Parameterized Approximation Problems

Rodney G. Downey!, Michael R. Fellows?, and Catherine McCartin®

! Victoria University, Wellington, New Zealand,
Rod.Downey@mcs.vuw.ac.nz
2 The University of Newcastle, Calaghan, Australia,
mfellows@cs.newcastle.edu.au
3 Massey University, Palmerston North, New Zealand,
C.M.McCartin@massey.ac.nz

Abstract. Parameterized complexity is fast becoming accepted as an
important strand in the mainstream of algorithm design and analysis.
Up until now, most of the work in the area has focussed on exact algo-
rithms for decision problems. The goal of the present paper is to apply
parameterized ideas to approximation. We begin exploration of parame-
terized approximation problems, where the problem in question is a pa-
rameterized decision problem, and the required approximation factor is
treated as a second parameter for the problem.

1 Introduction

Parameterized complexity is fast becoming accepted as an important strand
in the mainstream of algorithm design and analysis, alongside approximation,
randomization, and the like. It is fair to say that most of the work in the area
has focussed on exact algorithms for decision problems. On the other hand it
is clear that parameterized ideas have applications to many other questions of
algorithmic design. For example, in [6] and [8] the ideas have been applied to
counting problems and in [5], [8] the ideas were applied to online problems.

The goal of the present paper is to apply the ideas to approximation. Already
we have seen that there are close ties between classical approximation and the
theory of parameterized complexity.

For example, the following is now well-known. We can define a classical op-
timization problem to have an efficient P-time approzimation scheme (EPTAS)
if it can be approximated to a goodness of (1 + €) of optimal in time f(1/€)n®
where ¢ is a constant. If we set k& = 1/e as the parameter, and then produce
a reduction to the PTAS from some parametrically hard problem, we can, in
essence, demonstrate that no such EPTAS exists [1], [3].

In this paper, we begin exploration of parameterized approzimation problems,
where the problem in question is a parameterized decision problem, and the
required approximation factor is treated as a second parameter for the problem.
Consider the following ‘classic’ parameterized problem:

k-INDEPENDENT SET
Input: A graph G = (V, E)

Parameter: k, a positive integer
Output: An independent set V' C V for G of size at least k, or ‘NO’ if none
such exists.

How might we define a problem that provides an ‘approximate’ solution to
this problem? Here are two possibilities which we will consider in this paper. In
both cases we relax our requirements by introducing a ‘gap’ between YES and
NO solutions to the problem. In the first case the gap size is additive in the
approximation parameter , in the second case the gap size is multiplicative in
the approximation parameter.

ADD-APPROX k-INDEPENDENT SET

Input: A graph G = (V, E)

Parameters: k, ¢, positive integers

Output: ‘NO’, asserting that no independent set V' C V of size > k for G
exists, or an independent set V/ C V for G of size at least k — c.

MULT-APPROX k-INDEPENDENT SET

Input: A graph G = (V, E)

Parameters: k, ¢, positive integers

Output: ‘NO’, asserting that no independent set V' C V of size > k for G
exists, or an independent set V' C V for G of size at least k/c.

The first parameterized approximation question is the the parameterized
version of absolute approximability. The question is, are there parameterized
algorithms to solve the above questions, in spite of our belief that there is no
such algorithm for the exact problem? More generally, we will be considering
the following class of questions. Our setting will be languages L C X* x 3* We
state the following for maximization problems, the analogous definition would
work for minimization.

9(k)-APPROXIMATION

Input (x,k)

Parameter k,g

Output ‘NO’ asserting (z, k) & L or (z,k') € L for some k' < g(k).

As stated, the approximation problem above is for the version where we ask
for the certificate (x,k’). There could also be a version where we simply ask
for the ‘YES’ asserting that some such certificate exists. Since all the practical
examples are self-reducible, we will get the certificates from the problem for free.

Notice that we can take a arbitrarily ‘bad’ language L = {(x,2k) : k € N}
and consider L' = LU {(z,2k + 1) : « € X* A k € N}. Then, in spite of the fact
that (x,m) € L' is as bad as you like, we can always have an approximation with
g(m) = m + 1. The problem is that the odd parameters give no information.
On the other hand, we believe that some natural problems are sufficiently well-
structured so that, for certain functions g, the approximation schemes should
give enough information so as to be able to solve the original problem.

In this paper we will consider different kinds of functions g. We first consider
g(k) = k + ¢, absolute additive approximation. We demonstrate that for many

of the basic W[1]-hard problems no such approximation scheme can exist unless
W(1] = FPT. These problems include k-INDEPENDENT SET, k-CLIQUE and
k-STEP TURING MACHINE ACCEPTANCE. We also demonstrate that no such
approximation scheme can exist for k-DOMINATING SET unless W[2] = FPT.

Next we consider multiplicative and other values values for g. Notice that
for instance, BIN PACKING parameterized by the number of bins, has (by First
Fit) a natural approximation with g(k) = 2k, say. (See Garey and Johnson
[7].) Thus there are natural problems with such multiplicative parameterized
approximation schemes.

On the other hand we show that there exist problems where there is no ap-
proximation scheme for any function g(k) unless W[2] = FPT. One example
of this phenomenon is k-INDEPENDENT DOMINATING SET . That is, for any
computable function g(k) > k, there is no algorithm which either asserts that
there is no independent dominating set of size < k for a given graph G, or oth-
erwise asserts that there is one of size < g(k). We call such problems completely
inapproximable.

Up to this time there is no literature on this kind of approximation. The
idea was introduced by Downey and Fellows in [4] for DOMINATING SET. As
we were about to submit this paper, we were sent a copy of a new paper by
Cai and Huang [2] also studying the same kind of problems; their results being
quite complementary to ours. Interestingly, the fundamental problem we wished
to classify, DOMINATING SET, remains open.

2 Additive parameterized approximation

We show that the following parameterized approximation problems are, in each
case, reducible to the corresponding original parameterized problem: ADD-APPROX
k-INDEPENDENT SET, ADD-APPROX k-CLIQUE, ADD-APPROX k-DOMINATING
SET, ADD-APPROX k-STEP TURING MACHINE ACCEPTANCE.

Theorem 1. ADD-APPROX k-INDEPENDENT SET is W1]-hard.

Proof. We transform from k-INDEPENDENT SET.

Let G = (V, E) be a graph and let k be the parameter. We produce G’ =
(V', E’) such that G’ has a c-additive approximate solution for dk-INDEPENDENT
SET, i.e. G’ contains an independent set of size at least dk — ¢, iff G contains an
independent set of size at least k.

To build G’ we begin with the original graph G, and proceed as follows:

1. Find smallest d such that [2¢] > k
2. @ consists of d separate copies of G

< Suppose that G contains an independent set of size at least k, then, by the
construction of G/, there must be an independent set of size at least dk in G’.

= Suppose that G’ contains an independent set of size at least dk — ¢, then some
copy of G in G’ must contain an independent set of size at least k, by the choice
of d. 0

This simple amplification technique can be used in parallel fashion to show:
Theorem 2. ADD-APPROX k-CLIQUE is W([1]-hard.

The case of ADD-APPROX k-DOMINATING SET also employs the amplifica-
tion technique, except now we are looking to minimize, rather than maximize,
the solution.

Theorem 3. ADD-APPROX k-DOMINATING SET is W [2]-hard.

Proof. We transform from k-DOMINATING SET.

Let G = (V, E) be a graph and let k be the parameter. We produce G’ =
(V', E’) such that G’ has a c-additive approximate solution for dk-DOMINATING
SET, i.e. G’ contains a dominating set of size at most dk + ¢, iff G contains a
dominating set of size at most k.

To build G’ we begin with the original graph G, and proceed as follows:

1. Find smallest d such that |2 | < k
2. @ consists of d separate copies of G

< Suppose that G contains a dominating set of size at most k, then, by the
construction of G’, there must be a dominating set of size at most dk in G.

= Suppose that G’ contains a dominating set of size at most dk + ¢, then some
copy of G in G’ must contain a dominating set of size at most k, by the choice
of d. O

We now consider additive approximation for k-TURING MACHINE ACCEP-
TANCE, the problem of deciding if a nondeterministic Turing machine with ar-
bitrarily large fanout has a k-step accepting path on the empty input string.

ADD-APPROX k-TURING MACHINE ACCEPTANCE

Input: A Turing machine M

Parameters: k, ¢, positive integers

Output: ‘NO’ asserting that no k-step accepting path for M exists, or an ac-
cepting path of length at most k& + ¢ for M.

Theorem 4. ADD-APPROX k-TURING MACHINE ACCEPTANCE is W[l]-hard.

Proof. We transform from k-TURING MACHINE ACCEPTANCE.

Let M be a Turing machine and let k be the parameter. We define M’ such
that M’ has a c-additive approximate solution for dk + 1-TURING MACHINE
ACCEPTANCE, iff M has an accepting path of length at most k.

Choose d >> ¢. Choose an alphabet for M’ sufficiently large such that all
d-sets of symbols from the alphabet for M may be represented. On the empty
input string M’ runs d copies of M in parallel, repeating each step of the com-
putation for M d times, before proceeding to the next. M’ will halt and accept
immediately that all copies of M have halted and accepted.
< Suppose that M has an accepting path of length at most k, then, by the
construction of M’, there must be an accepting path of length at most dk + 1
for M’.

= Suppose that M’ has an accepting path of length at most dk + 1 + ¢, then
some copy of M run by M’ must have an accepting path of length at most k,
by the choice of d. O

3 A completely inapproximable parameterized problem

In this section we show that k-INDEPENDENT DOMINATING SET is completely
inapproximable. Specifically, we show that there is no approximation scheme for
k-INDEPENDENT DOMINATING SET for any function g(k) unless W (2] = FPT.

The natural parameterized version of the DOMINATING SET problem is the
following.

k-DOMINATING SET

Input: A graph G.

Parameter: A positive integer k.

Question: Does G have a dominating set of size k7 (A dominating set for G is a
set X C V(G) such that for all y € V(G), there is an € X with (z,y) € E(G).)

In [4] Downey and Fellows show that k-DOMINATING SET is W[2]-hard via
a transformation from WEIGHTED CNF SATISFIABILITY.

For X a Boolean expression in conjunctive normal form consisting of m
clauses C1,...,C,, over the set of n variables x,...,z,—1, they show how to
produce in polynomial-time by local replacement, a graph G = (V, E) that has
a dominating set of size 2k if and only if X is satisfied by a truth assignment of
weight k.

The size 2k dominating set in G corresponding to a weight k truth assignment
for X, is in fact an independent set as well. Thus the same transformation shows
that k-INDEPENDENT DOMINATING SET is W[2]-hard.

We outline the construction of the graph G used in the reduction here. There
are k gadgets arranged in a vertical line. Each of the gadgets has 3 main parts.
Taken from top to bottom, these are variable selection, gap selection and gap
and order enforcement. The variable selection component A(r) is a clique and
the gap selection component B(r) consists of n cliques which are called columns.
The first action is to ensure that in any dominating set of 2k elements, we must
pick one vertex from each of these two components. This goal is achieved by
2k sets of 2k + 1 enforcers, vertices from V; and V5. (The names refer to the
sets below.) Take the Vj, for instance. For a fixed r, these 2k + 1 vertices are
connected to all of the variable selection vertices in the component A(r), and
nowhere else. Thus if they are to be dominated by a 2k dominating set, then
we must choose some element in the set A(r), and similarly we must choose an
element in the set B(r) by virtue of the V5 enforcers. Since we will need exactly
2k (or even < 2k) dominating elements it follows that we must pick exactly one
from each of the A(r) and B(r) for r =1, ..., k.

Each of the k variable selection components consists of a clique of n vertices
labelled 0, ...,n — 1. The intention being that the vertex labelled 7 represents a

choice of variable i being made true in the formula X. Correspondingly in the
next B(r) we have columns (cliques) i = 0, ..., n—1. The intention is that column
i corresponds to the choice of variable 7 in the preceding A(r). We join the vertex
alr,i] corresponding to variable i, in A(r), to all vertices in B(r) except those in
column 4. This means that the choice of ¢ in A(r) will cover all vertices of B(r)
except those in this column. It follows that we must choose the dominating
element from this column and nowhere else. (There are no connections from
column to column.) The columns are meant to be the gap selection saying how
many 0’s there will be till the next positive choice for a variable. We finally need
to ensure that (i) if we chose variable ¢ in A(r) and gap j in column 4 from B(r)
then we need to pick i+ j+1in A(r+1) and (ii) that the selections are in order.
This is the role of the gap and order enforcement component which consists of
a set of n vertices (in Vs.)

Thus the above provides a selection gadget that chooses k true variables with
the gaps representing false ones. We enforce that the selection is consistent with
the clauses of X via the clause variables V3. These are connected in the obvious
ways. One connects a choice in A[r] or B[r] corresponding to making a clause
Cy true to the vertex c¢,. Then if we dominate all the clause vertices too, we
must have either chosen in some A[r] a positive occurrence of a variable in C,
or we must have chosen in B[r| a gap corresponding to a negative occurrence of
a variable in Cj, and conversely.

The vertex set V' of G is the union of the following sets of vertices:
Vi={a[r,s]:0<r<k-1,0<s<n-1}
Vo={b[r,s,t]: 0<r<k—-10<s<n-1,1<t<n—k+1}
Vy={elj]: 1<) <m}
Vi={d[ru]:0<r<k—-1,1<u<2k+1}
Vo ={V[rul :0<r<k—-1,1<u<2k+1}
Ve={dlr,s] :0<r<k-1,0<s<n-1}

For convenience, we introduce the following notation for important subsets
of some of the vertex sets above.
A(r)y={a[r,s] : 0<s<n-—1}
B(r) ={br,s,t]: 0<s<n-1,1<t<n—-k+1}
B(r,s) ={b[r,s,t] : 1 <t<n—k+1}

The edge set E of G is the union of the following sets of edges. In these
descriptions we implicitly quantify over all possible indices.
E, ={c[jla[r,s] : zs € C;}
E; ={alr,slalr,s'] : s # s’}
Es5 = {b[r,s,t]b[r,s,t'] : t At'}
E, = {alr,s]blr,s',t] : s # §'}
Es = {blr,s, tldlr,s'] :s+t+1<nAs #s+t} U{blk—1,s,tldk—1,s]:5 #
s+ t(modn)}
E¢ = {alr, s]a’[r,u]}
E; = {b[r, s, t]'[r,u]}

Es = {c[jlb[r,s,t] : Fi T € Cj,s <i < s+ 1t}
Eqg = {d[r,sla[r",s] : ¥’ = r+ 1 mod k}

Suppose X has a satisfying truth assignment 7 of weight k, with variables
Zig, Liys -, Tip_, assigned the value true. Suppose igp < 7o < ... < igx—1. Let
dr = i 41(modk) — &r (mod n) for r = 0,...,k — 1. It is straightforward to verify
that the set of 2k vertices

D ={a[r,i;] : 0<r <k—1}U{b[r,ir,dy]:0<r <k—1}

is a dominating set in G.

Conversely, suppose D is a dominating set of 2k vertices in G. The closed
neighbourhoods of the 2k vertices a/[0,1],...,a'[k — 1,1],'[0,1],...,0'[k — 1,1]
are disjoint, so D must consist of exactly 2k vertices, one in each of these closed
neighbourhoods. Also, none of the vertices of V;UV5 are in D, since if o'[r, u] € D
then necessarily o'[r,u’] € D for 1 < v/ < 2k + 1 (otherwise D fails to be
dominating), which contradicts that D contains exactly 2k vertices. It follows
that D contains exactly one vertex from each of the sets A(r) and B(r) for
0<r<k-—1.

The possibilities for D are further constrained by the edges of E4, E5 and Fy.
The vertices of D in Vj represent the variables set to true in a satisfying truth
assignment for X, and the vertices of D in V5 represent intervals of variables set
to false. Since there are k variables to be set to true there are, considering the
indices of the variables mod n, also k intervals of variables to be set to false.
Furthermore the set E5 forces the chosen variables to be chosen so that if r < 7’
and we choose a[r, g] and a[r’, ¢'] then ¢ < ¢'.

The edges of Ey, E5 and Eg enforce that the 2k vertices in D must represent
such a choice consistently. It remains only to check that the fact that D is a
dominating set ensures that the truth assignment represented by D satisfies X.
This follows by the definition of the edge sets E1 and Eg.

We modify the construction described above to show that the following pa-
rameterized approximation problem is W[2]-hard for any choice of g(k).

g(k)-APPROX INDEPENDENT DOMINATING SET

Input: G = (V, E)

Parameter: k, g

Output: ‘NO’ asserting that no independent dominating set V/ C V of size < k
for G exists, or an independent dominating set V/ C V for G of size at most

g(k).
Theorem 5. g(k)-APPROX INDEPENDENT DOMINATING SET is W[2]-hard.

Proof. We transform from WEIGHTED CNF SATISFIABILITY.

Given X, a Boolean expression in conjunctive normal form we construct a
graph G that has a g(k) approximate solution for 2k-INDEPENDENT DOMINAT-
ING SET if and only if X is satisfied by a truth assignment of weight k.

To build G we begin with the construction from [4] described in detail above.
We single out one of the variable selection components A(g) and add to the con-
struction & = g(k) — 2k + 1 new variable selection components, Gy, Ga, ..., G,
along with new edges between all vertices in each of these new components and
all vertices in A(q). Each of the new components is connected to B(q), to the
(¢ — 1 mod k) gap and order enforcement component, and to the clause vertices
of V3 ={c[j] : 1 < j < m} in exactly the same way as is A(g). We modify the
edge sets F1, By and Eg accordingly.

For each of the new variable selection components except the last, that is G,
1 < i < k', we connect the jth vertex, 0 < 7 < n — 1, in G;, by an edge to all
vertices in G411 except for the jth vertex in G4 .

Finally, we blow up the size of the enforcement vertex sets Vy, V5 and V4 so
that
Vi={dru]:0<r<k—-1,1<u<g(k)+1}

Vs={b[r,u] :0<r<k-1,1<u<g(k)+1}
Ve ={d[r,s,t] :0<r<k—-10<s<n-1,1<¢t<g(k)+1}
and modify the edge sets F5, Eg, E7 and Ey accordingly.

The construction is illustrated in Figure 1.

Fig. 1. Gadget for g(k)-APPROX INDEPENDENT DOMINATING SET

< Suppose X has a satisfying truth assignment 7 of weight k, with variables
Zig, Tiys -, Tip_, assigned the value true. Suppose igp < 7o < ... < igx—1. Let
dr = ip41(modk) — &r (mod n) for r = 0,...,k — 1. It is straightforward to verify
that the set of 2k vertices

D ={a[r)i,] : 0<r <k-—1}U{b[r,ir,d]:0<r <k-—1}

is an independent dominating set in G.

= Suppose that G contains an independent dominating set D of size at most
g(k).

There are two possibilities here. In the first case, D has size 2k and contains
exactly one vertex from each of the sets A(r) and B(r) for 0 <r < k — 1. The
closed neighbourhoods of the 2k vertices o'[0,1], ..., d'[k — 1,1],'[0, 1], ..., 0’ [k —
1,1] are disjoint, so D must consist of at least 2k vertices, one in each of these
closed neighbourhoods. Since D is independent we can choose at most one from
each of the A(r), 0 < r < k — 1, and at most one from each of the B(r),
0 <r <k—1 (in the correct non-dominated column.) Also, none of the vertices
of V4UVs are in D, since if a/[r, u] € D then necessarily o/[r,u'] € D for 1 <’ <
g(k)+1 (otherwise D fails to be dominating), which contradicts that D contains
at most g(k) vertices. None of the vertices in Vg are in D by a similar argument.
Finally, if D contains a vertex from A(q) then, since G is independent, none of
the vertices in the new variable selection components, G;, 1 <4 < k" are in D. It
follows that D contains exactly one vertex from each of the sets A(r) and B(r)
for0<r<k-1.

In the second case, D has size g(k) and contains exactly one vertex from each
of the sets A(r), 0 <r < k—1,r # ¢, and B(r), 0 <r < k — 1, and exactly
one vertex from each of the sets G;,1 < ¢ < k’. In the case of the G; sets, if
D contains the jth vertex of G, then D contains the jth vertex of each of the
other G, 2 <1 < k’. Note that, as in the first case, none of the vertices of V;UV5
are in D, since if ’[r,u] € D then necessarily o'[r,u'] € D for 1 <’ < g(k) +1
(otherwise D fails to be dominating), which contradicts that D contains at most
g(k) vertices. None of the vertices in Vs are in D by a similar argument. Finally,
if D contains a vertex from any of the G; then, since G is independent, none of
the vertices in A(g) can be in D.

In either case, the truth assignment represented by D satisfies X. This follows
by the definition of the edge sets Eq (modified) and Eg. O

References

1. C. Bazgan: Schemas d’approximation et complezite parametree. Rapport de DEA,
Universite Paris Sud, 1995.

2. L. Cai, X. Huang: Fized parameter Approximation: Conceptual Framework and
Approzimability Results. Manuscript.

3. M. Cesati, L. Trevisan: On the efficiency of polynomial approximation schemes.
Information Processing Letters, 64(4), pp 165-171, 1997.

4. R. G. Downey, M. R. Fellows: Parameterized Complerity Springer-Verlag, 1999.

5. R. G. Downey, C. M. McCartin: Online Problems, Pathwidth, and Persistence.
Proceedings of IWPEC 2004, Springer-Verlag LNCS 3162, pp 13-24, 2004.

6. J. Flum, M. Grohe: The Parameterized Complexity of Counting Problems. STAM
Journal on Computing, 33(4), pp 892-922, 2004.

7. M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to the
Theory of NP-completeness Freeman, New York, 1979.

8. C. M. McCartin: Contributions to Parameterized Complexity Ph.D. Thesis, Victo-
ria University, Wellington, 2003.

