Computably Enumerable Sets and
Quasi-reducibility

R. Downey, G. LaForte, and A. Nies
September 2, 2004

Abstract
We consider the computably enumerable sets under the relation of Q-
reducibility. We first give several results comparing the upper semilattice
of c.e. Q-degrees, (R, <q), under this reducibility with the more famil-
iar structure of the c.e. Turing degrees. In our final section, we use coding
methods to show that the elementary theory of (Rq, <qg) is undecidable.

1 Introduction

Classical recursion theory first arose in order to study the inherent difficulty of
mathematical problems. By far the most deeply studied notion relating the diffi-
culty of one problem to another has been that given by Turing reducibility. The
reason for this is that Turing reducibility seems to give the most general means
of obtaining finite information about one object given finite information about
another; hence, as the limiting case of using information, it is the most natural
object of study for purely theoretical investigations of relative computability
and definability. Nevertheless, for specific problems, particularly those arising
in the study of algebraic structures, other reducibilities are actually the correct
ones to consider. These reducibilities are usually less general, or “stronger”,
since they arise by putting limits of some kind on what sort of information can
be used in a relative solution of one problem given another.

For example, weak truth table (wtt) reducibility imposes the additional con-
dition that the amount of information used in a relative computation can be
bounded in advance by a computable function. In the case of (computably
presentable) infinite dimensional vector spaces, it turns out that the inherent
difficulty of constructing bases for subspaces coincides exactly with the relation
of wtt reducibility, rather than Turing reducibility. A similar situation arises in
combinatorial group theory, where so-called quasi-reducibility, or @-reducibility,
turns out to be a more useful means of comparing word problems than ordinary
T-reducibility.

Recall ([?]) that A is Q-reducible to B via f if f is a computable function
such that for every x € w,

xeA@Wf(z)gB.

In this case we say that A <g B via f. It is not hard to see that this relation
is transitive and reflexive, so that it gives rise to a degree structure on 2%. Q-
reducibility is a natural weakening of many-one reducibility, where singletons
are replaced by c.e. sets. On the c.e. sets, it is not hard to show that <g
is a strictly stronger reducibility than <7, since A <p B implies w — A is
B-computably-enumerable.

The relationship of @Q-reducibility to word problems is most easily seen by
considering the theorem of Dobritsa (unpublished, see [?]) that for every set of
natural numbers X there is a word problem with the same Turing degree as that
of X. The proof of this fact depends, for the hard direction, on producing a
group G in which every element has a normal form with an associated finite list
of numbers, which are a subset of X if and only if the element is the identity.
Thus, the proof actually shows that X has the same)-degree as the word
problem of G. In fact, since the sets produced are finite, the relationship is
the slightly stronger one of positive equivalence, but for c.e. sets, and hence
for computably presented groups, the relationship is the same (see Lemma 1
below). On the other hand, Ziegler in [?] showed that this fails for bounded
truth table reducibility.

A further relationship between @)-degrees and groups lies in the relationship
of a computably presented group to its algebraically closed extensions. A. Mac-
intyre in [?] showed that whenever G and H are computably presented groups
with word problems of Turing degrees g and h, respectively, then if g < h, G
must be a subgroup of every algebraically closed group of which H is a subgroup.
O. Belegradek, however, showed in [?] that the converse fails, but becomes true
if Turing reducibility is replaced by @-reducibility. That is, for any computably
presented groups G and H, if G is a subgroup of every algebraically closed group
of which H is a subgroup, then G’s word problem must be quasi-reducible to
that of H. Thus any fact about the partial order of the c.e. @-degrees has an
immediate translation into one involving inclusion relations between the classes
of finitely generated subgroups of algebraically closed groups. Since any count-
able algebraically closed group is determined up to isomorphism by the class
of its finitely generated subgroups, this gives a natural relationship between a
purely recursion-theoretic notion and a purely algebraic one.

In the case of groups without c.e. word problems, we note that the notion
of Ziegler reducibility (see [?]) appears to be the natural one for studying re-
lationships between general word problems. For this reducibility, one adds to
@-reducibility the requirement that A be enumeration reducible to B, and allows
the function via which the reduction is given to give indices for sets enumeration
reducible to B, rather than ordinary c.e. sets as in the case of a ()-reduction.
In the case of c.e. sets, neither of these modifications makes any difference, so
that @-reducibility and Ziegler reducibility are the same, although clearly this
fails in general. Both of these reducibilities arise as abstractions of the process
of effectively using sets of equations true in one structure to check the truth of
equations in another.

For non-c.e. sets, it is also true that there is no simple relationship between
<g and <p. In fact, for any set A, the set A€ z{ e: W, C A} is Q-equivalent

to A, yet, by Rice’s theorem, for any A we have 0/ <7 A?, since any such A is
a nontrivial index set. In particular, the @-degree of the empty set contains a set
Turing-above 0’. Tt is partly for this reason that the notion of Ziegler reducibility
was introduced in [?], since it is strictly stronger than Turing reducibility on
arbitrary sets. Since we restrict ourselves in what follows to the c.e. sets this
difference is unimportant for our results. We also assume in the statements of
our theorems that none of the sets below is w, since it is easy to see that w has
a Q-degree strictly below that of any other set.

We first establish some pathologies of the upper-semilattice of the Q-degrees
relative to the more familiar structure of the c.e. Turing degrees. In particular,
we show that the computable join has the following unusual property:

Corollary 4: Let C be an c.e. set. Then there exists an c.e. D =7 C such
that for all A and B, if D <g A® B, either D <g Aor D <g B.

We also show that infima in the c.e. Q-degrees can differ wildly from infima
in the Turing degrees, constructing a Turing degree which contains a minimal
pair of @)-degrees.

Theorem 5: There exists a noncomputable c.e. set A and a c.e. B with
A =7 B such that A and B form a minimal pair in the Q-degrees.

We continue our discussion of infima in the Q-degrees by showing that, as
in the case of the Turing degrees, non-branching c.e.)-degrees exist outside of
every (nontrivial) upper cone.

Theorem 6: For every c.e. C #g 0, there exists an c.e. A, which is
non-branching in the c.e. Q-degrees such that C' £q A.

We then show that the c.e. Q-degrees form a dense partial order, just as the
c.e. Turing degrees do, answering an open question of Omanadze..

Theorem 7: For every pair of c.e. sets B <g A, there exists an c.e. set C
with B < B® C <g A.

The proofs of these last two results, particularly that of the density theo-
rem, are more difficult than in the case of the Turing degrees. This shows up
particularly in the more subtle methods that have to replace standard permit-
ting techniques for ensuring a constructed set will be computable from some set
given in advance. The added complexity serves to illustrate the ideas needed to
modify standard finite injury and infinite injury constructions in order to deal
with the c.e. Q-degrees. Some light seem to be shed on the (easier) proofs of
the analogous Turing results, by way of contrast, as well.

We finish our analysis of the structure of the c.e. Q-degrees by adapting
coding techniques developed for the Turing degrees to this context in order to
obtain the following

Theorem 10: R has an undecidable first order theory.

In what follows, our notation is standard, as in [?]. We adopt the practice of
writing [s] after any expression to indicate that every (dynamic) object in the
expression is being taken to be its approximation at stage s.

2 Q-degrees and semirecursive sets

Before proceeding, we introduce a useful technical fact which will enable us to
adapt some of the standard methods used in the study of Turing degrees to
the more restrictive Q-degree context. Informally, the main point of the lemma
below is that in the case of c.e. sets, if X <g Y via f, then we may assume that
|(Wiezy — Y)[s]] is always at most 1, and in fact the eventual “use” is finite.

Lemma 1. Let X and Y be enumerable sets. For any partial computable func-
tion ®., there exists a partial computable function ®., such that if X <q Y via
P, then

X <qY wvia ®;

Vae(We,, (z) € Wa,(2));
Ve (Wa,, (x) s finite);
VaVs|(We,,) — Y)[s]| < 1;

VaVsVz(z € (Wa, @) — Y)[s] (Y5 + 1)) = We,, z) — V)[s + 1] = 0.

Furthermore, the index ey can be found effectively from e and indices for X and
Y.

Proof. We simultaneously enumerate X, Y, and every Wy_(,), only allowing
anew y € Wy, ([sj+1] when 2 & X[s;j1] and (Wy, () — Y)[s;] = 0. This
is clearly a computable procedure with the required properties. If z € X,
the enumeration of Wy, () stops at the first s with € X[s]; while if z ¢
X, eventually some element ¢.(x) € Wy () — Y appears in Wg_(,), and the
enumeration into Wgc,) () stops after this point. Since we only allow a new
element to enter Ws., () at a stage immediately after one at which (W¢>e0 (x) —
Y)[s] = 0, the last property is also clearly satisfied. The uniformity of the
procedure for finding eg is obvious from the s-m-n Theorem. O

A set D of natural numbers is said to be semirecursive (Jockusch, [?]) if
there exists a computable function f of two variables such that for every x and
Y,

f(@,y) ==zor f(z,y) =y
(x € Dory € D) = f(x,y) € D.

The significance of this notion lies in the fact that f reduces membership ques-
tions for D about any finite number of elements to membership questions about
one element, since whenever f(z,y) = z,

yeD=zx€D,

and similarly for f(z,y) = y. Because of this, if A and D are c.e. sets, with
D semirecursive, and A <p D, say A = ®(D), then A <g D, since we can
use f on ((w— D) | ¢(D;z))[s], whenever ®(D;z)[s] = 0, to get uniformly an
element which must eventually enter D if z € A. This gives an c.e. set for the
@-reduction in the obvious way.

The following definition is from Downey, [?].

Definition 1. Let g be a computable enumeration of an c.e. set A. The dump
set of A relative to g, DI(A) is the c.e. set defined by the following procedure.
Stage 0: DI(A)y = 0.
Stage s+ 1: Letw — DI(A)s ={do,s < d1,s <...}. Then

Dg(A)SJrl = Dg(A>S U {dg(s)7s, ceey dg(s)+s7s}, and

DI(A) = J{DA)s : sew}.

It is possible to show that for any such g, D9(A) has the same Turing degree
as A and is semi-recursive. Since @-reducibility and T-reducibility coincide for
c.e. semirecursive sets, we suppress g in what follows and merely write D(A) for
the dump set, even when we have some fixed enumeration g under consideration.

Lemma 2. The c.e. Q-degree of D(A) is the greatest c.e. Q-degree contained
in the Turing degree of A.

Proof. This is clear, since D(A) is semi-recursive, as witnessed by the function
f(x,y) which gives x if 2 € D(A),_z)4+1 and y otherwise. O

Because of this property of the dump set, it is tempting to consider the
possibility of an embedding of the Turing degrees into the @) degrees given by
A +— D(A). This clearly embeds the partial ordering. It is also not hard to
see that this mapping preserves infima. Let a = b N c in the c.e. Turing
degrees. Suppose some c.e. D <g D(B),D(C) where A, B, and C are c.e.
representatives for these degrees. Then D <p D(B), D(C), since all of these
sets are c.e. Hence D <7 B,C, hence D <7 A <p D(A), so D <g D(A), as
both are c.e. and D(A) is semirecursive.

Unfortunately, this proposed embedding fails rather badly to preserve the
upper semilattice structure of the Turing degrees, as we now show.

Theorem 3. Let A, B and D be c.e. sets, with D semirecursive. Then if
D <g A® B, either D <g A or D <g B. In particular, for any T -incomparable
c.e. A and B, D(A) @ D(B) <qg D(A@® B).

Proof. The proof is a non-uniform construction reminiscent of Lachlan’s proof
that the many-one degree of K cannot be the supremum of incomparable many-
one degrees. Suppose D <g A ® B via g, and let f be the function witnessing
that D is semirecursive. We use Lemma 1 to guarantee that for every =, W,y —
(Ae B)| < 1.

We first construct a recursive function h in an attempt to reduce D to B
via h. If y is any number, we search for x > y such that 2 ¢ D,, (Wy(,) —
(A® B))[s] = {2b(z,s) + 1} and f(z,y) = z. (In other words, the Q-reduction
g counts x as out of D with an odd witness, 2b(z, s) + 1, at stage s.) For each
y, we let Wy, be the set of all such b(x, s) where s > . Since f witnesses the
semirecursiveness of D, y € D implies x € D. Hence, if y € D, W,(,) C B.

Suppose D £ B via h, so that the procedure outlined above fails at some
y. For this y, we must then have y ¢ D, yet Wj(,) C B. Let a be some fixed

number that is not an element of A. So, for every > y, and s > x, if x & Dy,
(Wyz) — (AD B))[s] = {2b(x,s) + 1} and f(z,y) = x, then 2 € D. So, given an
x >y, we first check whether f(z,y) =y. If so, then & € D, so we set Wy () =
{a}. Otherwise, f(z,y) = z. In this case we set W (,) :{ a : 2a € Wy } It
r € D, then Wy,) € AD B, 50 Wyi(,y € A If & ¢ D, then, clearly x ¢ D for
any s > z. But if Wy,) — (A® B) = {2b+ 1}, then for almost every s > x,
(Wy(@) — (A® B))[s] = {2b+ 1}, implying 2 € D. So Wy(,) — (A @ B) = {2a},
and Wi (p) £ A. So D <q A via h'. O

Corollary 4. Let C be a c.e. set. Then there exists an c.e. D =p C such that
forall A and B, if D <qg A® B, either D <g A or D <g B.

Since the @)-degree of a dump set is the greatest c.e. Q-degree contained in a
Turing degree, this extends the result of Ambos-Spies in Fischer, [?], that the Q-
degree of K does not split. We note that every c.e. Turing degree, in particular
that of K, is the join of incomparable low c.e. Turing degrees by a straightfor-
ward argument based on the Sacks Splitting Theorem (see [?], VIL.3.4). Hence
this result gives an elementary difference between the the structure of the c.e.
@-degrees and that of the c.e. Turing degrees.

3 More about infima

Since the mapping C' +— D(C) preserves lower bounds, the fact that minimal
pairs of c.e. Turing degrees exist implies that there are minimal pairs of c.e.
Q-degrees. Hence 0 is a Q-degree which branches in the c.e. Q-degrees. In fact,
however, something more surprising is true: there exists a single Turing degree
containing a branching of 0 in the c.e. Q-degrees.

Theorem 5. There exists a moncomputable c.e. set A and an c.e. B with
A =71 B such that A and B form a minimal pair in the Q-degrees.

Proof. We must satisfy two infinite sequences of requirements:

Niap,ey : We < A via ¢, and W, <q B via ¢ = W, <q 0,

and

P.: A# ¢..

Additionally, we have the additional global requirement

R : A ST B ST A

The positive requirements will be satisfied by the usual diagonalization strat-
egy. The strategy for the negative requirements is also the usual one for con-
structing a minimal pair of c.e. degrees: whenever the length of agreement
between the @Q-reductions and W, increases, we define a partial computable
characteristic function x for W,. If we only allow one of A or B to change below
the Q-uses of the reductions for elements in the domain of x[s], this will satisfy
the requirement.

The problems with making the two types of strategies cohere in this case,
come from the imposition of the highest priority requirement R. Since we must
guarantee A <p B <p A, each time A changes, B must also change to reflect

this in B’s Turing reduction for A, causing a further A-change to reflect this
B-change. The basic idea for solving this problem comes from the embedding
of the nondistributive lattice M5 into the c.e. Turing degrees constructed in
Lachlan [?]. If an element z is targeted at stage s to go into one of the sets A
or B and x does not enter its target set by stage s + 1, then a trace T'(z) is
assigned to it at s + 1 targeted for the opposite set. For each x this gives rise
to a finite sequence of traces targeted alternately for A and B which must enter
the appropriate sets (in reverse order to that in which they were chosen) before
x is allowed to enter its target set.

This strategy appears to clash very badly with the minimal pair restraints,
since many elements will be chosen as traces between successive expansionary
stages for a particular negative requirement. Of course, this is just what makes
it impossible to combine this kind of tracing procedure with the analogous
minimal-pair-type requirements for infima in the Turing degrees. Here, since we
are using Q-reductions, we can use the fact that the actual use of a Q-reduction
at any given stage consists of at most one element. By picking many traces
at each stage for each untraced element, we will guarantee that some sequence
of traces produced by a follower for a positive requirement will eventually be
allowed past the higher priority restraints for negative requirements.

The most convenient pattern for a priority argument combining a tracing
procedure with infimum-preserving strategies is the pinball machine method in-
troduced in Lerman [?]. Unlike the simpler construction of an ordinary minimal
pair of Turing degrees, a whole sequence must in general be allowed to pass the
restraint imposed by a given negative requirement at once, but then be forced
to wait to pass the next higher-priority restraint one element at a time (with
appropriate traces). The reason for this is that our trace-choosing procedure
only avoids the uses on which the negative requirement depends for one negative
requirement at a time. This will become clear in the verification below.

The machine we use has a sequence of holes, H., one for each positive re-
quirement, and a sequence of gates, G, 5,y each with a corral C4), one for
each negative requirement. In order to control the operation of the gates, we
define the length of agreement functions and the notion of expansionary stages
as follows:

We let [({a,b,c),s) be the greatest y such that

Vo < y((W%(z) CAs Wd)b(m) C B, and (Wfba(m) CA&sxeW,)) sl

As usual, we let m({a,b,c),s) = max{ I({a,b,c),t) 1 t<s }, and call s (a,b,c)-
expansionary if 1({(a,b,c),s) > m({(a,b,c),s). In general, even if W. <o A
via ¢, and W, <g B via ¢, this will not guarantee infinitely many (a,b, c)-
expansionary stages; however, by Lemma 1 above, there will exist some a’, V',
and ¢’ such that W, = W,/ and there are infinitely many (a’, V', ¢’)-expansionary
stages. In this case, the N,/ ;s y-strategy will ensure W, is computable.

Construction

Stage 0: Ag = By = 0.

Stage s + 1: A requirement P, is said to need attention at stage s if one of
the following conditions holds:

(1) P. has no current follower waiting at hole H, and there is no x € Als]
such that ¢(z)[s] = 0.

(2) P. has a current follower x waiting at hole H., and ¢(x)[s] = 0.

(3) Some element y descended from a follower for P, is waiting at a gate
Gap,cy and s is a (a, b, c)-expansionary stage.

We take action for P, where e < s is the least requirement P, that needs
attention at stages s. We initialize all P.,, where €’ > e, by undefining all any
followers and sets of traces associated with P./. If P, needs attention under case
(1) above, we appoint a new follower z(e, n, s + 1) greater than any number yet
mentioned in the construction, where n is the least number such that (e, n, s) T
If P. needs attention under case (2), we allow x and its entire trace sequence
to drop to the first gate which is unoccupied, we place the last member of the
sequence, T%(z), where k + 1 is the length of the sequence, at the gate, and
put the rest of the sequence into the corral. If P, needs attention under case
(3), the situation is a little more complicated, since we must insure that the
trace sequence descended from y causes a minimal amount of damage to the
negative requirement associated with G. First, note that y is a member of a
trace sequence associated with some z(e,n, s). For all n’ > n, we first undefine
all followers z(e,n’,s) and their associated trace sequences. Next, let s~ be
the stage at which y came to rest at gate G. Suppose G = G(43,)- By the
trace assignment procedure described below, y is actually the root of a (finite)
tree of traces, which has at least an s~ + 1-fold branching at every level. If
x is any number less than [({(a,b,c), s), then either x € W,[s], or there exist
both a unique a(z,s) € (Wy, (o) — A)[s] and a unique b(z, s) € (W,) — B)l[s].
Clearly [{a(z,s) : © < s~ }| < s7, and similarly for {b(z,s) : = < s~ },
so that there exists a path through y’s tree of traces that avoids these sets in
the sense that no trace targeted for A in the path is equal to any a(x,s) for
x < s7, and similarly for traces targeted for B. We pick the lexicographically
least such path, y = yo < y1 < ... < y,, and assign it as the trace sequence
for y, defining T'(y;,s + 1) = y;41 for each | < m. We then allow y and this
entire trace sequence to drop to the first unoccupied gate, discarding all the
other potential trace-descendents of y in the tree. As under case (2), we put the
entire sequence associated with y except for the last element, into the corral,
and we place the last element at the gate. If there is no unoccupied gate, then
we put y and its associated trace sequence into the relevant target sets. If y
was actually a follower for requirement P,, we are done. Otherwise, y = T'(¢/,)
for some 3’ associated with P,. This 3 is waiting in a corral by some gate G’,
a fact which is straightforward to check by induction. We remove 3’ from the
corral and place it at gate G”.

Whether or not any action has been taken for any P, at stage s+ 1, we need
to assign potential traces to any elements waiting at a gate or hole at the end of
stage s. We do this recursively in increasing order for all such y. If y is waiting
at a hole and y has no trace assigned to it, then we assign the least number not
yet mentioned in the construction to y as T'(y,s + 1). If y is waiting at some
gate and y has no set of potential traces assigned to it, we assign the least s+ 1

numbers not yet mentioned in the construction as potential traces for y, from
which we will choose a unique trace if y is ever freed from the gate.

This completes the construction.

Verification:

Satisfaction of the positive requirements is straightforward to check, as is
the fact that each positive requirement needs attention at most finitely often.
To see that A <7 B, note that any y not eventually bypassed as a potential
witness, either enters its target set on the stage immediately after it is chosen,
or receives a trace T(y, s) at this stage or a set of potential traces. If none of
y’s potential traces enter B, then y cannot enter A. If one does, then on the
immediately following stage, y is again assigned a trace or set of traces if it has
not entered A. This process eventually must come to an end, either with y and
some final set of potential traces stuck at some gate or corral, or with y being
cancelled by a higher priority requirement, or with y entering A by the stage
immediately after the stage at which some trace for y enters A.

Satisfaction of the negative requirements is a little more delicate to verify.
Suppose W, <g A via ¢, and W, <g B via ¢,. We can assume that the
reductions have the properties described in Lemma 1 by merely replacing a, b,
and ¢ with some indices that do have these properties with respect to A and
B. This guarantees infinitely many (a, b, ¢)-expansionary stages, since W.. is an
c.e. set, and hence As, so that it must settle down on each initial segment. Let
x € w. Call a stage s (a,b, c)-good for x if

(1) z < s,

(2) All gates and corrals G, and C), with p < (a, b, ¢) have only permanent
residents, or else are unoccupied,

(3) No P, for e < {a, b, c) receives attention after stage s, and

(4) I({a, b, c),) > x.

First note that there are infinitely many such stages, since (1), (3) and (4)
happen cofinitely often, and (2) must happen infinitely often, in particular at
every stage at which some highest priority element already in the machine acts
for the last time, thereby undefining all non-permanent residents. Also, any
gate and corral which has permanent residents must in fact have some least
permanent resident at its gate with which all but finitely many of its permanent
residents are associated. Also, any resident associated with this element must
be permanent, since it is stuck at the gate permanently. This implies that it is
computable to find an infinite sequence of (a, b, c)-good stages for x. Let sy be
the first such stage, and s; be the second. We claim that x € W, if and only
if (W, (z) € A)[s1]. Since z is below the length of agreement at s;, clearly, if
(Ws, () € A)[s1], then z € W, so we need only worry about the case where
(Wso () € A)[s1]. We claim that at every stage s > s1, either (W, () € A)[s]
or (W, (z) € B)[s]. Since W, <q A via ¢, this implies z ¢ W, by Lemma 1,
since there are infinitely many stages at which the @-reduction from B agrees
with that from A on x. So let s be the least stage at which our claim fails, and
let s~ be the greatest (a, b, c)-good stage for x less than s. Since s~ was good,
G (a,b,cy must have have been unoccupied at the end of this stage. We need to
show that either a(z) = a(x,s7) € As, or b(x) = b(x,s~) € Bs. So suppose this

is false.

Without loss of generality, suppose a(x) entered A first. Then b(z) must
be associated with a requirement of at least as great a priority as a(x), since
otherwise a(x)’s movement would cause b(z) to become undefined. Let s, be
the stage at which a was chosen, and s} be the stage at which a(z) entered A.
Clearly, s, < s~ < sf. Let s* be the stage at which a(x) passed gate G. Note
that s > s, since all the gates and corrals G; and C) with [< (a,b,c) have
only permanent residents. If gate G had a higher-priority resident at s, then
this resident would have destroyed a(z) when it moved. Clearly, a(xz) would
have destroyed any lower priority resident: so a(z) itself was waiting at the
gate. This also implies that b(x) has at least as high a priority as a(z). Clearly,
a(x) is the first element of its trace sequence at the gate, since z < s~, and b(x)
cannot be a member of a(x)’s trace sequence, by choice of a safe path through
a(x)’s potential witness tree. But now b(x) must get stuck at G after a(z) has
already passed, since it must be the highest priority element that moves between
sk and sf, else it would become undefined. Of course, if a(x) is a descendent of
b(z), b(z) cannot move until a(x) enters A anyway. In short, b(z) is above gate
G at stage s}, and it is the highest priority element that moves between s, < s,
and s;. This implies that b(z) must wait at gate G at stage s}, and so it cannot
enter B until after the next (a, b, c)-expansionary stage, which is greater than
s. This establishes the result, since it shows that the negative requirements are
satisfied. O

Although 0 branches in the c.e. Q-degrees, it is not immediately obvious that
non-branching c.e. Q-degrees exist, a fact which we now prove by constructing
such a degree avoiding any nontrivial upper cone.

Theorem 6. For every c.e. set C #q 0, there exists an c.e. set A, C £qg A,
such that A is non-branching in the c.e. Q-degrees.

Proof. We must construct A to satisfy the following two infinite types of re-
quirements:

N, : C £g A via ¢, and

P(V,W) : (V ﬁQ ANW ﬁQ A) -
IB(B<q (V@& A) AN B<q (W® A) A B£q A).
Where (V, W) is some enumeration of the c.e. sets, and {qﬁa ta € w} is
the standard enumeration of partial computable functions. The requirements

N, are satisfied by the usual Sacks preservation strategy. We would ordinarily
define the maximum length of agreement at stage s to be

1y(da(y) TVY € C AWy,) CA)V (y € CAWy, () £ A))ls],

and attempt to restrain A from changing on the sets involved in the partial
reduction below this length. For @Q-reductions in general, it may be that at

10

every stage s, some y € C[s], yet (Wy,) € A)[s], although Wy) € A.
Because we cannot know in advance whether or not C <g A via ¢4, we cannot
use the procedure of Lemma 1 to keep elements out of Wy, (,) merely because
y has entered C. After all, for us, the next element of (W, () — A)[s] may be
the witness we are seeking that ¢, is not a @-reduction. We can slow down
the enumeration of Wy () as in Lemma 1, by demanding that (W, () — A)[s]
consists of at most one element at any stage, and that a stage at which it is empty
must intervene before a new element is enumerated; such a modified function will
have the same properties as the original ¢, whether or not ¢, really threatens
C <o A. Unfortunately, even with this modified version of ¢,, we are only
guaranteed that ¢, will appear correct infinitely often at every argument if C' <q
A via ¢,. In the case of a Turing reduction, we are automatically guaranteed
something much stronger, for if C' = ®(A), then, for every z, (C(x) = ®(A; x))]s]
at cofinitely many stages s. Because this guarantees that the limsup of the
length of agreement approaches co, we can use the notion of expansionary stages
to control our constructions. Fortunately, we can also achieve this in the case of
@-reducibility, although it means we are forced to use a device like the Soare-
Lachlan hat-trick even in what is essentially a finite injury construction. Let ag
be the least element enumerated into A at stage s (or s, if A; — A1 =0). A
stage s is A-true if A [as = A | as. Since A will be c.e., there will be infinitely
many A-true stages. If C' <g A via ¢,, then at any A-true stage, if ¢, (y)l and
y € C, then Wy () [as C As. Defining the length of agreement function to be

19(a, s) = py(¢a (W) TV (Y € C AWy, | as € AV
(ye CAWy,) [as A))[s],

we, therefore guarantee that limsup ((a, s) = oo, if C' <g A via ¢,.
§—00

For each requirement Py, we actually construct By, to satisfy the
following infinite list of subrequirements

Prv,w.e) Bv,wy £q Avia¢e.

The strategy is derived from the familiar one for constructing a nonbranching c.e.
Turing degree (see [?], IX.4.2), namely, the failure to satisfy requirement Py)
implies that at least one of V and W is Q-reducible to A. We need to introduce
some modifications in order to deal with the differences between @Q-reducibility
and T-reducibility. In what follows, we consider the subrequirement tied to a
fixed V, W, and e and write B for By). Suppose ¢, is a total computable
function. To avoid the lower cone, we pick a marker x ¢ B and wait for a
stage s at which the length of agreement of B and the set Q-reduced via ¢,
to A has grown beyond z. Since x ¢ B, this can only mean that (Wy, () —
A)[s] = {a(z, s)}, by our convention about the cardinality of this set derived
from Lemma 1. Now we add x to B and restrain A on {a(z, s)}. Of course, we
have to somehow force V@ A and W @ A to permit z to enter B after this stage.
In the Turing case, this is relatively straightforward, since we can threaten to
reduce V' to A on longer and longer initial segments, and thus get an increasing

11

infinite subsequence ;) of markers on which permission from V' is given, then
using this infinite subsequence, we can threaten to reduce more and more of
W to A by considering the initial segment bounded by each x, (i) and thereby
force W to give permission on at least one of these markers. The problem in
adapting this to the Q-degree context lies in the fact that the apparent “use”
of a Q-reduction at some fixed stage is too small to force changes in this simple
way, since it is either the empty set (when Wy C A), or a single element
(when Wy, € A).

We get around this problem by doubly indexing our markers for B, to get
whole blocks of potential uses, rather than just the isolated points we would
otherwise get. We start out by defining b(i,7) = (e, i,), where e is the index
of f. This is just the (i,j)th element of w!°l. Because B is to be Q-reducible
to Vd Aand W @ A, we must at least preliminarily define the Q-reductions
gy and gw that are intended to achieve this. So, for each i and j we define
Wy (ig)),0 = 121} and Wy vi.5)),0 = 127} Again, we must use the true stage
method to guarantee enough expansionary stages. As in the case of the cone-
avoidance requirements, we therefore define

le,s) = py(de(y) TV(y € BAWy () [as S AV (y € BAWy) [as Z A))[s].

To construct our reductions, we also need to have available some element a
which we agree will never enter A under any circumstances. In fact, we simply
pick @ = 0, but continue to write a, when this special fact about it is what is
relevant.

Construction:

Stage 0: Ao =0, By, wy,0 = 0. All markers b(i, j) are said to be waiting for
a set-up.

Stage s + 1: For each a € w, we define the restraint set for N, at stage s by

={z€ W,y — A)s] : 3t < s(y <1%a,t)) }. These are the elements
which the strategy for N, would like to keep out of A. The maximum length of
agreement below stage s has to be used in setting these restraints, since even if
C <g A via ¢, 1igé£f 1€(a, s) can still be finite.

The strategy for positive requirements is a little more involved. To avoid the
introduction of excessive subscripts, we write b(i, j) for by w,e) (i, j); similarly
for Biy,wy and any auxiliary functions and parameters below. To threaten
V <o Aand W < A, we define auxiliary partial computable functions fy and
f1. For each (V,W,e) < s, we treat each b(i,j) < s assigned to Py, as
follows, taking the first case that applies:

Case 1: b(i,7) is waiting for a set-up.

(a) If i € V5 we define Wfo G) = 0, ng(b(z).kl = ng(b(zj u{2a+1},
and Wy, b(i5)).s+1 = Waw (b(ig)),s U {2 + 1}. In this case, b(z]) will never
be used as a potential candidate for B £ A, so we say b(i,j) is permanently
cancelled at stage s + 1.

(D)If j € W, we define Wy, ;) = 0, Wy, (6,5)),5+1 = Way (b(i5)),s U {28 + 1},
and Wy 6i))s+1 = Wow b(i,5)),s U {2a + 1}. Again, b(i,75) is permanently
cancelled at stage s + 1.

12

(¢) l(e,s) > b(i,j) (and neither ¢ € Vs nor j € Wy), then we define
Wioiy,s+1 = Wio(iy,s U{a(b(i, j), s)}, the unique element of (Wy_ i, j)) — A)[s]-
In this case, we say b(i, j) is waiting for V-permission.

Case 2: b(i,7) is waiting for V-permission.

(a) If a(b(4,7),s) € Ast1, then b(i, j) returns to waiting for a set-up.

(b) If i € Vi, then we define Wy, () s+1 = Wy, (5),s U{a(b(i,j), s)}, we choose
some a; ; bigger than any number yet mentioned in the construction, and set
Wy big)),s+1 = Wy (b(i,5)),s U {2045 + 1}. In this case, we say b(4,) is waiting
for W -permission.

Case 3: b(i,7) is waiting for W-permission.

(a) a(b(i,j),s) € Ast1, then we permanently cancel b(i, j) at stage s+ 1, set

Wy 0Gi.5)).s41 = Wy (b(i,5)),s U {2a + 1}, and
Wow 06541 = Waw v(i,5)),s U {28 + 1}

(b) j € Wet1, and a; ; € R[s] for any restraint R of higher priority, then we
add b(7, j) to Bsy1 and a; ; to A. We put a(b(z,), s) € Rilfr’lv’e>, the restraint set
for Piy,v,ey- In this case, we say Py v,y appears satisfied at stage s+ 1, and we
never again add elements to either A or B for the sake of this requirement unless
a(b(i,j)) € A; at some stage t > s + 1. We may have to correct some functions
gV and ¢g" at later stages when elements enter V or W and permanently cancel
potential witnesses in order to keep B <q V@ A and B <o W @ A, but this
action does not cause any enumeration into the sets A and B.

This ends the construction.

Verification:

We prove by induction that each restraint set is finite, that all requirements
are satisfied, and that each requirement only adds finitely many elements to A.
So, suppose this is the case for all N, and Py w,) where a and (V,W,e) are
less than b. The requirement N is satisfied as usual with the Sacks agreement
strategy: we give the details only for completeness sake in this possibly unfamil-
iar context. Since only finitely many elements are added to A by any of these
higher priority requirements, we must have some stage sy after which no more
elements are added to A by any of these requirements. If C' <g A via ¢y, then
because N has higher priority than any requirement seeking to add elements to
A, a straightforward induction shows that C' <¢g () via any computable function
g such that

W) = {1} = 35 > s0(Wy, (o) € A)[s].

Hence ¢y, fails to Q-reduce C to A. Let x be the least element at which ¢, fails.
If qbb(x)T, then the restraint set for IV, is obviously finite, since it can have at
most x elements at any stage after sg. If qbb(x)l, then, if x € C, we must have
Wy, (2) € A, and this can only be because some element a(z) is permanently
restrained from A by N, at some stage s > sg such that x € Cs. Again, this
clearly leads to a finite restraint set. If x ¢ C, then our strategy guarantees that
once [9(b,s) > = permanently, s > so implies (Wg, (@) C A)[s], since otherwise
we would force ¢, to be correct at x by setting a restraint.

13

Assume the inductive hypothesis for all requirements below Py, and
assume we are past some stage sg such that all the higher priority requirements
have finished setting restraints and acting by stage sg. The discussion is sim-
plified if we assume sy = 0 in what follows. By merely ignoring the finite part
of each set that is stable before sy, the reader can see that this involves no
loss of generality. If any element is added to A at some stage s for the sake
of this requirement, it can only be some a;; added under Case 3b to record
that b(i,j) € B <q V @ A. Since Py, is the highest priority requirement
remaining, a(b(4, j), s) never enters A, so that no further action is ever taken for
the sake of this requirement. Thus Py, only adds finitely many elements to
A (and B). Clearly, the restraint set is also finite.

Now, suppose V' £qg A and W £g A. Suppose B <g A via ¢.. Then, by
what was just argued, no b; ; can enter B after stage sg. Fix j € w. Then there
must be some infinite subsequence of the form b(v(), j) such that each b(v(), j)
eventually is waiting for W-permission. If not, then we compute V <g A via g
defined as follows: Since there is some ¢ such that all b(4, j) with ¢ > 49 never
wait for W-permission, we can obviously ignore this finite piece of V. (In other
words, the definition of g is automatic there.) For all i > io, let Wy = W @iy
Notice that fy is total, since B <g A via ¢.. If i ¢ V, then, since b(7,j) & B,
we must have some a(b(i,7)) € Wy() — A. But then, a(b(i, j)) € Wy, () as well.
On the other hand, if i € V, then Wy, ;) C A, since otherwise, b(i, j) waits for
W-permission after any stage s where a(b(i,7),s) = a(b(i,j)) € As and i € V.
This infinite sequence implies that f; is total. If j € W, then, since for almost
all i, b(i,j) ¢ B ,we must have a(b(i,j)) € A for some i such that b(i,) is
waiting for W-permission. Then a(b(i,j)) € Wy, (j) — A by construction. On
the other hand, suppose 7 € W. Then j € Wy at some least stage s > so,
and, at any t > s, Wy, (j)+ = Wy (j),s- But any a(b(i,j)) € Wy, (;),, must enter
A before stage s, since otherwise b(i,7) is added to B and the requirement is
permanently satisfied by restraining a(b(i, j)) from A at every stage thereafter.
But this contradicts W £q A, so the requirement is satisfied.

Notice that B <q V & A via g¥ and B <g W @ A via ", since we always
correct these functions whenever they become incorrect, and this only happens
finitely often for any b(4,j) € B, since if i or j enters V or W respectively while
b(i,j) is waiting for a set up, b(i,j) is permanently cancelled, and 2a + 1 is
enumerated into the relevant reduction sets.

This establishes the result. o

4 Density

Now we turn to the more difficult task of establishing the density of the c.e. Q-
degrees. The fact that @-reductions are given via computable functions rather
than relatively computable ones causes extra technical difficulties in carrying
over the standard Sacks coding technique to this context.

Theorem 7. For every pair of c.e. sets B <g A, there exists an c.e. set C
with B <qg B® C <g A.

14

Proof. As in the case of the Turing degrees, we must construct C' to satisfy the
following two infinite sequences of requirements:

No: AZg B®Cviag,and

P.: C £g Bviage.

Each of these requirements gives rise to new problems in the context of Q-
reducibility. N, will be met by restraining C' whenever possible, in the manner
of the similar requirements N, of the previous theorem. Again, because Q-
reductions involve a single element, rather than an initial segment of w, it is
not immediately possible to give up all higher restraints whenever the length
of agreement between A and the apparent @-reduction from B @ C given via
¢o drops back. The potential for infinite injury by B from below makes this
situation worse than that in the non-branching construction above, since keep-
ing all restraints forever will clearly make it impossible to satisfy the positive
requirements below N,. The solution is to give up restraints only when the
length of agreement drops back because of the one truly infinitary outcome:
that there is some least z ¢ A, yet Wy () C (B @ C), and every member of
Wy, (») enumerated after IV, has highest priority is even.

P. will be met by a modification of the Sacks coding strategy. We appoint a
sequence of followers and an auxiliary computable function h with the property
that if ¢, is a correct Q-reduction for C' on this sequence, then A <g B via
h. The feature that makes this situation different from the Turing degree case
is that we cannot immediately give up followers which have already been ap-
pointed whenever action is taken for some previously-appointed follower. Since
the function A is required to be computable in this case, rather than merely
C-computable, as in the analogous argument for Turing reducibility, once we
enumerate an element y into Wp,(;) for the sake of an attempt tied to a particular
follower, we are forced to use some follower tied to y as our coding marker for
the jth attempt until y enters B. (Since h continues to Q-compute j ¢ A until
such a stage is reached.) On the other hand, hanging on to markers permanently
whenever they are appointed will make it impossible for lower priority negative
requirements to make good on their threat to @Q-reduce A to B. The solution is
to add so-called tokens to any follower which we are currently prevented from
giving up at some stage, even though we would like to do so then. This is in-
tended to mark that we hope to give the follower up later (unless some further
action changes this situation), thereby insuring for the sake of lower priority
requirements that we will give up higher priority followers whenever we can.
Construction:

We use a tree of strategies to construct C. This is by now the standard ap-
proach; we refer the reader who is unfamiliar to Soare, [?], chapter XIV, for the
notation and basic ideas involved in such constructions. Our tree of strategies
T is isomorphic to <“w. We assign N, to each node of length 2a and P, to each
node of length 2e 4+ 1. Even nodes have outcomes n € w ordered in the usual
way, representing the least number at which ¢, fails to Q-reduce A to B @ C.
We let U and D be new symbols, and allow odd-length nodes to have outcomes

15

in n x {U, D}, ordered lexicographically by the rule U < D. These represent
the possible outcomes of each positive strategy: either P, will be satisfied by
some follower = appointed for n but never added to C, possibly because the use
W, (z) is unbounded ((n, U})), or the requirement will be satisfied by achieving
diagonalization against ¢. on some follower for n ({(n, D)). It is essential for our
@-reduction that we distinguish these outcomes on the tree, since each gives
different information about why elements are blocked from entering C.

The construction, as is usual in tree arguments, proceeds in stages at which
the strategies assigned to a node « are only employed when « appears to have
the correct information about how higher priority requirements are satisfied. To
affect this, an approximation fs to the true path f through the tree is defined at
each stage s. Any stage s at which a C f; is called an a-stage. The strategies
employed by each v € T to satisfy its requirement are controlled through length
of agreement functions defined on these stages. As in the non-branching degree
construction, we guarantee that the length grows enough by the true stage
method. If s is an a-stage, we define d¢ to be the least element enumerated into
B @ C between stage s and the last previous a-stage (or stage 0 if s is the first
a-stage. We let d2 = s if no element was enumerated throughout this period.
For each even-length «, say with |a| = 2a, we define

1°(s) = py(da(y) T or (y & Aand Wy, () [d2 S B&C) or
(y € Aand Wy, () [d3 £ B&C))[s],

just as in the manner of the negative requirements in the non-branching result
above. Each even-length o also has restraint sets R*(s) defined at each stage
of the construction.

Each odd-length « has a potentially infinite sequence of followers, to be used
as coding markers, which are given by a partial computable function x*(j, s).
Let b¢ be the least element enumerated into B since the last previous a-stage, or
s if no element has been enumerated in this period. For the length of agreement
function at a, if |o| = 2e + 1, we would ordinarily use the definition

1°(s) = py(de(y) T or (y & C and Wy, () | b C B) or
(y € C and W¢a(y) [b* Z B))[S],

for our length of agreement function. Unfortunately, there are two problems
with this. The first is easy to address, and arises from the need to use something
like the hat-trick here, so actually o has a “slowed-down” version of ¢., with
the property that if if s < s are two immediately successive a-stages, and
W, () © Bs for any t with so < ¢t < s, then Wy, ;) s € Bs. This is clearly
possible by a slight modification of Lemma 1 above, and it ensures that [%(s)
will drop back correctly.

The second problem arises from the fact that @-reductions have an “inter-
mittent” character as compared with Turing reductions. For suppose X <r Y,
say X = ®(Y). Then we can assume that the use is increasing in the argument
and non-decreasing in the stage, so that if ®(Y) appears correct through y > x

16

at stage s, yet fails to appear correct for z at some s’ > s because of a change in
Y, new computations must appear for all the elements between y and = by the
time ®(Y;x) is restored to correctness at stage t > s’. The fact that this fails
in the analogous situation for @-reducibility leads to an extra problem, since we
wish to ensure failure at some permanent coding marker for requirement P, in
order for us to be able to achieve C' <o A. We therefore restrict our length of
agreement to merely checking the sequence of markers defined at a given stage,
rather than every number, defining [*(s) to be the least y such that for some j,
y = 2%(4,8), y is not yet permanently stable (see below), and

d)e(y)T or (y §Z C and Wd’a(l}) fba g B) or
(y € Cand Wy, () [6% £ B))ls],

if any such y exists, otherwise [“(s) is “(j, s) + 1, where z%(j, s) is the greatest
marker yet defined. Now we are assured that the next marker > [%*(s) is the
number on which we plan to achieve C' £ B via ¢,. As usual, we define a stage
t to be a-expansionary if V' < t(1*(t') < 1*(t)).

As in the result above, we also choose some b ¢ B, in order to have an element
which is permanently restrained from B available in defining our @-reductions.
As usual a node is (re-)initialized by undefining all parameters associated with
it and setting its restraint set to be the empty set.

Stage 0: Cp = 0, and initialize all o € T. For every even-length o € T', let
R¥(—1) = 0.

Stage s+ 1: We define the current approximation to the true path fs recur-
sively for each n < s, and take action for each node o = f, | n. If |a| = 2a, then
we define the maximum length of agreement function m®(s) = max{ [*(t) :
t < s}. If I%(s) < m“(s) and there is some least yo < m®(s) such that
Yo & A yet Wy, (y) € (B ® O))[s], then let let R*(s) ={z : 22+1 €
W) — (B®C))[s]andy < yo} and set fo(n) = yo. This is the poten-
tially infinite outcome which causes the restraint set to drop back. Otherwise,
let R*(s) ={z : 22+ 1 € (Wy,(,) — (B®CO))[s]landy < m®(s) } and set
f(n) = me(s).

If |a| = 2a + 1, then the situation is more complicated. If (0, s) is unde-
fined, then choose (0, s) to be the least number greater than any yet men-
tioned in the construction.

First we check to see whether we already appear to have achieved a win
through diagonalization. Let s~ be the greatest a-stage less than s, If o received
outcome (k, D) at stage s~ and b(z“(k,s)) &€ Bs, then o™ (k, D) C f, and we
take no action for o at stage s.

Otherwise, we must continue to try to satisfy P, at «. If s is a-expansionary,
then there exists some least j such that %(j + 1, s) is undefined, choose z*(j 4+
1, s) to be the least number greater than any yet mentioned in the construction.
If j & A, we declare z = x°(j, s) to be waiting for A-permission. If j € A, then
we declare x to be permanently stable. This means that at no stage ¢t > s+ 1
will z(j,t) become undefined, so no new markers for j ever appear. We repeat
this procedure for any j’ < 7 which is not already waiting for A-permission.

17

If some z%(k, s) is waiting for A-permission, and k € Ay, then we pick the
least such k with z(k, s) ¢ U{ R”[s] : 8 < a } and enumerate 2% (k, s) € Cy41.
We let o have outcome (k, D) in this case, and we say k is waiting for a B-
change. For all j > k such that z® (j,s)l and j has not been permanently
cancelled, we assign 2 (j, s) a token, and declare 2%(4,) to be no longer waiting
for A-permission. If no such k exists, we enumerate nothing into C. If x(j, s)
began waiting for a B-change at some stage t < s and b(x“(j,t),t) € Bs, then
we declare 2°(j, s) permanently stable, never again allowing x“(j, s) to become
undefined.

We may still have to take some actions to reduce the effect of o on lower
priority nodes, and to ensure that all the @-reductions later to be associated
with a will be correct. We would like to immediately discard all markers above
the first one below which ¢, appears to fail. If {%(s) < z%(j—1, s), and b*(j,s) &
Bsi1, then, as explained above, we cannot immediately discard z“(j, s). Also,
if we have been preserving «a’s outcome because of an apparent diagonalization,
we wish have as outcome the least k with a marker for which ¢. appeared to
fail throughout this whole period. Let s* be the greatest a-stage before s at
which a’s outcome was not (I, D) for any . We search for the least k such that
there exists a t, s* < ¢ < s such that [%(¢) < z%(k,s). For all j > k we assign
x*(4,s) a token if b*(j, s) € Bs41 to mark the fact that we will discard x®(j, s)
if b(x*(j, s), s) enters B before j enters A. If b*(j, s) € Bs41, then we undefine
x*(j, s). (x*(j, s) may already have a token assigned at a previous stage in this
case.)

We also cancel markers below this lowest length of agreement, if they have
been given tokens. For every j such that x%(j, s) is not permanently stable, if
x“(4, s) has a token, and b(x“(j, s), s) € Bst1, then we undefine x*(j, s). If [%(t)
is later above z®(j — 1,t), we can then redefine some new (bigger) number to
be z(j, s). We let a™(k,U) C fs, for the k chosen above.

At the end of stage s + 1, we re-initialize all 5 with fs < [.

Let C' = [J,¢,, Cs. This completes the construction.

Verification:

Define the true path f to be liminf f;. We show that the true path exists

§— 00

and witnesses that C' has the required properties. So we show by induction
that for every a C f, the sequence of a’s outcomes has a finite lim inf, a’s
requirement is satisfied, and, if « is even, R®, the set of elements that are in
R“(s) at cofinitely many stages s, is finite.

First, suppose o has even length, say 2a. Suppose A <g B ® C via ¢,. We
describe how to define a computable function h such that A <o B via h, a
contradiction. Since o C f, there must exist some stage sg such that o < f for
every s > sg, and, for every odd-length node 8 C « with 87 (k,U) for some k,
if there are only finitely many [-expansionary stages, then no action is taken
for any [-strategy after sg. This is possible, since if 8’s requirement only leads
to finitely many expansionary stages, then only finitely many followers 2 (j, s)
are ever defined. For all z € w, and 5 < s, let Wy, , = 0. If s > 50 is
an a-expansionary stage and [*(s) > z, then we go through in order defining

18

h(z) for each z < 1%(s). If z € A;, Wy(2),s41 = Wh(z),s- Otherwise, z ¢ As.
If already Wi (.)s ¢ Bs, then we are already correct at s, so we need take no
action. Otherwise, we have two cases to consider, depending on whether B or
C is being used by ¢, s to Q-compute that z ¢ A:

Case 1: (Wy, .y — (B ® C))[s] = {2b(2,)}, for some b(z,s) & Bs. Then let
Wh(z),s-i—l = Wh(z),s U {b(z, S)}

Case 2: (Wy,(z) — (B @ C))[s] = {2¢(z, s) + 1}, for some c(z,s) & Cs.

(a) If there does not exist any 3 < a™(z) and j € w with c(z,s) = 2°(j, 5),
then let Wh(z),s+1 = Wh(z),s U {B}

Otherwise, there exists some § < o (z) and j € w such that ¢(z,s) =
2P(j,s). B appears to threaten injury, because it has higher priority than o
together with the outcome « believes correct at s. Recall that we cannot later
remove elements from Wj,(,y when « gets some smaller outcome [at a stage
after s. This involves several more cases, depending on whether 5 C «a or
merely 3 D a™(l) for some [< z. We apply the first case that we can below.

(b) If there is some k with either 37 (k, D) C «, or 37 (k,U) C « with only
finitely many (-expansionary stages, then let Wy(z) s11 = Wi(z),s U {b}.

(c¢) If 67(k,U) C a. and j < k, let Wh(z),s-i—l = Wh(z),s U {b}.

(d) If B~ (k,U) C . and j > k, then 2”(j, s) must have a token, hence
b2 (x(4, s), s)l, so we let Wy,(2) 41 = Wh(z),s U {b%(x(5,5), 5)}.

(e) If there is some | < z such that o™ (I) C 3, and [€ A, then by con-
struction, the path can never branch back through a™(I), so let Wj,(;) 41 =
Wh(z),s U {b}

(f) If there is some I < z such that o™ (l) C 3, and | ¢ A, but (Wy,_) —(B®
C))[s] = {2c(l,s) + 1} for some c(l,s) ¢ C, then note that Wy 411 — Bs =
{b(l, s)} already since | < z, and so h(l) has already been defined correctly at
this stage. Let Wy 2y 541 = Whz),s U{b(l, 5)}.

(g) Finally, if there is some | < z such that «™(l) C 8, and [€ A, and
(Ws,) — (B®C))[s] = {20} for some b € B, then let Wi,y 511 = Wi(z),s U{b},
since b will have to enter B before 3 is ever allowed to act.

We remark that the procedure to define h is not even uniform in «, since
we have to know additionally which of the finitely many outcomes of the form
(k,U) along « actually represent finitary outcomes without diagonalization.

Suppose z is some number for which h fails as a Q-reduction of A to B. If
z € A, then we must have W) ¢ B. So, suppose b € (Wj,(.y — B)[s + 1], where
s is the least such a-stage. Clearly, b was added to Wj,(,) 541 under case 2 above,
since otherwise, 2b € Wy, () — (B @ C). Recall that s was an a-expansionary
stage. This can only mean that z ¢ A, while (Wy, ;) — (B® C))[s] = {2c¢+ 1}
for some ¢ € Cs. Since z € A, we must have c € C, yet b € B.

This implies that there must exist at least one 2z’ and s’ > sp such that
2 g Ay, Wo, 2y — (B@C))[s'] = {2¢+ 1} for some ¢ ¢ Cy, yet ¢ € C, while
Wh(z),s'+1 & B. We will show that this is impossible, hence for every z, z € A
implies W},(;y € B. We may suppose z is the least number for which such an s’
ever exists. So, suppose z ¢ A, and b € (Wj,(.) — B)[s + 1], where s is the least
such a-stage.

19

All 8 > a™(z) are re-initialized at s; all 8 <;, & never act again after stage
so; and all B D a™(z) are restrained from ever adding ¢ to C forever after
this point. Since ¢ € C, subcase (a) therefore cannot have applied at s + 1,
hence ¢ = z°(j, s) for some 3 < o™ (z)and j € w. We analyze the remaining
possible subcases. If subcase (b) applied at s, then by choice of sg, 8 never
acts again after stage so. This is also true for 57 (k, D) C «, for if 8 were
to act again, once it did, (k, D) could never again be its outcome, as x7(k, sq)
will be declared permanently stable. This implies ¢ € C. If case (c) applied,
B {k,U) C « for some k. If j < k, then ¢ = 2°(j, s) will never be added to C.
If j = k, then 2°(k, s) can never be added to C by construction, since (k, U) can
only be the outcome when 2% (k,t) & Cyy1, and it is the outcome infinitely often.
If case (d) applied, then k < j. In this case, b = b(z?(j,s),s). If ¢ € C, but
b ¢ B, then once ¢ enters C at some stage to, [°(t) < 2°(j, s) for every t > t,.
Since this contradicts the infinitary outcome occurring infinitely often at (3, this
is impossible. If case (e) applied at s, then the path can never branch back
through o™ (1), since m®(s) > I. If case (f) applied, then by construction, the
path can only branch back through o™ (l) at t > s if (W, € (B®C))[t]). This
can only happen if the element ¢(l, s) enters C, in which case b(l, s) must enter
B, since z was chosen least. But, | ¢ Ay, (W,) — (B® C))[s] = {2c(l,s) + 1},
and c(l, s) € C, while W,y 41 ¢ B. Since I < z, this contradicts z being chosen
least with this property. Finally, suppose case (g) applied. As already pointed
out, b has to enter B before 3 is ever allowed to act, so this too is impossible.
So h must be correct at z.

Now suppose h fails for some z ¢ A. Then W),y C B. Clearly, if ¢, is
correct, this can only be because Wy, .y — (B @ C) = {2c+ 1} for some ¢ & C.
Furthermore, W,(.y C B can only happen if there is some 37 (k,U) C o and
c = 2P(j,s), for some j > k, at some stage s > so. In this case, b(z*(j, s), s) €
Wi(z) C B. So there is some least -stage t > s with b(z*(j, s),s) € B;. Then
2P (3, s) is permanently given up, since it has a token. But then b is enumerated
into W) at the next a-stage. So, again h must be correct at z.

This implies A <g B via h, and is therefore impossible. So ¢, must be
incorrect: there must be some least z such that either (ba(z)T; Wy.x) € BDC,
yet z & A; or Wy, (o) € B® C for some z € A. Only in the second case, can
m®(s) fail to have a fixed bound, and then only if some infinite sequence of
numbers 2b are enumerated into Wy_ () and then later each b is enumerated
into B. But this is exactly the situation which causes the restraints to drop
back, and so infinitely often the restraint set is finite and the same. In this
case, a”(z) C f, and every node extending this gets to act essentially without
restraint. This takes care of the even-length nodes.

Next, suppose |a| = 2e + 1. Suppose further that C' <g B via ¢e. In fact,
suppose merely that ¢. is correct on the set of all markers eventually defined
for the sake of this requirement. As before, we now describe how to construct
a function h such that A <g B via h. Let sy be chosen so that for every
s > 80, a < fs. The total restraint imposed by all § < « is a fixed finite set at
every a-stage s > S, so we can assume for convenience that all witnesses are

20

chosen greater than any of these restraints, and so can always be added in an
attempt to satisfy a’s requirement at any a-stage. As before, for every z € w,
Whiz),s0 = (). Note that since C' <¢g B via ¢., there must be infinitely many a-
expansionary stages s > so. At any such stage s, we define in sequence Wj,(. 41
for each z such that z%(z,s) < 1%(s). If z € A, we let Wiy 541 = Wh(s),s- If
z & A, then clearly, 2%(z,s) ¢ Cs, by construction. Since z%(z,s) < [%(s),
there must exist some unique b(z(z,s),5) € (W, (zo(z,s)) — B)[s]. We define
Wh(z),erl = Wh(z),s U {b(xa(za S)’ S)}

We must show that A <g B via h. If not, then the reduction must fail at
some least number z. Since h is obviously total, we first suppose that z € A,
yet Wiy ¢ B. Clearly, there must be some a-expansionary stage s such that
b(z*(2,5),s) € Wh(z),s+1 — B, and z ¢ A,. Since b(z%(2,s),s) ¢ B, x%(z,s)
can never be given up after s. But then, once z € A; at some a-stage t > s,
x%(z,s) € Cy, for some t' > t. Since b(z*(z, s),s) € Wy_(.) — B, this contradicts
C <g B via ¢., and so is impossible. On the other hand, suppose z ¢ A.
Then no marker x%(z, s) is ever enumerated into C, yet, since h fails at z, every
b(z*(z,s)) is enumerated into B. Notice that, by a straightforward inductive
argument, for every 2z’ < z, %(2’, s) has a finite limit, and eventually [*(¢t) >
x*((2',t) at every a-stage t. This follows because z’ € A means that z*(2/, s)
is eventually permanently stable, and z’ can no longer count as the greatest
element seeking to satisfy the requirement. But z’ ¢ A means that eventually
some z%(z") = x%*(2’, s) appears which never can be undefined, since for some
t, b(x*(z'),t) € B, else z’ would be the least number at which A fails. But then
(z,U) is the true outcome of a, and hence x = x%(z, s) is eventually permanent,
and Wy_(,) € B, while x ¢ C. This contradicts C' <qg B via ¢.. Thus A <o B
via h, a further contradiction, so ¢, fails at some marker © = 2*(j, s). Then,
infinitely often, {%(s) = x%(j, s), so either (j,U) or (j, D) must be the true
outcome of a.

This shows that all the requirements are satisfied, and the true path f exists.
We now only have to show C <o A. In fact, since B® A <g A, we show
C <g B® A. We define a -reduction h as follows. If has not yet been chosen
as a marker when the bound on possible markers grows beyond z at some stage
t, or if = is chosen as a marker for some « at s and some stage t > s, fi < «,
then enumerate 2b into Wi(z) at stage t + 1 if x & C;. Also, if ¥ = 2(j, s) we
enumerate 2j + 1 into Wj,(.). This guarantees correctness on every x with j ¢ A.
Now we have to decide what to do when z = 2%(j, s) is defined, j € A, but
a < fs. If ¥ € Cgyq, then, of course, we do nothing, letting Wi, (4) s41 = Wh(a),s-
If & & Copn, but (Wy(py € (B®A))[s], then, again, there is no need to act, since
h(z) is still correct. If o C f,, then there are only two things that can prevent x
from entering Cs41. Either some 2*(j’, s) enters Cyy1, and o™ (j’, D) C fs, in
which case we enumerate b(z*(j’, 5)) € Wh(g),s41, O € RP[s] for some 8 < a,
in which case we enumerate 2b € Wh(z),s+1, since T € RP [s] at every a-stage, so
a never gets to put x € C.

The final possibility is @ <, fs. Let 8 = a) fs. If 8 is an even-length node,
and 07(k) C «, yet B7(k") C fs, we first note that for a to act at t+1 > s+1,,

21

B{k) C fi. If k € A, this can never happen again, so we enumerate 2b into
Wh(z),s-i—l- Ifk & A, since g7 <l€/> C fs, (W¢a(k) — (B@C))[S] = {Z} If z = 2b,
then § can only have outcome k at a stage when b € B, so enumerate 2b in
Wh(a),s+1- If 2 =2c+ 1, for some ¢ ¢ Cy, then there are three possibilities. If ¢
has not yet been chosen as a marker or ¢ is a marker for some node v > 7 (k'},
then 3 never has outcome k' again, so we enumerate 2b in Wh(z),s+1- Otherwise
c = 27(l,s) for some v < B7(k). Notice that v < «a, s0 Wy(gv(1,s)),s+1 18
already defined. Then § cannot have outcome k' unless z7(l, s) enters C, so we
enumerate the unique element of Wi+ (1,5)),s41 — (Bs @ As) into (g, s41. This
takes care of the possibility that (§ is even.

So, assume [is odd, say || = 2e+1. First, suppose there is some j such that
B{4,D) C f,. Then this will always be 3’s outcome unless b(z”(j, s), s) enters
B. So we enumerate 2b(z(j, s), 5) into Wy, () s41. Otherwise, let 37 (k, O) C a.
If Kk € A;, or O = D, then « can never act again, so we enumerate 2b in
Wh(a),s+1- Otherwise k ¢ Ay, and O = U. Clearly, (Wy_ 6 — B)[s|] = {b},
since otherwise 7 (k',U) C fs for some k' < k. Clearly, § can only get this
outcome at a later stage if b enters B, so we can enumerate 2b into Wy (,) oy1-

This takes care of all the possibilities. It is clear from our description, that
x € Cimplies Wy,(,) € B A. It is also clear that if z is never chosen as a marker
for any node « < f, where f is the true path, then z ¢ C implies 2b € Wj,(,,) —
(B@® A). Also, if x = x%(j,s) for some j & A, 2j +1 € Wy, — (B @ A). So we
only have to show that if z = 2%(j, s) with j € A and « < f, then = ¢ C implies
Wi — (B ® A) # 0. First, suppose a C f. If @™ (k, D) C f, then 2b(z“(k)) €
Wiz — (B@A). If o™ (k,U) C f, then either 2b(z(j, 5),5) € Wy(z) — (B D A),
or £%(j,) is eventually either permanently stable, or permanently cancelled, so
20 € Whiz) — (Ba A).

Next suppose o <, f. Let x be chosen least such that h fails and x is a marker
for a node left of f. Let 8 = «) f. First, suppose § has even-length, say 2a..
Then B(k) C f, while (k') C a. If k' € A, then 2b € Whz) — (B @ A).
If k" ¢ A, then either there is some b with 2b € W) — (B © C), and also
2b € Wiz — (B® A), or W,y — (BoC)={2c+1}.1f2b ¢ Wh(z) — (BaC),
then c is a marker for some v < 87 (k), and Wi, () — (B@C) = Wiy — (B&C).
IfyC B Cf,c¢gCimplies Wiy £ (BSC), as already shown. If v <z 37(k),
then o was initialized after ¢ was chosen for ~, hence ¢ < x, and, since z is least
such that h fails, W,y € (B @ C), in this case as well. Clearly, 3 # ~, since 3
has even length.

Finally, we suppose 3 has odd-length, say 8 = 2e+ 1. If 37 (k, D) C «, then
20 € Wi(z) — (B®A). Otherwise, suppose a stage has been reached such that the
true path never branches back through 87 (k,U) C . If k € A, then eventually
2b € Wiz) — (B®A). Also, if 37(k", D) C f, then b(zB (k")) € Whz) — (B@A).
If k ¢ A, and some 7 (k',U) C f, for k < K/, then, if for infinitely many s,
b(z?(k,s),s) € B, then 37 (k,U) C f, a contradiction. So there is some stage s
with b = b(z”(k, s),s) ¢ B. But then 2b € Wj,(,) — (B & C). This takes care of
the last remaining possibility, and establishes the result. O

22

5 Undecidability in the c.e. ()-degrees

In this section, we show that any computable, countable partial order can be
interpreted with parameters in the c.e. @-degrees. This carries over enough
elements of the coding construction used in characterizing the theory of the c.e.
Turing degrees to show that theory of Rg is undecidable.

Because the the reader may be unfamiliar with the technique of using codings
of partial orders to show the undecidability of structures like (Rg, <g), we
briefly sketch the overall plan. First, one shows that one can interpret a model
of true arithmetic in a particular countable, computable partial order P. Such
an interpretation can be found in [?], so we do not repeat it here. Then, using
this fact, one shows that one can embed this partial ordering into the degree
structure in such a way that it is definable with four parameters by a formula
¢(x,y;a,b,c,1). This shows the undecidability of the structure in question, by
the classical method of Tarski, [?].

We therefore merely show, using ideas due to Slaman and Woodin, that
any computable partial order on w can be embedded into Rq via a countable
antichain. The following result is the key lemma for the method.

Theorem 8 (Coding Lemma). Let P = (w, =) be a computable partial order.
There exist c.e. sets A, B, L and a sequence of c.e. sets G = (G;|i € w) such
that, letting C' = G,

(1) for alli, A<g G, & B,

(2) for all i # j, Gi|oGj,

(3) for all c.e. W(W <qC N A<qW & B) = 3i(G; <q W)),
(4) for alli and j, i 2 j <= G; <@ G; & L, and

(5) Be C is low

In other words, the degrees of sets in G are the minimal c.e.)-degrees below
C which sup with B above A and L can be used to define the computable partial
order P on G in Rg. We require B @ C to be low for technical reasons which
will become clear below.

Proof. Although our proof is self-contained, we only briefly give the intuitions
behind the strategies. It would be helpful to the reader to have some familiarity
with the main technical lemma used in [?], although the constructions there are
more complicated than these, since they incorporate permitting to determine
the degree of Th(Ry). Our proof involves the construction of many computable
functions serving as @-reductions. For convenience of notation, we switch to
the use of uppercase Greek letters for these functions. In this way, for example,
if we build, for some sets A and B, a I' via which A <g B, then for each a ¢ A,
we can write y(a) for the (unique) element in Wr(,) — B.

Given P, to prove the result, we must construct A, B, L, (G;|i € w) as well
as indexed sequences of functions, T';, A?’b’e, and ©; ; satisfying the following
six kinds of requirements:

23

(T3) A<g G;® B vialy,

(Dije) i #j= Gi £q Gj via @,

(Map.o)(We <g C via ®, A A <o W, ® B via &) —
FiIA(G; <g W, via A),

(Nije) i 2= Gi £ G; ® L via .,

(Pj) i<j=G;<oG;®Lvia©,;, and

(Kew) 3%°50.(B@®Csa)|[s] = ®.(B® Csx)]|.

Our construction is an infinite injury priority argument, using a tree of
strategies. We only use the tree to control the actions of minimality require-
ments like M, p .. These are the only requirements for which explicit restraints
need to be set. To set these restraints, we must be able to nest 2¢ different
strategies for requirement M; appropriately, using a modification of the method
of expansionary stages. The priority ordering is somewhat unusual in that we
demand that 7; and 7} must come before any requirements D; ;. or Njj.
which refer to the sets G; and Gj; the intuition being that the requirement 7;
introduces the set GG; into the construction. In the case of the minimality re-
quirements, M, p . and the lowness requirements K. ,, we of course have to use
an approximation to the entire set C' = @;¢,,G;, although the strategy for satis-
fying requirement M, ; . will only involve the set of G; such that |T;| < |Mgy.p el
where |R| denotes the place of R in the priority ordering. The P; ; do not occur
in the priority listing. They will be taken care of locally by simple permitting
whenever a strategy for some D; j ¢, Nj je, or My changes G; to achieve some
diagonalization.

The basic strategies for satisfying these requirements individually are simple.
For requirements like D; ;. or N; ;., we use the standard Friedberg-Muchnik
diagonalization strategy, picking a follower x, waiting for realization by ®.,
then adding x to G;, and restraining to achieve permanent disagreement. For
requirements 7; and P; ;, we build appropriate functionals and keep them correct
at every stage of the construction. A requirement M, ;. will be satisfied by
building a sequence of functionals A?’b’e at stages where the length of agreement
in the condition expands such that one of these functionals succeeds by Q-
reducing G; to We.

As usual we are faced with the problem that the diagonalization strategies
conflict directly with the strategies seeking to restrain the sets involved. For a
potentially infinitary requirement M, ; ., with n requirements 7; above it, we
intend to first attempt to define a sequence of reductions A;, ¢ < n, via one of
which G; <g We. If W, <g C = @;c.Gj, the failure of all of our reductions
A; infinitely often will eventually produce a sequence of GG;-changes enabling us
to diagonalize against A <g W, @ B via @, (or W, <g C via ®,) while still
satisfying the higher priority 7; requirements.

Construction:

To specify the construction, we first define a priority listing (R,|n € w) as
discussed above, ensuring that 7; and 7 always come before any D; j ¢, or Nj j c.
To control the strategies for satisfying minimality requirements like Mg 4, We

24

use the tree of strategies T = <“2. We assign to each a € T the requirement
Ro = M),). For the sake of brevity in describing uses, we adopt the following
general notational convention: if we have some approximation to X <g Y via
® and for some x less than the length of agreement at stage s, x ¢ X, then we
write ¢(z)[s] for the least (usually unique) element of (We(,) —Y)[s].

Stage 0: All strategies are initialized; that is, all functionals and parameters
associated to any strategy for any requirement are undefined. All c.e. sets we
are constructing are empty

Stage s + 1: We examine in order the requirements R, for each u < s,
and take whatever action is required to satisfy R, if possible. As usual, any
functional, parameter or set not mentioned explicitly does not change at stage
s + 1. There are several cases to consider. As usual we suppress any subscripts
and superscripts that are clear from the context; for instance, in the first case
below, we write G, I, and ~ for G;, [';, and ;.

Case 1: R, =T;.

We define I' by eventually defining Wr, for every y € w. A number y can
only be added to A for the sake of some minimality requirement Mg .. Our
plan is to satisfy such an M, p . of lower priority than 7; by clearing an original
G-use so that we can add y to A without disturbing the We-computation that
y &€ A. Since Q-reductions depend on ordinary computable functions rather
than G; & B-computable ones, we are faced with the problem that the use for
I'(y) must be set, at least originally, without any reference to what takes place
in the construction. Fortunately, we can at least determine in advance which
requirement each y is associated with and exactly how many uses from members
of the independent sequence need to be defined before M ever acts. We therefore
set things up in the most natural way possible, assigning each y € w!<®®¢>] to
requirement M, ., and treating each such y as coding a sequence of markers
representing its uses for the finitely many members of the independent sequence
which it must take into account. More precisely we do the following;:

If y < s and y € wl<»>] then let n = pj(|Tj| £ |[Mape|- If n < i, then
v(y)[s +1]T, since My has higher priority than 7; in this case anyway. Else
i < n. Suppose y = ({a,b,€), (o, ..., jn-1)). If y € A[s], then y(y)[s + 1]].
Else, y ¢ Als]. If j; & Gy[s], then v(y)[s + 1] = 2j;. Else, if v(y)[s]| & Gi[s],
then y(y)[s + 1] = v(y)[s]. Finally, if v(y)[s] € Gi[s], 7(y)[s + 1] = 2(s(y)) + 1,
where s(y) = (y,s + 1), the s + 1st element of w(¥l. We show below that these
definitions ensure that y € A if and only if Wr(,y C G; @ B, where

Wrey ={7(@)ls] : sew}.

Case 2: R, = Mgp.c.

Let v = (a,b,e), so that there are exactly v requirements M, of higher
priority than M, .. We have 2V different strategies, one for each o € T with
|| = v for satisfying M, ., at most one of which is allowed to act at s. We
define the notion of a-stage recursively on v. If s is an a-stage, then only « is
allowed to act for Mg . at s.

We may assume that we have used the recursion theorem to fix indices for

25

the sets A, B, and C in advance of the construction. In the manner of Lemma 1
above, using these indices, and e, the index of W,, we may replace ®, and ®; by
some @,/ and &y such that at every stage s, if z < s, then (Wg,, () —(W.®B))[s]
contains at most one element, and, similarly, for any y < s, (Wsg_, () — C)[s]
contains at most one element. Below, we write a and b for ¢’ and b’, respectively,
for notational convenience.

First we define the length of agreement function [*(s). As in the preceding
proofs, we have to be careful to define % in such a way that we are guaranteed
infinitely many expansionary stages if W, <q C via ®, and A <o W, ® B via
®;. Recall that this problem arises whenever some element x €¢ X < Y via g
has the property that (W) € Y)[s] at any stage s because Y’s enumeration
is too slow relative to that of Wy ,.

We modify the length of agreement function by using the method of We-
true stages. Let w®[s] be the least element to enter W, since the last previous
a-stage, or s, if no such element exists. Since we are in a position to control
enumeration of elements into C' and B, we can afford to ignore positive errors
in the approximations.

We define I(s) = [*(s) as follows:

I(s) = pa(Pp(x)] or Fy € Wo,(2)(®a(y)]) or
r g Aand We, () C (We [w*) @ B) or
Jy € Wo, ()3 <w*(y=2y",y & We, and Wg, () C C))[s].

We say s is a-ezpansionary if [(s") < I(s) for every s’ < s. Notice that I(s)
only changes value on a-stages s, so is a-expansionary if and only if I(s") < I(s)
for every a-stage s’ < s.

Let n = [{T; : |T3| < |Ru| }|.

If some strategy for R, has initialized all lower priority strategies since R,
was itself last initialized, then R, appears permanently satisfied at s + 1. In
this case, we say s is an a™ (1)-stage, allowing o™ (1) to act for M, at stage
s+ 1, and go on immediately to the next requirement, R, 1.

Otherwise, we first look to see whether or not we have the ability to imme-
diately satisfy R, permanently by a finite action. Recall that if @(y)l[s], and
some putative reduction X <o Y via ® is under consideration, we write ¢(y)[s]
for the least (usually unique) element of (Wg(,) —Y')[s], if such exists; otherwise
o(y)[s]]-

If there is some y € W,[s] such that ¢q(y)[s] |, hence (Wg(,) — C)[s] # 0,
immediately initialize all strategies for requirements R, with v < ', and go on
to stage s + 2.

If there is some y € A[s] such that ¢;(y)[s]| and either ¢(y) is odd, or
¢p(y) is even and qba(‘bbT(y))[s]l, then immediately initialize all strategies for
requirements R, with u < «’, and go on to stage s + 2.

If there is some y & A[s], with ¢(y)[s] |, and ¢(y) = 2y’ + 1 is odd, then
we are prevented from using y below in our attempts to define the functionals
Aj. Our plan for defining this functional depends on linking G to We on v;(y)

26

using the fact that y ¢ A, and hence both v;(y) € G; & B and ¢,(y) ¢ W. & B.
But in this case there is no relationship between W, and the fact that y &€ A,
since the potential @Q-reduction @ is focused entirely on B. Fortunately, if every
v, (y)[s] is still set to its original (even) value, we can immediately satisfy the
requirement if we are not restrained from adding the necessary elements to C'
to preserve the requirements P; ; and T; when we add y to A, since then we can
be certain not to be forced to add W”T@J to B.

Suppose y = ({a,b,e), (xo,...,zn-1)), and for every j < n, v;(y)[s] = z;.
If for every j < n and 8 < a, (j,z;) & rg[s + 1], then we can add y to A and
preserve the requirements 7;. For the requirements F; ;, we also have to check
that if 7 < ¢ and x; is assigned to some requirement Ny j .-, then we can also
add z; to G;. So, if additionally, for every j < n, 8 < o, if z; € wlv@] and
Ryjy = Nyjrer, then (i,2;) & rg[s + 1], we enumerate y € A[s + 1], for each
Jj <n,z; €Gj[s+1], and, for each i such that j <4, with z; € wlt@] then
we enumerate z; € G; if for some ', j', €', Ry ;) = Nirjrer, and ; € L[s + 1], if
R, ;) is any other kind of requirement. Immediately initialize all strategies for
requirements R, with v < v/, and go on to stage s + 2.

For the final finitary strategy, suppose there is some y & A[s], ¢s(y) | [s] and
is even, say ¢y(y) = 2y'. If ¢ (y')[s]] (so Wa, () € C), and for every j < n,
v;(y)[s] is odd and L%J ¢ r[s + 1], then enumerate y € Als + 1] and
for each j < n, L%J € Bls + 1]. Immediately initialize all strategies for
requirements R, with u < «’, and go on to stage s + 2.

Otherwise, if s is not a-expansionary, then we do not act for « at stage s+ 1.
In this case, s is an o (1)-stage, allowing o™ (1) to act for M, 11 at s+ 1. Let
s* be the last a-expansionary stage before s, or s~ (the stage at which o was
last initialized), otherwise. Set

rgls+1] = Ur%[s—i—l]u {z:2<s"}and
B<a

rals+1] = U rg[s+1]U {z:2<s}.
B<a

Otherwise, suppose s is a-expansionary.

In this case we attempt to define some A; for ¢ < n such that G; <o W, via
A;. To define A;(x;), for some z; ¢ G;, we intend to wait for some y < [%[s]
to appear such that y = ((a,b,¢), (zo,..., 2, ..., 2n—1)) and define §;(z;) to be
%. This will enable us to get GG; permission to diagonalize against R, if
x; enters G; before §;(x;) enters W,. For our strategy to work, we must ensure
that some y appears that is suitable for this purpose. We could be prevented

from even getting started, however, if, for instance, for every y € w(<ab:e>],
y < 1%[s] = vi(y)[s] is odd.

For in that case, there is nothing suitable to set d; to be on y’s i-coordinate.
To avoid this, we define an a-target, y*[s], in order to slow the enumeration of
a-expansionary stages even further until a suitable y appears.

27

There are three cases.

(1) y*[s]T-

The total C-restraint on « at stage s is R(C,a)[s] ={x € rc[sl B <
« } Since we expect this to be a permanent, though ﬁnlte obstruction to our
strategy, we ignore any = ¢ G,[s] such that for some j, (j,z) € R(C,a)[s].
For all ¢ < n, let z; be least such that x; € G, for all j, (j,z;) € R(C,a)[s],
and §;(T Define y*[s + 1] = ({a,b,e), (w0, ...,2n)), and for each i < n,
y(zz)[s + 1] = y. Immediately end stage s + 1 and go on to stage s + 2.

(2) y*[s]| and (I* < y™)[s] or there is some y’ such that ¢,(y®) | [s] = 2v/,
but w[s] <y’

Then we take no action at stage s for «, essentially treating s as if it were
non-a-expansionary. Let sk be the last a-expansionary stage before s. We
define

rls+1] = U r%[s—i—l]u {z:2<s"}and

B<a

rals+1] = U 7’2[5+1]U {z:2<s}
B<a
Notice that each x;(y*[s]) € r*[s + 1]. We set a’s outcome to be 1, allowing
(1) to act for M, 41 at s+ 1.

(3) y = y*[s]| and (y* <1*)[s], and, if ¢ (y*) | =2y, ¥’ < w*[s].

Then y*[s+1]T, since the current a-target has been reached. Note that ;(y)
is even for every i < n, since each (z;(y®) € G;)[s] because of the C-restraint
that obtained since y*[s] was originally chosen as a-target. Also, (y* ¢ A)ls]
and (y* < 1°)s], hence gu(y*)[s] is even, say ou(y*)ls] = 2/, a6/)] (In
et o some o<, 000 Ui O71)) St (e 1] .

Next for each j < n say A; fails on = at s if x € G;, 0,(l and
0j(x)[s] ¢ We. This failure is actlve until there exists some stage t such that
6j($)[s] € W,[t] (at which point &;(z)[t+ 1]T). For each j < n, and each x with
§;(z)[s]|, if A fails on at s, then note that, for some j < n,

y(x;)[s] = ((a,b,€), (To, .., Tjy .oy Tn1)),

wherez; = 2. If j #0and 2;_1 ¢ G;_1, then define 6,1 (z;— 1)[S+1] d;(x)[s]
Otherwise, do nothing. (Notice that if j = 0, then ¢p(y) = 2y, da(y l

for all i < n,
ba(y')ls] # (i, v (y)[s]) = (i,).

(i

Hence, unless restrained by R(C, «)[s], we would already have enumerated y €
Als+ 1] and for each j < n, v;(y)[s] € (G; ® B)[s + 1], by the action specified
above.)

We then set a’s outcome to be 0, allowing o™ (0) to act for M,,1 at s + 1.
Let r&[s + 1] = U Tg[s +1], and r&[s + 1] = U rg[s +1].

B<a B<a

If « is the unique node on T that is allowed to act for requirement R, at

s+ 1, let ry[s+ 1] =r%[s+ 1] and ris[s + 1] = r&[s + 1].

28

Case 3: Ry = D je.

Recall D; . is G; £o Gj via ®.. We intend to satisfy this requirement
in the usual way by diagonalization, picking a new follower z"[s] after each
initialization of R,. We also have to add this element to L whenever we add it
to G; in order to guarantee G; <g Gy @ L when i < k. (Obviously, we cannot
in general add the marker to G, since we may have j = k.) All followers for
R, will be picked from w[® to insure that there is no interference between
strategies for different requirements. Because of higher priority restraints, we
define a sequence of potential witnesses, x}, at least one of which is certain to
be large enough to achieve diagonalization.

If, for some k, z}![s] | and z}[s] € Gy[s], then R, is currently satisfied, so we
do nothing.

If 2§ [s]], then let z{[s + 1] = (u, s + 1), and continue with stage s + 1.

If :E};H[S]T, :C}C‘[s]l, (W<I>e(z}$) Z Gj)ls], (z} & Gy)[s] (i.e., Ry is currently
unsatisfied), and (i,) € & [s] for some v’ < u, then we set z*[s 4 1] to be the
least element of wl* greater than x{[s].

If #[s] |, then if (We, () € G;)[s], and (i,z}) & 74 [s] for any u/ < u we
enumerate zj[s] € G;i[s + 1], and z}[s] € L[s + 1]. In this case, we initialize all
requirements R, such that v < «' and go on to stage s + 2.

Case 4: Ry = N je.

We intend again to satisfy this requirement by diagonalization. We adopt
essentially the strategies of D; ; ., but now, because we are diagonalizing against
L, we must add the realized follower to GG; as well as G; in order to satisfy
G; <@ G;® L, when ¢ =X .

If, for some k, z}![s] | and z}![s] € G,[s], then R, is currently satisfied, so we
do nothing.

If 2 [s]], then let a{[s + 1] = (u, s + 1), and continue with stage s+ 1.

If :E};H[S]T, :I:}é[s]l, (W<1>e(z};) Z G;®L)[s], (z}} & Gi)[s] (i.e., Ry is currently
unsatisfied), and (I, z}) € r& [s] for some v’ < u and [with i <[(including the
case i = 1), then we set z“[s 4+ 1] to be the least element of wl* greater than
2l [s]. If 2[s] |, then if (Wa,_(z) € G; @ L)[s], and (i,z}) & 7 (5] for any u’ < u
we enumerate zj[s] € G;[s + 1], and, for all { with ¢ <[, z}[s] € Gi[s+ 1]. In
this case, we initialize all requirements R, such that v < «’ and go on to stage
s+ 2.

Case 5: R, = K. .

If ®.(C;z) | [s], then we initialize all R, such that u < u/. We then proceed
immediately to stage s + 2.

Verification:

We show that each requirement R, is satisfied, and imposes only finite re-
straint on the construction. After this, we define @ reductions to show that
each P; ; is satisfied.

First, note that it is obvious from the construction that once a requirement
has been initialized for the last time, we only act once for it to initialize other
requirements or put numbers into A, B, or C, thus each requirement R, is
initialized only finitely often, and

29

This immediately implies that every lowness requirement K., is satisfied,
since once a stage s is reached after which K., will never again be initialized,
and ®.(B®C;x) | [s], all lower priority requirements are initialized, forcing them
to pick new witnesses greater than ¢.(B & C;z)[s], so that ®(B @ C;z) | [t] for
every t > s.

We now go through the other requirements in order, proving by induction
that each requirement R, is satisfied and imposes only finite restraint. There-
fore, suppose that the hypotheses are satisfied for all R, with v’ < u, and that
we are beyond some stage at which every such R, has enumerated an element
into one of the sets A, B, or C if it ever will.

Case 1: R, =T;.

We only have to ensure that R, is satisfied, since these requirements never
act to initialize any others and they set no restraints. In fact, we merely show
that I is correct on followers picked by requirements of lower priority than R,,.
This is a computable set, and its complement’s intersection with A is obviously
Q-reducible to G; ® B, since it is finite. Let Wr(,) ={(y)[s] : s €w }.

If x ¢ A, note that at every stage greater than x we correct I';. The second
time we do this, say at stage s, we have v;(x)[s] = 2s(z)+1, where s(x) > sis the
sth element of w(*!. But then ;(z)[s] never enters B unless z is enumerated into
A, since it is only such actions which cause any enumeration into B. If x € A, it
is obvious from the description of the action of the minimality strategies of the
lower priority requirements that x cannot be enumerated into A[s + 1] unless
the use v;(z)[s + 1] is also enumerated into (G; @ B)[s + 1], after which no new
use v;(x)[s'] is ever set.

Case 2: Ry, = Mgp.e.

Let the true path f be defined recursively by

f(n) = liminf {j: (f Im)”(j) is allowed to act at s }.

We show by induction that for each a C f, R, is satisfied, and r%[s] and r&|s]
are both finite and eventually constant. First, we verify that if W, <q C via @,
and A <g W.® B via ®y, then there are infinitely many a-expansionary stages.
In fact, we show that lim {%(s) = co. Suppose not; then liminf [*(s) = z € w.

§— 00 5— 00

Clearly ®,(z) | and for every y in Wa, (2, (®a([£])].

If © ¢ A, then Wy, (5)+ € (We © B) at every sufficiently large ¢, since, in
fact, there is some unique ¢p(v) € Wo,(z) — (We @ B). If ¢p(x) is odd, then
x < 1%[t], for every sufficiently large t. If ¢p(z) = 2y’ for some y' & W,, then
since W, <q C via ®,, we must have some ¢,(y’) ¢ C. But then, even after
w*[t] is greater than ¢/, x < [*[t].

If z € A, then suppose we are at a W,-true a-stage s. Such a stage obviously
exists since there are infinitely many a-stages. If Wy, (,) € (W @ B)][s], then
either ¢p(z)[s] is odd, in which case x < “[s], or there is some y’ such that
op(z)[s] = 2¢'. If w*[s] < ¢/, then & < [*[s]. Otherwise, suppose ¢y’ < w*[s].
Then, note that 4y’ & W, since s is We-true. This is a contradiction, since then
W@,,(y) ,Z (We S B)

30

We next show that v} and r¢ are finite, and eventually constant. By in-
ductive hypothesis, since « is on the true path, we can get only into trouble if
there are only finitely many a-expansionary stages. But in this case, once the
greatest one is reached after the approximation to the true path last initializes
a, both restraint functions remain constant on every a-stage. (This follows
straightforwardly by induction on the a-stages.)

There is nothing left to prove if there are only finitely many a-expansionary
stages, since the requirement is satisfied in that case.

Otherwise, suppose there are infinitely many a-expansionary stages. Then
f(Ja|) = 0, since infinitely many a-targets are defined and eventually reached.
Let n = [{T; : |T;] < u}|. Recall that we have assumed we are beyond any
stage at which any strategy for any R, with v’ < u acts, so a is never again
initialized.

If there is some y € W,[s] such that ¢,(y)[s] |, then (Wg, () — C) # 0, since
all R, such that u < u’ are immediately initialized at s + 1 and we go on to
stage s + 2. Hence W, £¢ C via ®,, and there are no more a-expansionary
stages after s, a contradiction.

If there is some y € Als] such that ¢,(y)[s]| and either ¢(y) is odd, or

o (y) is even and qﬁa(‘m’T(y))[s]l, a similar argument shows that either y € A and

Wo,y) £ We ® B, or ¢”2(y) € W, and W () ¢ C, and again there are no
a2

more a-expansionary stages after s.

If there is some y ¢ A[s], with ¢y(y)[s]], v = ((a,b,€), (z0,...,Tn_1)), and
y is enumerated in A[s + 1], then all requirements R, such that v < v’ are
initialized at s + 1. This can happen for two reasons. If ¢p(y) = 2y + 1
is odd, then as above, y € A and Wg,(,y € We @ B. On the other hand,
it may be that ¢,(y) is even, say ¢y(y) = 2y, da(y')[s]| and for all j < n
z; € Gj[s]. In this case, every v;(y)[s] is odd, so that adding each v;(y)[s] to
(Gj @ B)[s + 1], preserves (Wg, (,/y £ C)[s + 1]. Hence, as above, either y € A
and Wa, () € We® B, or 2 € W, and W,
more a-expansionary stages after s.

In all these cases, this shows that R, is satisfied. It only remains to show
that R, is satisfied if there are infinitely many a-expansionary stages. For all
z € w, let Wa,) ={6;(x)[s] : s € w}. If there is any j < n such that for
almost all x,

L () ¢ C, and there are no

S Gj — WAj(z) C We,

then R, is satisfied. Hence each A; must be incorrect on infinitely many € w.
The total B-restraint on « at stage s is

R(B,a)[s] ={z € Tg[s] cB<al.

By inductive hypothesis, there exists some stage to such that for every a-stage
s > to, R(B,a)[s] = R(B, a)[to]. Similarly, if

R(C,a)[s] ={z € Tg[s] cB<al.

31

then we can assume R(C, a)[s] = R(C, a)[to], at every a-stage s > to.

We first show that for almost all x, A,,_; can only be incorrect on x if
r € Gpo1and Wa, _ (o) £ We. To see this, suppose z is least such that = ¢ G, 1
yet Wa, ., (z) € We, and for all j, (j, z) € R(C,a)[s]. Then, at some stage s > sg
where 0;(z) T, some y = ((a, b, €), (zo, ..., Tp—1 = z)) is chosen as a-target. By
the construction, once the a-target y is reached, at, say, stage s’, we have some
y' & We[s'], which is set to be d,_1(z)[s + 1]. Since W, <g C, W, <r C, and
hence there is some computable functional ®4 such that ®4(B ® C;x)| if and
only if 35’3y’ (v & W, and d,—1(x)[s'] = y'). We have just shown that there
exist infinitely many s’ such that ®4(B & C; z)l[s’]. Hence, since requirement
K, is satisfied, ®4(B @ C; x)l, so that A,,_1 does not fail on x.

If y ¢ A and ¢y (y) is even, we write 3’ for ¢l’T(y) Since A, _1 does not reduce
Gp—1 to We, there must therefore exist an infinite sequence 29 _,, o1 ... such

that, for all i € w,
y('riz—l)/ = 5n—1($;—1) & We, but 'T'Z;z—l € Gn-1.

Clearly y(zf,_;) = {{(a,b,€), (wo, ..., Tn_2, 2t _1)), for some g, ..., T, 2.
Suppose that for some j < n—1, there exists an infinite sequence of numbers
29,1, %54, .. such that, for all i € w,

y(mé_,,_l)/ = 5j+1(‘733‘+1) ¢ We, but x;-{-l € Gjp1.

Then we must have y(«%,,) = ((a,b,€), (zo,...,zj,25,,...,2,-1)), for some
20y &j,Tj42,...,Tn—1, sSuch that z;,0 € Gjya,...2n—1 € G_1, by the def-
inition of ;41.

We show that in this case, for almost all , A; can only be incorrect on z if
r € Gj and Wa(z) € We. To see this, suppose z is least such that z ¢ G; yet
W, (z) © We, where for all j, (j,z) € R(C,a)[s]. Then, at any stage s > sg
where 5j(z)T, some y = ((a,b,e), (xo,...,2; =T, Tj41,...,Tn-1)) is chosen as
a-target. Recall, there are infinitely many xj, such that

y(SC;_H)/ = 5j+1(z3‘+1) ¢ We, but 50;-;-1 €Gjy1-

Hence, for every s, since x is continually picked as the jth coordinate of the
a-target at every stage s’ where §;(z)[s']], eventually some a-target y is chosen
at some s’ such that

y = {({a,b,e),(To,...,Tj =T, Tj41,.-.,Tn_1)),
for some z;41 such that at ' > &', A;1q fails on z;41. (This must eventually
happen, since some ;| > s’) But then, at stage ¢/, §;(x)[t' + 1] = y'. As in the
case of A,,_1 above, then, 5j(z)l infinitely often, and ¢; is essentially a (B&C)-
computable partial function. Thus, the lowness requirements K guarantee that
5j(z)l: y' ¢ G;. This is a contradiction, since it implies A; is correct on x.
Since A; does not reduce G; to We, by hypothesis, there must therefore

exist an infinite sequence x?, x;, ... such that, for all i € w,

y(zh) = 6;(x}) & We, but 2 € Gj,

32

where y(z%) = ((a, b, €), (o, ..., 25, 2j +1,...,2,_1)), for some o, ..., 2, 2.
This shows, by induction, that in fact, since Ag is incorrect infinitely often,
that there must in fact exist x8 < ,7:(1, < ... such that, for all i € w,

y(zh)' = do(z}) & We, but =) € Go,

where y(z) = ((a,b,€), (x},z1...,2,-1)), for some x1,...,2,_1. Note that,
by definition of §,(x;), we must have each ;41 € Gj4+1,for every j <n—11in
every such sequence attached to some xj).

Let b = max(R(B, a)), where R(B, a)[s] = R(B, a)[to], the permanent B-
restraint on a. To achieve a contradiction, we need only consider zg = x§.
Let y = ((a,b,€e),(xo, 21 ...,Zn_1)), and let s; be the unique stage such that
zj € Gjls; + 1] — Gj[s;]. Then sg > s > ... > s,_1. Clearly s,_1 > b. Let
t be the next a-expansionary stage after so such that y' < w®[t]. Note that
y € Aft] and 3y & W, so such a stage is guaranteed to exist. Since t is a-
expansionary, y < [%[t], and thus, since y' < w®[t], we must have gba(y)l[t].
Note that, since each z; € G;[s; + 1], v;(y) = 2t; + 1 for some ¢; > s; +1 > b.
Hence at stage t+ 1, the « strategy enumerates y € A[t+ 1] and for every j < n,
t; € B[t + 1], after which all lower priority requirements are initialized. But
now 2y' € Wg, () € (We @ B), so A £ W, @ B via &y, a contradiction. This
shows that the requirement is satisfied.

Case 3: Ry = D; je.

Let v = [{v' : 30 < uR, = M,y }|. Let o be the initial segment of the
true path of length v. There exists some stage ¢t such that at every a-stage t’
after ¢, r&[t'] = r&[t], and this is the restraint on R,. Clearly, at some stage
s > sp, the stage at which R, is last initialized, some witness « = z}[s] | and
(i,x) & r&[t]. If there exists some a-stage s’ > s such that (Ws, (o) € G;)[s'],
then x € G;[s'+1], and all lower priority requirements are initialized at s’+1. We
also enumerate z into L at this stage, but this clearly has no effect on GG;. Hence
Wa_(2) £ Gj, and R, is satisfied. This, of course, is also the case if x enters
G; at a non-a-stage. Otherwise, at every a-stage s > s, (Ws, (o) C Gj)[s'],
and x € G;. Since there are infinitely many a-stages, this can only mean that
W, (2) € Gj, again yielding that G; £q G; via ..

Case 4: Ry = Nj je.

The argument here is analogous to that for the requirements D; ;. above.
Eventually some witness x is chosen which can bypass the eventually-constant
restraint which holds at every a-stage, for an appropriate initial segment of the
true path a. Once x is chosen, ®. is then forced to fail on z, just as in Case 3
above.

Finally, we show that the requirements P; ; are satisfied. In fact, the reduc-
tion is not merely @, but many-one. We merely examine which requirement
each z € w could possibly be assigned to, and choose 6(xz) = 2z or 2z + 1,
depending on which sort of diagonalization we intend to achieve on z. More
precisely, suppose z € wl*. If R, = .3/ e, then let §(x) = 2z. If Ry = Djr jv e,
then let 8(x) = 2x+ 1. If R, is any other type of requirement, let 6(z) = 22+ 1.
It is clear from a straightforward examination of cases of the construction that if

33

x € wl, then, if R, is not a requirement of type Nis jt e, Ry, enumerates x into
some G; if and only if it enumerates x into L; and, if R, is some Ny ;s .,then
R, enumerates x into G; if and only if it enumerates = into Gy for every k
with ¢ < k. It therefore follows that 6 : G; <,, G; @ L, and, hence, letting
Wo () = {0(2)}, that G; < G; © L via ©. This completes the proof.

O

By the Coding Lemma, we immediately have the following:

Corollary 9. For any countable, infinite computable partial order P there exist
Q-degrees a, b, ¢, and 1, such that an interpretation of P is first-order definable
with parameters a, b, c, and 1 in Rq

Proof. Let A, B, C, L, and (G;|i € w) be as in the Coding Lemma, and let a, b,
c, 1, and {gi ricew } be their respective degrees. Note that x E{ g icw }
if and only if

(a<xVb)and Vy <c(-(y <xand a<yVb)).
Also, for all 7 and j, ¢« < j if and only if
g <g;Vl
This immediately gives the required interpretation of P. O
Undecidability now follows as discussed above.
Theorem 10. Rg has an undecidable first order theory. U

We remark that this leaves open the question of the Turing degree of the
theory of Rg. It seems natural to conjecture that, as in the analogous case of the
c.e. Turing degrees, the degree is that of true arithmetic. In this case, however,
we have not been able to achieve the permitting needed to embed partial orders
below a given sequence of low degrees, which is needed to show that prime (and
therefore standard) models of arithmetic can be picked out without parameters.

References

[1] O. Belegradek, On algebraically closed groups, Algebra i Logika, 13 No. 3
(1974), 813-816.

[2] R. Downey, The degrees of r.e. sets without the universal splitting property,
Trans. Am. Math. Soc., 291 (1985), pp. 337-351.

[3] R. Downey and M. Stob, Structural interactions of the recursively enumer-
able T- and W -degrees, Annals Pure and Appl. Logic, 31 (1986), pp.205-
236.

[4] Paul Fischer, Some Results On Recursively Enumerable Degrees Of Weak
Reducibilities, Dissertation, Universitt Bielefeld, 1986.

34

[5]

C. Jockusch, Semirecursive sets and positive reducibility, Trans. Am. Math.
Soc., 131 (1968), pp. 420-436.

A. Lachlan, Lower bounds for pairs of recursively enumerable degrees, Proc.
London Math. Soc. 16 (1966), pp. 537-569.

A. Lachlan, Embedding nondistributive lattices in the recursively enumer-
able degrees, in Conference in Mathematical Logic, ed. W. Hodges, Springer-
Verlag, Berlin, 1972, pp. 149-177.

M. Lerman, Admissible ordinals and priority arguments, in Cambridge
Summer School in Mathematical Logic, ed. A.R.D. Mathias and H. Rogers,
Jr., Springer-Verlag, Berlin, 1973, pp. 311-344.

A. Macintyre, Omitting quantifier free types in generic structures, Journal

of Symbolic Logic, 37 (1972), pp. 512-520.

A. Nies, R. Shore, T. Slaman, Standard models of arithmetic and definabil-
ity in the enumerable degrees, to appear, Proc. London Math. Soc.

Shoenfield, Joseph R. Quasicreative sets, Proceedings of the American
Mathematical Society, vol 8. (1957), pp. 964-967.

R.I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Math-
ematical Logic, Springer-Verlag, Berlin, xviii+437 pp., 1987.

A. Tarski, with A. Mostowski and R. Robinson, Undecidable Theories,
North-Holland, Amsterdam, 1953.

M. Ziegler, Ein rekursiv aufzdhlbarer btt-Grad, der nicht zum Wortproblem
einer Gruppe gehort, Zeitschr. Math. Log., 22 (1976), pp. 165-168.

M. Ziegler, Algebraisch abgeschlossen gruppen in Word Problems II, The
Ozxford Book, ed. S.I. Adian, W.W. Boone, and G. Higman, North Holland,
1980, pp.449-576.

35

