paper one can easily show that the weak jump HP̂ of the
complement of P (within the set of all primes) computes some isomorphism between
any two computable copies of GP . It is also not hard to show that HP̂ is indeed the
degree of categoricity of GP , for every c.e. P (see [16] for the definition and for more
about degrees of categoricity). Although we do not develop this subject any further,
we note that this is the first natural example of an algebraic structure having the
weak jump of an encoded set as its degree of categoricity. It also follows from our
observation and well-known facts about semi-low sets (see, e.g., [43], pp. 72-73)
that a c.e. degree is high if and only if it contains a c.e. set of primes P such
that the group GP has two computable copies with an isomorphism between these
copies which computes 0′′. This shows we can not improve the upper bound on the
complexity of isomorphisms: every homogeneous completely decomposable group is
∆0

3-categorical, and this is the best we can get even for the groups of the form GP .
We also apply the main results of the paper to study the complexity of the bases

of GP which generate it as a free module over Q(P ). We will see that effective
categoricity of GP can be equivalently reformulated in terms of bases. Our interest
is also motivated by the recent results on computable free non-abelian groups. More
specifically, the computational complexities of sets of generators in free non-abelian
groups were studied in [7] and [30]. We show:

Theorem. If a computable presentation of GP has a Σ0
2 basis which generates it

as a free Q(P )-module, then this presentation possesses a Π0
1 basis which generates

it as a free Q(P )-module.

As a consequence of this theorem and the main results of the paper, if {p :
p prime and p /∈ P} is semi-low, then GP has a Π0

1 basis which generates it as a
free Q(P )-module. Thus, every computable copy of the free abelian group has a
Π0

1-basis of generators. This is sharp (folklore).

1.6. The structure of the paper. First, we give some background on the general
theory of computable torsion-free abelian groups. Then we develop a bit of the
algebraic theory of S-independent sets. Next, we apply this theory to study effective
categoricity of homogeneous completely decomposable groups. We conclude the
paper by open problems.

2. Algebraic preliminaries

We use known definitions and facts from computability theory and the theory
of abelian groups. Standard references are [43] for computability and [18] for the
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theory of torsion-free abelian groups. We will see that for our purposes we don’t
need to use a more complicated two-sorted signature of modules (Proposition 3.6).
However, we will use a notation that substitutes the module multiplication (Nota-
tion 2.10). Basics of module theory can be found in any classical book on general
algebra (see, e.g., [28]).

Definition 2.1 (Linear independence and rank). Elements g0, . . . , gn of a torsion-
free abelian group G are linearly independent if, for all c0, . . . , cn ∈ Z, the equality
c0g0 + c1g1 + . . . + cngn = 0 implies that c0 = c1 = . . . = cn = 0. An infinite set
is linearly independent if every finite subset of this set is linearly independent. A
maximal linearly independent set is a basis. All bases of G have the same cardinality.
This cardinality is called the rank of G.

We write A 5 B to denote that A is a subgroup of B. It is not hard to see that
a torsion-free abelian group A has rank 1 if and only if A 5 〈Q,+〉.

Definition 2.2 (Direct sum). An abelian group G is the direct sum of groups Ai,
i ∈ I, written G =

⊕
i∈I Ai, if G can be presented as follows:

(1) The domain consists of infinite sequences (a0, a1, a2, . . . , ai, . . .), each ai ∈
Ai, such that the set {i : ai 6= 0} is finite.

(2) The operation + is defined component-wise.

The groups Ai are the direct summands or direct components of G (with respect
to the given decomposition). Note that there may be lots of different ways to
decompose the given subgroup. One can check that G ∼=

⊕
i∈I Ai, where Ai 5 G,

if and only if (1) G =
∑
i∈I Ai, i.e. {Ai : i ∈ I} generates G, and (2) for all j we

have Aj ∩
∑
i∈I,i6=j Ai = {0}.

We write k|g in G (or simply k|g if it is clear from the context which group is
considered) and say that k divides g in G if there exists an element h ∈ G for which
kh = g, and we say that h is a k-root of g. Note that k|g is simply an abbreviation
for the formula (∃h)(h+ h+ . . .+ h︸ ︷︷ ︸

k times

= g) in the signature of abelian groups.

If the group G is torsion-free then every g ∈ G has at most one k-root, for every
k 6= 0. Assume there were two distinct k-roots, h1 and h2, of an element g. Then
k(h1 − h2) = 0 would imply h1 = h2, a contradiction.

Definition 2.3 (Pure subgroups and [X]). Let G be a torsion-free abelian group.
A subgroup A of G is called pure if for every a ∈ A and every n, n|a in G implies
n|a in A. For any subset X of G we denote by [X] the least pure subgroup of G
that contains X.

For instance, every direct summand of a given group G is pure in G, while the
converse is not necessarily the case.

Let us fix the canonical listing of the prime numbers:

p1, p2, . . . , pn, . . . .

Definition 2.4 (Characteristic and hp). Suppose G is a torsion-free abelian group.
For g ∈ G, g 6= 0, and a prime number p, set

hp(g) =

{
max{k : pk|g in G}, if this maximum exists,

∞, otherwise.
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The sequence χG(g) = (hp1(g), hp2(g), . . .) is called the characteristic of the element
g in G.

Thus, for a torsion-free groups G, a subgroup H of G is a pure subgroup of G if
and only if χH(h) = χG(h) for every h ∈ H.

Definition 2.5. Let α = (k1, k2, . . .) and β = (l1, l2, . . .) be two characteristics.
Then we write α ≤ β if ki ≤ li for all i, where ∞ is greater than any natural
number.

Definition 2.6 (Type). Two characteristics, α = (k1, k2, . . .) and β = (l1, l2, . . .),
are equivalent, written α ' β, if kn 6= ln only for finitely many n, and kn and ln
are finite for these n. The equivalence classes of this relation are called types.

We write t(g) for the type of an element g. If G ≤ 〈Q,+〉 (equivalently, if G has
rank 1) then all non-zero elements of G have equivalent types, by the definition of
rank. Hence, we can correctly define the type of G to be t(g) for a non-zero g ∈ G,
and denote it by t(G). The following theorem classifies torsion-free abelian groups
of rank 1:

Theorem 2.7 (Baer [4]). Let G and H be torsion-free abelian groups of rank 1.
Then G and H are isomorphic if and only if t(G) = t(H).

The next simplest class of torsion-free abelian groups is the class of homogeneous
completely decomposable groups.

Definition 2.8 (Completely decomposable group). A torsion-free abelian group is
called completely decomposable if G is a direct sum of groups each having rank 1.
A completely decomposable group is homogeneous if all its elementary summands
are isomorphic.

It is known that any two decompositions of a completely decomposable group
into direct summands of rank 1 are isomorphic. Also, two homogeneous completely
decomposable groups are isomorphic if and only if these groups have the same
type [4]. We will refer to this fact by citing Theorem 2.7 since it is a straightforward
consequence of this theorem [18]. For instance, a set of primes P defines the group
GP uniquely up to isomorphism.

Definition 2.9. Suppose G is a torsion-free abelian group, g is an element of G,
and n|g some n. If r = m

n then we denote by rg the (unique) element mh such that
nh = g.

Notation 2.10. Let G be an abelian group and A ⊆ G. Suppose {ra : a ∈ A} is
a set of (rational) indices. If we write

∑
a∈A raa then we assume that raa 6= 0 for

at most finitely many a ∈ A, and every element raa is well-defined in G, according
to Definition 2.9. We will use this convention without explicit reference to it.

Now suppose R 5 〈Q,+〉, and A ⊆ G. We denote by (A)R the subgroup of G
(if this subgroup exists) generated by A ⊂ G over R 5 Q, i.e. (A)R = {

∑
a∈A raa :

ra ∈ R}.
Finally, for R 5 Q and a ∈ G, we denote by Ra the subgroup ({a})R of G.

Let R 5 Q. If a set A 5 G is linearly independent then every element of (A)R
has the unique presentation

∑
a∈A raa. Otherwise we would have

∑
a∈A raa = 0 for

some set of rational indices {ra : a ∈ A}, and thus m
∑
a∈A raa =

∑
a∈Amraa = 0,

for some integer m such that mra ∈ Z for all a ∈ A, contrary to our hypothesis.
Therefore, (A)R =

⊕
a∈ARa for every linearly independent set A.
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3. Computable abelian groups and modules

The notion of a c.e. characteristic is one of the central notions of computable
abelian group theory.

Definition 3.1. Let α = (hi)i∈ω, where hi ∈ ω∪{∞} for each i, be a characteristic.
We say that α is c.e. if the set {〈i, j〉 : j ≤ hpi , hpi > 0} is c.e. (see [37]). This is the
same as saying that there is a non-decreasing uniform computable approximation
hi,s such that hi = sups hi,s, for every i. Observe that this is a type-invariant
property. Thus, a type f is c.e. if α is c.e., for every α in f (equivalently, for some α
in f).

Theorem 3.2 below was rediscovered several times by various mathematicians
including Knight, Downey, and others (see, e.g., [9]).

Theorem 3.2 (Mal′tsev [33]). Let G be a torsion-free abelian group of rank 1.
Then the following are equivalent:

(1) The group G has a computable presentation.
(2) The type t(G) is c.e.
(3) The group G is isomorphic to a c.e. additive subgroup R of a computable

presentation of the rationals (Q,+,×). Furthermore, we may assume that 1 ∈ R.

Furthermore, each c.e. type corresponds to some computably presented subgroup
of the rationals. See [37] for a proof. If a group G is homogeneous completely
decomposable then t(G) is also well-defined. The (1) ↔ (2) part of Theorem 3.2
can be easily generalized to the class of homogeneous completely decomposable
groups:

Proposition 3.3. A homogeneous completely decomposable group G has a com-
putable presentation if and only if t(G) is c.e.

See [37] for more details.

Definition 3.4. We say that C is a computable presentation of a module M over
a ring R if

(1) the ring R is isomorphic to a c.e. subring R1 of a computable ring R2,
(2) C is a computable presentation of M as an abelian group, and
(3) there is a computable function f : R2 → C which maps (r,m) to r ·m ∈ C,

for every m ∈ C and r ∈ R1.

Recall that Q(P ) is the subgroup of the rationals (Q,+) generated by the set of
fractions { 1

pk
: k ∈ ω and p ∈ P}.

Remark 3.5. According to Definition 2.9, for every r = m
n ∈ Q

(P ) and a an element
of the group GP , the element ra ∈ GP is definable by a formula Φr(x, a)� mx = na
in the language of abelian groups (recall that mx and na are abbreviations).

Proposition 3.6. The following are equivalent:

(1) P is c.e.
(2) Q(P ) is a c.e. subring of a computable presentation of (Q,+,×).
(3) GP is computably presentable as an abelian group.
(4) GP is computably presentable as a module over Q(P ).
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Proof. The implications (1)→ (2) and (2)→ (3) are obvious.
(3) → (4). By Proposition 3.3, the characteristic α of GP is c.e. By Theo-

rem 3.2, Q(P ) is isomorphic to a c.e. additive subgroup A of (Q,+,×). Observe that
Q(P ) may be considered as a c.e. subring of Q, because we can ensure that 1 ∈ A.
It remains to observe that for each element g ∈ GP and each rational r ∈ QP , the
element rg can be found effectively and uniformly.

(4) → (1). Pick an element g of GP which is divisible by a prime p if and only
if p ∈ P . Thus, p ∈ P if and only if (∃x ∈ GP )[px = g], proving that P is c.e.

�

Remark 3.7. Actually we have shown that every computable presentation of GP
is already a computable presentation of GP as a module over Q(P ).

Lemma 3.8. For a c.e. set of primes P , the following are equivalent:

(1) Every computable presentation of the group GP has a Σ0
n basis which gen-

erates this presentation as a module over Q(P ).
(2) The group GP is ∆0

n-categorical.
(3) The Q(P )-module GP is ∆0

n-categorical.

Proof. By Proposition 3.6, the ring Q(P ) is a c.e. subring of a computable presen-
tation of (Q,+,×).

(1) → (2). Let A and B be computable presentations of the group GP . Both
A and B have Σ0

n bases which generate these groups over Q(P ). We map these
bases one into another using 0′. By Remark 3.5, we can extend this map to an
isomorphism effectively, using the c.e. subringring Q(P ) of Q.

(2) → (3). Observe that every computable group-isomorphism between to com-
putable module-presentations of GP is already a computable module-isomorphism.

(3) → (1). Pick a computable presentation H of GP such that the basis which
generates H over Q(P ) is computable. If GP is ∆0

n-categorical then every com-
putable presentation of GP has a Σ0

n basis which is the image of the computable
one in H.

�

Thus, from the computability-theoretic point of view, GP may be alternatively
considered as an abelian group or a Q(P )-module.

4. S-independence and excellent S-bases.

The notion of p-independence (for a single prime p) is a fundamental concept in
abelian group theory (see [18], Chapter VI). We introduce a certain generalization
of p-independence to sets of primes:

Definition 4.1 (S-independence and excellent bases). Let S be a set of primes, and
let G be a torsion-free abelian group. If S 6= ∅, then we say that elements b1, . . . , bk
of G are S-independent in G if p|

∑
i∈{1,...,k}mibi in G implies

∧
i∈{1,...,k} p|mi,

for all integers m1, . . . ,mk and p ∈ S. If S = ∅, then we say that elements are
S-independent if they are simply linearly independent.

Every maximal S-independent subset of G is said to be an S-basis of G. We say
that an S-basis is excellent if it is a maximal linearly independent subset of G.
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It is easy to check that S-independence in general implies linear independence.
However, an S-basis does not have to be excellent. Lemma 35.1 in [18] implies that
the free abelian group of rank ω contains a {p}-basis which is not excellent.

The main reason why we introduce the notion of S-independence is reflected in
the example and the lemma below.

Example 4.2. Let Z2 be the free abelian group of rank 2, and let e1 and e2 be
such that Z2 = Ze1 ⊕ Ze2. Suppose that we need to test, given a pair of elements
g1 and g2, if Zg1 + Zg2 = Z2. That is, we wish to be able to say “no” if g1 and g2
do not generate Z2. If g1 and g2 together generate the group, then {g1, g2} should
be linearly independent. But this is not sufficient: suppose that g1 = 2e0 + e1 and
g2 = e1; then 2|g1 − g2, but the element h = g1−g2

2 is not in the span of {g1, g2}.
Now we make each Z-component of Z2 infinitely divisible by 2 and consider

the group Q(2)e1 ⊕ Q(2)e2. Note that 2|g1 − g2 in Q(2)e1 ⊕ Q(2)e2, but it is not a
problem: it is easy to check that {g1, g2} generates Q(2)e1 ⊕ Q(2)e2 over Q(2). In
contrast, the elements h1 = 3e0 + e1 and h2 = e1 fail to generate Q(2)e1 ⊕ Q(2)e2
over Q(2).

More generally, in Q(P )e1 ⊕ Q(P )e2, the existence of p-roots for p ∈ P can not
be used to test if two given elements generate the whole group over Q(P ) or not.

Notation 4.3. In this section P stands for a set of primes and P̂ for the complement
of P within the set of all primes:

P̂ = {p : p is prime and p 6∈ P}.

Lemma 4.4. Suppose G ∼=
⊕

i∈I Q
(P ), and let B ⊆ G. Then B is an excellent

P̂ -basis of G if and only if B generates G as a free module over Q(P ).

Let P be the set of all primes. Then P̂ = ∅. Recall that ∅-independence is
simply linear independence, and GP ∼= D(ω) =

⊕
i∈ω Q. It is well-known that

every maximal linearly independent set generates the vector space D(ω) over Q. If
P = ∅ then G∅ ∼= FA(ω) =

⊕
i∈ω Z is the free abelian group of the rank ω. As a

consequence of the lemma, every excellent P-basis of FA(ω) generates FA(ω) as a
free abelian group.

Proof. (⇒). LetB be an excellent P̂ -basis ofG. Suppose g ∈ G. By our assumption,
B is a basis of G. Therefore, there exist integers m and mb, b ∈ B, such that

mg =
∑
bmbb. Suppose m = pm′ for some p ∈ P̂ . By Definition 4.1, p|mb for all

b ∈ B. Therefore, without loss of generality, we can assume that (m, p) = 1, for

every p ∈ P̂ . By the definition of G, we have:

g =
∑
b

mb

m
b ∈ (B)Q(P ) 5 G.

The set B is linearly independent, therefore (B)Q(P ) =
⊕

b∈B Q
(P )b (see the dis-

cussion after Notation 2.10). We have g ∈ (B)Q(P ) 5 G for every g ∈ G. Thus,
G = (B)Q(P ) .

(⇐). Let G =
⊕

b∈B Q
(P )b for some B ⊆ G, and ph =

∑
b∈Bmbb, where mb is

integer for every b ∈ B, and p ∈ P̂ . We have h ∈ GP and thus h =
∑
b∈B hb, where

hb ∈ Q(P )b for each b ∈ B (recall that hb = 0 for a.e. b).
Therefore ph = p

∑
b∈B hb =

∑
b∈B phb =

∑
bmbb, and phb = mbb for every b (by

the uniqueness of the decomposition of an element). Each direct component of G



12 RODNEY DOWNEY AND ALEXANDER G. MELNIKOV

in the considered decomposition has the form Q(P )b. In other words, the element
b plays the role of 1 in the corresponding Q(P )-component of this decomposition.
Now recall that p /∈ P . Thus, mb 6= 0 implies p|mb for every b, by the definition
of Q(P ).

�

In later proofs we will have to approximate an excellent basis stage-by-stage,

using a certain oracle. Recall that not every maximal P̂ -independent set is an

excellent basis of GP . Therefore, we need to show that, for a given finite P̂ -
independent subset B of GP and an element g ∈ GP , there exists a finite extension

B1 of B such that B1 is P̂ -independent and the element g is contained in the
Q(P )-span of B1.

Proposition 4.5. Suppose B ⊂ GP is a finite P̂ -independent subset of GP . For

every g ∈ GP there exists a finite P̂ -independent set B? ⊂ GP such that B ⊆ B?

and g ∈ (B?)Q(P ) .

Proof. Pick {ei : i ∈ ω} ⊆ GP such that GP =
⊕

i∈ω Q
(P )ei. Let {e0, e1, . . . , en}

be such that both B = {b0, . . . , bk} and g are contained in ({e0, e1, . . . , en})Q(P ) .
We may assume k < n.

Lemma 4.6. Suppose B = {b0, . . . , bk} ⊆
⊕

i∈{0,...,n}Q
(P )ei, is a linearly indepen-

dent set. There exists a set C = {c0, . . . , cn} ⊆
⊕

i∈{0,...,n}Q
(P )ei, and coefficients

r0, . . . , rk ∈ Q(P ) such that
(1)

⊕
i∈{0,...,n}Q

(P )ei,=
⊕

i∈{0,...,n}Q
(P )ci, and

(2) ({r0c0, . . . , rkck})Q(P ) = (B)Q(P ) .

Proof. It is a special case of a well-known fact ([28], Theorem 7.8) which holds in
general for every finitely generated module over a principle ideal domain (note that
Q(P ) is a principle ideal domain). �

We show that if B is P̂ -independent (not merely linearly independent) then we
can set B? = {b0, . . . , bk} ∪ {ck+1, . . . , cn}, where C = {c0, . . . , cn} is the set from

Lemma 4.6. Suppose p|
∑

0≤i≤k nibi +
∑
k+1≤i≤n nici for a prime p ∈ P̂ . We have⊕

i∈{0,...,n}

Q(P )ei =
⊕

1≤i≤k

Q(P )ci ⊕
⊕

k+1≤i≤n

Q(P )ci,

and
∑

1≤i≤k nibi ∈
⊕

1≤i≤kQ
(P )ci. By the purity of direct components, we have

p|
∑

1≤i≤k nibi within
⊕

1≤i≤kQ
(P )ci and p|

∑
k+1≤i≤n nici within

⊕
k+1≤i≤nQ

(P )ci.

But the former implies p|ni for all 1 ≤ i ≤ k by our assumption, and the latter
implies p|ni for all k + 1 ≤ i ≤ n by the choice of C and Lemma 4.4.

The set B? is actually an excellent P̂ -basis of
⊕

i∈{0,...,n}Q
(P )ei, since the

cardinality of B? is n + 1 = rk(
⊕

i∈{0,...,n}Q
(P )ei). Therefore, the set B? =

{b0, . . . , bk} ∪ {ck+1, . . . , cn} is a P̂ -independent set with the needed properties.
�

Suppose G is a torsion-free abelian group, and a, b ∈ G. Recall that χ(a) ≤ χ(b)
iff hp(a) ≤ hp(b) for all p. In other words, pk|a implies pk|b , for all k ∈ ω and every
prime p.
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Definition 4.7. Let G be a torsion-free abelian group. For a given characteristic α,
let G[α] = {g ∈ G : α ≤ χ(g)}.

We have hp(a) = hp(−a) and inf(hp(a), hp(b)) ≤ hp(a+b), for all p. Furthermore,
χ(0) ≥ α, for every characteristic α. Therefore, G[α] is a subgroup of G.

Definition 4.8. Let α = (h1, h2, . . .). Then Q(α) is the subgroup of (Q,+) gener-
ated by elements of the form 1/pxk where x ≤ hk.

Example 4.9. Let α = (∞, 1,∞, 1, . . . , h2k = 1, h2k+1 =∞, . . .). Consider

β = (∞, 2,∞, 0,∞, 1, . . .) = α+ (0, 1, 0,−1, 0 . . .).

By Definition 2.6, β ∼= α. Consider the group H = Q(α). We have 1 ∈ Q(α)
and χ(1) = α within Q(α). Note that the characteristic of a = 3/7 in H(α) is β.

Observe that a/pj2k+1 belongs to H[β], for every k, j ∈ ω. In contrast, a/p2k does
not belong to H[β]. Indeed, the characteristic of a/13 in H is (∞, 2,∞, 0,∞, 0, . . .)
and

(∞, 2,∞, 0,∞, 0, . . .) � β = (∞, 2,∞, 0,∞, 1, . . .).

Recall that the type is an equivalence class of characteristics. Thus, the type of
H 5 Q is simply the type of any nonzero element of H. We are ready to state and
prove the main result of this section.

Theorem 4.10. Let G =
⊕

i∈ωH, where H 5 Q, t(H) = f and α is of type f .
Then G[α] ∼= GP , where P = {p : hp =∞ in α}. Furthermore, if B is an excellent

P̂ -basis of G[α], then G is generated by B over Q(α).

Informally, this theorem says that each homogeneous completely decomposable
group of rank ω has a subgroup isomorphic to GP , for some P . Furthermore,

every excellent P̂ -basis of this subgroup generates the whole group G over a certain
rational subgroup Q(α) taken as a domain of coefficients. The group Q(α) is not
necessarily a ring (recall Notation 2.10). The idea of the technical proof below was
essentially illustrated in Example 4.9.

Proof. We prove that G[α] ∼= GP .

Let gi be the element of the i’th presentation of H in the decomposition G =⊕
i∈ωH such that χ(gi) = α. The collection {gi : i ∈ ω} is a basis of G. Therefore,

{gi : i ∈ ω} is a basis of G[α]. By the definition of P , ({gi : i ∈ ω})Q(P ) is a
subgroup of G[α]. Furthermore, since {gi : i ∈ ω} is linearly independent, ({gi : i ∈
ω})Q(P )

∼=
⊕

i∈ω Q
(P )gi. Thus, we have⊕

i∈ω
Q(P )gi ⊆ G[α].

We are going to show that every element g ∈ Gα is generated by {gi : i ∈ ω}
over Q(P ). This will imply G[α] ∼= GP .

Pick any nonzero g ∈ G[α]. The set {gi : i ∈ ω} is a basis of G[α], therefore
ng =

∑
i∈ωmigi for some integers n and mi, i ∈ ω. Since direct components

are pure, n|
∑
i∈I migi implies n|migi for every i ∈ ω, and g =

∑
i∈I

mi

n gi. After

reductions we have g =
∑
i∈I

m′
i

ni
gi, where

m′
i

ni
is irreducible. It suffices to show that

m′
i

ni
∈ Q(P ).
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Assume there is i such that
m′

i

ni
/∈ Q(P ). Equivalently, for some p ∈ P̂ , we have

m′i 6= 0 and ni = pn′i, where n′i is an integer (recall that
m′

i

ni
is irreducible).

We have hp(
m′

i

ni
gi) = hp(

m′
i

n′
i

gi
p ) ≤ hp(

gi
p ), since m′i is not divisible by p. But

hp(
gi
p ) < hp(gi) (recall that hp(gi) is finite). It is straightforward from the defi-

nitions of hp that hp(g) = min{hp(m
′
i

ni
gi) : i ∈ I,mi 6= 0}, since each gi belongs

to a separate direct component of G. Therefore hp(g) ≤ hp(
m′

i

ni
gi) < hp(gi). But

χ(gi) = α. Thus, χ(g) � α and g /∈ G[α], and this contradicts our choice of g. This
shows that G[α] ∼= GP .

We show that if B is an excellent P̂ -basis of G[α], then G = (B)Q(α) (recall
Notation 2.10).

For every b ∈ B consider the minimal pure subgroup which contains b (recall that
we denote this group by [b], see Definition 2.3). Consider 〈B〉 =

∑
b∈B [b] 5 G. In

fact 〈B〉 =
⊕

b∈B [b], because B is linearly independent within G[α] and, therefore,
within G as well.

By our choice, b ∈ G[α]. Thus, χ(b) ≥ α within G. We show that in fact

χ(b) = α. Assume χ(b) > α. We have b = pa for some a ∈ G[α] and p ∈ P̂ . But

B is P̂ -independent. This contradicts the fact that p|1 · b and 1 is evidently not
divisible by p. Therefore, we have

[b] = Q(α)b.

It remains to prove that G ⊆ 〈B〉. Pick any nonzero g ∈ G. There exist integers
m and n such that (m,n) = 1 and χ(mn g) = α. To see this we use the fact that
χ(g) ∈ f . It is enough to make only finitely many changes to χ(g) to make it
equivalent to α.

Equivalently, m
n g ∈ G[α]. We have m

n g =
∑
b∈B,rb∈Q(P ) rbb, by Lemma 4.4.

By our assumption, χ(b) = χ(mn g) = α, for every b ∈ B. Obviously, m|mn g in
G. Therefore, by the definition of α and B, we have m|b in Q(α)b. Thus, there
exist xb ∈ [b] = Q(α)b such that mxb = b. We can set g =

∑
b∈B nrbxb, where

nrbxb ∈ [b]. This shows G = (B)Q(α). �

5. Effective content of S-independence, and ∆0
3-categoricity.

Theorem 5.1. Every computably presentable homogeneous completely decompos-
able torsion-free abelian group is ∆0

3-categorical.

The proof of the Theorem 5.1 is based on the lemma below. The proof of this
lemma uses Theorem 4.10. The proof of Theorem 5.1 was sketched in [35].

Lemma 5.2. Let G =
⊕

i∈ωH, where H 5 Q, the type t(H) is f , and α is a
characteristic of type f . Let G1 and G2 be computable presentations of G. Suppose

that both G1[α] and G2[α] have Σ0
n excellent P̂ -bases. Then there exists an ∆0

n

isomorphism from G1 onto G2.

We first prove Theorem 5.1, and then prove Lemma 5.2. We need to show that
a given homogeneous completely decomposable group satisfies the hypothesis of
Lemma 5.2 with n = 3.
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Proof of Theorem 5.1. Let G be a computable presentation of G ∼=
⊕

i∈ωH, where
H ≤ Q. Let α be a characteristic of type t(H) and P = {p : hp = ∞ in α}. By

Theorem 4.10 and Lemma 5.2, it suffices to construct a excellent P̂ -basis of G[α]
which is Σ0

3.
We are building C =

⋃
n Cn. Assume that we are given Cn−1. At step n of the

procedure, we do the following:
1. Pick the n-th element gn of G[α].

2. Find an extension Cn of Cn−1 inG[α] such that (a) Cn is a finite P̂ -independent
set, and (b) Cn ∪ {gn} is linearly dependent.

Let G =
⊕

i∈I Rei, where χ(ei) = α and R ∼= H. Observe that at stage n of the
procedure we have gn ∪Cn−1 ⊂ ({e0, . . . , ek})Q(P ) , for some k. By Proposition 4.5,
the needed extension denoted by Cn can be found.

It suffices to check that the construction is effective relative to 0′′. We use com-
putable infinitary formulas in the proofs of the claims below. See [3] for a back-
ground on computable infinitary formulas.

By Theorem 4.10, we have G[α] ∼= GP , where P = {p : p∞|h} is a Π0
2 set of

primes.

Claim 5.3. The group G[α] is c.e. in 0′′.

Proof. Pick any h ∈ G with χ(h) = α. By its definition, for every g ∈ G, the
property χ(g) ≥ α is equivalent to∧

p−prime

∧
k∈ω

((∃x)pkx = h→ (∃y)pky = g).

Therefore, the group G[α] is a Π0
2-subgroup of G. �

Claim 5.4. There is a 0′′-computable procedure which decides if a given finite set

B ⊆ G[α] is P̂ -independent, uniformly in the index of B.

Proof. It suffices to show that the property “B is a P̂ -independent set in G[α]”
can be expressed by a Π0

2 infinitary computable formula in the signature of abelian
groups with parameters elements from B.

Note that in general P ∈ Π0
2. By Claim 5.3, the group G[α] is a Π0

2-subgroup of G.

Thus, the condition “B is a P̂ -independent set in G[α]” seems to be merely Π0
3:

∧
m∈Z<∞

∧
p−prime

([p /∈ P ∧ (∃x)(x ∈ G[α] ∧ px =
∑
b∈Bn

mbb)]→
∧
b

p|mb).

The idea is to substitute the Σ0
3 formula (∃x)(x ∈ G[α] ∧ px =

∑
b∈Bn

mbb) by

an equivalent Σ0
2 one, using a non-uniform parameter h ∈ G such that χ(h) = α.

More specifically, we are going to show that for every p /∈ P , the formula

(∃x)(x ∈ G[α] ∧ px =
∑
b∈Bn

mbb)

is equivalent to

(∃k)(∃y ∈ G)(hp < k ∧ pky =
∑
b∈Bn

mbb),

where hp is the p-th component of α, and hp < k ⇔¬ (hp ≥ k)⇔¬ (∃h1)(pkh1 = h).
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Suppose there is x ∈ G[α] such that px =
∑
b∈Bn

mbb. Since hp(x) ≥ hp, we

have phpy = x and php+1y = px, for some y ∈ G, so we can set k = hp + 1. For
the converse, suppose there exist such k and y. Then px = pky for x = pk−1y. We
have k > hp, and therefore (k − 1) ≥ hp. But hp(x) ≥ (k − 1) because x = pk−1y
is divisible by k − 1, and thus hp(x) ≥ hp. The characteristic of x differs from the
characteristic of y only at the position for the prime p. Thus, for every q 6= p,

hq(x) = hq(p
ky) = hq(

∑
b∈Bn

mbb)) ≥ hq,

since
∑
b∈Bn

mbb ∈ G[α]. Therefore, χ(x) ≥ α and x ∈ G[α].
�

By Claim 5.3 and Claim 5.4, the procedure is computable relative to 0′′. This
establishes the theorem.

�

Proof of Lemma 5.2. Recall that G1 and G2 are computable presentations of G
such that both G1[α] and G2[α] have Σ0

n excellent P̂ -bases. We need to show that
there exists an ∆0

n isomorphism from G1 onto G2. Let B1 and B2 be excellent

P̂ -bases of G1 and G2, respectively.
Observe that the group Q(α) is isomorphic to a c.e. additive subgroup R of

(Q,+,×). Furthermore, we may assume that 1 ∈ R. To see this pick h with χ(h) =
α non-uniformly, and then apply Theorem 2.7 to the group [h]. By Theorem 4.10,
we have

G1 =
⊕
b∈B1

Rb ∼= G2 =
⊕
b′∈B2

Rb′.

To build a ∆0
n isomorphism from G1 to G2 first define the map from B1 onto B2

using a standard back-and-forth argument. Then extend it to the whole G1 using
the fact that r ·b can be found effectively and uniformly, for every r ∈ R and b ∈ B1.

�

By Proposition 3.6 and Remark 3.7, “computable presentation of GP ” can be
equivalently understood as “computable presentation of the group GP ” or “com-
putable presentation of the Q(P )-module GP ”. Before we turn to a more detailed
study of ∆0

2-categorical completely decomposable groups, we prove a fact about

excellent P̂ -bases of the group GP which is of an independent interest for us:

Theorem 5.5. If a computable presentation of GP has a Σ0
2 basis which generates

it as a free Q(P )-module, then this presentation possesses a Π0
1 basis which generates

it as a free Q(P )-module.

Proof. Recall that, by Lemma 4.4, a basis generates GP as a free Q(P )-module if

and only if this basis is an excellent P̂ -basis. The proof of the theorem is based on
Lemma 4.4 and the short technical lemma below.

Lemma 5.6. Suppose {ei : i ∈ ω} ⊂ GP is such that GP =
⊕

i∈ω Q
(P )ei, and sup-

pose {b1, . . . , bk} ⊂ GP \{0}. For any integer m, k 6= 0, the set B = {e0, b1, . . . , bk}
is P̂ -independent if and only if Bm = {e0, b1, . . . , bk−1, bk+me0} is P̂ -independent.
Furthermore, (B)Q(P ) = (Bm)Q(P ) , for every m.
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Note that for the second part of Lemma 5.6 we do not assume that B is P̂ -
independent.

Proof of Lemma 5.6. Suppose B = {e0, b1, . . . , bk} is P̂ -independent. We show that

Bm = {e0, b1, . . . , bk−1, bk +me0} is P̂ -independent as well.

Pick an arbitrary p ∈ P̂ . Suppose that p divides g = n0e0 +
∑

1≤i≤k−1 nibi +

nk(bk+me0) = (n0+nkm)e0+
∑

1≤i≤k nibi. Recall that the set B = {e0, b1, . . . , bk}
is P̂ -independent. Therefore, p|ni, for every 1 ≤ i ≤ k. As a consequence, p divides
n0e0 = g − nkme0 −

∑
1≤i≤k nibi. By our assumption on the element e0, we have

p|n0.
�

Suppose that E = {e0, e1, . . .} is a Σ0
2 excellent P̂ -basis of G =

⊕
i∈ω Q

(P )ei =
{g0 = 0, g1, . . .} which is a computable group. We fix a computable relation R such
that x ∈ C if and only if (∃<∞y)R(x, y). We build a co-c.e set of elements B such
that the following requirements are met:

R0: e0 ∈ B;

Rj : if gj = ek for some k then B contains exactly one element of the form
(ek +me0).

There is no priority order on the requirements. All strategies in the construction
will share the same global restraint (to be defined). We first show that if all the

requirements are met, then the set B is an excellent P̂ -basis of G. Assume Rj is met,
for every j. It follows that for every k there exists m such that ek+me0 ∈ B. Also,
if B contains two elements of the form ek + me0 and ek + ne0, then necessarily

n = m. It remains to show that B is an excellent P̂ -basis of G. Note that, if

B is not P̂ -independent, then there is a finite subset B0 of B which is not P̂ -
independent. By (a multiple application of) Lemma 5.6, this contradicts the choice
of E = {e0, e1, . . . , }. It remains to apply the second part of Lemma 5.6 and see
that the Q(P )-spans of B and E coinside.

Strategy for R0:
Permanently put a restraint onto e0.

Strategy for Rj, j > 0:

If Rj currently has no witness then pick a witness cj which is equal to gj +me0,
where m is the least such that gj +me0 is not restrained and is not yet enumerated

into B. Declare cj restrained (thus, our current guess is: cj ∈ B). If cj is the nth

element of the group, cj = gn, then enumerate each gx with x < n into B unless gx
is already in B or is restrained.

If, at a later stage, a fresh y is found such that R(gj , y) holds, then enumerate

gj +me0 into B, and initialize Rj by making cj undefined.

Construction.
Stage s. Let Rj , j ≤ s, act according to their instructions.

End of construction.

Observe that B consists of elements which eventually become forever restrained
by strategies. Also note that each element of the group can be restrained at most
once. Thus, the set B is c.e.
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To see why Rj is met note that the requirement eventually puts a permanent
restraint on its witness gj + me0 if an only if (∃<∞y)R(gj , y). This is the same as
saying that gj = ek, for some k.

This finishes the proof of Theorem 5.5.
�

6. Semi-low sets, and ∆0
2-categoricity.

Recall that a set A is semi-low if the set HA = {e : We ∩A 6= ∅} = {e : We * A}
is computable in ∅′.

Theorem 6.1. A computably presentable completely decomposable abelian group G

is ∆0
2-categorical if and only if G is isomorphic to GP where P̂ is semi-low.

The proof of this theorem is split into several parts. Each part corresponds
to a different hypothesis on the isomorphism type of G. Different cases will need
different techniques and strategies.

Proof. We need the following technical notion:

Definition 6.2. Let α = (hi)i∈ω be a sequence where hi ∈ ω ∪ {∞} for each i (in
other words, let α be a characteristic). Also, suppose that there is a non-decreasing
uniform computable approximation hi,s such that hi = sups hi,s, for every i (in
other words, the characteristic is c.e., see Definition 3.1).

We say that α has a computable setting time if there is a (total) computable
function ψ : ω → ω such that

hi =

{
hi,ψ(i), if hi is finite,

∞, otherwise,

for every i. We also say that ψ is a computable setting time for (hi,s)i,s∈ω.

This is the same as saying that, given i, there exists an effective (and uniform)
way to compute a stage s after which the approximation of hi either does not
increase, or increases and tends to infinity. Note that this is the property of a char-
acteristic, not the property of some specific computable approximation. Indeed,
given an approximation of α having a computable setting time, we can define a
computable setting time for any other computable approximation of α. Further-
more, as can be easily seen, this is a type-invariant property. Thus, we can also
speak of types having computable setting times.

If a homogeneous completely decomposable group G of type f is computable,
then f is c.e. (see Proposition 3.3). Suppose that G is a computable homogeneous
completely decomposable group of type f , and let α = (hi)i∈ω be a characteristic
of type f . We consider the cases:

(1) The type f of G has no computable setting time. In this case G is not
∆0

2-categorical by Proposition 6.4. Observe that if f has no computable
setting time then the set Fin(α) = {i : 0 < hi <∞} has to be infinite (see,
e.g., Proposition 3.6). Thus, G can not be isomorphic to GP , for a set of
primes P .

(2) The type f of G has a computable setting time, Fin(α) = {i : 0 < hi <∞}
is empty (finite), and the set {i : hi = 0} is semi-low. In other words,
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the group G is isomorphic to GP with P̂ semi-low. In this case G is ∆0
2-

categorical, by Proposition 6.3 below.
(3) The type f of G has a computable setting time, the set Fin(α) = {i : 0 <

hi <∞} is empty (finite), and the set {i : hi = 0} is not semi-low. Here G
is again isomorphic to GP , but in this case G is not ∆0

2-categorical, by
Proposition 6.5 below.

(4) The type f of G has a computable setting time, and the set Fin(α) = {i :
0 < hi < ∞} is infinite and not semi-low. As in the above case1, G is not
∆0

2-categorical, by Proposition 6.5.
(5) The type f of G has a computable setting time, and the set Fin(α) = {i :

0 < hi <∞} is infinite and semi-low. The group is not ∆0
2-categorical, by

Proposition 6.6 below.

We first discuss why case (3) and case (4) above can be collapsed into one case.
First, define Inf(α) = {i : hi = ∞} and V = {i : 0 < ψ(i) < ∞}, where ψ is a

computable setting time for α. Note that V is c.e. Evidently, Inf(α) = Fin(α)∪{i :

hi = 0} and Fin(α) = Inf(α)∩V . We claim that “Fin(α) is not semi-low” implies

“Inf(α) is not semi-low”. We assume that Inf(α) is semi-low and observe that

{e : We ∩Fin(α) 6= ∅} = {e : We ∩ V ∩ Inf(α) 6= ∅} = {e : Ws(e) ∩ Inf(α) 6= ∅} for
a computable function s. Therefore, HFin(α) ≤m H

Inf(α)
≤T ∅′, as required.

Therefore, cases (3) and (4) are both collapsed into

(3′) If f has a computable setting time and Inf(α) is not semi-low, then G is
not ∆0

2-categorical.

Now we state and prove the propositions which cover all the cases above.

Recall that, by Proposition 3.6, the group GP has a computable presentation as
a group (module) if and only if P is c.e.

Proposition 6.3. If P̂ is semi-low (and co-c.e.) then GP is ∆0
2-categorical.

Proof. The proof may be viewed as a simpler version of the proof of Theorem 5.1.
Let G = {g0 = 0, g1, . . .} be a computable copy of GP . By Lemma 3.8, it is enough

to build a Σ0
2 excellent P̂ -basis of G.

We are building C =
⋃
n Cn. Assume that we are given Cn−1. At stage n of the

construction, we do the following:
1. Pick the n-th element gn of G.

2. Find an extension Cn of Cn−1 in G such that (a) Cn is a finite P̂ -independent
set, and (b) Cn ∪ {gn} is linearly dependent.

The algebraic part of the verification is the same as in Theorem 5.1 (and is actu-
ally simpler). Thus, it is enough to show that (a) in (2) above can be checked effec-
tively and uniformly in ∅′. Given a finite set F of elements of G, define a c.e. set V

consisting of primes which could potentially witness that F is P̂ -dependent:

V =
{
p :

∨
m∈Zcard(F )

[
p|(

∑
g∈F

mgg) ∧ (
∨
g∈F

p 6 |mg)
]}
.

1We distinguish these two cases only because these cases correspond to (algebraically) different
types of groups. We discuss a bit later why these cases are essentially not different.
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The c.e. index of V can be obtained uniformly from the index of F. It can be

easily seen from the definition of P̂ -independence that

V ∩ P̂ = ∅ if and only if F is P̂ -independent.

By our assumption on P̂ , this can be decided effectively in ∅′.
�

Proposition 6.4. Suppose that the type f of a computably presentable G =
⊕

i∈ωH

has no computable setting time. Then G is not ∆0
2-categorical.

We first give an informal description of the proof. Let f be the type of G, and
let α = (hi)i∈ω be a characteristic of type f . We build two computable groups, A
and B, both isomorphic to G. The group A is a “nice” copy of G. The group B is
a “bad” copy of G in which the eth elementary direct component is used to defeat
the eth potential ∆0

2-isomorphism from B onto A.
The strategy can be roughly described as follows. Wait for the eth potential

isomorphism to converge on some specifically chosen element be from the eth com-
ponent of B. Pick a large j such that, if the eth potential isomorphism is in-
deed an isomorphism, the characteristic χ(be) = (di)i∈ω of be and the characteris-
tic α = (hi)i∈ω have to be equal starting from the jth position. We will see that
such a number j can be effectively chosen (we use that A is “nice”).

We make dk,s = hk,s− 1 for the least k ≥ j such that hk,s > 0. We also attempt
to define a computable setting time for α. Thus, we declare that hk,s is either a
final value of hk, or hk = limt hk,t = ∞. If hk,s = limt hk,t then we win (unless
the eth potential ∆0

2-isomorphism changes). Otherwise, if hk,s0 > hk,s, for some
s0 > s, then we set dk,s0 = hk,s0 −1. We also pick another position k0 > k in which
hk0,s0 > dk,s0 . We declare all current values in α between k and k0 to be “final”
(including k0), as we did for k. Then repeat the argument for k0 (the only difference
is that the next position k1 may be chosen between k and k0, and k1 is picked only
if both hk and hk0 increase), etc.

If, at a later stage, we see a new computation of the eth potential ∆0
2-isomorphism,

then we (1) make the characteristic of be equivalent to α at every position they cur-
rently differ, and (2) repeat the above strategy, starting from a fresh large position j0
in the characteristic of be.

The only “dangerous” situation we should worry about is:

Each time we pick a position ki, we have hki = limt hki,t =∞.
But this would imply that α has a computable setting time, contradicting the choice
of f . The groups A and B are both isomorphic to G by Theorem 2.7.

We give formal details below.

Proof of Proposition 6.4. It suffices to build two computable presentations, A and
B, of the group G =

⊕
i∈ωH, and meet the requirements:

Re : If limt Φe,t(be, t) exists, then limt Φe,t(x, t) is not an isomorphism from B
to A.

Without loss of generality, we may assume that Φe,t(x, t) is defined for every e
and t. The construction is injury-free, thus we do not really need any priority order
on the strategies.

In the following, we enumerate A =
⊕

n∈ωHan and B =
⊕

e∈ω Cebe in such a
way that the sets {an : n ∈ ω} and {be : e ∈ ω} are computable. The element be is
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a witness for the Re strategy. Let (hi)i∈ω be a characteristic of type f . We make
sure χ(an) = (hi)i∈ω, for every n, while the characteristic χ(be) = (d(e)i)i∈ω of be
will be merely equivalent to (hi)i∈ω, for each e (thus, Ce ∼= H, for each e).

Given a computable copy of G, define a computable approximation (hi,s)i,s∈ω of
(hi)i∈ω such that (1) hi,s ≤ hi,s+1, and (2) hi = lims hi,s, for every i and s.

For every e, the strategy for Re defines its own computable function ge which2

is an attempt to define a computable setting time for (hi)i∈ω. To define ge the
strategy uses the sequence (ke,i)i∈ω.

Strategy for Re.

If (at a stage s of the construction) the parameter ke,0 is undefined then:
1. Compute Φe,s(be, s). Since this moment, the strategy is always waiting for a

later stage t such that Φe,t(be, t) 6= Φe,s(be, s). As soon as such a stage is found, Re
initializes by making all its parameters undefined and also making d(e)j,t = hj,t for
every j we have ever used so far.

2. Let a ∈ A be such that a = Φe,s(be, s). Find integers cn and c such that
ca =

∑
n cnan. Let j be a fresh large index such that (1) the prime pj does not

occur in the decompositions of the coefficients c and cn, (2) hj,s > 0, and (3)
d(e)j,s < hj,s.

3. Once j is found3, declare ge(j) = hj,s. Since this moment, make sure d(e)j =
hj − 1 by redefining d(e)j,t at later stages if needed, unless the strategy initializes.
Set ke,0 = j, and proceed.

Now assume that the parameters ke,0, . . . ke,y have already been defined by the
strategy. We also assume that ge(i) has already been defined for each i such that
ke,0 ≤ i ≤ max{ke,x : 0 ≤ x ≤ y}. Assume also that ke,y was first defined at stage
u < s. Then do the following:

I. Wait for a stage t ≥ s (of the construction) such that either (a) hi,t >
hi,s for some i such that ke,0 ≤ i ≤ max{ke,x : 0 ≤ x ≤ y} and i /∈
{ke,0, . . . ke,y}, or (b) hi,u < hi,t for each i ∈ {ke,0, . . . ke,y}. While waiting,
make d(e)j,r = hj,r (r is the current stage of the construction), where j ≤ r
and j /∈ {ke,0, . . . ke,y}.

II. If (a) holds for some i, then set ke,(y+1) = i. If (b) holds, then let i be
a fresh large index such that (1) hi,t > 0, and (2) d(e)i,t < hi,t, and set
ke,(y+1) = i. In this case also define ge(j) to be equal to the current value
of hj (namely, hi,t), for each j ∈ [max{ke,x : 0 ≤ x ≤ y}, ke,(y+1)]. Then
proceed to III.

III. Since this moment, make sure d(e)j = hi − 1 (where i = ke,(y+1)) by
redefining d(e)i at later stages if needed, unless the strategy initializes.

End of strategy.

Construction.

At stage 0, start enumerating A and B as free abelian groups over {an}n∈ω and
{be}k∈ω, respectively. Initialize Re, for all e.

2Since it will be clear from the construction at which stage ge is defined (if ever), we omit the

extra index t in ge,t and write simply ge. We omit the index t for parameters ke,i,t as well.
3We may assume that at stage s such an index j can be found, otherwise we re-define the

approximation (hi,s)i,s∈ω during the construction making it “faster”.
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At stage s, let strategies Re, e ≤ s, act according to their instructions. If Re
acted at the previous stage, then return to its instructions at the position it was
left at the previous stage.

Make sure χ(an) = (hi,s)i∈ω in As for every n, and χ(be) = (d(e)i,s)i∈ω in Bs
for every e, by making an and be divisible by corresponding powers of primes.

End of construction.

Verification.

For each e, the following cases are possible:

(1) lims Φe,s(be, s) does not exist. In this case the strategy initializes infinitely
often. By the way the strategy is initialized, the characteristic of be is
identical to α.

(2) lims Φe,s(be, s) exists and is equal to Φe,l(be, l). By the way the function ge
is defined, its domain can not be co-finite. For if it were defined on a co-
finite set, then α would have a computable setting time. Therefore, there is
a parameter ke,y such that the kthe,y position in α is finite. Thus, the strategy
ensures lims Φe,s(be, s) is not an isomorphism since the characteristic of be
and α differ at kthe,y position. Therefore, α differs from χ(be) in at most
finitely many positions, and the differences are finitary.

In both cases, we have χ(be) equivalent to α. By Theorem 2.7, A ∼= B ∼= G.
�

Recall that cases (3) and (4) are both reduced to:

Proposition 6.5. Let G be computable homogeneous completely decomposable abelian
group of type f , and suppose α = (sups hi,s)i∈ω in f has computable setting time ψ.

Furthermore, suppose Inf(α) is not semi-low. Then G is not ∆0
2-categorical.

The idea of the proof can be roughly described as follows. We build two com-
putable groups, A and B, both isomorphic to G. The group A is a “nice” copy of G.
The group B =

⊕
e∈ω

⊕
n∈ω Ce,nbe,n is a “bad” copy of G in which the eth direct

component is used to defeat the eth potential ∆0
2-isomorphism from B onto A.

Recall that Inf(α) is a c.e. set. Given e, we attempt to define a functional
Ψ(e, n, s) such that H

Inf(α)
(n) = lims Ψ(e, n, s). For every n, we pick an ele-

ment be,n in B and attempt to destroy the eth potential ∆0
2-isomorphism from B

to A. We start by setting Ψ(e, n, 0) = 0. We wait for j to appear in Wn,s \Inf(α)s.
If we never see such a j, then our attempt to define Ψ(e, n, s) is successful. If we
find such a j, make be,n divisible by a large power of pj destroying the potential
isomorphism (this power depends on our current guess on the isomorphic image of
be,n in A). We will set Ψ(e, n, t) = 1 only if the eth potential isomorphism changes
on be,n at a later stage t. We make Ψ(e, n, r) = 0 as soon as j enters Inf(α), and
then we start waiting for a new fresh number to show up in Wn \ Inf(α). If we see
such a number then we repeat the above strategy with this number in place of j.

Our attempt to define Ψ(e, n, s) necessarily fails for at least one index n. There-
fore, the eth potential isomorphism will be defeated at the element be,n. Algebra is
sorted out using Theorem 2.7.

Note that the algebraic strategy above differs from the one we used in Proposi-
tion 6.4. More specifically, we make elements divisible instead of keeping elements
non-divisible. This strategy could not be used in Proposition 6.4, because it would
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not be consistent with the infinitary outcome (the case when the eth potential
isomorphism changes infinitely often). We will see that this is not a problem here.

Proof of Proposition 6.5. We build to computable copies of G by stages. Recall
that the first copy A =

⊕
iHai is a “nice” copy with χ(ai) = α, for every i. The

second (“bad”) copy B =
⊕

e∈ω
⊕

n∈ω Ce,nbe,n is built in such a way that χ(be,n)
is equivalent to α, for every e and n.

As in Proposition 6.4, it suffices to meet the requirements:

Re : If limt Φe,t(x, t) exists for every x, then limt Φe,t(x, t) is not an isomorphism
from B to A.

Without loss of generality, we may assume that Φe,t(x, t) is defined for every
e and t. The strategy for Re initially defines a computable operator Ψ(n, s) such
that Ψ(n) = lims Ψs(j, s) (if it exists) attempts to witness H

Inf(α)
≤T ∅′. More

specifically, we attempt to make sure that Ψ is total and Ψ(n) = 0 iff Wn ⊆
Inf(α). If we succeeded, this would imply H

Inf(α)
= {n : Wn * Inf(α)} ≤T ∅′,

contradicting the hypothesis. We split Re into substrategies Re,n, n ∈ ω:

Strategy for Re,n.

In the following, we write I in place of Inf(α). We permanently assign the
element be,n to Re,n. Suppose that the strategy becomes active first time at stage s
of the construction. Then:

(1) Start by setting Ψs(n, s) = 0 (we may suppose that Ψj(n, j) = 0, for every
j < s). At a later stage t, we define Ψt(n, t) to be equal to Ψt−1(n, t− 1),
unless we have a specific instruction not to do so.

(2) Wait for a stage t > s and a prime p ∈Wn,t \ It.
(3) We see p = pj with j ∈ Wn,t \ It at a later stage t. Find a ∈ At such that

a = Φe,t(be, t) (recall that the enumeration of A is controlled by us). Find
integers cn and c such that ca =

∑
n cnan. Let k be a fresh large natural

number such that (i) the prime p = pj has power at most [k/2] in the
decompositions of the coefficients c and cn, and (ii) hj,ψ(j) < [k/2], where
ψ is the computable setting time. Note that (i) and (ii) imply k is so large
that pk does not divide a = Φe,t(be,n, t) within A, unless j ∈ It. Make be,n
divisible by pk within B.

Wait for one of the two things to happen:
I. (I changes first). We see j ∈ Iu at a later stage u > t, and Φe,v(be,n, v) =

Φe,t(be,n, t) for each v ∈ (t, u]. We return to (2) with u in place of s.
II. (Φe changes first). We see Φe,u(be,n, u) 6= Φe,t(be,n, t) at a later stage

u > t, and j ∈ Wn,v \ Iv for each v ∈ (t, u]. Then we set Ψu(n, u) = 1
and start waiting for a stage w > u such that j ∈ Iu. If such a stage w
is found, then we set Ψw(n,w) = 0 and go to (2) with w in place of s
(and we do nothing, otherwise).

End of strategy.

Construction.

At stage 0, start enumerating A and B as free abelian groups over {ai}i∈ω and
{be,n}e,n∈ω.

At stage s, let strategies Re,n, e, n ≤ s, act according to their instructions. If
Re,n acted at the previous stage, then return to its instruction at the position it
was left at the previous stage.
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Make sure χ(ai) = α = (hj)j∈ω in A for every i. For every e, n ∈ ω, make
χj(be,n) = hj in B for every j except at most one position, according to the in-
structions of Re,n. We do so by making ai and be,n divisible by corresponding powers
of primes.

End of construction.

Verification.

By Theorem 2.7, A ∼= B ∼= G. Assume that lims Φe,s(be,n, s) exists for every n.
Given n, consider the cases:

• Re,n eventually waits forever at substage (2). Then lims Φ(n, s) = 0 and
Wn ⊆ I. Thus, we have a correct guess about H

Inf(α)
.

• Re,n visits substage (I) of (3) infinitely often. Then lims Φ(n, s) = 0 and
Wn ⊆ I, and we again have a correct guess about H

Inf(α)
.

• Re,n eventually waits forever at substage (3). Then xe,n witnesses that
lims Φe,s(xe,n, s) is not an isomorphism from B to A.

There should be at least one n for which lims Φ(n, s) 6= H
Inf(α)

(n). Therefore,

for at least one n, the strategy Re,n eventually waits forever at substage (3). Thus,
Re is met.

�

Proposition 6.6. If the type f of a computable homogeneous completely decom-
posable group G has a computable setting time, and Fin(α) = {i : 0 < hi < ∞} is
infinite and semi-low for α of type f , then G is not ∆0

2-categorical.

The idea is to combine the algebraic strategy from Proposition 6.4 and the
guessing procedure based on the hypothesis Fin(α) = {i : 0 < hi < ∞} is semi-
low. As before, we are building two computable copies, A and B, of G. Imagine we
have pj with a (large) j ∈ Fin(α). To destroy the eth potential ∆0

2-isomorphism,
we make the witness be in B not divisible by p, as we did in Proposition 6.4. We
may have to pick another prime, due to the isomorphism change.

We note that the algebraic strategy from Proposition 6.5 would not succeed. If
lims Φe,s(be, s) does not exist, then B would not be isomorphic to G. Indeed, we
we would have to make be divisible by infinitely many extra primes.

It remains to guess for which primes pj we have j ∈ Fin(α). Each strategy defines
its own sequence of c.e. sets and tests if a c.e. set from the sequence intersects
Fin(α). Since the construction is effective an uniform, we may assume that the
indexes of these c.e. sets are listed by a computable function, and the index of this
function is given ahead of time.

We give all details in the formal proof below.

Proof. Let Ψ be a computable function such that Fin(α) ∩ Wn = lims Ψ(n, s).
As in the proof of Proposition 6.4, we are building two computable copies, A =⊕

n∈ωHan and B =
⊕

e∈ω Cebe, of G. We make sure χ(an) = α and χ(be) =
(d(e))i∈ω ' α, for every n and e. The requirements are:

Re : If limt Φe,t(be, t) exists, then limt Φe,t(x, t) is not an isomorphism from B
to A.

Without loss of generality, we may assume that Φe,t(x, t) is defined for every e
and t.

The strategy for Re.
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Suppose we have a computation Φe,s(be, s) such that Φe,s(be, s) 6= Φe,s−1(be, s−
1) or s = 0. We do the following substeps:

(1) Make χ(be) = (d(e))i∈ω and α equal at all positions they are currently
defined.

(2) Begin enumerating Wg(e,s) by setting Wg(e,s) = ∅ first.
(3) Wait for a stage u such that Ψ(g(e, s), u) = 0.
(4) Let a ∈ A be such that a = Φe,s(be, s). Find integers cn and c such that

ca =
∑
n cnan. Let j be a fresh large index4, such that (1) the prime pj does

not occur in the decompositions of the coefficients c and cn, (2) hj,ψ(j) > 0,
and (3) d(e)j,s < hj,s.

(5) Enumerate j into Wg(e,s). Since this moment, make sure d(e)j = hj − 1 by
redefining d(e)j,t at later stages if needed, unless Φe,s(be, s) 6= Φe,t(be, t) at
a later stage t. We restrain the element be by not allowing the construction
to add more roots to be.

(6) We wait for one of the following three things to happen:
I. Φe,s(be, s) 6= Φe,t(be, t) at a later stage t. Then declare be not re-

strained and restart the strategy with t in place of s.
II. The index j enters the c.e. set Inf(α) at stage s > t (thus, hj = ∞).

We return to (5) with j + 1 in place of j (we keep be restrained).
III. Ψ(g(e, s), t) = 1 (thus, we believe that Wg(e,s) ∩ Fin(α) 6= ∅). We

remove the restraint from the element be (that is, we allow the con-
struction to make αi = d(e)i for every i /∈Wg(e,s).) If at a later stage r
we see Wg(e,s),r ⊆ Inf(α)r, then wait for a stage w ≥ r such that
Ψ(g(e, s), w) = 0. Then return to (4).

End of strategy.

Construction.

At stage 0, start enumerating A and B as free abelian groups over {an}n∈ω and
{be}k∈ω, respectively.

At stage s, let strategies Re, e ≤ s, act according to their instructions. If Re
acted at the previous stage, then return to its instruction at the position it was left
at the previous stage.

Make sure χ(an) = (hi,s)i∈ω in As for every n, and (hi,s)i∈ω = (d(e)i,s)i∈ω in Bs
for every e which is not restrained, unless Re keeps hi,s − 1 = d(e)i,s. We do so by
making an and be divisible by corresponding powers of primes.

End of construction.

Verification.

Assume that limt Φe,t(be, t) exists. Let s be a stage such that Φe,s(be, s) =
limt Φe,t(be, t). Let u be a stage such that limt Ψ(g(e, s), t) = Ψ(g(e, s), u). It re-
mains to show that Ψ(g(e, s), u) = 1, the rest is clear. If Ψ(g(e, s), u) = 0, then
the strategy finds a new index j and starts a new loop at stages (5) and (6). The
set Fin(α) is infinite, therefore {j, j + 1, . . . , j + k} ∩ Fin(α) 6= ∅ for some k ≥ 0.
But the construction ensures {j, j + 1, . . . , j + k} ⊆ Wg(e,s), contradiction. Thus,
Ψ(g(e, s), u) = 1, and the diagonalization is successful.

4We may assume that at stage s such an index j can be found, otherwise we re-define the
approximation (hi,s)i,s∈ω during the construction making it “faster”.
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As in Proposition 6.5, the algebraic part of the verification can be easily de-
rived from Theorem 2.7. It is important that we remove the restraint from be at
substage (III) of (6).

�

This concludes the proof of Theorem 6.1.
�

Corollary 6.7. For a c.e. set P , the following are equivalent:

(1) GP has a Σ0
2 excellent P̂ -basis;

(2) GP has a Σ0
2-basis as a free Q(P )-module;

(3) GP has a Π0
1-basis as a free Q(P )-module;

(4) GP is ∆0
2-categorical;

(5) P̂ is semi-low.

Proof. The proof is a combination of Theorem 6.1, Theorem 5.5, and Lemma 3.8.
�

Corollary 6.8. Each computable copy of the free abelian group of rank ω has a Π0
1

set of free generators.

Proof. The free abelian group can be viewed as the free Z-module. It remains to

apply Theorem 5.5 and Theorem 6.1 with P̂ the set of all primes. �

7. Concluding Remarks and Open Questions

The notion of S-independence seems to be a natural generalization of linear
independence to the case of free modules.

Problem 7.1. Study the effective content of S-independence.

Note that the effective content of p-independent sets (for a single prime p) seem
to be unstudied. As we mentioned in the introduction, p-independent sets play an
important role in the theory of primary abelian groups. It would be interesting to
develop the effective theory of S-independent sets and (excellent) S-bases.

Problem 7.2. For every n build a computable presentable completely decomposable
group which is not ∆0

n-categorical.

We expect that such groups exist. These groups can not be homogeneous
for n ≥ 4. As a consequence of the main construction in [1], such examples exist
in the class of computable torsion-free abelian groups. Nonetheless, these examples
are not completely decomposable.

Problem 7.3. Extend the results of the paper to other classes of completely de-
composable abelian groups.

We expect that if the collection of types is computable and well-founded as a par-
tial order, then it requires at most one or two extra jumps to build an isomorphism.
Is it sharp?

Problem 7.4. What is the complexity of the index set of all computable completely
decomposable groups?
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We mention that this index set belongs Σ1
1, since a countable torsion-free abelian

group is completely decomposable if and only if every finite set of elements of this
group is contained in a direct summand of finite rank [18].

The theory of completely decomposable groups is an example of a beautiful and
nontrivial mathematical theory having a number of pleasant results, especially in
the countable case.

Problem 7.5. Study the reverse mathematics of completely decomposable abelian
groups.

Limitwise monotonic sets were mentioned in the introduction. Recently the
notion of a limitwise monotonic sequence proved to be useful in computable model
theory [27]. Note that a c.e. characteristic can be viewed as a limitwise monotonic
sequence in (ω ∪ {ω})ω.

Problem 7.6. Study limitwise monotonic sequences in (ω ∪ {ω})ω having a com-
putable setting time (see Definition 6.2). Do they have another applications in
computable model theory?

We also expect that the results of the paper have analogs for modules over
computably presentable principle ideal domains.

Problem 7.7. Extend the results of the paper to modules over computable rings.
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