
FOUNDATIONS OF ONLINE STRUCTURE THEORY

NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN,
AND ALEXANDER MELNIKOV

Contents

1. Introduction 1
1.1. Our goal 1
1.2. Turing computable mathematics 2
1.3. Online combinatorics 2
1.4. Online vs. Turing computable 3
1.5. Our goal, revisited 4
1.6. The models 4
2. The first steps. Examples 6
2.1. Existence of punctual presentations 6
2.2. Primitive recursive decidability 8
2.3. Punctual versions of known results 9
3. Uniqueness of presentation 12
4. The punctual monster 17
4.1. Pressing P0 18
4.2. The idea of the diagonalisation. 20
5. An online back-and-forth invariant 21
5.1. Does back and forth imply back-and-forth? 22
5.2. FPR-degrees as partial orders 22
6. Homogeneous structures 23
7. Finitely generated structures 25
8. Graphs and universality 26
8.1. Sub-recursive relativisation 28
9. Appendix: Primitive recursive time 29
References 31

1. Introduction

1.1. Our goal. Imagine your job is to receive – perhaps infinitely many – objects
of various sizes and pack them into bins, of a fixed size. You receive object n and
at time n+ 1 you have to say which bin you should pack it into, and this decision
is irrevocable. You are in an online situation.

The goal of this paper is to outline the ideas of a new programme in computable
mathematics devoted to online computable structure theory. This will be a new

2010 Mathematics Subject Classification. Primary 03D45, 03C57. Secondary 03D75, 03D80.
The authors were partially supported by Marsden Fund of New Zealand.

1



2NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

subfield of computable structure theory, but one with its own highly distinctive
character.

First, we will discuss online algorithms for combinatorial structures. Online
combinatorics lacks general theory. We will also remind the reader of the related
ideas of (Turing) computable mathematics. This subject does have a developed
systematic theory; however, it uses the abstract notion of Turing computation
which is very far from being online. Then we will introduce our main paradigm
which will involve primitive recursive structures, and explain why this is the chosen
paradigm. In the remaining sections we will explore results already obtained using
this paradigm, and articulate some of the many open problems in the area.

1.2. Turing computable mathematics. The general area of computable or e↵ec-
tive mathematics is devoted to understanding the algorithmic content of mathemat-
ics. The roots of the subject go back to the introduction of non-computable methods
into mathematics at the beginning of the 20th century as discussed in Metakides
and Nerode [MN82]. Early work concentrated on developing algorithmic mathemat-
ics in algebra, e.g. Grete Hermann [Her26], analysis such as Bishop’s constructive
analysis, (implicitly) using algorithmic methods to understand randomness (Borel
[Bor09], von Mises [vM19], Church [Chu40]), understanding e↵ective procedures in
finitely presented groups such as Dehn [Deh11], and most notably Hilbert’s pro-
gramme seeking to give a decision procedure for first order logic. We know all of
these historical roots led to the development of, for example, computability theory,
complexity theory, and algorithmic randomness (see e.g. Downey [Dow17]). The
modern version of e↵ective mathematics utilizes the tools developed in these ar-
eas, as well as classical tools in algebra, analysis, etc. to calibrate the algorithmic
content of many areas of mathematics.

The standard model for such investigations is a (Turing) computable presentation
of a structure. By this we mean a coding of the structure with universe N, and
the relations and functions coded Turing computably. For example, a computable
presentation of a group would be either a finite group, or one where the universe was
considered as N and the group operation was represented as a (Turing) computable
function. Note that this framework uses the general notion of a Turing computable
function. In particular, we put no resource bound on our computation.

1.3. Online combinatorics. A hallmark of the majority of algorithms on finite
structures is that the algorithm “knows all about the structure”. In other words, the
whole structure is given to the algorithm at once. For example, when a complexity
theorist talks about the Hamiltonian path problem, they have in mind algorithms
that given a description of a finite graph (say, a matrix-presentation of it) outputs
such a path. This is sometimes not true for large data sets, and several Logspace
algorithms, but we are using this to refer to those students which would learn in
a basic algorithm course. What happens to such algorithms if the graph is not
given at once, but rather is given to us step-by-step and vertex-by-vertex? This
situation is an abstraction to an “online” computation in which the input data is
too massive to be given as an input at once. Now of course there are many problems
in computer science where we can safely assume that universe is infinite and thus
we need an online algorithm. For example, a scheduler which assigns users to access
shared memory is a classic example.



FOUNDATIONS OF ONLINE STRUCTURE THEORY 3

In the “online” setup the situation becomes quite a bit harder. Consider the
following example. Every tree is 2-colourable, but to achieve this colouring you
need to know the whole of the tree. Suppose we are given a vast tree one vertex
at a time, so that G = [sGs, an online presentation of G. When we give you
the vertex v we promise to tell you all of the vertices given so far to which v is
joined; that is the induced subtree of v1, . . . , vs. Your goal is to colour the vertex
vs, before we give you vs+1. We are in an online situation. For a tree with n
vertices, the sharp lower bound is O(log n) many colours. It follows that there are
online presentations of infinite (computable) trees which cannot be online coloured
with any finite number of colours. We see that switching to the online case e↵ects
not only the running time, but also the best solution that we can hope for. We
remark that online algorithms can be quite complex, and for similar online problems
scheduling, the decidability of S2S, and Büchi automata are intimately related.

Beginning in the 1980’s there has been quite a lot of work on online infinite com-
binatorics, particularly by Kierstead, Trotter, Remmel and others ([Kie81, Kie98a,
KPT94, LST89, Rem86]). Some results were quite surprising. For example, Dil-
worth’s theorem says that a partial ordering of width k can be decomposed into
k chains. Szemeredi and others showed that there is a computable partial order-
ing that cannot be decomposed into k computable chains. But in 1981, Kierstead
proved that there is an online algorithm that will decompose any online presenta-

tion of a computable partial ordering into 5k�1
4 many (computable) chains. Only

in 2009 was this result improved by Bosek and Krawczyk who demonstrated that
it can be done with k14 log k many chains. Work here is ongoing. (See [Kie98b] for
a somewhat dated survey.) In the case of finite structures most work comes from
comparing o✏ine vs online performance. In this area, the typical setting is to build
some kind of function which is measured relative to some size, and the goal of online
algorithm design is to improve what is called the Competitive Performance Ratio
of online divided by o✏ine. For example, first fit gives a competitive ratio of 2 for
the classical Bin Packing problem (see Garey and Johnson [GJ79]).

1.4. Online vs. Turing computable. The notion of an “online” algorithm in
the results mentioned above is rather specific. One may complain that, rather than
saying that we must make a decision before the next vertex shows up, it is fine to
wait for a bit more of a graph to be shown to us. But how much more exactly?
Maybe we can wait for 17 more vertices to show up before we make a decision.
Perhaps, at stage s we could ask for log(s) more vertices, etc. It is not hard to see
that various answers to this question will lead to a proper hierarchy – rather, a zoo
– of “online” computability notions. It is natural to ask:

What is the most general notion of an online algorithm?

Understanding the online content of mathematics so far has no general theory,
there are only algorithms or proofs that no algorithm exists. Note that the lack
of theory for online mathematics stands in stark contrast with the infinite o↵-line
case described by the computable structure theory [AK00, EG00]. However, as we
noted above, computable structure theory relies on the most general notion of a
computable process that we know today – a Turing computable process. Turing
computability provides us with many tools, such as the universal Turing machine
and the Recursion Theorem, that are useful in proving theorems about algorithms.
However, Turing computability in its full generality is not an adequate model in



4NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

the online situation, because Turing computable algorithms can use an unbounded
search. For instance, recall the example in which we had to online colour a tree.
A Turing computable algorithm would just wait until a node gets connected to
the root of the tree via a path and then will make a decision. There is no a priori
bound on how long it may take for the path to be revealed, but a Turing computable
algorithm does not care. More importantly, Turing computability fails to capture
the “impatient” nature of an online algorithm which has to make a decision “now”.

1.5. Our goal, revisited. Recall that our goal is to give a general abstract foun-
dation for online algorithms. As we will soon see, our approach is based on one
natural interpretation of “online” involving primitive recursive structures.

We look at infinite algebraic and combinatorial structures such as graphs, linear
orderings, groups, unary structures, etc. We will attempt to apply the techniques
and intuition coming from the mentioned above (Turing) computable structure the-
ory [AK00, EG00] to our “online” framework. We will succeed in applying some
non-trivial techniques and methodology coming from Turing computable structures.
However, the intuition in our online case is so di↵erent from the Turing computable
case that hardly any non-trivial result of computable structure theory can be trans-
formed into one about online algebraic structures. Instead, we will discuss some
results that have no analogy in Turing computable structures. Furthermore, many
of our results can be seen to hold for polynomial-time structures, and there will
be one theorem that settles a conjecture about automatic structures. We also note
that many of the results, proofs, and proof sketches that appear in this survey are
new.

1.6. The models. We will concentrate on infinite structures. Still to do is to
develop an appropriate model theory for online finite structures as asked for by
Downey and McCartin [DM04]. In its most general formulation, an online al-
gorithm would act on a structure A given in stages f(1), f(2), . . . , where f is a
computable function representing timestamps. At stage f(n) we would enumer-
ate n into the partial structure Af(n) and give complete information about how n
relates to {0, . . . , n� 1}.

Now the question is: What kinds of structures and time functions should be
allowed? Di↵erent choices will result in di↵erent theories. Our goal is to give a
general setting that also reflects the common online structures encountered. We
examine some approaches from the literature:

1.6.1. Automatic structures. Khoussainov and Nerode [KN95] initiated a system-
atic study into automatically presentable algebraic structures; but these seem quite
rare. For example, the additive group of the rationals is not automatic [Tsa11].
The approach via finite automata is highly sensitive to how we define what we
mean by automatic. For example treating a function as a relation yields quite a
di↵erent kind of automatic presentation and treating it is as a transducer. See
[ECH+92, KKM14] for an alternate approach to automatic groups. Although the
theory of automatic structures is a beautiful subject, a finite automaton is definitely
not a general enough model for an online algorithm.

1.6.2. Polynomial time computable structures. Cenzer and Remmel, Grigorie↵, Ala-
ev, and others [CR98, Gri90, Ala17, Ala18] studied polynomial time presentable
structures. We omit the formal definitions, but we note that they are sensitive to



FOUNDATIONS OF ONLINE STRUCTURE THEORY 5

how exactly we code the domain. In many common algebraic classes we can show
that all Turing computable structures have polynomial-time computable copies.
One attractive result is that every computably presentable linear ordering has a
copy in linear time and logarithmic space [Gri90]. Similar results hold for broad
subclasses of Boolean algebras [CR91], some commutative groups [CR92, CDRU09],
and some other structures [CR91].

1.6.3. Fully primitive recursive structures. As was noted in [KMN17b], many known
proofs from polynomial time structure theory (e.g., [CR91, CR92, CDRU09, Gri90])
are focused on making the operations and relations on the structure primitive recur-
sive, and then observing that the presentation that we obtain is in fact polynomial-
time.

Definition 1.1 (Essentially Dedekind [Ded60]). A function f : N ! N is primitive
recursive if f can be generated from the basic functions s(x) = x + 1, o(x) = 0,
Inm(x1, . . . , xn) = xm by composition and the primitive recursion operator h =
P(f, g):

h(x1, . . . , xn, 0) = f(x1, . . . , xn),

h(x1, . . . , xn, y + 1) = g(x1, . . . , xn, y, h(x1, . . . , xn, y)).

The restricted Church-Turing thesis for primitive recursive functions says that
a function is primitive recursive i↵ it can be described by an algorithm that uses
only bounded loops. For example, we need to eliminate all instances of WHILE . . .
DO, REPEAT . . . UNTIL, and GOTO in a PASCAL-like language.

As we noted above, primitive recursion plays a rather important intermediate
role in transforming (Turing) computable structures into polynomial-time struc-
tures. Furthermore, to illustrate that a structure has no polynomial time copy, it is
sometimes easiest to argue that it does not even have a copy with primitive recur-
sive operations, see e.g. [CR92]. It is thus natural to systematically investigate into
those structures that admit a presentation with primitive recursive operations, as
defined below. Kalimullin, Melnikov, and Ng [KMN17b] proposed that an “online”
structure must minimally satisfy:

Definition 1.2 ([KMN17b, Mel17]). A countable structure is fully primitive re-
cursive (fpr) if its domain is N and the operations and predicates of the structure
are (uniformly) primitive recursive.

The main intuition is that we need to define more of the structure “without de-
lay”. Here “delay” really means an instance of a truly unbounded search. We
informally call fpr structures punctually computable. We could also agree that all
finite structures are also punctual by allowing initial segments of N to serve as
their domains. Although the definition above is not restricted to finite languages,
we will never consider infinite languages in the paper; therefore, we do not clarify
what uniformity means in Def. 1.2.

Remark 1.3. The word “fully” in “fully primitive recursive” emphasises that the domain must
be the whole of N and not merely a primitive recursive subset of N; these are provably non-
equivalent assumptions. If the domain could be merely a primitive recursive subset of N then
we can delay elements from appearing in the structure; this way one can easily show that each
Turing computable graph has a primitive recursive copy; cf. Theorem 2.2 below. We decided that
structures in which elements can be delayed are not really online.



6NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

Our goal is to give a most general setting that also reflects the common online
structures encountered. From a logician’s point of view, where do computable
structures come from? One of the fundamental results of computable structure
theory is that:

A decidable theory has a decidable model.
The proof of this elementary fact is to observe that the Henkin construction is

e↵ective, in that if the theory is decidable then the constructed model is decidable
as a model. Many standard computable structures come from decidable theories.

Most natural decidable theories are elementary decidable in that the decision
procedures are relatively low level. We have to go out of our way to have natural
decidable theories whose decision procedures are not primitive recursive. It is not
hard to show (see below) that a theory with a primitive recursive decision procedure
has a model which is decidable in a primitive recursive sense.

1.6.4. The upshot. We have chosen fully primitive recursive structures as our cen-
tral model. Primitive recursiveness gives a useful unifying abstraction to compu-
tational processes for structures with computationally bounded presentations. In
such investigations we only care that there is some bound. Furthermore, these mod-
els arise quite naturally through standard decision procedures. Irrelevant counting
combinatorics is stripped from such proofs, thus emphasising the e↵ects related to
the existence of a bound in principle. These e↵ects are far more significant than it
may seem at first glance. Before we describe deeper results into this direction, we
must give examples of punctual structures in common classes.

2. The first steps. Examples

2.1. Existence of punctual presentations. So what kinds of basic structures
have punctual presentations?

Theorem 2.1 (Kalimullin, Melnikov, and Ng [KMN17b]). The following structures
all have computable presentations i↵ they have fully primitive recursive ones.

(1) Linear orderings (Grigorie↵ [Gri90])
(2) Boolean algebras
(3) Equivalence structures
(4) Torsion-free abelian groups
(5) Abelian p-groups
(6) Locally finite graphs

Discussion. We outline the case of locally finite graphs. Although this result is a
triviality based on the general idea from [CR91], it is actually new.

Suppose we are given an infinite computable locally finite G. Because G is locally
finite, for every finite subgraph H of G there exists an infinite set S of nodes in G
which are not related to H by an edge and are also pairwise non-related.

We start by quickly enumerating an infinite set S that currently looks indepen-
dent and we wait for more of G to be computed. We copy the current finite part
of G into what we’ve build so far. When more nodes appear in G we extend the
isomorphic embedding  of G into our copy, but we always make sure that a bit
more of the set S is used in the range of  . It is not hard to see that eventually all
of the set S will be used. ⇤



FOUNDATIONS OF ONLINE STRUCTURE THEORY 7

Although some clauses of Theorem 2.1 above use non-trivial techniques such
as Dobritsa’s result [Dob83] in (4), all these proofs exploit a similar idea: Quickly
enumerate an infinite nice subset of the structure that we can predict and use it as a
delaying gadget. This is of course not really an honest “online” proof. However, we
will see that algebraic structures typically have infinitely many primitive recursive
isomorphic copies, some of these presentations will be “more online” and the other
ones will be “less online” in the sense that will be clarified later. A large portion
of our new theory is focused on comparing di↵erent punctual copies of structures.

In contrast to Theorem 2.1, Kalimullin, Melnikov, and Ng [KMN17b] also showed:

Theorem 2.2 (Kalimullin, Melnikov, and Ng [KMN17b]). In each of the classes
below, there are examples of computably presentable structures without fully primi-
tive recursive presentations.

(1) Torsion abelian groups.
(2) Undirected graphs.
(3) Archimedean ordered abelian groups.

Proof idea. We note that the proofs of the di↵erent clauses use substantially di↵er-
ent ideas. We outline the proof of (3) which uses rudiments of computable analysis.

We define a subgroup of R as a Q-vector space over {1, r}, where r is a com-
putable real in the sense of Turing [Tur36, Wei00] such that r does not have a
primitive recursive rapid approximation by basic intervals. Such a real can be
easily constructed using a straightforward diagonalisation technique.

Observe that the ordered group has a Turing computable presentation i↵ r is a
computable real, and a fully primitive recursive presentation i↵ r admits a primitive
recursive rapid approximation. ⇤

It is natural to ask whether there is a general description of computable struc-
tures that admit a punctual presentation. The answer to this question is negative.
Let (Me)e2! be the e↵ective list of all partially computable algebraic structures.

Theorem 2.3. [BHTK+] The index set {e : Me has a punctual presentation} is
⌃1

1-complete.

In other words, there is no simpler way to see whether a computable structure has
a punctual copy than just stating that there is an isomorphism from the structure to
some punctual presentation. This solves a problem left open is the brief conference
survey [Mel17]. The proof is too technical to be discussed in this survey, but
[BHTK+] contains an extended informal discussion of the proof.

Suprisingly, the same diagonalisation technique with insignificant adjustments
allows to prove:

Theorem 2.4. [BHTK+] The index set {e : Me has an automatic presentation} is
⌃1

1-complete.

Theorem 2.5. [BHTK+] The index set {e : Me has a polynomial-time presentation}
is ⌃1

1-complete.

Theorem 2.4 answers a long standing open question by Khoussainov and Nerode [KN95].
We see that the emerging theory of primitive recursive structures has already found
significant applications.



8NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

2.2. Primitive recursive decidability. Recall the discussion after Theorem 2.1.
In many cases the easiest way of producing a punctual copy of a structure is to use
a predictable part of it to “delay” the enumeration of the non-trivial parts of it. As
noted in [KMN17b], the resulting structure is not an honest online structure.

It would be more satisfying if we had a way of pressing specific parts of the
structure to be quickly revealed. One way of formalising this idea uses first-order
logic. To make the terminology more easily expressible, we will adopt the adjective
“punctual” for primitive recursiveness. Thus we have the following.

Definition 2.6. We will call a structure with universe N punctually decidable if
it has a primitive recursive Skolem function; that is, the existential witnesses for
first-order formulae 9a�(a, c̄) with parameters from the structure can be found
punctually in their Gödel indices. (If the formula fails then the function returns
�1).

Proposition 2.7. A theory T with a primitive recursive decision procedure has a
punctually decidable model.

Proof Sketch. Observe that the usual Henkin construction works. Recall that we
add new constants C = {ci | i 2 N} and consider a (primitive recursive) enumera-
tion {⌧j | j 2 N} of sentences of the language L(T ) of T together with the constants.
We construct the model A in stages, and a complete and promptly decidable theory
Q = {�0,�1, . . . } in L(T ) [ C in stages. We let �0 denote (c0 = c0).

At stage s = 2e+ 1 if �e is of the form 9x✓(x), as usual find the least i with ci
not occurring in Qs and let �s = ✓(ci) so that we realize the formula.

At stage s = 2e, let c denote the constants in (^�i2Qs�i) ! ⌧e. Let x denote
the first sequence of variables of length |c| not occurring in (^�i2Qs�i) ! ⌧e. We
punctually check whether T proves 8x((^�i2Qs�i) ! ⌧e)[x/c]. If so we let �s = ⌧e,
and if not, �s = ¬⌧e.

The result is a punctually decidable structure A which models T . ⇤
Recall that the standard method of saying a structure is a decidable one is to

say its full diagram is computable. Does the existence of punctual 9-witnesses in a
punctual structure A follow from its full diagram {�(ā) : A |= �(ā), ā in A} being
primitively recursively decidable? The answer is clearly negative, as illustrated by
the straightforward example below.

Example 2.8. Consider an equivalence structure E that has infinitely many classes,
each of size 2. Construct a punctual copy of E. Start by rapidly enumerating an
infinite set consisting of non-equivalent elements. Delay the second representatives
of some equivalence classes. We can primitively recursively decide first-order state-
ments about elements in the resulting punctual presentation, however, the Skolem
function will not be punctual.

Perhaps, asking for the full diagram to be punctually decidable is too much.
Perhaps, 1-decidability is already good enough. Restrict the definition of punctually
decidable structure to quantifier-free � to get the natural notion of a punctually 1-
decidable structure (in [KMN17b] is was called strongly punctual). More formally,
there exists a primitive recursive � such that

�(c̄,�) =

(
�1, if I 6|= 9x�(c̄, x),
y, such that I |= �(c̄, y),



FOUNDATIONS OF ONLINE STRUCTURE THEORY 9

where c̄ 2 I and � is (the Gödel number of) a quantifier-free formula in the language
of the structure. We note that this more relaxed approach resembles the earlier
notion of an honest witness due to Cenzer and Remmel [CR91].

Clearly, there exist punctual structures that have no 1-decidable presentation,
and thus no punctually 1-decidable presentation. For instance, there exist com-
putable linear orders in which the successivity relation is intrinsically undecid-
able [Dow98], and similarly there exists a computable Boolean algebra in which the
atom relation is intrinsically undecidable [Gon97]. Now Theorem 2.1 guarantees
that in each of these classes there are examples of punctually presented structures
that have no 1-decidable copy, let alone punctually 1-decidable copy. However,
these examples are unsatisfying since they all give punctual structures that are
not even 1-decidable. A rather straightforward example below separates strongly
primitive recursive structures from 1-decidable punctual structures.

Proposition 2.9. [KMN17b] There exists a punctual 1-decidable equivalence struc-
ture that has no strongly punctual presentation.

Proof. For any infinite set X, let E(X) denote the equivalence structure having
exactly one class of size x for each x 2 X. Note that for an infinite c.e. set
X, the structure E(X) has a computable, hence punctual presentation (by Theo-
rem 2.1(3)). To make E(X) 1-decidable, make the kth class have size exactly xk,
where X = {x0, x1, x2, . . .} is some computable enumeration of X. It is easy to see
that deciding an existential formula about c̄ boils down to deciding the sizes of the
classes that contain c̄.

Thus, it remains to build an infinite c.e. set X (in fact, X will be computable)
such that E(X) has no strongly punctual presentation. Suppose we have enumer-
ated {x0, . . . , xk}. Suppose we want to diagonalize against the eth potential strongly
punctual structure Se. When Se is first processed we use the primitive recursive
Skolem function in Se to primitively recursively decide if there exists a class [z] of
size > s.

If no then we win because Se must contain at least two classes of equal sizes,
and thus E(X) 6⇠= Se. If yes then we can primitively recursively compute a witness
z. In this case we say that Se is pending with witness z. We will ensure that all
future elements of X are chosen to be smaller than the current approximation to
the size of [z] in Se.

At stage s of the construction we process each requirement Se for e < s. If Se

is unstarted then we proceed as above, and move to the next requirement. If Se is
already pending with witness z we check if the size of [z] in Se is larger than s. If
yes, the status of Se remains pending, and we move to the next requirement. If no
then the size of [z] must be s. In this case we terminate the actions of stage s at
Se and initialize all lower priority requirements.

It is easy to see that if s is enumerated inX at stage s then this is compatible with
the satisfaction of all requirements Re, e < s. Each requirement is initialized finitely
often and will be met. Finally X is infinite because only a pending requirement
can block the enumeration of s into X at stage s. ⇤

2.3. Punctual versions of known results. Another relatively straightforward
way to extend the known results on Turing computable models uses the primitive
recursive analogy of relativisation. In other words, sometimes a statement of a
known result can be modified to a similar statement about punctual structures. If



10NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

we are careful enough we might be able to keep almost the same proof. The “punc-
tualisation” principle tends to be a bit more subtle than the standard relativisation
principle. To illustrate this principle we shall consider the well-known result of Har-
rington [Har74] and Goncharov and Nurtazin [GN73] which states that a decidable
(complete) theory has a decidable prime model i↵ the set of principle types of the
theory is uniformly computable. To state and prove the primitive recursive version
of this result we need several definitions.

If q(x̄) = q(x0, x1, . . . , xn�1) is a (complete) n-type of a theory T , then as usual,
we identify q(x̄) with the set of Gödel numbers of formulae from q(x̄). Consider
a sequence (qi)i2! of types of a theory T . We say that the sequence (qi)i2! is
increasing if, for each i 2 !, it satisfies the following conditions:

(a) qi = qi(x0, x1, . . . , xi) and (xj 6= xk) 2 qi for all j < k  i;
(b) qi ⇢ qi+1.

We say that a sequence of types (qi)i2! is uniformly primitive recursive if there is
a primitive recursive function ftype : !2 ! {0, 1} such that for every i, the function
ftype(i, ·) is the characteristic function of the type qi.

Suppose that (qi)i2! is an increasing sequence of types. The sequence (qi)i2! has
quick witnesses if there is a primitive recursive function gwit(x) with the following
property:

(QW) If k is the Gödel number of a formula  (xi0 , . . . , xin) = 9y✓(xi0 , . . . , xin , y),
where i0 < · · · < in, and  2 qin , then the formula ✓(xi0 , . . . , xin , xgwit(k))
belongs to the type qmax(in,gwit(k)).

Theorem 2.10. Suppose that T is a complete theory with a primitive recursive
decision procedure. Then the following conditions are equivalent:

(i) T has a punctually decidable prime model;
(ii) T has a prime model and there is an increasing, uniformly primitive re-

cursive sequence (qi)i2! of principal types of T such that (qi)i2! has quick
witnesses.

Proof. We follow the standard proof of Harrington [Har74] and Goncharov and
Nurtazin [GN73] which can be found in [Har98] and see what has to be modified.

(i))(ii). Let M be a punctually decidable prime model of T , i.e. M has a
primitive recursive Skolem function. Recall that the set of types realized in M is
precisely the set of all principal types of T .

For i 2 !, let qi(x0, x1, . . . , xi) be the type realized by the tuple (0, 1, . . . , i)
in M. The desired function ftype (from the definition of a uniformly primitive
recursive sequence of types) can be defined as follows: for i 2 !,

(1) If y 2 ! is not a Gödel number of a first-order formula of the form
 (x0, . . . , xi), then set f(i, y) := 0.

(2) Otherwise, let  (x̄) be the formula with the number y. Using the Skolem
function, quickly decide whether

(2.1) M |=  (0, 1, . . . , i).

If (2.1) is true, then set f(i, y) := 1. Otherwise, define f(i, y) := 0.

The described procedure shows that the sequence (qi)i2! is uniformly primitive
recursive.



FOUNDATIONS OF ONLINE STRUCTURE THEORY 11

A function gwit giving quick witnesses for (qi)i2! is recovered in a straightforward
way: If k is the Gödel number of a formula  (x̄) = 9y✓(xi0 , . . . , xin , y), then check
whether  (i0, . . . , in) holds, using the Skolem function. If M 6|=  (i0, . . . , in), then
set gwit(k) := 0. Otherwise, quickly find an element m with M |= ✓(i0, . . . , in,m)
and define gwit(k) := m.

(ii))(i). Let (qi)i2! be an increasing, uniformly primitive recursive sequence
of principal types from (ii). Fix a function ftype witnessing the uniform primitive
recursiveness of the sequence (qi)i2!. Let gwit be a function giving quick witnesses
for (qi)i2!.

Let C = {ci : i 2 !} be a set of new constants. We define the complete diagram
⌅ of a structure N as follows. The set C will be the domain of N . Suppose that  
is a sentence in the language L(T ) [ C, and n is the largest number such that the
constant cn occurs in  (if no cn occurs in  , then just set n := 0). We find the
Gödel number k of the formula  (x0/c0, x1/c1, . . . , xn/cn) and compute the value
ftype(n, k). If ftype(n, k) = 1, then  2 ⌅. Otherwise,  62 ⌅.

It is not hard to show that the described procedure produces a well-defined
complete diagram: Indeed, for any sentence  =  (c0, . . . , cn), either  (x̄/c̄) or
¬ (x̄/c̄) belongs to the type qn. Hence, either  or ¬ lies in ⌅; therefore, ⌅ is
a complete set of sentences. Furthermore, since qi ⇢ qi+1 for all i, the set ⌅ is
consistent.

Since T ⇢ qi for every i, the structure N is a model of T . Recall that (xj 6=
xk) 2 qi for all j < k  i; thus, M |= (cj 6= ck) for all j 6= k. Therefore, one may
assume that the domain of N is equal to !.

A primitive recursive Skolem function Sk(x) can be defined as follows. Suppose
that k is the Gödel number of a sentence

 (ci0 , . . . , cin) = 9y✓(ci0 , . . . , cin , y),

where i0 < · · · < in. Using the function ftype(in, ·), we promptly check whether the
formula  (x̄/c̄) belongs to qin . If  (x̄/c̄) 62 qin , then set Sk(k) := �1. Otherwise,
compute the value gwit(k) and define Sk(k) := cgwit(k). Hence, the structure N is
punctually decidable.

Now it is su�cient to show that the model N is atomic. The definition of
N ensures that for every i, the tuple c̄i := (c0, . . . , ci) realizes the type qi and
thus, c̄i satisfies some complete formula  i(x0, . . . , xi). We need to prove that any
tuple (cj0 , . . . , cjk) also satisfies a complete formula. For simplicity, we assume that
(cj0 , . . . , cjk) = (cm+1, . . . , cm+r) for some m and r 6= 0. Then we have

M |= 9y0 . . . 9ym m+r(y0, . . . , ym, cm+1, . . . , cm+r).

Note that for any formula ⇠(x̄) = ⇠(xm+1, . . . , xm+r), we have either T ` ( m+r !
⇠) or T ` ( m+r ! ¬⇠), This implies that for any ⇠(x̄), either T ` (9ȳ m+r(ȳ, x̄) !
⇠(x̄)) or T ` (9ȳ m+r(ȳ, x̄) ! ¬⇠(x̄)). Thus, 9ȳ m+r(ȳ, x̄) is a complete formula of
the theory T , and (cm+1, . . . , cm+r) realizes a principal type. Therefore, the model
N is prime. Theorem 2.10 is proved. ⇤

Also, Downey, Harrison-Trainor, Greenberg, and Turetsky have recently ob-
served that it follows from Millar’s work [Mil83] that a complete primitive recursive



12NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

theory T has a punctually decidable model that omits a given primitive recursive
non-principal type p.

Pure primitive recursive model theory is not yet developed aside from the obser-
vations included in this section. An interesting project will be to see what develops
henceforth.

Problem 2.11. Develop punctual model theory.

3. Uniqueness of presentation

Recall that in the previous section we looked at various examples of punctually
presented structures. We also noted that often the easiest way of producing a punc-
tual copy is “dishonest” since we typically construct a copy which is not punctually
1-decidable. However, these same structures will usually have punctual presenta-
tions which are much better behaved; see, e.g., Example 2.8. The same structure
will usually have more than one punctual presentation, with di↵erent presentations
having substantially di↵erent “online” properties. Consider the following simple
but instructive example:

Example 3.1. Let (!, S) be the unary structure of the natural numbers with
the successor. Clearly, the “natural” presentation N of (!, S) has a number of
pleasant online features such as punctual 1-decidability. On the other hand, we
can construct a “bad” punctual copy B of (!, S) which has no punctual Skolem
function, as follows. Introduce a new element x and keep it disconnected from 0.
Wait for as long as necessary for diagonalisation against the eth potential Skolem
function using 9y S(y) = x. Then connect x to the origin. Repeat for e+ 1, etc.

Note that the unique isomorphism from N onto B is primitive recursive but its
inverse is not primitive recursive.

The example above brings us to the problem of comparing di↵erent punctual
presentations of the same algebraic structure. When two punctual copies of the
same structure are identical from the perspective of our framework?

To answer this question we use the intuition coming from computable structure
theory. The central classification tool in algebraic structure theory is algebraic iso-
morphism. Whenever we talk about (Turing) computable structure theory, we keep
in mind that the central classification tool is a (Turing) computable isomorphism.
This fundamental principle was implicit in the dawn of the modern incarnation of
e↵ective mathematics. One of the fundamental papers from this period is Fröhlich
and Shepherdson [FS56]. This paper clearly shows the historical context of the sub-
ject, the clear intuition of van der Waerden (which apparently came from Emmy
Noether’s lecture notes) and the fact that isomorphic computable structures (here
fields) can have distinct algorithmic properties, and hence cannot be computably
isomorphic. Here we quote from the abstract.

“Van der Waerden (1930a, pp. 128–131) has discussed the problem of carrying
out certain field theoretical procedures e↵ectively, i.e. in a finite number of
steps. He defined an ‘explicitly given’ field as one whose elements are uniquely
represented by distinguishable symbols with which one can perform the opera-
tions of addition, multiplication, subtraction and division in a finite number of
steps. He pointed out that if a field K is explicitly given then any finite exten-
sion K0 of K can be explicitly given, and that if there is a splitting algorithm
for K, i.e. an e↵ective procedure for splitting polynomials with coe�cients in
K into their irreducible factors in K[x], then (1) there is a splitting algorithm



FOUNDATIONS OF ONLINE STRUCTURE THEORY 13

for K0. He observed in (1930b), however, that there was no general split-
ting algorithm applicable to all explicitly given fields K . . . We sharpen van
der Waerden’s result on the non-existence of a general splitting algorithm by
constructing (§7) a particular explicitly given field which has no splitting algo-
rithm. We show (§7) that the result on the existence of a splitting algorithm
for a finite extension field does not hold for inseparable extensions, i.e. we con-
struct a particular explicitly given field K and an explicitly given inseparable
algebraic extension K(x) such that K has a splitting algorithm but K(x) has
not.”

So in modern terms Fröhlich and Shepherdson [FS56] showed that the halting
problem is many-one reducible to the problem of having a splitting algorithm1.
Subsequently, Mal’tsev [Mal62] gave an example of an abelian group which has
two non-computably isomorphic computable copies; in one copy there is an algo-
rithm for linear dependence, and in the other copy there is no such algorithm.
Mal’tsev [Mal61] proposed that (Turing) computable presentations must be iden-
tified under (Turing) computable isomorphism. He also suggested the notion of
computable categoricity (autostability): A structure is computably categorical if it
has a unique (Turing) computable copy up to (Turing) computable isomorphism.

We go back to primitive recursion. Here we may be tempted to use primitive
recursive isomorphism as the fundamental classification tool. However, the elemen-
tary Example 3.1 above provides us with two primitively recursively isomorphic
punctual copies of (!, S) which have substantially di↵erent punctual properties. Of
course we need to be more careful.

Definition 3.2. We say that punctually computable structures A and B are punc-
tually isomorphic i↵ there is an isomorphism f taking A to B with both f and f�1

primitive recursive. (Functions f with this property will be called fully primitive
recursive or fpr for short.)

Some results of computable structure theory lift easily. In this section we focus
on such results, while the later sections will be devoted to more technical theorems.

For example, we can easily show that Mal’tsev’s example discussed above can
be made primitive recursive. We can also look at the Fröhlich-Shepherdson work
and observe that every primitive recursively presentable field has a fully primitive
recursively presentable algebraic closure.

However, there is much mathematical depth in the new definition. This depth
comes from the fact that we must define the isomorphism and its inverse “now”.
That is we specify the domain of A in stages s once a enters the domain by some
primitive recursive time stamp g(s) we need a b 2 domBg(s) with f(a) = b and
additionally for each c occurring in domBs by some primitive recursive time stamp
h(s) we must specify a d 2 domAh(s) with f(d) = c. This punctuality means that
many classical categoricity arguments fail for primitive recursive structures. For
instance, (!, S) clearly has a unique Turing computable copy, but Example 3.1
gives us two non-fpr isomorphic punctual presentations of the structure. Consider
also the following example.

Example 3.3. The very first categoricity argument we meet will be Cantor’s proof
that the countable dense linear ordering without end-points is categorical. This

1 Metakides and Nerode [MN79] proved this closure was computably unique (i.e. up to com-
putable isomorphism) i↵ the field has a separable splitting algorithm. (The message here is that
the usual method of constructing a closure via adjoining roots essentially using a splitting algo-
rithm is not the only way to construct a closure.)



14NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

proof is e↵ective but the proof involves unbounded search. That is, at some stage s
we have defined x < y < z in the domain of one copy, and have already specified
f(x) < f(y). Density guarantees that at some stage some q will enter the other
copy of the ordering between f(x) and f(y) (thinking of them as being computably
presented), and we can then map f(z) = q. But in the primitive recursive case,
why should such a q enter the other copy punctually? In fact, it provably does not
have to.

The example above can be extended to prove the following. If a structure has a
unique punctual presentation up to fpr isomorphism then we say that it is punctually
categorical.

Theorem 3.4. [KMN17b]

(1) An equivalence structure S is punctually categorical i↵ it is either of the
form F [ E, where F is finite and E has only classes of size 1, or S has
finitely many classes at most one of which is infinite.

(2) A linear order is punctually categorical i↵ it is finite.
(3) A Boolean algebra is punctually categorical i↵ it is finite.
(4) An abelian p-group is punctually categorical i↵ it has the form F �V, where

pV = 0 and F is finite.
(5) A torsion-free abelian group is punctually categorical i↵ it is the trivial

group 0.

Discussion. In some clauses the proof follows from Theorem 2.1 and the known
description of computable categoricity in the respective class. For instance, for (2),
note that each computable linear order is computably isomorphic to a punctually
computable one (follows from the proof of Theorem 2.1). It is well-known that
a linear order is computably categorical i↵ it has only finitely many adjacencies.
Suppose a punctual L is not like that. Produce a computable copy B of L that is
not computably isomorphic to L, and then computably transform it into a punctual
B0. Then L and B0 are not even computably isomorphic. On the other hand, if L
has only finitely many adjacencies, then use the idea from Example 3.3.

The case of Boolean algebras has a less straightforward proof. The problem
is that Theorem 2.1 in the case of Boolean algebras does not necessarily give a
computably isomorphic punctual copy. Thus, to prove (3) we have to combine
the strategies from the respective clause of Theorem 2.1 with a diagonalisation
requirement. ⇤

The highly unexpected result below will play a significant role in the last para-
graph of this article.

Theorem 3.5 ([DHTK+]). Let G be an undirected graph. Then the following are
equivalent:

(1) G is punctually categorical.
(2) G becomes a clique or an anti-clique (an independent set) after removing

finitely many vertices v̄ = v0, . . . , vk with each vi being either adjacent to
all x 2 (G� v̄) or not adjacent to all x 2 (G� v̄).

Sketch. It is not hard to see that locally finite graphs satisfy the theorem. The
proof in this special case goes through several cases. For example, suppose the
graph is connected. In this case we use that at every stage there will be vertices



FOUNDATIONS OF ONLINE STRUCTURE THEORY 15

“far-far away” from what we’ve already built. Build a “bad” punctual copy B in
which we have a punctual sequence of pairwise disconnected vertices. We use this
sequence to delay the other parts of the graph from being enumerated into the bad
copy, and we use them for diagonalisation purposes. Then slowly incorporate these
extra vertices into the expanding actual image of our graph within B. The case
of several components is similar. This argument can be extended to the case of at
most finitely many vertices of infinite degree.

In the harder case of infinitely many vertices of infinite degree, we use the key
technical proposition below:

Proposition 3.6. Suppose G is punctually categorical, and x 2 G has degree 1.
Then the set N(x) = {y 2 G : (x, y) 2 E(G)} has to be punctual; that is, there is a
primitive recursive lower bound on the speed of its enumeration in G.

Sketch of Prop. 3.6. We write |X| for the cardinality of X. Imagine that x is the
only vertex of G with the property deg(x) = 1, and assume N(x) is very slowly
growing, i.e., there is no primitive recursive bound on the stage at which the nth
vertex appears in N(x). In this simple case the strategy is straightforward. Build
a copy B of G which is essentially identical to G but with |NB(x)| = |NG(x)| � 1
at every stage. Any isomorphism must match the points of infinite degree, and we
know the graph has only one such point. We also know that “most of the time” G
puts points into G\NG(x), and therefore in B we can eventually delay one element
from appearing in the 1-neighbourhood of x and still keep B punctual. All we need
to do is to wait until p : G ! B is diagonalised on the extra vertex that G has in
N(x) when compared with B. Note that we must eventually succeed, for otherwise
we would use p to extract a primitive recursive bound on the speed of growth of
N(x) in G.

When G has many vertices of infinite degree and is not rigid, we have to consider
2 copies, A and B, of G and look at two vertices in G. This is necessary because
p : B ! A does not have to map the natural version of x in B to the natural version
of x in A. So suppose A is copying G via  and B via � (both are defined by us),
and suppose we are trying to diagonalise against a pair (p, q), where p : B ! A
and (supposedly) p�1 = q.

The idea is to either keep |NA(p�(x))| < |NB(�(x))| or |NA(p�(x))| > |NB(�(x))|
for as long as possible, and use either p or q to press the opponent to grow the re-
spective neighbourhoods in G. It is also crucial to avoid |NA(p�(x))| = |NB(�(x))|
at all costs, because in this situation we cannot “press” the opponent. We infor-
mally explain how we “press” below.

For example, suppose at stage s have |NA(p�(x))| < |NB(�(x))|. Then evaluate
p on NB(�(x))[s]; the opponent must grow NG( �1p�(x)) in G. The trick here is
that we do not make the 1-neighbourhood equal, but rather delay at most one point
and press the opponent to grow NG( �1p�(x)) 1-point larger than NB(�(x))[s]. So
one point appears in G and makes the two 1-neighbourhoods look equal; however,
we keep this point out of our structure A and wait for another point to appear
in NG( �1p�(x)). This is fine to delay one point from the diagram of A. Just
consider the next point u in G. If u /2 NG( �1p�(x)) then copy it into A. If it is in
NG( �1p�(x)) then this is exactly what we needed. But recall that we challenged
the opponent by computing p on the currently larger NB(�(x)). The opponent must
respond by enumerating more points into NG( �1p�(x)), and it must do so within
the time bound of p, for otherwise p is not an isomorphism. Thus, unless NG(x)



16NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

(thus, NB(�(x))) grows within the time needed for p(NB(�(x))[s]) to converge, we
will be able to make |NA(p�(x))| > |NB(�(x))|. But then we can evaluate q on
NA(p�(x)) and similarly press the opponent to grow NB(�(x)) by extending NG(x)
in G; this was our ultimate goal. In the worst case scenario the time bound can be
extracted from and q(NA(p�(x))[t]), where t depends on the convergence time for
p(NB(�(x))[s]), making the described above process punctual.

The sketch above describes the worst case scenario, but there will be various
cases which also had to be incorporated into the formal argument in [DHTK+]. To
maintain the inequality |NA(p�(x))| 6= |NB(�(x))| at every stage we will have to
consider the cases when either NA(p�(x)) or NB(�(x)) starts growing faster than
anticipated. Also, |NA(p�(x))| and |NB(�(x))| do not have to di↵er by only one
element at a given stage. In all these cases we have even more advantage over the
opponent, however, considering such cases significantly increases the combinatorial
complexity of the formal argument. ⇤
Proposition 3.7. Suppose G is punctually categorical, and a, b 2 G both have
infinite degree. Then N(a) =⇤ N(b), i.e., a and b share the same adjacent vertices,
up to a finite di↵erence.

Proof. By Prop. 3.6, both N(a) and N(a) must be punctual in any punctual copy of
G. If there is an infinite punctual sequence in N(b)\N(a), then it is easy to produce
a punctual copy of G in which N(a) is not punctual, contradicting Prop. ??. To
do so punctually list elements in N(b) \N(a) and use the usual trick to delay other
elements, including those in N(a), from appearing in the copy.

Thus, N(b) \N(a) must have no infinite punctual subsequence. In other words,
there is no primitive recursive bound on how long we wait between the stages when
we see new points in N(b) but not in N(a). Informally, this means that N(b) does
not press us to give points not connected to a. The trick is to think about the
graph-theoretic complement G of G (i.e., the graph on the same vertices but with
the non-edge relation of G). Unless N(b) \N(a) is finite, we can modify G to get a
new punctual copy H in which the non-edge 1-neighbourhood of a is not punctual,
as follows.

Copy only N(b) into H to diagonalise against the next primitive recursive bound
on the speed of growth of N(a) in G. We must eventually see a disagreement,
for otherwise we could use the construction of H to produce a similar bound for
N(b) \ N(a), contradicting the assumption. As soon as a disagreement is found,
copy all the currently skipped points into H and restart from there, this time for
the next primitive recursive bound. ⇤
Proposition 3.8. Suppose G is punctually categorical and deg(x) = 1 for some
x 2 G. Then x is connected to a.e. vertex in G.

Proof. Artificially adjoin an extra vertex v to G and connect v to all vertices in
G by an edge. Then (G, v) is punctually categorical as well. Apply the previous
proposition to see that G = N(v) =⇤ N(x). ⇤
Proposition 3.9. Suppose G has infinitely many vertices of infinite degree. For
each n 2 !, there are only finitely many vertices of degree n. The same holds for
co-degree n.

Proof. Fix any n+1 distinct vertices of infinite degree. By Proposition 3.8, almost
every vertex in G is adjacent to all of them, and thus has degree at least n+1. ⇤



FOUNDATIONS OF ONLINE STRUCTURE THEORY 17

Proposition 3.10. Suppose G has infinitely many vertices of infinite degree and
infinitely many vertices of finite degree. For each v 2 G, consider (G � v) which
stands for G without v. Then G 6⇠= (G� v).

Proof. Consider the case when deg(v) = n < 1, the case of co-finite degree is
symmetric. Notice that for any x in (G-v), its degree in (G-v) is either the same as
its degree in G, or is one less. And the latter can only happen if x is adjacent to v.

Suppose v has degree n. By Proposition 3.9, there are only finitely many vertices
of degree n. If G is isomorphic to (G-v), some y0 in G drops from degree n+ 1 to
degree n. But then there must also be some y1 which drops from degree n + 2 to
degree n+1, etc. But each of these yi is adjacent to v, contrary to the assumption
that v has finite degree. ⇤

Suppose G (or its complement) is not essentially locally finite. To diagonalise
against a pair (p, q), delay one vertex v in an auxiliary copy that we build. Wait
for (p, q) to illustrate a disagreement, and then put v into the copy.

We conclude that G must be either a clique or an anti-clique after removing
finitely many nodes. It is fairly obvious that such a G must also be automorphically
trivial; we omit details. ⇤

One naturally seeks to extend the argument above to more complex combinato-
rial objects:

Problem 3.11. Is there an algebraic description of punctually categorical struc-
tures with finitely many binary relations? What about ternary relations?

Note that nothing of this nature has been seen in computable structure theory, as
all these classes are universal for Turing computability. We will discuss universality
later in the paper.

Problem 3.12. Is there an algebraic description of punctually categorical unary
structures?

It is not hard to see that a structure with only one unary functional symbol can
encode an arbitrary family of sets; in particular, there is an example of a computably
categorical unary structure which is not relatively computably categorical. But we
however strongly suspect that, at least in the case of only one or perhaps two unary
operations, there will be an algebraic description of punctual categoricity.

At this point the reader might think that all punctually categorical structures
must be either finite or perhaps trivially homogeneous such as a vector space over
a finite field, cf. Theorem 3.4(4). It is also natural to conjecture that punctual
categoricity always implies computable categoricity, especially after we have seen
that graphs fall into this pattern.

Our next goal is to outline the construction of a punctually categorical structure
which is not computably categorical. Although logically there is no contradiction
in the statement, the reader should agree that it just “does not sound right”.

4. The punctual monster

Theorem 4.1 ([KMN17b]). There is a punctually categorical structure A which
is not computably categorical.



18NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

We will not give the proof in full detail. We will however outline the main
“pressing” strategy that will be used in some later parts of the paper. For instance,
our formal proof of Theorem 7.3 which will appear later in the paper uses the same
strategy.

Proof Idea. More specifically, we must have a way of meeting the requirements:

A ⇠= Pe =) A ⇠=fpr Pe,

where (Pe)e2! is the natural uniformly computable listing of all punctual structures.
Clearly, the list itself is not primitive recursive, for otherwise we would be able to
produce a punctual structure which is not in the list.

Think of (Pe)e2! as of being “increasingly slow in e”. However, we will argue
that for each fixed e there is a primitive recursive time-function, i.e., a function
that bounds the speed of approximation of Pe =

S
s Pe,s within the overall uni-

formly primitive recursive approximation (Pe,s)e,s2!. For now, take this property
for granted. We delay the formal proof of this fact until §9.

4.1. Pressing P0. The idea is as follows. Start by building an infinite chain using
a unary function S:

0 ! S(0) ! S2(0) ! S3(0) ! · · · ,
and use another unary function, say U , to attach a U -loop of some fixed small size
to each Sn. To be more specific, suppose we attach 2-loops. Use another unary
function r that sends each point back to the origin:

8x r(x) = 0.

Do nothing else and wait for the opponent’s structure P0 to respond. (The structure
will be rigid.)

The opponent’s structure P0 must give us a few 2-loops, otherwise P0 6⇠= A.
However, it is important to see how exactly P0 could fail to be isomorphic to A.

(1) The structure P0 does not even look right; that is, it is not an S-chain etc.
In this case we do nothing.

(2) Otherwise, P0 could give us an U -loop of a wrong size, say 4. Then we will
forever forbid 4 in the construction.

(3) P0 starts growing a long simple U -chain. It is easiest to drive it to infinity
in the construction, as follows. At stage s other strategies will be allowed
to use only loops that are shorter than the U -chain as seen in P0[s].

Assume none of the above cases apply. Then P0 does respond by giving us a few
consequent 2-loops. Note that, perhaps P0 has not revealed the position of x in the
S-chain. This point could correspond to one of the 2-loops that we have produced
in A while waiting for the slow P0 to give us something. But one of our tasks is
to demonstrate that the (unique) primitive recursive isomorphism from P0 to A is
primitive recursive. We must decide promptly where x must be mapped. But we
cannot just keep building 2-loops in A, as it will give the opponent an upper hand.

Instead, as soon as P0 responds by giving a 2-loop, we switch from the pattern

2� 2� 2� 2� 2� 2� 2� 2� · · ·



FOUNDATIONS OF ONLINE STRUCTURE THEORY 19

to the pattern (say)

2� 4� 2� 4� 2� 4� 2� 4� · · · ,
assuming that 4 is currently not forbidden in the construction.

How do we punctually map x 2 P0 (see above) to A? Recall that x was a part of
a chain of a few consequent 2-loops. In A, the initial segment consisting of adjacent
2-loops has a specific length that we know at the stage, say k. In P0, calculate r
on x to find the origin, and then calculate S of the origin at most k times to figure
the position of x.

To compute the unique isomorphism fromA to P0, simply start from the origin in
P0 and map A onto P0 naturally, according to the speed with which P0 is generated.
We use the primitive recursive time which measures the speed of its enumeration
(see the discussion above). In a way, this will be a non-uniformly primitive recursive
proof.

4.1.1. Pressing P0 and P1. For simplicity, the highest priority structure can be
pressed using loops attached to even positions in the S-chain:

0, S2(0), S4(0), · · · , S2k(0), · · ·
and the lower priority P1 will be associated with odd positions of the S-chain. Also,
P0 will be using U -loops of even length, and P1 of odd length.

There are several e↵ects that P0 could have on P1. First of all, it could perma-
nently forbid some of the loops from appearing in the structure. This is finitary.
Otherwise, P0 could start growing a long U -chain, and P1 will be forced to use
U -loops which are currently shorter than the length of the chain. But we can as-
sume that P0 is a lot faster than P1, so this does not really give us trouble. There
are further minor tensions, but all can be sorted using the basic standard priority
technique.

We however must note that P1 could potentially put some restrictions on the
actions of P0. More specifically, if P1 starts growing a long U -chain late enough in
the construction, and grows it long enough, then P0 will have to live with this. Also,
P1 is “much slower” than P0, so P0 will have to act before P1 either dies or increases
its restraint. But this is not really a problem. Recall the informal description of
the basic module for P0 above. The di↵erence is that the loops corresponding to
P0 are located at even positions:

2�⇤� 2�⇤� 2�⇤� 2� · · · ,
where the content of the ⇤s does not worry the strategy. The strategy then switches
to:

· · ·� 2�⇤� 4�⇤� 2�⇤� 4� · · · ,
assuming 4 is small enough and not restrained. However, imagine all the larger loops
are currently restrained, but the strategy must act. Simply use a more complex
pattern of 2 and 4, such as:

· · ·� 2�⇤� 4�⇤� 4�⇤� 2�⇤� 4�⇤� 4 · · · .
We could even get around with using only 2 and 4 throughout the construction,

for P0. Then the described above tension with the long U -chain can be hidden and
even almost completely erased from the formal proof. It is however important to
understand why exactly we often use patterns of loops instead of longer fresh loops
in the construction.



20NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

Our punctual definition of the isomorphism between P1 and A is essentially the
same as in the description of one strategy in isolation. We only need to look at a
bit larger interval in P1 around a given point x.

In the general case of many Pe we generalise the ideas described above. We
reserve specific locations for loops in A corresponding to di↵erent Pe. At later
stages the construction will respect more of the P -structures. Some further minor
tensions can be sorted using priority.

4.2. The idea of the diagonalisation. In the actual proof of the theorem the
pressing strategy will be very similar, but the structure will no longer be just a
chain of loops. More generally, it cannot be finitely generated.

It will consist of infinitely many finite (long) chains of loops, that we call compo-
nents. The isomorphism type of the components depends on the construction, but
it will strongly resemble the chain of loops described above. The di↵erence with
the strategy above is that we can actually stop growing the currently active chain
and start building a new one.

We will also be constructing a computable B ⇠= A. We must meet the diagonal-
isation requirements:

'e : B 6⇠= A.

We can a↵ord to delay B, but we cannot delay A. This will be crucial.
Here is the outline of the diagonalisation strategy:

(1) Associate 'e with some special and (currently) unique component Ce in
both A and B.

(2) Wait for 'e to converge on Ce.
(3) Initiate the enumeration of a new, fresh and unique component Ze in A,

according to the instructions of the pressing strategy. Label Ce in A using
Ze; this can be done by mapping the origin of Ze into the origin of Ce using
some special unary function.

(4) Freeze the enumeration of A.
(5) When Ze is finished, introduce a new and fresh component Ye in A which is

built according to the pressing strategy. Also, introduce an identical copy
of Ce and label it using Ye.

(6) As soon as Ye is finished, unfreeze B. In B, label its current Ce by Ye, and
introduce its identical copy labeled by Ze.

It is crucial that we do the actions in the right order. For instance, we must first
put Ze to make sure that the copy of Ce that a structure Pi currently has is the
right copy. Then we must put Ye and use it to press Pi to reveal its version of Ye.
But if Pi shows Ye then it must also promptly show us the other, new copy of Ce.
We omit further details. ⇤

It has recently been shown that computably categorical (c.c.) structures are un-
classifiable; more formally, the index set of c.c. structures is ⇧1

1-complete [DKL+15].
We have discovered that punctually (fpr) categorical structures do not form a proper
subclass of c.c. structures. This brings us to the problem:

Problem 4.2. Measure the complexity of the index set {e : Pe is punctually categorical}



FOUNDATIONS OF ONLINE STRUCTURE THEORY 21

The (current) lack of techniques makes the problem above di�cult to approach.
It may sound silly, but the authors have not agreed on the conjecture for the
question below:

Question 1. Is every punctually categorical structure (relatively) �0
↵-categorical

for some computable ↵? (The definition of (relative) �0
↵-categoricity can be found

in [AK00].)

Why do we care? The combinatorial games that we play when we study such
questions are in the heart of our “online” framework. The universe shows us a
pattern and we must recognise it now. Punctual categoricity serves as a unifying
abstraction for such games, while (relative) �0

↵-categoricity is a typical way to mea-
sure the complexity of a structure in computable structure theory. One naturally
seeks to understand the relationship between the two measures of complexity. In the
next section we will further develop these ideas, but this time using back-and-forth
analysis rather than categoricity.

One might hope to push the ideas described in this section to a construction
of a non-�0

2-categorical but punctually categorical example. However, it seems to
necessarily require a new idea. Downey, Melnikov, and Ng have recently announced
that ↵, if it exists, must be > 2.

5. An online back-and-forth invariant

Recall that the inverse of a primitive recursive function does not have to be
primitive recursive. Fix a punctual structure A. The collection of all punctual
presentations of A carries a natural reduction, as defined below.

Definition 5.1. Let A be a punctual structure. Then, for punctual C,B isomorphic
to A,

C pr B if there exists a surjective primitive isomorphism f : C !onto B.

This leads to an equivalence relation ⇠=fpr and the degree structure on the classes
which will be denoted FPR(A).

What does FPR(A) reflect? If C pr B then, in a way, B has more online
content than C does, in the sense that more things happen in B. For example,
the standard copy of (Q, <) punctually embeds any other punctual copy of the
rationals; it has a prompt Skolem function, but some other copies may have slow
intervals. Also, the standard copy of (!, S) can be punctually embedded into any
other copy; the other copies of (!, S) will contain points that look non-standard
(“infinite”, “disconnected”) for a very long time, but no such points can be found
in the standard copy. In other words, A pr B means that B enumerates itself
more impatiently.

This is a new concept unseen in e↵ective mathematics. Thus, we would like to
pick some specific algebraic structure and try to understand its FPR-degrees in full
depth. We will do so for the dense linear order (Q, <). Perhaps, the main outcome
of our investigation into this direction is that our proofs will be unexpectedly non-
trivial even for this algebraically elementary structure, and we strongly conjecture
that this complexity is unavoidable. Even though we gave it a good thought, we still
know very little about the algebraic structure of FPR(Q, <), and this investigation
is definitely of some technical interest; see § 6 for more details.



22NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

We could also take two punctual structures A and B and compare FPR(A) and
FPR(B). If FPR(A) and FPR(B) are similar or isomorphic, then the “online
content” of the two structures is the same. Also, we could fix some class (or
a property) of structures and see whether there is some common feature shared
between all FPR(A) when A ranges over the class (or over structures having this
property, respectively). See § 7 for results and open problems into this direction.

We will also see that there is a non-trivial connection between FPR-degrees and
the notion of punctual categoricity from the previous section; we discuss this in the
paragraph below.

5.1. Does back and forth imply back-and-forth? Note that if FPR(A) con-
tains a single degree this means that for any two punctual copies C,B of A there is
a pair of primitive recursive isomorphisms, one going from C onto B, and the other
mapping B onto C. Note that it is not obvious at all that there must be a primitive
recursive isomorphism f : B ! C with primitive recursive inverse.

Question 2. For a punctual A, is |FPR(A)| = 1 equivalent to saying that A is
punctually categorical?

The question is open in general, but it can be answered in positive for many
standard classes including Boolean algebras, linear orders, and, most notably,
graphs [MN] via a rather non-trivial proof.

Theorem 5.2. Suppose G is a (punctual) graph. Then |FPR(G)| = 1 i↵ G is
punctually categorical.

Informal discussion. The strategies from the proof of Theorem 3.5 that describes
punctually categorical graphs seem to be of little help. Some of the strategies
there relied heavily on the isomorphism being fully primitive recursive (i.e., with
primitive recursive inverse). In particular, Prop. 3.6 heavily relied on the fact that,
for p : B ! A, qp(x0) = x0, where q is the intended inverse of p.

We need a new notion.

(1) |FPR(G)| = 1.
(2) Given any two f.p.r. copies A ⇠= B of G, there exist primitive recursive

isomorphisms f : A 7! B and g : B 7! A, and a primitive recursive function
t : N 7! N such that given a 2 A, either Orb(a) = {(gf)n(a) : n 2 !} has
size at most t(a), or every permutation u of Orb(a) can be extended to an
automorphism of G.

Note that given (2) we can run a primitive recursive back-and-forth construction
to produce a fpr isomorphism between two punctual copies. First, check whether
Orb(a) has size  t(a). If “yes” then match Orb(a) with Orb(f(a)). Otherwise, if
Orb(a) has not yet closed after t(a) steps, then do the back-and-forth on Orb(a)
and Orb(f(a)) essentially ignoring the rest of the structure. Unfortunately, the
implication (1) ! (2) is quite non-trivial and will not be presented here. ⇤

5.2. FPR-degrees as partial orders. We could approach FPR-degrees from a
di↵erent perspective. Instead of looking at FPR-degrees of some familiar structures,
we could attack the general problem below.

Problem 5.3. Is there a convenient description of partial orders that can be realised
as the FPR-degrees of a (computably categorical) punctual structure?



FOUNDATIONS OF ONLINE STRUCTURE THEORY 23

See [KMnN17] for several (quite basic) results into this direction. It is well-
known that there exist (Turing) computable algebraic structures that have exactly
2 computable copies up to computable isomorphism.

Question 3. Is there a structure A such that 1 < |FPR(A)| < 1?

Melnikov and Ng have recently announced:

Theorem 5.4. There is a structure with exactly two punctual presentations, up to
fpr isomorphism.

The proof is rather technical, but the authors are currently convinced it works.
However, the proof is so complex that at the moment the above theorem should be
viewed as a (strong) conjecture. We note that the proof does not even resemble the
dimension 2 proof in computable structure theory.

Question 4. Is there a structure A such that |FPR(A)| > 1 and FPR(A) is a
linear order under pr?

More generally, we know little about the possible algebraic types of the order
FPR(A), but several basic results can be found in [KMN17a]. We will return to this
question in Section 7, where we will refute the conjecture that the FPR-degrees of
a finitely generated structure cannot have the greatest element unless the structure
is punctually categorical.

6. Homogeneous structures

Recall that a structure X is homogeneous if every isomorphism f : F1 ! F2

between any two finitely generated substructures F1, F2 ✓ X is extendable to an
automorphism of X . (Such structures are also called ultrahomogeneous in the
literature.) See [Mac11] for a survey on homogeneous structures.

Example 6.1. The following structures are homogeneous:

• (Q, <), the dense linear order without end-points.
• R, the Random Graph.
• P ⇠=

L
i2! Zp1 , the universal countable abelian p-group (the infinite direct

power of the Prüfer group Zp1).

Each structure in Ex. 6.1 is the Fräısse limit of finite structures within the
respective class. Also, they do share essentially the same back-and-forth proof of
their uniqueness up to isomorphism. More specifically, we pick another element and
wait for a suitable element on one side, and then we switch sides. The back-and-
forth proofs for these structures are identical from the general Turing computability
point of view. In particular, all these proofs are Turing computable and all these
structures are computably categorical. Furthermore, there is only one instance of a
potentially unbounded search involved in this algorithm. It is natural to conjecture
that these proofs are also the same from the standpoint of primitive recursion.

Remarkably, the recent result of Melnikov and Ng [MN] below shows that the
back-and-forth proofs for these three structures di↵er from the perspective of prim-
itive recursion.

Theorem 6.2. The FPR-degree structures of the dense linear order (Q, <), the
random graph R, and the universal divisible abelian p-group P are pairwise non-
isomorphic.



24NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

Proof idea. The proof is essentially degree-theoretic in nature. First, we establish
that FPR(R) and FPR(P) have no greatest element, while FPR(⌘) does. Also,
FPR(P) has no maximal elements, while FPR(R) does. Some of these facts
require a non-trivial proof. ⇤

We note that Alaev [Ala16] has recently investigated the primitive recursive content
of the countable atomless Boolean algebra �. (We note that the use of polynomial
time presentations of � in [Ala16] does not really make much di↵erence.) We conjec-
ture that FPR(�) ⇠= FPR(⌘), but establishing such an isomorphism could be quite
tricky (if it exists); the most naive attempt via the interval algebra presentation
seems to fail.

Question 5. Is FPR(Q, <) ⇠= FPR(�), where � is the atomless Boolean algebra?

The reader may find Theorem 6.2 counterintuitive; the authors definitely do. In
fact, the theorem disproves our initial conjecture that the FPR-degrees of these
structures should be isomorphic. The discovery of Theorem 6.2 led us to the con-
clusion that we do not know enough about the FPR-degrees of even the algebraically
simplest structures. It makes sense to pick one familiar and algebraically simple
structure and try to understand its FPR-degrees in full depth. The hope is that
some of the ideas and techniques can then be applied to some other, perhaps more
algebraically interesting, structures.

The dense linear order (Q, <) is the standard (and perhaps the simplest nat-
ural) example when a back-and-forth proof works, it makes sense to investigate
FPR(Q, <) in some depth, hoping that some of the ideas and techniques will be
useful for the general theory. Remarkably, proving the theorem below takes some
e↵ort.

Theorem 6.3. [MN] FPR(Q, <) is downwards dense.

The proof of the above theorem is non-uniform and quite combinatorially in-
volved; we omit details.

Question 6. Is FPR(Q, <) dense?

Melnikov and Ng have recently conjectured that FPR(Q, <) is upwards dense,
but their proof contained a serious problem.

We do not know much about the FPR-degrees of common natural structures
(such as the atomless Boolean algebra) beyond the results discussed in this section.
Such investigations will be of technical interest and will hopefully shed some light
on the nature of punctual back-and-forth proofs.

Problem 6.4. Investigate into the FPR-degrees of some elementary natural com-
putably categorical algebraic structures such as:

(1) the dense linear order (Q, <);
(2) the atomless Boolean algebra (compare with the dense linear order);
(3) (!, S), (N,+), and (N,+,⇥) (do they all have isomorphic FPR-degree struc-

tures?);
(4) finitely generated abelian groups;
(5) algebraically closed fields of finite transcendence degree (is FPR(Zp) ⇠=

FPR(Q), where F stands for the algebraic closure of F?);



FOUNDATIONS OF ONLINE STRUCTURE THEORY 25

Even for such algebraically simple classes as above, the raised questions may turn
to be very challenging. It seems that the FPR-degrees is an extremely sensitive
computability-theoretic invariant that can be used to draw conclusions about the
algebraic properties of the structure, especially in some natural classes. This is
some work to do in the future.

7. Finitely generated structures

We have discussed homogeneous structures. Within (relatively) computably cat-
egorical structures, the finitely generated structures are the opposite extreme: they
become rigid after fixing a finite tuple of generators. One would expect the re-
sults on such structures to be somewhat dual to those for the homogeneous ones.
However, most of the results discussed in this section were unexpected.

We concentrate on finitely generated (f.g.) structures in a (finite) functional
language. Clearly, every such structure is computably categorical in the sense of
(Turing) computable structure theory. If A is punctual and f.g. then FPR(A) has
the least degree which is the “naturally generated” term algebra built around the
finitely many generators of A. Even the simplest f.g. structures, such as (!, S),
will typically have a pathological copy in which some elements will be kept “dis-
connected” from the generators long enough to allow for a diagonalisation against
primitive recursive isomorphisms.

Example 7.1. FPR(!, S) has no maximal elements and is dense. The strategy
described in Example 3.1 can be used to construct a copy strictly pr-above any
given copy. Density will follow from a more general result below.

One might hope for a general fact that would generalise the example above to
all f.g. structures, but this will not work. In our proof sketch of Theorem 4.1
we outlined the construction of a 1-generated punctually categorical infinite rigid
structure (this is Prop. 4.2 in [KMN17b]). Thus, we can have |FPR(A)| = 1 for
an infinite f.g. A.

Recall that it is open whether |FPR(A)| = 1 implies punctual categoricity of A,
but we know it does for graphs. It is not hard to see that, for a f.g. A, |FPR(A)| = 1
is equivalent to punctual categoricity of A [BKMN]; we omit details.

Suppose a f.g. A is not punctually categorical. Can we have 1 < |FPR(A)| < 1?

Theorem 7.2. [BKMN] Suppose a f.g. A is punctual and |FPR(A)| > 1. Then
FPR(A) is countably infinite and dense.

Proof. Let B <pr T be two punctual presentations of A. We build a punctual copy
X with the property:

B <pr X <pr T.

The first idea is to switch between copying B and T . The second idea is to
use some fixed tuple of generators ḡ in both B and T to exclude the unpleasant
scenario in which a potential isomorphism from T toX (or fromX to B) is not onto.
This will allow us to keep the strategies strictly finitary. We will not attempt to
diagonalise against, say, pe : X ! B until we see that pe(ḡ) generates the version of
ḡ in B. Note that if pe is an onto isomorphism then the pe-image of the generators of
X must span the generators of B. Suppose pe : X ! B is ready for diagonalisation
in the sense above, but X is currently copying B. We can punctually switch to



26NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

X copying T by identifying the natural image of B within T (given by B <pr T )
with X. Then we wait for a finitary local disagreement confirming pe : X 6! B,
and then we can switch back to copying B, if necessary. The latter is done by
ceasing all actions in X except for evaluating the functional symbols on the already
enumerated elements and waiting for (the natural image of) B (in X) to catch up
on the extra elements that we may have adjoined to X while copying T . As soon
as this happens, we are in the position to diagonalise against some qj : T ! X
which is ready for diagonalisation (in the sense above), etc. The rest is sorted using
priority. ⇤

Perhaps, one could strengthen the theorem above and show that |FPR(A)| are
upwards dense for every f.g. structure A (unless |FPR(A)| = 1). Rather surpris-
ingly, this natural hypothesis fails.

Theorem 7.3. [BKMN] There exists a f.g. A such that |FPR(A)| > 1 and FPR(A)
has a greatest element.

Idea. Combine the pressing technique described in Section 4 with an (!, S)-style
diagonalisation. (In (!, S), we would keep some element disconnected from the
origin for a long time before we connect it back to 0.)

To build the “top” copy T , we keep a part of the long chain of loops discon-
nected from the origin. The key idea here is that we could still build a primitive
recursive f : P ! T from a given copy, because the pressing strategy still works
if we introduce another unary function that sends a point not to the origin but to
the beginning of the currently disconnected island. The exact formal details are
unpleasant, but there are no surprises in the proof. ⇤

8. Graphs and universality

It is natural to ask whether any structure can be e↵ectively coded into a structure
from some specific class preserving all primitive recursive properties of interest, such
as punctual categoricity, the isomorphism type of the FPR-degrees, or some other
property.

Theorem 8.1. [DHTK+] The class of structures with only one binary functional
symbol is punctually universal.

We have not formally defined universality, let alone punctual universality. To
state the result formally we need a few elementary definitions. For a total function
f : ! ! !, let P (f) be the least class containing f and all primitive recursive func-
tions closed under composition and primitive recursion. This is done by forbidding
the (unbounded) minimisation operator and adding f to the recursive schemata.
Similarly, we can define the notion of a primitive recursive functional.

Formally, Theorem 8.1 says: There exists a primitive recursive functional �
which, given a structure in a finite signature A outputs a structure �(A) in the
language of one binary functional symbol such that:

(1) if F : A ! B is an isomorphism then there is an isomorphism G : �(A) !
�(B) for which we have G 2 P (F ) and G�1 2 P (F�1);

(2) if G : �(A) ! �(B) is an isomorphism then there is an isomorphism F :
A ! B for which we have F 2 P (G) and F�1 2 P (G�1);

(3) if U ⇠= �(A) then there is a structure B ⇠= A in P (U) and an isomorphism
H : �(B) ! U with both H and H�1 in P (U,A).



FOUNDATIONS OF ONLINE STRUCTURE THEORY 27

Furthermore, G and H and their inverses can also be witnessed by primitive recur-
sive functionals with respective inputs.

There is a very strong resemblance between the formal statement above and the
general definition of Turing computable universality of a class in [HTMMM17]. The
only essential di↵erence is that we use primitive recursive functionals instead of Tur-
ing functionals. Thus, in particular, one should expect every punctually universal
class to be Turing universal as well.

Proof sketch of Thm 8.1. First of all, replace all predicate symbols in A by func-
tional symbols by adding two extra constants, 0 and 1, and replacing each of the
finitely many predicate by a function that map tuples to these constants. Hence, we
can assume from the beginning that A has only functional symbols. We claim that,
w.l.o.g., the functions may have di↵erent arity. For example, replace f(x1, . . . , xn)
by f 0(x1, . . . , xn, xn+1) = f(x1, . . . , xn). Suppose the maximal arity among the
finitely many functions is m, and the functional symbol of the arity k, 1  k  m,
is fk.

Under these assumptions let �(A) be the structure with the domain

{[x1, x2, . . . , xk] : 1  k  m & x1, x2, . . . , xk 2 A}

containing all nonempty strings of the length not greater than m in the alphabet
A. The structure �(A) has the binary symbol for truncated concatenation

[x1, x2, . . . , xi] ⇤ [y1, y2, . . . , yj ] = [x1, x2, . . . , xi, y1, y2, . . . , ymin(m�i,j)]

and the unary functional symbols

g0([x1, x2, . . . , xk]) = [fk(x1, x2, . . . , xk)],

gi([x1, x2, . . . , xk]) =

(
[xi], if i  k;

[x1], otherwise.

for 1  i  m.
We will identify each element x 2 A with the one-element string [x] 2 �(A).

Then the structure A is an automorphism base of �(A) (due to [x1, . . . , xk] =
[x1]⇤ · · ·⇤ [xk]) which is furthermore definable in �(A) as the range of all the gi, 1 
k  m. Observe that A can be punctually interpreted in �(A) via fk(x1, . . . , xk) =
g0(x1 ⇤ · · · ⇤ xk). The properties (1), (2), and (3) hold for �(A); we omit details.
It remains to emulate the unary functions gi, 0  i  m, using only one binary
function ⇤ defined above; this can be done by further enriching the structure by
new elements. To do so we add into �(A) new elements

c0, c1, . . . , cm

such that

ci ⇤ cj = cmin(m,i+j+1) for 0  i, j  m,

x ⇤ ci = c0, for 0  i  m,x 6= c0, c1, . . . , cm,

ci ⇤ x = gi(x), for 0  i  m,x 6= c0, c1, . . . , cm.

It is clear that each of the new elements c0, c1, . . . , cm can be quickly recon-
structed from any copy of the structure; for instance, c0 is the unique element such
that x ⇤ c0 = c0 for at least m + 2 di↵erent x; c1 = c0 ⇤ c0; c2 = c1 ⇤ c0; etc. The
verification of (1)-(3) is routine. ⇤



28NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

It is a piece of standard knowledge that graphs are universal for Turing com-
putable structures. In contrast, we have:

Graphs are not universal among punctual structures.

Since we have not defined what punctual universality means exactly, we cannot
really claim that the above statement is a theorem. However, we claim that graphs
cannot be universal for any reasonable punctual universality notion; we explain
why. Theorem 3.5 says that a punctually categorical graph becomes a clique or an
anti-clique after removing finitely many vertices. In particular, every punctually
categorical graph is computably categorical. We also know that there exist punc-
tually categorical structures that are not computably categorical, see Theorem 4.1.
As we noted above, any reasonable notion of punctual universality must also be a
notion of (Turing) computable universality; in particular, it should preserve com-
putable categoricity.

If the reader is not convinced with the above “universality test”, here is another
one which is based on definability rather than functionals. The construction of
Kalimullin, Melnikov and Ng [KMN17b] allows for a coding of a non-computable
(c.e.) set into the existential diagram of the structure, and we conjecture that this
likely goes all the way up to ⌃c

↵ for any computable ↵. That is, we believe that for
each computable ordinal ↵ there is a punctually categorical structure which is not
�0

↵-categorical. Informally, this says that punctually categorical structures can be
as far from being computably categorical as it seem possible for them to be. Thus,
in a punctually universal class, some punctually categorical representatives must
also be highly non-trivial. Graphs however definitely fail this test.

We strongly suspect that our techniques can be extended to a description of
punctually categorical directed graphs, thus likely showing that they are not uni-
versal.

Problem 8.2. Is there a punctually universal structure in a predicate language?

It would be interesting to understand the special case of finitely many binary
relations. As we noted at the end of Section 3, these two classes may likely have a
nice explicit algebraic description of punctual categoricity.

8.1. Sub-recursive relativisation. Note that the formal statement of the uni-
versality result for binary functions relies on a certain notion of subrecursive rel-
ativisation. That is, we can relativise a primitive recursive process by adding a
total function f to the primitive recursive schemata; it is perhaps more natural to
assume the function f is computable. Informally, this means that we allow the min-
imisation operator with the bound given by f ; and we view everything computed
within the time bounds of f as quick enough. We could also define the notion of
primitive recursion relative to a class of functions or consider an arbitrary class of
functions closed under primitive recursive operators and composition.

Remarkably, most (if not all) of the results surveyed in the article will hold
relative to an arbitrary total function f or relative to a class of total computable
functions. Sometimes we do not even have to assume that the function (or the
class) is computable, all we need is totality. For instance, Theorem 8.1 above is an
example of one such result that works in the most general setting of total functions.

Problem 8.3. Develop a systematic theory of structures punctual relative to a total
oracle. Study subrecursive hierarchies of structures.



FOUNDATIONS OF ONLINE STRUCTURE THEORY 29

So far, the only result into this direction is the theorem below.

Theorem 8.4. [KMnN17] For every n > 0 there exists a fully primitive recursive

structure which is punctually 0(n)PR-categorical but not punctually 0(n�1)
PR -categorical.

In the theorem above, 00PR stands for the primitive recursive jump; this is the
total function that naturally enumerates all primitive recursive functions: f(n, x) =

pn(x). This process can be naturally iterated to define 0(n�1)
PR ; see [KMnN17] for

details. The notion of punctual 0(n)PR-categoricity should be self-explanatory. The
proof of the theorem is basically a (punctual) coding of a total function into the
diagram of a structure, so it works not only specifically for the primitive recursive
jumps; see [KMnN17].

It is widely believed that primitive recursion serves as an adequate model for
finitism in proof theory; see, e.g., Tait [Tai81].

Problem 8.5. Investigate the proof-theoretic content of punctual structures, per-
haps in relation with reverse mathematics.

9. Appendix: Primitive recursive time

We clarify the use of (subrecursively) non-uniform arguments in our proofs. In
some proof sketches above we used that a certain process was primitive recursive
relative to some primitive recursive function in the total enumeration of all primitive
recursive functions. Although the intuition behind this trick is fairly straightfor-
ward, it does require a careful thought and a rigorous verification. We intend to
use the content of this appendix as a standard reference for our upcoming papers
on the subject.

Let ('e)e2! be the computable listing of all Turing computable functions viewed
as general recursive schemata. There is a uniformly computable sub-listing ('l(e))e2!

that consists of all primitive recursive schemata. Write pe for 'l(e). There also
is a uniformly primitive recursive approximation ('e,s)e,s2! where (essentially)
'e,s = 'e[s].

More formally, f(~x)[s] is a primitive recursive approximation to a computable
function f(~x) if

(1) if f(~x)[s] # then f(~x)[s] = f(x)  s and f(~x)[s+ 1] #;
(2) for every ~x there is a stage s such that f(~x)[s] #;
(3) the function

f 0(~x, s) =

(
�1, if f(~x)[s] ";
f(~x)[s], if f(~x)[s] #;

is primitive recursive.

The function t(~x) = min{s : f(~x)[s] #} is called the time function for a total
computable f(~x).

Lemma 9.1. There is a primitive recursive function i(n) such that for every n
the function pi(n) = 'l(i(n)) is the time function for pn = 'l(n) with respect to the
uniformly primitive recursive approximation ('n,s)n,s2! as defined above.



30NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

In particular, a function f is primitive recursive i↵ it can be emulated on the uni-
versal Turing machine with a primitive recursive time-bound on the steps of ap-
proximation. Furthermore, the index of the primitive recursive time function for
f can be found uniformly and primitively recursively in any given index of f . We
advise to skip the technical and notationally heavy proof of the lemma below at
the first reading.

Proof. We will prove a more general result which can be used to define the primitive
recursive jump and “relativize” results in the subrecursive hierarchy. It is also quite
instructive because it clarifies what it means to be primitive recursive relative to
some total computable function. Its proof, however, is not really any harder than
the proof of the stated less general lemma.

For a total function f(~x) define the f -primitive recursive schemas pf by induc-
tion:

(1) The functions o(x) = x, s(x) = x + 1, Inm(x1, . . . , xn) = xm and f(~x) are
f -primitive recursive schemas.

(2) (Composition). If gk1 (~x), 0  k  n, and g2(y0, . . . , yn) are f -primitive
recursive schemas then the function g3(~x):

g3(~x) = g2(g
0
1(~x), . . . , g

n
1 (~x))

is a f -primitive recursive schema.
(3) (Primitive recursion). If g1(~x) and g2(~x, y, z) are f -primitive recursive

schemas then the function g3(~x, y):

g3(~x, 0) = g1(~x) and g3(~x, y + 1) = g2(~x, y, g3(~x, y))

is a f -primitive recursive schema.

Let f(~x)[s] be a primitive recursive approximation for f(~x) with the correspond-
ing time function t(~x). Define inductively the primitive recursive approximation
pf [s] for each f -primitively recursive schema pf :

(1) The function f(~x) already has the primitive recursive approximation f(~x)[s].
The primitive recursive approximation for basic primitive recursive func-
tions o(x), s(x) and Inm(~x) are defined as

t(~x)[s] # () (9y  s)[(~x, y) 2 graph u],

where u is one of these basic functions.
(2) If gk1 (~x)[s], 0  k  n, and g2(y0, . . . , yn)[s] are primitive recursive approx-

imations to gk1 (~x), 0  k  n, and g2(y0, . . . , yn) with the corresponding
time functions tk1(~x), 0  k  n, and t2(y0, . . . , yn), respectively, then for
the function g3(~x):

g3(~x) = g2(g
0
1(~x), . . . , g

n
1 (~x))

we define the primitive recursive approximation g3(~x)[s] such that

g3(~x)[s] # () (8k  n)[gk1 (~x)[s] #] & g2(g
0
1(~x), . . . , g

n
1 (~x))[s] # .

It is easy to see that the function

t3(~x) = max({tk1(~x) : 0  k  n} [ {t2(g01(~x), . . . , gn1 (~x))})

is the corresponding time function for g3(~x).



FOUNDATIONS OF ONLINE STRUCTURE THEORY 31

(3) If g1(~x)[s] and g2(~x, y, z)[s] are primitive recursive approximations to g1(~x)
and g2(~x, y, z) with the corresponding time functions t1(~x) and t2(~x, y, z),
respectively, then for the function g3(~x, y):

g3(~x, 0) = g1(~x) and g3(~x, y + 1) = g2(~x, y, g3(~x, y))

we define the primitive recursive approximation g3(~x, y)[s] such that

g3(~x, y)[s] # () (9u0, . . . , uy  s)[g1(~x)[s] #= u0 & (8i < y)[g2(~x, i, ui)[s] #= ui+1]].

It is easy to see that the function

t3(~x, y) = max({t1(~x)} [ {t2(~x, i, g3(~x, i)) : i < y}).

is the corresponding time function for g3(~x, ~z).

It follows from the inductive definitions above that we have proven more: There
is a primitive recursive function i(n) such that for every n the function �t

i(n)(x)

is the time function for pfn(x) with respect to the uniformly primitive recursive
approximation pfn(x)[s]. ⇤

References

[AK00] C. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy,
volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, 2000.

[Ala16] P. E. Alaev. Atomless Boolean algebras computable in polynomial time. Siberian
Electronic Mathematical Reports, 13:1035–1039, 2016.

[Ala17] P. E. Alaev. Structures computable in polynomial time. I. Algebra Logic, 55(6):421–
435, 2017.

[Ala18] P. E. Alaev. Structures computable in polynomial time. II. Algebra Logic, 56(6):429–
442, 2018.

[BHTK+] N. Bazhenov, M. Harrison-Trainor, I. Kalimullin, A. Melnikov, and K. M. Ng.
Automatic and polynomial-time algebraic structures. Preprint.

[BKMN] N. Bazhenov, I. Kalimullin, A. Melnikov, and K. M. Ng. Punctual presentations of
finitely generated structures. Preprint.

[Bor09] É. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rend.
Circ. Mat. Palermo, 27(1):247–271, 1909.

[CDRU09] Douglas Cenzer, Rodney G. Downey, Je↵rey B. Remmel, and Zia Uddin. Space
complexity of abelian groups. Arch. Math. Log., 48(1):115–140, 2009.

[Chu40] A. Church. On the concept of a random sequence. Bull. Am. Math. Soc., 46(2):130–
135, 1940.

[CR91] Douglas A. Cenzer and Je↵rey B. Remmel. Polynomial-time versus recursive mod-
els. Ann. Pure Appl. Logic, 54(1):17–58, 1991.

[CR92] Douglas A. Cenzer and Je↵rey B. Remmel. Polynomial-time abelian groups. Ann.

Pure Appl. Logic, 56(1-3):313–363, 1992.
[CR98] D. Cenzer and J. B. Remmel. Complexity theoretic model theory and algebra. In

Yu. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, editors, Handbook

of recursive mathematics, Vol. 1, volume 138 of Stud. Logic Found. Math., pages
381–513. North-Holland, Amsterdam, 1998.

[Ded60] R. Dedekind. Was sind und was sollen die Zahlen? 8te unveränderte Aufl. Friedr.
Vieweg & Sohn, Braunschweig, 1960.

[Deh11] M. Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann., 71(1):116–144,
1911.

[DHTK+] R. Downey, M. Harrison-Trainor, I. Kalimullin, A. Melnikov, and D. Turetsky.
Graphs are not universal for online computablility. Preprint.

[DKL+15] Rodney G. Downey, Asher M. Kach, Ste↵en Lempp, Andrew E. M. Lewis-Pye,
Antonio Montalbán, and Daniel D. Turetsky. The complexity of computable cate-
goricity. Adv. Math., 268:423–466, 2015.



32NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

[DM04] R. G. Downey and C. McCartin. Some new directions and questions in parameter-
ized complexity. In C. S. Calude, E. Calude, and M. J. Dinneen, editors, Develop-

ments in Language Theory, volume 3340 of Lect. Notes Comput. Sci., pages 12–26.
Springer, Berlin, 2004.

[Dob83] V. P. Dobritsa. Some constructivizations of abelian groups. Sib. Math. J., 24(2):167–
173, 1983.

[Dow98] R. Downey. Computability theory and linear orderings. In Handbook of recursive

mathematics, Vol. 2, volume 139 of Stud. Logic Found. Math., pages 823–976.
North-Holland, Amsterdam, 1998.

[Dow17] R. Downey. Turing and randomness. In B. J. Copeland, J. P. Bowen, M. Sprevak,
and R. Wilson, editors, The Turing guide, pages 427–436. Oxford University Press,
Oxford, 2017.

[ECH+92] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S.
Paterson, and William P. Thurston. Word processing in groups. Jones and Bartlett
Publishers, Boston, MA, 1992.

[EG00] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra and
Logic. Consultants Bureau, New York, 2000.

[FS56] A. Fröhlich and J. Shepherdson. E↵ective procedures in field theory. Philos. Trans.
Roy. Soc. London. Ser. A., 248:407–432, 1956.

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Free-
man and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness,
A Series of Books in the Mathematical Sciences.

[GN73] S. S. Goncharov and A. T. Nurtazin. Constructive models of complete solvable
theories. Algebra Logic, 12(2):67–77, 1973.

[Gon97] S. Goncharov. Countable Boolean algebras and decidability. Siberian School of Al-
gebra and Logic. Consultants Bureau, New York, 1997.

[Gri90] Serge Grigorie↵. Every recursive linear ordering has a copy in DTIME-
SPACE(n, log(n)). J. Symb. Log., 55(1):260–276, 1990.

[Har74] L. Harrington. Recursively presentable prime models. J. Symb. Log., 39:305–309,
1974.

[Har98] V. S. Harizanov. Pure computable model theory. In Yu. L. Ershov, S. S. Goncharov,
A. Nerode, and J. B. Remmel, editors, Handbook of recursive mathematics, Vol. 1,
volume 138 of Stud. Logic Found. Math., pages 3–114. North-Holland, Amsterdam,
1998.

[Her26] Grete Hermann. Die Frage der endlich vielen Schritte in der Theorie der Polyno-
mideale. Math. Ann., 95(1):736–788, 1926.

[HTMMM17] Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller, and Antonio Mon-
talbán. Computable functors and e↵ective interpretability. J. Symb. Log., 82(1):77–
97, 2017.

[Kie81] H. A. Kierstead. An e↵ective version of Dilworth’s theorem. Trans. Am. Math. Soc.,
268:63–77, 1981.

[Kie98a] H. A. Kierstead. On line coloring k-colorable graphs. Israel J. Math., 105(1):93–104,
1998.

[Kie98b] H. A. Kierstead. Recursive and on-line graph coloring. In Yu. L. Ershov, S. S. Gon-
charov, A. Nerode, and J. B. Remmel, editors, Handbook of recursive mathematics,

Vol. 2, volume 139 of Stud. Logic Found. Math., pages 1233–1269. North-Holland,
Amsterdam, 1998.

[KKM14] O. Kharlampovich, B. Khoussainov, and A. Miasnikov. From automatic structures
to automatic groups. Groups Geom. Dyn., 8:157–198, 2014.

[KMN17a] I. Sh. Kalimullin, A. G. Melnikov, and K. M. Ng. The diversity of categoricity
without delay. Algebra Logic, 56(2):171–177, 2017.

[KMN17b] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Algebraic structures
computable without delay. Theoret. Comput. Sci., 674:73–98, 2017.

[KMnN17] I. Sh. Kalimullin, A. G. Mel0 nikov, and K. M. Ng. Di↵erent versions of categoricity
without delays. Algebra Logika, 56(2):256–266, 2017.

[KN95] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures.
In Logic and Computational Complexity (Indianapolis, IN, 1994), volume 960 of
Lecture Notes in Comput. Sci., pages 367–392. Springer, Berlin, 1995.



FOUNDATIONS OF ONLINE STRUCTURE THEORY 33

[KPT94] H. A. Kierstead, S. G. Penrice, and W. T. Trotter Jr. On-line coloring and recursive
graph theory. SIAM J. Discrete Math., 7:72–89, 1994.

[LST89] L. Lovász, M. Saks, and W. T. Trotter Jr. An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Math., 75:319–325, 1989.

[Mac11] Dugald Macpherson. A survey of homogeneous structures. Discrete Math.,
311(15):1599–1634, 2011.

[Mal61] A. Mal0cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.
[Mal62] A. Mal0cev. On recursive Abelian groups. Dokl. Akad. Nauk SSSR, 146:1009–1012,

1962.
[Mel17] Alexander G. Melnikov. Eliminating unbounded search in computable algebra. In

Unveiling dynamics and complexity, volume 10307 of Lecture Notes in Comput.

Sci., pages 77–87. Springer, Cham, 2017.
[Mil83] Terrence Millar. Omitting types, type spectrums, and decidability. J. Symbolic

Logic, 48(1):171–181, 1983.
[MN] A. G. Melnikov and K. M. Ng. The back-and-forth method and computability with-

out delay. Preprint.
[MN79] G. Metakides and A. Nerode. E↵ective content of field theory. Ann. Math. Logic,

17(3):289–320, 1979.
[MN82] G. Metakides and A. Nerode. The introduction of nonrecursive methods into math-

ematics. In The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981),
volume 110 of Stud. Logic Found. Math., pages 319–335. North-Holland, Amster-
dam, 1982.

[Rem86] J. B. Remmel. Graph colorings and recursively bounded ⇧0
1-classes. Ann. Pure

Appl. Logic, 32:185–194, 1986.
[Tai81] W.W. Tait. Finitism. The Journal of Philosophy, 78:524–546, 1981.
[Tsa11] T. Tsankov. The additive group of the rationals does not have an automatic pre-

sentation. J. Symbolic Logic, 76(4):1341–1351, 2011.
[Tur36] Alan M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1936.
[vM19] R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z., 5(1–2):52–

99, 1919.
[Wei00] Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer Science. An

EATCS Series. Springer-Verlag, Berlin, 2000.

Sobolev Institute of Mathematics, Novosibirsk, Russia

E-mail address: bazhenov@math.nsc.ru

Victoria University of Wellington

E-mail address: Rod.Downey@msor.vuw.ac.nz

Kazan Federal University, Kazan, Russia

E-mail address: ikalimul@gmail.com

Massey University

E-mail address: alexander.g.melnikov@gmail.com


