
TURING DEGREES OF REALS OF POSITIVE EFFECTIVE
PACKING DIMENSION

ROD DOWNEY AND NOAM GREENBERG

Abstract. A relatively longstanding question in algorithmic randomness is
Jan Reimann’s question whether there is a Turing cone of broken dimension.
That is, is there a real A such that {B : B ≤T A} contains no 1-random
real, yet contains elements of nonzero effective Hausdorff Dimension? We
show that the answer is affirmative if Hausdorff dimension is replaced by its
inner analogue packing dimension. We construct a minimal degree of effective
packing dimension 1.

This leads us to examine the Turing degrees of reals with positive effective
packing dimension. Unlike effective Hausdorff dimension, this is a notion of
complexity which is shared by both random and sufficiently generic reals. We
provide a characterization of the c.e. array noncomputable degrees in terms of
effective packing dimension.

1. Introduction

This paper is concerned with effective notions of randomness and their rela-
tionship with measures of computational complexity such as Turing degrees. This
programme has been around since the 1950’s beginning with the work of de Leeuw,
Moore, Shannon and Shapiro [4]. A new initiative in the study of algorithmic
randomness was the work of Staiger, Lutz and his co-authors, and others (e.g.
[1, 16, 17, 24]) who effectivized the refinements of the notion of Lebesgue measure
known as dimensions. The best known of these is the notion of Hausdorff dimension
[11]. For our purposes, we will take as our definition for this notion a characteri-
zation due to Mayordomo [18] which is that the effective Hausdorff dimension of a
real A ∈ 2ω is

dim(A) = lim inf
n→∞

K(A � n)
n

.

Here K denotes prefix-free Kolmogorov complexity (though plain complexity C
would be okay as well) and A � n denotes the first n bits of the real A. The
easiest way to construct a real of fractional effective dimension is to “water down”
a random real. For example, if B is Martin-Löf random then by Schnorr’s theorem,
for all n, K(B � n) > n − c for some fixed constant c. Then the real obtained by
inserting a 0 between any two bits of B will have effective Hausdorff dimension 1

2 .
It is a longstanding question whether in some sense this is the only way to

construct a real of broken dimension: to take a random real and water it down in
some effective way. If this were the only way, then the process of watering down
could be effectively reversed, which would mean that we could extract random
information from every real of positive effective Hausdorff dimension. This question
was first articulated by Jan Reimann in his thesis [21] :
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If A has positive effective Hausdorff dimension, is there a random real B 6T A?
The reader should also see Downey, Hirschfeldt, Nies and Terwijn [6] and Miller

and Nies [19].
There are of course many other notions of dimension, and hence of effective

dimension, in the study of measure and effective measure. The broken dimen-
sion question has been open for all such dimensions. Here we solve the question
for the notion of effective packing dimension, which is an inner measure version,
based around packing with balls of shrinking radius, of the notion of effective di-
mension, effectivizing the definition from, say, Falconer [9]. Again we will use a
characterization as our working definition of effective packing dimension. This is a
characterization due to Lutz [17]: the effective packing dimension of a real A ∈ 2ω

is

Dim(A) = lim sup
n→∞

K(A � n)
n

= lim sup
n→∞

C(A � n)
n

.

He we prove:

Theorem 1.1. There is a real of minimal Turing degree and of effective packing
dimension 1.

We get the following corollary.

Corollary 1.2. There is a real A of effective packing dimension 1, such that for
all reals B 6T A, B is not random.

The corollary follows since it is well known that no random real can have minimal
Turing degree. (See e.g. Downey and Hirschfeldt [5] or Nies [20].)

Theorem 1.1 raises a more general question: what kind of Turing degrees contain
reals with positive effective packing dimension? we note that having effective pack-
ing dimension one is a property that is shared by both random reals and sufficiently
generic reals (so the class of real that have positive effective packing dimension has
both full measure and is co-meagre; in contrast, the class of reals that have pos-
itive effective Hausdorff measure has measure 1 but is meagre.) This is why our
gaze turns naturally to the class of array noncomputable degrees, introduced by
Downey, Jockusch and Stob [7, 8]. In the case of c.e. degrees, we get a complete
characterisation.

Recall that a Turing degree a is array noncomputable if for all f 6wtt ∅′, there
is a function g 6T a such that ∃∞n(g(n) > f(n)). The array noncomputable
degrees were introduced to explain a number of “multiple permitting” arguments
in computability theory. Since then we have realized that this is an important class
capturing a wide collection of apparently unrelated phenomena.

Early on, it was realized that at least in the c.e. case, array noncomputabil-
ity is intimately related to Kolmogorov complexity. An old result of Barzdins’
[2] states that if A is a c.e. set then C(A � n) 6 2 log n + O(1). In unpub-
lished work Solovay (see [5]) showed that it is not possible for a c.e. set to have
C(A � n) > 2 log n + O(1) for all n. It was open whether there were “complex”
c.e. sets in that C(A � n) > 2 log n + O(1) for infinitely many n. Kummer proved
the following gap theorem. Recall that an order function is an unbounded and
nondecreasing computable function.

Theorem 1.3 (Kummer’s Gap Theorem [13]).
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(i) A c.e., array noncomputable degree contains a c.e. set A such that

C(A � n) > 2 log n−O(1)

for infinitely many n.
(ii) If A has c.e., array computable degree, then for every order function h,

C(A � n) 6 log n + h(n) + O(1).

Thus for no ε > 0 do we have

C(A � n) > (1 + ε) log n−O(1)

for infinitely many n.

Note that part (ii) holds for all elements of the c.e. degree, not only the c.e. ones.
It implies that a c.e., array computable degree cannot contain any real with positive
effective packing dimension. Kummer’s proof, in fact, can be easily generalised.
Recall that a degree a is c.e. traceable if there is some order h such that for all
f 6T a there is a uniformly c.e. sequence 〈Tx〉 such that for all x, |Tx| 6 h(x) and
f(x) ∈ Tx. All c.e. traceable degrees are array computable. C.e. traceability was
introduced by Zambella [26] and independently by Ishmukhametov [12], who noted
that in the c.e. degrees, c.e. traceability and array computability coincided. Hence
the second part of Kummer’s theorem follows from:

Proposition 1.4. If A is c.e. traceable, then then for every order function h,

C(A � n) 6 log n + h(n) + O(1).

Sketch of proof. This is similar to Kummer’s proof. We know that if A is c.e.
traceable then any order function h can serve for a bound for the size of traces
of functions computable from h (see Terwijn and Zambella [25].) We trace the
function n 7→ A � n. Let 〈Tn〉 serve as a trace for this function with bound h. Then
to specify A � n we need n (this takes log n many bits), a constant number of bits
to describe the machine enumerating 〈Tn〉, and log h(n) many bits to tell which
member of Tn (in order of enumeration) A � n is. �

Thus no c.e. traceable degree can contain a real whose effective packing dimension
is positive. We note that this, together with Theorem 1.1, implies the fact that
there is a minimal degree which is not c.e. traceable (see for example [10]). This
shows that c.e. traceability is not sufficient to settle Yates’ question on strong
minimal covers of minimal degrees (Ishmukhametov [12] showed that every c.e.
traceable degree has a strong minimal cover.) We further mention that adding the
priority method to a partial-tree version of our notion of forcing would produce a
minimal degree below 0′ which has an element of effective packing dimension 1.
This implies Gabbay’s result [10] that there is a minimal degree below 0′ which is
not c.e. traceable, thus showing that Ishmukhametov’s partition of the c.e. degrees
does not extend to the ∆0

2 degrees.

On the positive side, we have the following analogue of (i) of Kummer’s theorem:

Theorem 1.5. Every array noncomputable degree a computes a set A with effective
packing dimension 1. If a is a c.e. degree then A can be taken to be a left-c.e. real,
even a left-c.e. real which is a point of rank 1 in a countable Π0

1 class. Thus a
c.e. degree computes a real with positive effective packing dimension iff it is array
noncomputable.
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Part of the theorem is an elaboration on a recent result by Conidis [3], who
constructed a countable Π0

1 class P (indeed one whose Cantor-Bendixson rank is 1)
whose effective packing dimension is 1; equivalently, the unique nonisolated path in
P has effective packing dimension 1. This shows that the effective and noneffective
versions of packing dimension differ on some Π0

1 classes; whereas it is known that
the effective and noneffctive versions of Hausdorff dimension must agree on such
classes. Our result shows that Conidis’ example can be found below any c.e., array
noncomputable degree.

Notation is standard and generally follows Soare [23]. For more on dimension
and related notions of Kolmogorov complexity, the reader should also see Downey,
Hirschfeldt, Nies and Terwijn [6], Downey and Hirschfeldt [5] or Nies [20].

2. Clumpy trees

We prove Theorem 1.1 by presenting a notion of forcing P such that a sufficiently
generic filter G ⊂ P yields a real XG ∈ 2ω which has effective packing dimension
1 and minimal Turing degree. This is a modification of the standard forcing with
computable perfect trees due to Sacks [22]. We need to restrict the kind of perfect
trees we use so that we can always choose strings that are sufficiently complicated
(i.e., not easily compressed), to be initial segments of the real we build. The prob-
lem, of course, is that we cannot determine effectively which strings are sufficiently
incompressible, but our conditions, the trees, have to be computable. The solution
to this problem relies on the following lemma.

Lemma 2.1. There is a computable mapping (σ, ε) 7→ nε(σ) which maps a finite
binary string σ ∈ 2<ω and a positive rational ε to a natural number n such that
there is some binary string τ of length n such that

K(στ)
|στ |

> 1− ε.

Proof. Let d = |σ|+ 1. We know that the measure of the set of strings ν such that
K(ν) 6 |ν|−d is at most 2−d, and so cannot contain [σ]. Let m > d/ε. Then there
is some ν extending σ of length m such that K(ν) > m− d. Then

K(ν)
m

> 1− d

m
> 1− ε.

We can thus let n = m− |σ|. �

The idea is to ensure that the trees we use are “clumpy”. Suppose that a string
σ lies on a tree T . If every extension of σ of length |σ|+ nε(σ) also lies on T , then
we could (non effectively) choose one of those extensions which is incompressible. If
we refine the tree and remove on of these extensions, then we commit to removing σ
as well. A clumpy tree is one which has cofinally many (larger and larger) clumps.

Recall that a perfect function tree is a map T : 2<ω → 2<ω which preserves
inclusion and incomparability.

Let T be a perfect function tree, σ ∈ im T , and let ε be a positive rational. We
say that T contains an ε-clump above σ if for all binary strings τ of length nε(σ),

στ ⊆ T (ρτ),

where ρ = T−1(σ).
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Given a perfect function tree T and a positive rational ε, we recursively define a
labeling of some of the image of T :

(1) Label T (〈〉) by ε.
(2) If σ is labeled by a rational number δ, and T contains a δ-clump above

σ, then for all binary strings τ of length nδ(σ), label T (ρτ) by δ/2, where
ρ = T−1(σ).

If T does not contain such a clump, stop the labeling process.
A tree T is called ε-clumpy if the labeling process of T (starting with ε) never

halts, that is, the δ-clumps required at step 2 are always present.
Let P be the collection of pairs (T, ε) where T is an ε-clumpy, computable tree.

Note that P 6= ∅; for example, the full binary tree id2<ω is ε-clumpy for all ε > 0.
Recall that we say that a perfect tree S extends a perfect tree T if there is some

prefect tree R such that S = T ◦ R. If (T, ε), (S, δ) ∈ P then we say that (S, δ)
extends (T, ε) if S extends T and δ is the label of S(〈〉) on (T, ε) (in particular, we
do require that S(〈〉) is labeled on (T, ε).)

A standard example is that of full subtrees: If T is a perfect tree and σ ∈ im T ,
then

Extσ(T ) = T ◦ {τ 7→ ρτ},
where ρ = T−1(σ) is the full subtree of T issuing from σ. If (T, ε) ∈ P and σ ∈ im T
is labeled by δ, then (Extσ(T ), δ) is in P and extends (T, ε).

If G ⊂ P, we let XG =
⋂

(T,ε)∈G[T ] (as usual, [T ] = {X ∈ 2ω : ∃∞n X � n ∈ im T}.)

Lemma 2.2. If G ⊂ P is a sufficiently generic filter, then XG is an infinite binary
string, and Dim(XG) = 1 (in particular, XG is not computable.)

Proof. By taking full subtrees, we can ensure that T (〈〉) is as long as we like for
some (T, ε) ∈ G.

Let q < 1 and let (T, ε) ∈ P. There is some ρ such that on (T, ε), σ = T (ρ)
is labeled by δ where 1 − δ > q. Let n = nδ(σ). There is some τ of length
n such that K(στ)/|στ | > 1 − δ > q. Then T (ρτ) is labeled by δ/2 on (T, ε)
and (ExtT (ρτ)(T ), δ/2) ∈ P extends (T, ε). If that condition is in G then
στ ⊆ T (ρτ) ⊂ XG. Thus the set of conditions that forces that there is some
initial segment ν of XG such that K(ν)/|ν| > q is dense in P. �

Next we show that if G is sufficiently generic then XG has minimal Turing degree.
Suppose that Φ is a Turing functional. As usual in Sacks forcing, let

DivΦ = {(T, ε) ∈ P : ∃x∀σ ∈ im T (Φσ(x)↑ )}
and let

TotΦ = {(T, ε) ∈ P : ∀x∀σ ∈ im T ∃σ′ ∈ im T (σ′ ⊇ σ & Φσ′
(x)↓ )}.

The standard argument shows that TotΦ ∪ DivΦ is dense in P.
Let CompΦ be the collection of conditions (T, ε) ∈ TotΦ such that for all

σ, σ′ ∈ im T , Φσ and Φσ′
are comparable. A standard argument shows that if

(T, ε) ∈ CompΦ and (T, ε) ∈ G then Φ(XG) is computable.
A condition (T, ε) ∈ TotΦ is called clumpily-Φ-splitting if for all incompara-

ble, labeled σ, σ′ ∈ im T , Φσ and Φσ′
are incomparable. The standard argu-

ment from Sacks forcing shows that if (T, ε) ∈ TotΦ is clumpily-Φ-splitting then
XG 6T Φ(XG). This is because the labeled nodes are dense in im T . Our proof
ends, therefore, with the following lemma:
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Lemma 2.3. Let SpΦ be the collection of clumpily-Φ-splitting conditions. Then
SpΦ ∪ CompΦ is dense below TotΦ in P.

Proof. Suppose that (T, ε) ∈ TotΦ and has no extension in CompΦ. This means that
for all σ ∈ im T , there are σ0, σ1 ∈ im T extending σ such that Φσ0 and Φσ1 are
incomparable.

By recursion, we define an extension (S, ε) of (T, ε) in SpΦ. We start with letting
S(〈〉) = T (〈〉) and label this string by ε on (S, ε) as well. Suppose that we defined
σ = S(ρ′) = T (ρ) where σ is labeled by δ on (T, ε) and by some γ on (S, ε); we
ensure that nγ(σ) 6 nδ(σ). For every τ of length strictly shorter than nγ(σ), we
can let S(ρ′τ) = T (ρτ) = στ (and leave it unlabeled on (S, ε)).

Let τ1, . . . , τ2n be all the strings of length n = nγ(σ). Enumerate the pairs of
numbers (i, j) such that 1 6 i < j 6 2n as (ik, jk) for k 6 k∗. For each i 6 2n

and k 6 k∗ define strings νi
k such that στi ⊂ νi

0 ⊂ · · · ⊂ νi
k∗ and such that every

νi
k is in the image of T . At step k, define νik

k ⊃ νik

k−1 and νjk

k ⊃ νjk

k−1 such that

Φν
ik
k ⊥ Φν

jk
k ; this is possible because (T, ε) has no extension in CompΦ. We then

define S(ρ′τi) be some string ςi ∈ im T extending νi
k∗ which is labeled by some δi

such that nδi(ςi) > nγ/2(ςi). We can then label ςi by γ/2 on (S, ε). �

3. Array computability and effective packing dimension

We turn to prove Theorem 1.5. In the most general case, recall from [8]
that a function f is pb-approximable if there is some computable approximation
f(x, s) of f and some primitive recursive bound h for the “mind-change” function
x 7→ #{s : f(x, s) 6= f(x, s + 1)}. A dense set X ⊂ 2<ω is called pb-dense if
there is a pb-approximable function f : 2<ω → 2<ω such that for all σ ∈ 2<ω,
σ ⊆ f(σ) and f(σ) ∈ X. A real A ∈ 2ω is pb-generic if it meets every pb-dense set
of strings. Downey, Jockusch and Stob showed that every array noncomputable
degree bounds a pb-generic real.

Proposition 3.1. If A is pb-generic then Dim(A) = 1.

Proof. This is because the map (σ, k) 7→ n1/k(σ) given by Lemma 2.1 is polynomial
(in |σ| and k), and so (σ, k) 7→ 2n1/k(σ) is primitive recursive. For k > 0, let

Xk = {ν ∈ 2<ω : |ν| > k & K(ν)/|ν| > 1− 1/k}.

Note that Xk is Π0
1 (co-c.e.) Also, Xk is pb-dense, because we can approximate some

f(σ) ⊇ σ in Xk by choosing an extension ν of length |σ|+ n1/k(σ) and abandoning
it if it is later discovered that ν leaves Xk, choosing another such extension instead,
until one is chosen that never leaves Xk. �

Now suppose that D is a c.e. set which has array noncomputable degree. To
obtain multiple permitting from D, we use the fact [7] that we may assume that if
〈Im〉 is a computable partition of ω into rapidly increasing intervals (the size of the
intervals does not matter, as long as it increases with m), then for every c.e. set W
there are infinitely many m such that W ∩ Im = D ∩ Im. Thus to get permissions
to change some A 6T D that we are building, we tie the use of computing A � n
from D to include one of these intervals Im; to get changes in D, we enumerate
numbers from Im into an auxiliary set Q (note that we may assume that at all
stages, D ∩ Im ⊆ Q ∩ Im or we can maintain a disagreement by freezing Q.)
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To build a left-c.e. real A 6T D which has effective packing dimension 1, we
meet the requirements

Re: There is some ν ⊂ A of length at least e such that K(ν)/|ν| > 1− 1/e.

That is, we want some ν ⊂ A in Xe (from the proof of Proposition 3.1).
The strategy for meeting the first requirement (say R2, because R0 is meaningless

and R1 is automatic) is the following. We know that 〈〉 ⊂ A; we want to direct
A to extend some extension of 〈〉 in X2. Let n = n1/2(〈〉) (so we know that there
is some string of length n in X2) and find some m such that |Im| > 2n. Direct A
to extend the leftmost string ν of length n which currently looks like it is in X2.
Set the use of computing A � n = ν from D to be max Im + 1. The requirement is
currently satisfied.

Suppose that at some stage s, we discover that ν left X2. We then seek permission
from D to change A � n by enumerating x = min Im into an auxiliary set Q2. We
wait for x to appear in D, thus changing D below the use of computing A � n and
allowing us to move to the right, to the currently left-most string of length n in X2

(note again that X2 is co-c.e., so no string that lies to the left of ν can re-appear in
X2; so we never move to the left, only to the right, so A is indeed left-c.e.) While
we wait for the permission to occur, we think that this attempt has failed (because
we picked the wrong interval Im) and so we retry higher up: we assume that ν = ν0

is an initial segment of A, so we calculate n1 = |ν0|+ n1/2(ν0) and direct A to pass
through the leftmost extension ν1 of ν0 of length n1 which is currently in X2. We
pick some large m1, set the use of calculating A � n1 from D to be max Im1 + 1,
and repeat the process. If we later receive permission to change A � n0 (where
n0 = n = |ν0|) then we abandon all parameters nk,mk, νk for k > 0 and repeat the
process with the new initial segment of A of length n0.

In the event that we get a stage at which D ∩ Imk
6⊆ Q2 ∩ Imk

(because of some
enumeration into D∩ Imk

), we abandon mk and redefine it to be some large m; the
D-change enables us to change the use of calculating A � nk beyond the maximum
of the new Im.

We then argue by induction that at every level nk, A � nk eventually stabilizes,
and so the parameter nk+1 stabilizes as well. Also, mk+1 stabilizes because we
cannot always have D ∩ Im 6⊂ Q2 ∩ Im. Thus on some permanent mk we indeed
get D ∩ Imk

= Q2 ∩ Imk
and so we get sufficiently many permissions and meet the

requirement R2.
Thus the action of R2 is finitary and the whole construction is a finite injury one.

This makes the interaction of R2 with weaker requirements easy: each time R2 acts,
all weaker requirements are initialised (and all of their own parameters nk,mk, νk

are forgotten). The only thing that we need to note is the fact that the reduction
of A to D is global, and so R2 has to take into consideration the “litter” left by
initialised weaker requirements, namely, reductions of some initial segments of A to
D, which we may assume are permanent. This is of no real difficulty. for if R2 is
currently directing A to pass via ν1 ⊂ ν2 ⊂ · · · ⊂ νl (each νk of length nk and the
use of A � nk is max Imk

+1), then the definitions made by weaker requirements are
all for strings extending νl. If R2 receives permission to change some νk then the D-
change enables us to forget about all such promises made by weaker requirements.
If the R2 action is because of some failure to receive permission, then R2 is trying
to define nl+1, ml+1 and νl+1. Then, instead of taking the new base to be νl (and
defining nl+1 = nl + n1/2(νl)), we let τ = A � s[s] be the longest initial segment of
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A for which some promises were made by anyone in the construction, promise that
if νl ⊂ A then τ ⊂ A, and let nl+1 = |τ | + n1/2(τ), and try to meet R2 by finding
extensions of τ in X2.

Note that in fact we get A 6wtt D.

Now to get A to be the unique rank 1 point in a Π0
1 class P of rank 1, we change

the construction as follows. We start with P = 2<ω. At stage s, if some requirement
Re is defining νk ⊂ A because nk = |νk| = |τk| + n1/e(τk) (where it is agreed that
if νk−1 ⊂ A then τk ⊂ A) then we leave not only νk on P [s] but also every other
extension of τk of length nk. That is, the entire 1/e-clump above τk is left in P .
But apart of the clumps, we remove all strings of length s except for those that are
of the form σ0l for some σ in some such clump. Upon redefining some nk and νk,
we need of course to pick some τk extending νk−1 which is still on P . If at stage s
we pick one of length s, then the entire clump above τk is still present in P and we
can protect it.

In the end, A will still be the unique nonisolated path in [P ]. For if σ ∈ P lies to
the left of A, then after some stage, A moves to the right of σ and we stop putting
clumps above σ in P ; so all splitting ceases above σ beyond some level. And if σ lies
to the right of A, then we never put any clump above σ in P , so [P ]∩ [σ] = {σ0ω}.
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