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Abstract. We introduce a framework for online structure theory. Our ap-
proach generalises notions arising independently in several areas of computabil-
ity theory and complexity theory. We suggest a unifying approach using op-
erators where we allow the input to be a countable object of an arbitrary
complexity.
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1. Introduction

1.1. Our Goal. Imagine you are tasked with putting objects of di↵ering sizes into
bins of a fixed size. Your goal is to minimize the number of bins you need. This is
the famous Bin Packing problem which we know is NP complete (see Karp [30]).
But imagine that we change the rules and you are only given the objects one at a
time and you must choose which bin to put the object into before being given the
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next object. You are in an online situation and this is the Online Bin Packing

problem. The “first fit” method is well-known to give a 2-approximation algorithm
for this problem (definitions given in detail below). Alternatively imagine you are
a scheduler, and your goal is to schedule requests within a computer for memory
allocation amongst users. Again you are in an online situation, but here you might
want to change the order of allocation depending on priorities of the requests.

A brief thought on this will reveal that there are potentially hundreds of situa-
tions where we are dealing with combinatorial algorithms for tasks where we only
have partial evolving information about the the input data, or perhaps the data is
so large that we cannot see it in total. This is the reason that there are so many
algorithms for online tasks. On the other hand, there seems no general theory which
we can use as a conceptual basis for the theory of online algorithms, and online
structures. Books in this area, such as Albers [3], all tend to be taxonomies of al-
gorithms. Our goal is to give a theoretical basis for the theory of online algorithms
and structures.

1.2. The Punctual Model. In [5] a project was started aiming at providing a
model-theoretical foundation to this theory. In that paper we focussed upon the
intuition that online decisions in practice have lack of delay. That is, we need to
pack the object into some bin immediately, before the next one is presented to
us (in the Bin Packing example). This led to a theory of online structures and
algorithms we generally referred to as punctual structure theory.

Here we would imagine that our structures are given in a primitive recursive
way and our goal is to build some desired function or object accordingly. This
resulted in a surprisingly rich theory (e.g. [5, 15, 28, 29]). This theory applies
in many situations stemming from computable structure theory particularly those
arising from natural decision procedures, since almost all proofs of decidability of
“natural” theories give primitive recursive decision procedures.

1.3. The Uniform Model. Imagine we need to build a colouring of a graph G
which is given online. Thus, in the very simplest case, we would be given the graph
G = lims Gs, where Gs has s vertices. When the vertex s is introduced, we are
also given at the same time precisely which vertices amongst {1, . . . , s� 1} has an
edge with s (and this cannot change later). Our task is to colour s so that no two
vertices which are connected have the same colour, before the opponent presents
us with Gs+1.

Now if we imagine this as an infinite process and we need to colour the whole
of an infinite graph G. We can think of each possible version of G as being a path
through an infinite tree of possibilities. Each node � of length s of the tree will
represent some graph G� with s vertices, and if � � �0 then G� is the subgraph of
G�0 induced by vertices {1, . . . , s}. (Note that there are only primitively recursively
many non-isomorphic graphs with s vertices.)

The critical observation is the following. Although G can be viewed a path on
an infinite primitive recursive tree of possibilities, there is no a priori reason that
we should only consider a primitive recursive graph G. There are continuum many
such paths and the online graph colouring problem can be considered for an infinite
countable graph of any complexity.

Comparing this situation with general online algorithms, the reader will quickly
realise that the key point about online algorithms is one of continuity or uniformity.
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If we have a colouring of G� and we add s+1, the next G will be one of the possible
(s+ 1)-extensions of G�. If this is, say, G⌧ , with |⌧ | = s+ 1, then �G⌧ (s+ 1) (the
colour of vertex s+1 in G⌧ ) must extend, or in other words, be compatible with the
colouring �G� on G�. The reader should then realise that we are in fact dealing with
certain special kinds of uniform computable operators acting on trees of possibilities.
We will also demand that the action works primitive recursively, or perhaps even
running in polynomial time. These will all soon be made precise.

What is very interesting is that once we have made all these observations, we
realise that this material also have a connection with computable and feasible anal-

ysis, and also with the complexity theory for operators in analysis along the lines
of Kawamura and Cook [31], Melhorn [41], Ko and Friedman [20], and others. It
turns out also to have connections with reverse mathematics, computational learn-
ing theory, and even algorithmic randomness. We will also see that, in this setting,
the finiteness of the objects being given is not an essential restriction. In the online
case, finite objects are only revealed one bit at a time, and for all intents and pur-
poses, we may as well treat all inputs as arbitrarily large finite structures. We will
prove that under the uniform operator framework, working with arbitrarily large
finite structures and infinite structures are indeed the same. This allows for exam-
ple, for a formal approach in which one can study finite combinatorics in reverse
mathematics.

2. The main definition

2.1. Representation spaces. A class C of relational structures is called inductive

if A 2 C implies A has a filtration A = [sAs where each An is finite, has universe
{1, . . . , n}, and for all n0 > n the substructure induced by {1, . . . , n} in An0 is An.
More generally, for a fixed computable function g, we say that C is g-inductive if it
has a g-filtration meaning that each An has universe {1, . . . , g(n)}.

Our language will typically be finite and relational.

Remark 2.1. We need some care if the language has function symbols. For exam-
ple, we can follow [27] and assume that the indices of the f -images of {x1, . . . , xn}
are within {x1, . . . , xg(n)}, where g is a primitive recursive function. Here g can
be taken equal to the number of distinct terms of {x1, . . . , xn} in the (free) term
algebra of this language.

The intuition is that, although f may be played by the Universe, this is we who
give notations to the elements. It seems unreasonable to set f(x1, x3, x5) equal to
x1010 if we can name f(x1, x3, x5) with x7.

Here also we refer the reader to Section 5, where we study situations where we
are in a very large space and can only have local knowledge; which is a natural
online situation. There we would expect the values of functions to be relatively
local in the online situation.

We refer to the substructure of A based on {1, . . . , n} the substructure of height
h(n) = n. In the example discussed above, the height n structures are the graphs
with n vertices. Another example is considered by Khoussainov [32] with a height
function in his work on random infinite structures. By abusing notation, we will let
C<! denote the class of finite substructures of C. There is also the natural induced
topology. For example, in the graph case this would be compact and have the
totally disconnected topology with basic open sets being the extensions of graphs
of height n.
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2.2. Representations. To have a computability theory, we need a notion of e↵ec-
tive presentation. We borrow ideas from computable analysis. When a computabil-
ity theorist is considering, for example, e↵ective procedures in polynomial rings, we
would consider questions like “Find a root of p(x) = a0 + a1x + · · · + anxn�1”.
Now, implicitly what we are really talking about is a coded version of this ques-
tion where we are really considering p(x) coded as a string in, for example, 2<!,
or, classically, using Gödel numbering. As with our upcoming definition of online
computation, sometimes we need some care as to how we represent the data. For
example in modelling actual computations, or in computational complexity theory,
reprentations in say, unary or binary, can have dramatic e↵ects.

There is a tradition in classical computable analysis to make codings explicit.
For example a partial function f taking a polynomial p(X) to it’s least rational
root q, if any, would be considered as follows. A representation of the set Q[X] of
rational polynomials is a partial (in this case computable) �0 : 2<! ! Q[X], and
similarly we’d have �1 : 2<! ! Q, and, for instance, we’d say that a string � 2 2<!

is a �0-name for a polynomial p(X) if �0(�) = p(X). Then the the function f
would be considers as being realized, i.e. represented, by any function F such that
if f(x) = q, then for all �0-names � of p(X) F (�) = ⌧ , and ⌧ is a �1-name of q.

Generally in “Type I” computability where the objects of study are e↵ective
functions on natural numbers, this is a bit of an overkill; hence codings tend to
be supressed. Our online work concerns functions whose inputs are filtrations and
hence infinite. This is the essence of “Type II” computability. The main idea will
be to represent the paths as sequences of codes and have the algorithm act on the
codes.

A representation of an inductive class C of structures is a surjective function1

� : !<! ! C<!, which acts computably in the sense that �(�) = Cn for |�| = n
and h(Cn) = n, and if � � ⌧ then �(�) is an induced substructure of F (⌧). We can
also extend this in the natural way to g-filtrations. Thus such an � induces a map
� from !! ! C, namely lim{�� | � � x}. We will call x 2 !! a name for C 2 C
if �(x) = C. Note that it is possible that each structure C to have a number of
di↵erent names2.

For the time being, we will regard � as being injective. When it is possible, we
will replace !<! with 2<! or some homeomorphic image. For example, if we are
dealing with the space of (isomorphism types) of graphs, then the space will be a
compact space with graphs of n vertices at height n, and the representation will be a
2O(n2)-branching primitive recursive subtree T of !<! at each level n corresponding
to graphs of height n. We will be dealing with functions on such represented
spaces. Thus we will consider functions f : C1 ! C2 and these are represented by
by functions F acting on repfresentations Qi of Ci, so taking finite strings to finite
strings. In particular, if A 2 C1 with then A has a filtration A = [nAn. It follows A
represented by a path ↵ = lims ↵ � s 2 [T ] with �(↵ � s) = As, f(A) is represented
by lims F (↵ � s).

1Later when we consider partial online algorithms, this might be a partial map.
2The point of such naming systems is to allow computational comparison of problems in di↵er-

ing domains. For example, think about the classical situation where names are classical Cauchy
sequences in computable analysis. One domain might be the totally disconnected Cantor Space,
and the other might be R \ [0, 1]. We might want to compare a theorem on the reals with one in
Cantor space, and for purely topological reasons there can be no homeomorphism between them
both ways.
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We emphasise that the function F is acting on strings which are finite objects.
These represent, e.g., graphs. It is the continuity of the action will induce a map
F which is the completion of the finite maps. If x is a member of that completion;
such as an infinite graph represented by a path through the relevant representing
tree, then x = limn ��1(Gn). We could have caused extra confusion by having a
space consisting of completions and all initial segments, so in the case of graphs a
misture of finite and infinite graphs. But as we soon see this is of no consequence
since in the online case finite and infinite are indistinguishable.

Remark 2.2. The reader will note that in our definitions below, the actual repre-
sentation does a↵ect what we will regard as online. For example, using the current
representation, graphs of height n are represented (and hence regarded) as strings
of length n, although their size is O(n2). If we chose to represent graphs as binary,
then we would be considering O(n2)-inductive systems. As with classical complex-
ity theory, there is usually a natural representation for a system we are interested
in.

It is also possible to base a general theory of online algorithms upon standard
spaces line 2! and !!, but then we would have a two (primitive recursive) height
functions h1, h2, and algorithms taking e.g. strings of height h1(n) to ones of height
h2(n) at step n, in place of Definition 2.3, below. It is our intuition that the current
approach is the easiest to visualise.

2.3. Online problems. Although our objects of study are not strings, we will
implicitly identify them with their representations, in accordance with the previous
subsection. In particular, if the representation space is compact then our objects
can be identified with strings over a finite alphabet. More generally, in the case
of !<! we will work over an infinite alphabet, but this case requires more care
especially if we want to measure the time and space complexity of algorithms.

Definition 2.3. A online problem is a triple (I, S, s), where I is the space of inputs
viewed as finite strings in a finite or infinite computable alphabet, S is the space of
outputs viewed as finite strings in (perhaps, some other) alphabet, and s : I ◆ S<!

is a (multi-)function which maps � 2 I to the set of admissible solutions of � in S.

Remark 2.4. Some further refinements of this definition will be discussed in Sub-

section 2.4.2.

For instance, for a colouring problem I will be codes for finite graphs and S for
finite coloured graphs. Then s(�) will correspond to the collection of all admissible
colourings; e.g., such that adjacent vertices are distinctly coloured. These colourings
will form the space of admissible solutions.

Convention 2.5. Unless specified otherwise, the space I of inputs will be a prim-
itively recursively branching tree of finite strings.

Because of the convention above, there usually will be a natural and primitive
recursive way to transform I into a copy of 2<! and back. Thus, we can think of I
as the collection of finite strings in the binary alphabet. Usually the same will be
true for S.

Remark 2.6. In various examples throughout the paper the formal definition of
an online problem in terms of Definition 2.3 is usually left as an exercise. There
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will be no ambiguity in the sense that di↵erent versions will be the same up to a
(primitive recursive) change of notation.

Note that the multi-valued function s does not have to be computable in general.
Intuitively, to solve a problem (I, S, s) we need to find an “online” computable
function f which, on input i, chooses an admissible solution from the finite set s(i).
The sense in which it has to be online will be clarified below.

2.4. The definition.

2.4.1. An informal version of the main definition. Recall that both representation
spaces I and S are assumed to be compact with a primitive recursive modulus of
compactness; i.e., it is primitively recursively branching when viewed as a tree of
strings. The only informal clause of the definition below is (O3); it will be formally
clarified later (§2.4.4) after we develop some rudiments of the theory of primitive
recursive functionals.

Definition 2.7. A solution to (a representation of) an online problem (I, S, s) is
a function f : I ! S with the properties:

(O1) f(�) 2 s(�) for every � 2 I;
(O2) If � � ⌧ then f(�) � f(⌧).
(O3) f(�) will be computed without delay.

• Condition (O1) says that the output of f is an admissible solution.
• Condition (O2): What we ask for is that each increment of the input yields
an increment in the output. In the simplest case we ask that the height of
f(�) is the same as the height of �, and using the appropriate representa-
tions, we can think of this as |�| = |f(�)|.

• Regarding (O3). In the literature it is often simply assumed that f(�) halts
before an extension of � is received. That is, there is no a priori bound
on the delay needed to define f(�). This is fine when counterexamples are
found, defeating any such “unbounded” online algorithm. For example,
when it is shown that colouring trees online needs at least ⌦(log n) many
colours at level n (see Gasarch [22]), this proof does not entail any com-
plexity considerations for the online procedure; it only has to be total (i.e.,
eventually halt on every input). However, for any practical online models,
we would expect that the f would be in some low level complexity class
like polynomial time. Using the arguments given in [5], we will idealize
this by asking that f is primitive recursive. There are two natural ways to
formalise what it means for such an f to be primitive recursive.

In the simplest case we require that f is a primitive recursive function

which maps finite strings to finite strings. In Fact 2.13 we will see that in
this case our definition of online could be considered as a primitive recur-
sive analog of ibT-reduction, but acting on compact spaces with primitive
recursive branchings instead of 2!. Classically, ibT refers to a wtt oracle
procedure �B = A with �(x) = x for all x, and here we are identifying sets
with their characteristic functions as usual. Although ibT functionals and
the induced reduction have been studied quite intensively [12, 4, 14, 16, 49]
and even used in (classical) di↵erential geometry [12, 43], as far as we know
the natural primitive recursive version of it is new.
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Remark 2.8. To obtain the more general definition of online from [22],
replace primitive recursive ibT functionals with total but not necessarily

computable ibT functionals. That is, allow an arbitrarily complex oracle
on a separate tape to help your computation. It should be clear that this
definition from [22] is significantly less constructive, let alone practical, than
the seemingly very general primitive recursive approach taken by us.

In the most general case, to compute f(�) we may ask for a ⌧ extend-
ing � and make our decision based on ⌧ . Then f should be viewed as a
primitive recursive Turing functional (to be clarified in §2.4.3) which maps
approximations to elements in [I] to approximations of elements elements
in [S], and so that the use on � along ⇠ 2 [I] can be some extension of �
along ⇠. There are two natural ways to interpret what it means for a Tur-
ing functional to be primitive recursive. In §2.4.3 we will prove that in our
setup both definitions are equivalent, and therefore the notion is robust.

2.4.2. Taking the completion of an online problem. A solution f to an online prob-
lem (I, S, s) induces a solution for the completion of the initial problem (I, S, s), in
the sense that f can be uniquely extended to a functional f̄ : [I] ! [S]. Here [I]
consists of infinite strings ⇠ such that for every i, ⇠ � i 2 I, and similarly for [S].

In general, in Definition 2.7 we may also require f̄ to satisfy some global prop-
erty which cannot be always captured by s from Definition 2.3. For example, in
Section 3 a solution must be an isomorphism between two presentations of the same
infinite graph. In general, even if at every stage f(�) may be extendable to some
isomorphism, the map associated with f̄ may fail to be surjective in the limit. Also,
in another example in Section 3 we will require our solution to work only if the input
is a presentation of some fixed infinite graph, which is also a property of f̄ rather
than of any finite approximation to it. In particular, in this case admissibility of f̄
cannot be captured by s in Definition 2.3; at least not in general.

Convention 2.9. We will refer to such properties of f̄ as global and will not
incorporate them into Definition 2.7.

2.4.3. Primitive recursive functionals. As we mentioned above, there are two nat-
ural ways of interpreting what it means for a Turing functional acting on finite
strings to be primitive recursive.

In the first definition, we require that it is a Turing functional that possesses
a primitive recursive time-function t which, on every input � outputs the number
of steps which f takes to compute f(�). In particular, t(�) bounds the use of the
operator, that is, the length of ⌧ extending � which may be used in the computation
of f(�). The length of the output f(�) will also be bounded by t(�).

The other, seemingly more general definition of a primitive recursive functional
says that, for each infinite path x through the space of inputs, f is primitive recur-
sive relative to x = lims{� | � � x}. The latter can be formally defined by adding
the characteristic function for x to the primitive recursive schema, and hence would
potentially entail that f(�) could be arbitrarily long for various extensions of �.
Luckily these two notions are equivalent in our framework. (Recall Convention 2.5.)

Lemma 2.10. For a primitively recursively branching I, a Turing functional f :
I ! S possesses a primitive recursive time-function i↵ f is a primitive recursive

functional.
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Proof sketch. A rigorous formal proof is done by induction on the complexity of the
recursive definition of f . In a slightly di↵erent terminology it will appear in [27]. A
similar formal argument can be found in the appendix of [5]. We give an extended
sketch.

Suppose the Turing functional f possesses a primitive recursive time function t.
Using t as a universal bound on all the searches which may occur in a computation
with any oracle x extending �, we can transform the general recursive scheme
(augmented with the characteristic function �x for x) into a primitive recursive
scheme augmented with �x. This implication holds in general, i.e., without any
extra assumption on I.

Now, assuming I is primitively recursively branching, suppose f is a primitive
recursive functional in the most general relativised sense. On input �, use primi-
tive recursive branching of I to compute a primitive recursive bound for all halting
computations, as follows. Consider the formal description of the operator; it is a
finite description which uses elementary functions, together with a characteristic
function � for the oracle, and several applications of primitive recursion and com-
position. Fix some input �. The first ever application of �(j), where j is primitively
recursively defined from �, can have only a finite number of possible values; in fact,
this number is bounded by the primitive recursive branching of I at level j. We
list all possible variants of �(j). Each such value will lead to a new version of the
primitive recursive schema; we keep all of them.

For each specific choice of the value �(j), we search for the next instance of
� in the schema and split it further into finitely many versions according to the
branching of I at the respective level, etc.

The resulting process builds a primitively recursively branching tree of possible
primitive recursive computations on input �; the hight of the tree depends only
on the complexity of the primitive recursive description of f . This can be turned
into a primitive recursive procedure which runs all these computations one after
another, thus leading to a primitive recursive calculation of the maximal possible
number of steps in the computation of f on input �. ⇤
2.4.4. The two formal versions of the main definition. As before, let (I, S, s) be (a
presentation of) an online problem; see Definition 2.3. Assume furthermore that
the space I of inputs is primitively recursively branching. (This is Convention 2.5.)

Depending on how we interpret (O3) in the informal Definition 2.7, we arrive at
the following two general versions of the main definition.

The most general notion is below.

Definition 2.11. A solution to an online problem (I, S, s) is a function f : I ! S
with the properties:

(O1) f(�) 2 s(�) for every � 2 I;
(O2) If � � ⌧ then f(�) � f(⌧).
(O3) f is induced by a primitive recursive functional. That is, there is a primitive

recursive Turing functional � : [I] ! [S] such that, for every finite � 2 I
and every ⇠ 2 [I] extending �, f(�) = �⇠(�).

Lemma 2.10 ensures that the definition is robust. In particular, we may assume
that there is a primitive recursive time function t such that t(�) bounds the number
of steps in the computation of �⇠(�) for any oracle ⇠ 2 [I]. We can refine this
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definition by assuming that the time function can be taken from some natural
complexity classes, e.g., polynomial time.

The other, stronger version of the definition above uses primitive recursive func-
tions.

Definition 2.12. A strong solution to an online problem (I, S, s) is a function
f : I ! S which satisfies (O1) and (O2) of Definition 2.11, and with (O3) replaced
by:

(O3s) f is a primitive recursion function mapping (indices of) finite strings to
(indices of) finite strings.

The simple fact below shows that in (O3s) we may equally require that the
functional � in (O3) of Definition 2.11 is a primitive recursive ibT functional.
(By Lemma 2.10, there is no ambiguity in the notion of a primitive recursive ibT
functional.)

Fact 2.13. Suppose P = (I, S, s) is an online problem. Then the following are

equivalent:

1. P has a strong solution witnessed by a primitive recursive function f .
2. The completion of P has a solution witnessed by a primitive recursive ibT

operator f .

Proof. A description of a primitive recursive ibT operator can be rewritten into a
primitive recursive scheme of a function, which will be a (strong) solution to the
finitistic version of the problem. On the other hand, a primitive recursive function
can be transformed into a description of a primitive recursive ibT operator. ⇤

The fact above can be stated in terms of more narrow complexity classes, e.g.,
polynomial time. As before, restricting (O3s) to a complexity class will give a
refinement of Definition 2.12.

Henceforth we will make our primitive recursive analog of ibT explicit by calling
it obT, to refer to “online bounded Turing”.

Definition 2.14. An obT operator (functional) is an ibT operator (functional)
which is furthermore primitive recursive.

Remark 2.15. If the space I is not primitively recursively branching or not even
compact, then Lemma 2.10 no longer holds. Thus, in this case the more general
Definition 2.11 becomes ambiguous. In contrast, Fact 2.13 does not rely on com-
pactness of I, let alone its primitive recursive branching, and therefore the stronger
Definition 2.12 still makes sense even for non-compact I. Of course, the classi-
cal ibT reduction is usually viewed as working on 2!. If our space does not have
primitive recursive branching then we no longer can transform it e↵ectively into
a copy of 2!. But we see this aspect as a feature of the model, and not a flaw.
One should expect online-ness to be generally representation dependent, at least to
some extent.

Remark 2.16. Notice that in actual practice, we might also need a further gen-
eralisation of the above. Sometimes we might compute a (bounded) collection of
solutions at least one of which is correct at any stage and at height n. This occurs
in, for example, using automata to compute minimization problems for graphs of



10 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

bounded pathwidth (or k-interval graphs, see section 4.2) given the path decompo-
sition. We will be computing a table of f(k) many solutions at each level n. For
example, for finding maximal clique you would have a collection of 2k many possible
solutions. However, it appears that a suitable choice of the space of outputs S can
cover this seemingly more general case too.

3. Oracle computation and uniformity

3.1. Graph oracles do not help. The main goal of this section is to show that
a graph-oracle cannot significantly help in computing a function online. For that,
we consider online functionals and online oracle computations.

Definition 3.1. We say that f : 2! ! 2! is online computable if f has a repre-
sentation F : 2<! ! 2<!, which is online computable in the sense above, so that
for all ↵ 2 2!, F (↵ � u(n)) = F (↵) � n, where F (↵) = lim{F (�) | � � ↵} and u is
primitive recursive.

The space 2! can be replaced with a primitively recursively branching totally
disconnected space. Identifying f with its representation F , we can unambiguously
write this as f(↵ � u(n)) = f(↵) � n, and (in view of Lemma 2.10) this should cause
no problems in the case of primitively recursively branching spaces of strings. We
may also allow more than one input in f .

Notation 3.2. It is natural to write f↵�u(i)(i) instead of f(↵ � u(i)) and view ↵
as an oracle. The output of f↵�u(i)(i) can also be interpreted as a natural number,
when necessary.

Remark 3.3. There are obvious refinements of this. For example, it is natural to
restrict ourselves to functionals f whose running time is a polynomial in the length
of ↵. Also, having in mind some particularly nice primitive recursive function u,
f is u-online computable if f(↵ � u(n)) = f(↵) � n. An obvious case is when
u(n) = n + k, which would be online with delay k. When u(n) = n then the
notions can be restated in terms of obT-functionals, while online with delay k
corresponds to Lipschitz reducibility. Computable Lipschitz reducibility comes from
algorithmic randomness ([14], Chapter 9) where it is shown that if f is online
computable Lipschitz acting on 2!, then it preserves the Kolmogorov complexity
of all sequences in the sense that for all n, K(↵ � n) �+ K(f(↵) � n); that is
K(↵ � n) � K(f(↵) � n)±O(1).

We will consider online functionals acting on algebraic or combinatorial struc-
tures, e.g., ↵ could be viewed as a description of a finite segment of an infinite
structure of some fixed finite relational signature, e.g., a graph. The extensions of
↵ � n are the finitely many possible relational structures on n+1 elements extend-
ing the structure described by ↵ � n. The intuition is that f↵�u(i)(i) is expected
to compute correctly only if ↵ is an initial segment of a graph G. This is a global
property; see Convention 2.9.

Definition 3.4. A function h : N ! N is online computable from the isomorphism
type of a structure G if there is an online f such that, whenever ↵ is a description
of G, h(i) = f↵(i).

In other words, h is allowed to use any presentation of some fixed G as its (online)
oracle.
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Example 3.5. To see how much extra computational power algebraic oracles can
give, consider the following example. Let X be an arbitrary subset of N, and define
A(X) to be an algebraic structure in the language of one unary function s, one
unary predicate p, and one constant o, and which has the following isomorphism
type. When restricted to s and o, it is just N with s(x) = x+ 1 and o interpreted
as 0. Now define p(x) () x 2 X. Given any presentation ↵ of A(X), we can
decide X. So, in particular, computation from an isomorphism type is potentially
as powerful as just the usual oracle computation.

In view of the example above, the reader will likely find the theorem below
unexpected. Its proof is however not di�cult; it can be viewed as a variation of an
argument in Kalimullin, Melnikov, and Montalban [27].

Theorem 3.6. A function h is online computable from the isomorphism type of

an infinite graph G if, and only if, h is primitive recursive.

Remark 3.7. It will be clear from the proof below that the result has a natural
polynomial time version. The exact definition of a polynomial time functional is a
bit lengthy; see [20, 31]3. We leave the polynomial time case to the reader.

Proof. By Ramsey’s theorem, G either has an infinite clique or an infinite anti-
clique; without loss of generality, suppose it is a clique. Since g(i) = f↵�u(i)(i),
where ↵ is any representation of G, we can assume that the first u(i) bits of ↵
describe a clique. Since the space of all presentations of G is primitively recursively
branching, the use u is primitive recursive (see Lemma 2.10). Thus, the oracle can
be completely suppressed and the trivial description of an infinite clique can be
incorporated into a new procedure f0 which does not use any oracle. On input i
the procedure produces a string of length u(i) which describes a finite clique, and
then refers to this finite string (viewed as a partial function) whenever it needs to
use the characteristic function of the oracle. This procedure is easily seen to be
primitive recursive (as a function). ⇤

Informally, the result says that, from the perspective of online computation,
graphs cannot code any non-trivial information into their isomorphism type; i.e.,
up to a change of their presentation. Both the theorem above and the main result
in [15] imply that graphs are not universal for punctual computability – a notion
which we will not formally define here (see [5]). See Kalimullin, Melnikov, and
Montalban [27] for a generalisation of Theorem 3.6 to structures in an arbitrary
finite relational language.

3.2. Interactions with punctual structure theory. In [5] we described the
foundations of online structure theory. The main objects in this theory are infinite
algebraic structures in which operations and relations are primitive recursive. As
we argued in [5], there are natural strong connections of this new theory and the
theory of polynomial-time algebraic structures (see also Alaev [1] and Alaev and
Selivanov [2]) with applications to automatic structures [6]. In this paper structures

3The point is that care is needed with which representations are allowed. Polynomial time
functionals for (0, 1) typically use the so-called signed digit representation, but even for R there is
some problem with the notion of the size of the input as discussed in, for instance, [31]. However,
for any reasonable representation of graphs of size n this becomes relatively straightforward using,
e.g, the standard matrix representation as in [21].
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themselves do not have to be primitive recursive. However, the frameworks are
closely related via, e.g., Theorem 3.9 below.

A presentation of a countably infinite algebraic structure in a finite language is
an isomorphic copy of the structure upon the domain N. For simplicity, we may
assume that the structures in this section are all relational. In this case it becomes
consistent with our framework; in particular, the space of all presentations I of a
fixed structure in a finite relational language is primitively recursively branching.

Each such presentation ↵ 2 [I] can be viewed as an isomorphic copy of the
structure upon the domain of N. Some of these presentations will be computable

in the sense that the relations on ↵ will be computable predicates over N. It
is well-known that a structure may have non-computably isomorphic computable
presentations. When we restrict ourselves to primitive recursive presentations and
primitive recursive isomorphisms the situation becomes even more complex because
the inverse of a primitive recursive function does not have to be primitive recursive.
See [5] for a detailed exposition of the theory of punctually categorical structures.

The following notion is not restricted to primitive recursive presentations. A
more general version of the definition below was first discussed briefly in [29] and
then also mentioned in [28]. An even more general model-theoretic version of the
definition can be found in [27].

Definition 3.8. A structure G is strongly online categorical if there is an online

obT operator f which, on input ↵ and � arbitrary representations of G outputs an

isomorphism from ↵ onto �.

In other words, there exists a primitive recursive functional f↵;� with both uses
being the identity function, such that the associated function h(i) = f↵�i;��i (whose
output is interpreted as a natural number) induces an isomorphism from ↵ onto �;
recall the latter two are isomorphic copies of G upon the domain N. Equivalently,
we could replace the functional by a primitive recursive function of three inputs
�, ⌧, i where |�| = |⌧ | = i and finite strings are identified with their indices (under
some fixed natural enumeration).

The theorem below can be viewed as a variation of another result of Kalimullin,
Melnikov, and Montalban [27] on punctual categoricity, but in our strongly online
case the proof will be significantly simpler. Recall that a structure G is homoge-
neous if for any tuple x̄ in G and any pair of elements y, z 2 G, we have that y is
automorphic to z over x̄.

Theorem 3.9. A structure in a finite relational language is strongly online cate-

gorical if, and only if, it is homogeneous.

Proof. Each homogeneous structure is trivially strongly online categorical. Now
suppose G is strongly online categorical. Suppose the structure is not homogeneous,
and let x̄ be shortest (of length n) such that for some z, y we have that z is not
in the same automorphism orbit as y over x̄. Construct ↵ and � as follows. First,
copy x̄ into both and calculate the online isomorphism f from ↵ � n to � � n. If
we identify ↵ � n and � � n with x̄, then f induces a permutation of � � n; by the
choice of n any permutation of x̄ can be extended to an automorphism of the whole
structure. Adjoin z to ↵ and find a y0 which plays the role of y over � � n under
any automorphism extending the permutation � � n $ f(↵ � n). Then necessarily
f(z) = f(y0), because f has already shown its computation on the first n bits.
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However, by the choice of z and y0, f cannot be extended to an isomorphism no
matter how we extend the presentations further. ⇤

Note that we used only totality of the obT functional in the proof. In the case
when the language has functional symbols the theorem no longer holds. Of course,
the notion of strongly online and of a presentation will have to be adjusted. But
regardless, strong homogeneity will no longer capture the property (whatever it
may be exactly).

Example 3.10. Consider the structure in the language of only one unary func-
tional symbol s, and which consists entirely of disjoint 2-cycles. Here a 2-cycle
is of course a component of the form {x, s(x)} where s(s(x)) = x and x 6= s(x).
According to any reasonable definition of (strong) online categoricity for functional
structures, this structure has to be (strongly) online categorical. However, it is not
homogeneous.

We leave open:

Question 1. Is it possible to find a reasonable algebraic description of (strongly)
online categorical algebraic structures in an arbitrary finite language?

We suspect that such a description exists, and that the solution will likely boil
down to setting the definitions right. If we replace obT with primitive recursive
operators in Definition 3.8 we will obtain the more general notion of (uniform)
online categoricity. With quite a bit of e↵ort Theorem 3.9 can be extended [27] to
this more general notion, and even beyond.

4. Weihrauch reduction and online algorithms

Weihrauch reduction is one of the central notions in computable analysis. It was
coined by Brattka and Gherardi [9]. It can be viewed as a natural generalisation of
computable Wadge reducibility [50]. Henceforth will use f W g. We have some
problem we wish to solve by computing some function f . To do this we produce
another problem and solve for g, and then convert g back to an instance of f . In
more detail, we for functions f and g function on !!-represented spaces X and Y ,
f W g, is defined to mean that there are computable A and B on !!, such that
for any px, and any representation G of g,

A(px, G(B(px))

realizes f (i.e. is a name for f(x)). (This is defined here for single-valued functions,
but does have a mult-valued version we won’t need.) This should be thought of
as follows for the archetypal case of a computable metric space. We computable
metric space, we take a Cauchy sequence converging to x, use B to convert this
into a one converging to B(x), and hence one converging to g(B(X)), and finally
using the one converging to x and this one, to one converging to A(x, g(B(x))).

The definition has a number of natural variations; some of these will be discussed
below.

4.1. Weihrauch reduction and incremental computation. In this subsection
we establish a formal connection between computable analysis and computer sci-
ence. More specifically, we show that a version of Weihrauch reduction borrowed
from computable analysis [51] is equivalent to incremental reduction between online
problems suggested in Miltersen et al. [42].
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We first state Weihrauch reductions in the online setting. Suppose P, Q are
online problems.

Definition 4.1. We say that P is strongly Weihrauch reducible to Q, written

P sW Q, if there exist Turing functionals � and  such that, whenever � 2 IP is

an instance of P, �� = ⌧ 2 IQ is an instance of Q, and whenever ⇢ 2 s(��) is a

solution to ��
then ✓ = �⇢ 2 s(�) is a solution to �.

Here the reduction is strong in the sense that there is a provably more general
definition of (plain) Weihrauch reduction which will be given in due course. Note
that, according to the definition above, all functionals involved are obT, but this
condition can be relaxed giving a less tight reduction.

Notation 4.2. We write P C

sW
Q if both obT functionals (in our sense) � and

 in the definitions above belong to a complexity class C having su�ciently strong
closure properties (e.g., polynomial-time, polylogspace, primitive recursive, etc.).

Remark 4.3. The reader might wonder why we will restrict ourselves to obT-type
reductions, or slight variations, for the online setting. The reason is the following.
Suppose that we have two (represented) online problems I1 and I2. In an online
way we want to use I2 to solve I1. Now suppose that we have some online algorithm
for I2. We could take a � of length n representing an instance Gn of height n of I1,
and convert it into an instance �0 of I2, and use it to produce a solution s(�0) of I2,
which could be converted back into a solution s(�) = A(s(�0)) of I1. The key issue
we will investigate is how tight the relationships of sizes of the representations are.
Ideally |�0| = |�|.

A problem P = (I,O, s) is a decision problem if O = {0, 1} and s is merely a
predicate on I. This is the same as to say that any solution simply decides whether
a predicate holds on a string or not. We say that � 2 I is a positive instance of I
if s(�) = 1. Milterson et.al. [42] analysed complexity classes for online algorithms,
and in a slighly more general situation than our monotone one where, for example,
the objects only get bigger. Miltersen et. al. [42] investigate online algorithms in
which input data may change with time. For example, in a graph a vertex or an
edge can disappear. Their reduction takes into account the potential changes of
the input.

Definition 4.4. Let C be a complexity class. A decision problem P is C-incrementally

reducible to another decision problem R, denoted P C

incr
R, if the following two

conditions hold:

1. There is a transformation T : IP ! IR in C which maps instances of P
to instances of R such that sP(�) = sR(T (�)) (i.e, � is a positive instance i↵ its

image is a positive instance).

2. There is a transformation Q in C which, given � 2 IP and the incremen-

tal change � to �, where � changes � to �0
of the same length

4
, constructs the

incremental change �0 to T (�) (where �0 changes T (�) to T (�0)).

Remark 4.5. We will here only consider C to be the class of polynomial time
computable functions, and hence use P

incr
accordingly. Milterson et. al. [42] also

considered e.g C to be Logspace. In [42] the authors specify the exact time bounds
for all computations involved. This is the reason why they need the seemingly

4That is, � is the di↵erence between � and �0.
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redundant part 2 of the definition above. Also, they look at auxiliary data structure
generated for each instance and at the changes induced to the structure. However,
from the perspective of general (e.g.) polynomial time computation this extra
information is not necessary since these auxiliary bounds are evidently polynomial
time.

The proposition below shows that P P

incr
Q is a variation of Weihrauch reduc-

tion from computable analysis which was independently rediscovered by computer
scientists. Recall that strong Weihrauch reduction is witnessed by a pair of func-
tionals � and  .

Fact 4.6. Suppose P and Q are online decision problems. Then P P

incr
Q i↵

P P

sW
Q with  = Id{0,1}.

Proof. Suppose P P

incr
Q. Then the transformation T from the definition of

incremental reduction can be used as � in the definition of P

sW
. Since � is a

positive instance i↵ T (�) is,  = Id{0,1}.
Conversely, suppose P P

sW
Q via ( , Id{0,1}), where  is a polynomial func-

tional from the space of inputs IP of P to the space of inputs IQ of Q. Then the
first part of the definition of incremental reduction follows from the assumption
that  is a functional in C. By the continuity of  and the fact that we used Id as
the second functional, it su�ces to deduce a polynomial time bound on the changes
in the inputs of  (�) based on the changes in �. But this bound is just a big-O of
the bound given by  . ⇤

Following [42], we can impose specific bounds on the number of steps required
for example, calculating �0 based on �. The expectation is that it should be easier
to make the change than to simply recompute T (�0) “from scratch”. All these
specialised bounds can also be expressed in terms of strong Weihrauch reduction;
we omit details. As an application of Theorem 4.6 and various results in [42], we
can obtain a number of polynomial time and polylogtime Weihrauch reductions in
the study of online algorithms.

4.2. Weihrauch reduction and online graph colouring. Before we discuss the
role of Weihrauch reduction in online colouring problem we give a brief overview of
the latter.

4.2.1. Online graph colouring. Many problems can be re-cast as colouring prob-
lems, for example Bin Packing. Indeed, colouring can be thought of as avoiding

configurations. In basic graph colouring, we are simply avoiding an edge connect-
ing vertices of the same colour, but we could instead avoid, for example, triangles
or any finite set of configurations in some kind of constraint satisfaction problem.
However, as this is an introductory paper we will stick to basic graph colouring.
There is a large literature on this area such as Kierstead [34]. Graph colouring is
quite a flexible tool, and many algorithmic meta-theorems such as for monadic sec-
ond order logic (like Courcelle’s Theorem (see [13, 24])) can be viewed as colouring
with constraints. We believe that this material has great online potential.

We will mention some of this in this subsection. As an illustrative example, we
will online colour finite or infinite trees (or more accurately forests). So the objects
of interest are trees being presented one vertex at a time som at height n we would
have a forest of n vertices. Then we can use a compact representation T ⇢ !! of
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the collection of forests of of height n. The result below is an easy (restated in our
notation) result from the folklore essentially following from Bean [7].

Proposition 4.7. For every online algorithm A there is a � in T of length 2t�1

such that the tree A acting on TF (�) needs at least t colours.

We will write �A(G�) for the number of colours used to colour G when processed
by online algorithm A. The above is nearly optimal, in that we have the following:

Theorem 4.8 (Lovasz, Saks and Trotter [40]). There exists an online algorithm

A such that for every 2-colourable graph G, if G has n vertices then �A(G) 
1 + 2 log n.

This brings us to the notion of a performance ratio. Most combinatorial algo-
rithms we would teach in a standard combinatorics class are o✏ine. This means
that for a finite structure H, say, the algorithm has H as part of the input and
calculates using the global structure of H.

Consider the situation of an inductive problem in a class C, and for simplicity
we will stick with colourings. The o✏ine chromatic number of G� will be denoted
by �o↵(G�) and for forests, we would have

�o↵(T�) = 2.

Definition 4.9 (Sleator and Tarjan [48]). The performance ratio is defined as be

r(�) =
�A(T�)

�o↵(T�)
.

Here we are stating the definition for colouring but the definition applies to
any online optimization minimization problem. In the case of colouring forests,
we see that the approximation ratio is O(log(|�|)). In the infinite case, the relevant
approximation ratio is the growth rate of r(�) for all paths in the tree T representing
the problem.

For example, a graph is called d-inductive (or d-degenerate) if the vertices of G
can be ordered as {v1, . . . , vn} so that for every i  n, |{j > i | vivj 2 E}|  d.
For example, by Euler’s formula, all planar graphs are 5-inductive. For those who
know some graph theory, d-inductive graphs also include all graphs of treewidth
d, and extremely important class in algorithmic graph theory (see Downey and
Fellows [13], for example). Again note that d-inductive graphs have a compact
representation (space).

Theorem 4.10 (Irani [25, 26]). Let � represent a d-inductive graph of height n.
Then first fit will use at most O(d log n) many colours to colour G�. Moreover, for

any online algorithm A, there is a d-inductive G� such that �A(G�) is ⌦(d log n).

Sometimes, this growth rate reaches a limit, as in problems with constant ap-
proximation ratios.

The classical example is Bin Packing. We can think of bins as colours, and the
objects having sizes and the constraint being that we cannot have more objects of a
specific colour than the bin constraint. That is, Bin Packing takes as input sizes
ai 2 N and a parameter V for simplicity, and colours ai with colour c(ai) subject
to

P
c(ai)=c

ai  V , and seeks to minimize the number of colours.

Theorem 4.11 (see [21]). First fit gives a performance ratio of 2 for online Bin

Packing.

Notice that Bin Packing is another example of colouring with constraints.
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4.2.2. Online reduction. In this subsection we define a new version of Weihrauch
reduction, and we also give a non-trivial example of such a reduction between two
distinct online problems.

For convenience we use 2! as the ambient totally disconnected space, but oth-
erwise use appropriate names. Let X and Y be spaces represented by 2!. Again
we think of f and g being solutions for minimization X and Y -problems respec-
tively. Thus, for example, we are thinking of X and Y as inductive structures with
filtrations {Xn | n 2 N} and {Yn | n 2 N} respectively. Then the strings of length
n represent the structures of height n, and f(�) will represent a solution to the
problem represented by �. Thus they will have an associated cost which in the
case of colouring is the number of colours, denoted c(·). We will denote fo↵ and
go↵ as o✏ine solutions. That is fo↵(�) would be the solution to the minimization
problem Xn of height n with �(�) = Xn, and similarly go↵.

We state the below for single valued functions, but again there is an analogous
multi-valued version, where the solution produced for g should be within the correct
ratio. The idea of the following is that on input ↵ � n, we want to compute
(a representation of) f(↵ � n)5 To to this we will apply (a representation of) B to
generate an input to (a representation of) an input for g, and then use the algorithm
A to translate this back to give f(↵ � n). Again we emphasis that this is all working
with representations, and should be read this way.

Definition 4.12. Let f, g be functions on 2!. Then f is called ratio preserving

online reducible to g, f r

O
g, if there are (type II) online computable functions A

and B with and a constant d, such that for all n,

f(↵ � n) = A(↵ � n, g(B(↵ � n)),
and the ratio of c(f(↵ � n)) to c(fo↵(↵ � n)) is at most d times the ration of
c(g(B(↵ � n))) to c(go↵(B(↵ � n))).

The fact below isolates the most important feature of the reduction.

Fact 4.13. If f r

O
g then , for some d > 0,

c(f � n)
c(fo↵ � n)  d

c(g � n)
c(go↵ � n) .

To give a non-trivial example of an online reduction we need several definitions.

In classical colouring, Kierstead investigated online colouring of Interval Graphs.
A graph G = (V,E) is called a k-interval graph if each vertex v of G can be repre-
sented by a closed subinterval of [0, 1] such that if Iv represents v and Iw represents
w, then if vw 2 E, Iv\Iw 6= ;, such that the largest number of intersecting intervals
(the cutwidth) is  k. These are exactly the graphs which have Pathwidth  k, a
graph metric coming from the Robertson-Seymour minors project (see [46, 13]).

Definition 4.14. Let ColIntk denote the online problem of colouring a k-interval
graph. (We leave the precise representation of the problem to the reader.)

The other online problem is on covering of an interval partial ordering by chains.
A partial ordering (P,) is called an interval ordering if P is isomorphic to (I,)
where I is a set of intervals of the real line and x  y i↵ the right point of x is
left of the left point of y. Interval orderings can be characterised by the following
theorem.

5We want to avoid explicit representations, but of course we should have F representing f with
F acting on 2! , and for any ↵ 2 2! , limn F (↵ � n) realizes (represents) f(↵).
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Theorem 4.15 (Fishburn [18]). Let P be a poset. Then the following are equiva-

lent.

(a) P is an interval ordering.

(b) P has no subordering isomorphic to 2 + 2 which is the ordering of four

elements with {a, b, c, d} with a < b, c < d and no other relationships

holding.

The width of an interval ordering (P,) is defined naturally to be the minimum
over all presentations of the maximum number of intervals covering some point of
[0, 1]. Given an interval ordering (P,) of width k, our goal is to cover it with as
few chains as possible; the chains do not have to be disjoint.

Definition 4.16. Let ChIntk denote the online problem of covering an interval
ordering (P,) of width k by not necessarily disjoint chains. (We leave the precise
representation of the problem to the reader.)

The theorem below gives a non-trivial example of an online ratio-preserving
reduction between online problems. The proof of the theorem below is essentially
an analysis of the clever argument given in Kierstead and Trotter [35].

Theorem 4.17. For any positive k 2 N there is an online solution g to ChIntk
with a constant performance ratio which can be transformed into an online solution

f to ColIntk with the property f r

O
g via a constant d = 1.

Corollary 4.18 (Kierstead and Trotter [35]). There is an online algorithm to

colour k interval graphs with a constant competitive ratio.

Proof of Corollary. Kierstead and Trotter [35] showed that every (P,) (online)
interval ordering of width k can be online covered by 3k � 2 many chains. Here
recall that a chain in a partial ordering is a -linearly ordered subset. A collection
of chains {C1, . . . , Cq} covers P,) if each element of P lies in one of the chains.
An antichain is a collection of pairwise -incomparible elements. We will see that
ColIntk r

O
ChIntk is witnessed via a reduction with constant d = 1. It remains

to apply Fact 4.13. ⇤
Proof of Theorem 4.17. The basic idea is quite simple. Take our online k interval
graph, turn it into an online interval ordering of width k, and then consider that
chain covering as a colouring. However, to see that this idea works, we need to
argue that there is an online solution g to the interval chain covering problem
which uses only the information about comparability of various elements, and not
their ordering.

We first prove the following. Suppose that (P,) is a online interval ordering
of width k. Then P can be online covered by 3k � 2 many chains. We need the
following lemma. For a poset P , and subsets S, T , we can define S  T i↵ for each
x 2 S there is some y 2 T with x  y. (Similarly S|T etc.)

Lemma 4.19. If P is an interval order and S, T ⇢ P are maximal antichains the

either S  T or T  S.

Proof. The argument is interesting and instructive. It uses induction on k. If k = 1
then P is a chain, and there is nothing to prove. Suppose the result for k, and
consider k = 1. We define B inductively by

B = {p 2 P : width(BP [ {p})  k}.
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Here Bp denotes the amount of B constructed by step p of the online algorithm.
Then B is a maximal subordering of P or width k. By the inductive hypothesis
the algorithm will have covered B by 3k � 2 chains. Let A = P � B. Now it will
su�ce to show that A can be covered by 3 chains.

To see this it is enough to show that every elements of A is incomparable with at
most two other elements of A. Then the relevant algorithm is the greedy algorithm,
which will cover A, as we see elements not in B.

Lemma 4.20. The width of A is at most 2.

Proof. To see this, consider 3 elements q, r, s 2 A. Then there are antichains Q,R, S
in P of width k with q|Q, r|R and s|S. Moreover these can be taken as maximal
antichains. Applying Lemma 4.19, we might as well suppose Q  R  S. Suppose
that r|q and r|s. Then we prove that q < s. Since q|r and width(P )  k+ 1, there
is some r0 2 R with q and r0 comparable. Since q|Q, r0 62 Q. Since the width of
B is  k, there is some q0 2 Q q0 and r0 comparable. Since Q  R, there is some
r0 2 R with q0  r0. Since eR is an antichain, q0  r0. Since q|q0, q  r0. Similarly,
there exists r00 2 R with r00  s. Since P does not have any ordering isomorphic to
2+ 2, we can choose r0 = r00, and hence q < s. ⇤

Now we suppose that r, q, s, t are distinct elements of A with q|{r, s, t}. Then
without loss of generality r < s < t since the width of A is at most 2. Since s 2 A
there is an antichain S ⇢ B of length k with s|S. Since s|q, and width(P )  k+1,
q is comparable with some element s0 2 S. If s0 < q, then s0|r and hence the
suborder {s0, q, r, s} is isomorphic to 2 + 2. Similarly, q < s0 implies s0|t and then
the subordering {q, s0, s, t} is isomorphic to 2+2. Thus there cannot be 4 elements
r, q, s, t of A with q|{r, s, t}. Hence A can be covered by 3 chains. ⇤

It is easily see that the procedure above uses only comparability of intervals.
Thus, the theorem follows. ⇤
Problem 4.21. Investigate online reduction between online algorithms in the lit-

erature.

We also expect that the online reduction may lead to new online algorithms
based on the already existing ones.

Also graphs with constrained decompositions such as those of bounded treewidth,
pathwidth, clique-width, etc have been extensively studied in the literature, and
particularly combine well with algorithmic meta-theorems (see e.g. Downey-Fellows
[13], Flum and Grohe [19], Grohe [24] for a sample).

One example is given by k-interval graphs met above which are those of path-
width  k.. A G of pathwidth k has a path decomposition which is a collection of
sets of vertices V1, . . . , Vn all of size  k + 1 such that for all vertices v 2 V (G),
there is at least one i with v 2 Vi, if xy 2 E(G), then for some i, {x, y} ✓ Vi and
finally if x 2 Vi and x 2 Vj (with i < j) the for all q 2 [i, j], x 2 Vq. The last
property is called the interpolation property, and says that pathwidth is kind of a
measure of how far you are from being either a grid or a clique.

Now given such a path decomposition, and some optimization property we want
to solve (such as for the largest clique), if the property is definable in monadic
second order logic (even with counting), then we can solve the problem by dynamic
programming (actually using special automata) beginning at V1 and finishing at Vn

by the methods of Courcelle [13, 19, 24].
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Problem 4.22. Investigate the extent to which this dynamic programming is on-

line. Presumably, it will be online for properties defined by monadic second order

counting logic with counting modulo some kind of delay.

Moreover, as we have seen above for the special case of colouring above, we get
a constant ratio approximation algorithm, for a graph of pathwidth k, no matter
how we are given the online presentation. The di↵erence is that if we are a given a
path decomposition as the presentation, then k+1 colours will su�ce. But perhaps
the methods for colouring are more general. The point is that graphs of bounded
pathwidth have very constrained structure.

Problem 4.23. Investigate the approximability of monadic second order definable

properties on graphs of bounded pathwidth, but given as arbitrary online presenta-

tions.

The same can be asked for graphs of bounded treewidth which has the same
definition as pathwidth, but the structure of the decomposition is a tree and not
a path. These also have dynamic programming algorithms, but are always leaf to

root, whereas even given a tree decomposition as an online root to leaf structure,
presumably some kind of algorithm will work, but it will no longer be automatic.
This seems a great area to pursue.

5. �0
2 processes, finite reverse mathematics, and Weihrauch

reduction

Imagine we are in a situation where the data we are dealing with is so large
that we cannot see it all. At each stage s our goal is to build a solution f to some
problem. But there might be no hope of giving a fixed solution at each stage n, and
we would update our solution as more information becomes available. So for each
n  s we would be computing f(n, s) from the finite information � with |�| = n.
For simplicity we state the next definition for combinatorial problems with totally
disconnected representations, and take 2! as the representing example.

Definition 5.1. A limiting online algorithm on 2! is a computable function A such

that for each s, A(↵ � s) computes a string {fA(n, s) | n  s} such that lims fA(n, s)
exists for each n.

As usual we would have A(↵ � g(s)) for the g-online version.

We can then compare combinatorial problems by how fast their limits converge.

Definition 5.2. We say that algorithm A O,lim B if there is an online Weihrauch

reduction of A to B such that fB(n, s) = fB(n, t) for all t � s implies fA(n, s) =
fA(n, t) for all t � s.

This gives a fine grained measure of the complexity of combinatorial problems.
For example, consider the “theorem” that every finite binary tree of height n has a
path of length n. Then we can consider the existence of a uniform function A which
takes a given binary tree of height n to a path. This is an online limit problem
where the underlying space X is that with nodes generated by the collection of
binary trees of height n at level n. The completion of this will represent paths
through infinite binary trees.

Remark 5.3. We could argue that the Reverse Mathematics principle WKL0

which states that every infinite binary tree has a path, is equivalent to the statement
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that there is a limiting online algorithm for finding paths which works on X. We
call this limiting online paths.

A binary tree T of height n is called separating if for each j  n�1, for any node
� on T of height j, and i 2 {0, 1}, if � ⇤ i does not have an extension in T of height
n, then for all ⌧ of length j, neither does ⌧ ⇤ i. Let XS be the totally disconnected
space representing the collection of all separating finite trees. The following is a
online interpretation and refinement of the classical fact that Weak König’s Lemma
is equivalent to Weak König’s Lemma for separating classes.

Proposition 5.4. There is a (2n+1 � 2)-limiting online reduction which finds lim-

iting online paths in X from those in XS.

Proof. We remind the reader of how this proof works. Suppose we have a tree Ts

of height s. In an online fashion, we will generate a tree H of height 2s+1. This
is done inductively. At step 1, we can think of the nodes labeled 0 and 1 in T as
being represented by 0 and 1 in H. At step 2, in T it is possible for us to have
00, 01, 10, 11 and these are represented by 4 levels in H, with height 2 representing
00, level 3 01, level 4 10, and level 5 11. Now we continue inductively. This makes
level n of T correspond to trees of height 2 + 4 + · · · + 2n = 2n+1 � 2. As the
construction proceeds, if some � fails to have an extension at length s, in Ts, there
will be some shortest �0 � � which fails to have a length s extension in Ts. Then
in Hs, we don’t extend to length s (from length s � 1) all paths corresponding to
⌫ ⇤ j with j representing �0 in Hs�1.

Consider any limiting online algorithm for finding a path for path ↵ correspond-
ing to H, in X0, This naturally and in a online way allows us from level 2s+1 to
generate an online path in Ts, and is clearly a limiting online reduction. ⇤

Problem 5.5. Figure out the smallest g in place of 2s+1
in the reduction above,

which would give a precise measure of how tight the reverse mathematics relation-

ship is.

There seems a whole research programme available here. For example, we could
be given an online bipartite graph B� for � � ↵. We either have to build a
complete matching or demonstrate that Hall’s condition fails. One representation
of this problem will involve a compact space where then nodes are bipartite graphs
of height 2n, say, and where the paths all represent graphs which obey Hall’s
condition. The online operator will act on this compact tree of representations for
graphs B�. Now as the process goes along, we might have to update the solution
at hand. That is, the online process has B� 7! M�,

One intriguing example is that of finding a basis in a vector space. In the case
that the vector space is over the rationals, then presumably this will correlate to
some principle like ACA0. But consider a finite field such as GF(2). We know
that RCA0 proves that we can find a basis for a vector space for this field. But
it is not hard to construct an online vector space over GF(2) for which there is
no online algorithm to do this, unless we have a computable delay. Comparing
the online complexity of such problems with such computable delay would see
to give significant insight into the fine structure of reverse mathematics. In this
particular case, we also note that a polynomial time algorithm for finding a basis of
a polynomial time vector space was proven to be equivalent to P = NP suggesting
intriguing connections with complexity theory.
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We remark that there are many processes that have been investigated and fall
under the model we have introduced. One such example is algorithmic learning
theory, such as EX-learning (Gold [23]). Here one is presented with a0, a0, . . .
values for a function f(0), f(1), . . . , and we need to eventually print out an index for
'e = f from some point onwards. This is clearly an example of an online algorithm,
and fits into this section as a limiting algorithm. Perhaps there are connections
with this and reverse mathematics, and this remains to be explored. Another area
which could be incorporated would be asynchronous computing. Here we have
a series of agents A1, . . . , Ak communicating through asynchronous channels, and
attempting to compute a set of functions f1, . . . , fk, where there might be e.g.
some kind of crash failure meaning that one of the agents dies and stops sending
signals. For example, the Consensus problem asks for all the fi’s which have not
crashed to give the same value. A run could be represented in a space of possible
communications and failures. There are a number of reductions which have been
produced in this area, showing that Consensus is a certain kind of minimal failure,
and other problems can be solved if Consensus can (Chandra and Toueg [11]). It
would be interesgting to see if these results can be placed in the hierarchy of online
limiting reductions, since they appear to look like online limiting reductions.

Finally, one exciting possibility would be to include randomization in this set-
ting. Randomized online algorithms are quite common in practice (see e.g. Albers
[3]). For us we could use the theory of algorithmic randomness (see [14, 39, 44])
easily. For example, an online algorithm with randomized advice (i.e. representing
a coin toss at each stage) could be done via (using 2! as a representative space)
by considering online algorithms from 2! ⇥ 2! ! S, with S some solution space,
with the first copy of 2! representing the problem, the second representing “advice”
strings and S the solution space. The online algorithm could take (�, ⌧) ! sn, and
would run on extensions of ⌧ provided that [⌧ ] avoids some algorithmic randomness
test, such as a Martin-Löf test. Using oracles we could also tie this to the theory of
algorithmic randomness using the “fireworks” method of Shen (see Bienvenu and
Patey [8]). These ideas remain to be explored.

6. Real functions.

So far all objects of study have been discrete. However, there is a perfectly
reasonable extension of these ideas to continuous objects such as the space of con-
tinuous functions on the unit interval. There has been a lot of work on complexity
theory of real functions; see, e.g., book [37]. The main goal of this section is to
demonstrate the role of primitive recursion as a useful abstraction. The content
of this section is not technically hard, but one can easily imagine a much deeper
general framework that could emerge from these basic ideas.

Recall that a Cauchy sequence (ri)i2N of rationals is fast if |ri � ri+1| < 2�i, for
every i. These are the names which represent the space. A function f : [0, 1] ! R
is computable if there is a Turing functional � such that, for each x 2 [0, 1] and
for every fast Cauchy sequence � converging to x, the functional � enumerates
a fast Cauchy sequence for f(x) using � as an oracle. In particular, using the
terminology, we would be generating a representation of the function via names
of Cauchy sequences in such a way that it is representation independent. That
is, (��(n))n2N is a fast Cauchy sequence for f(x). This in particular means that,
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on input (ri)i2N, the use of �(ri)i2N(j) corresponds to � when ✏ = 2�j+1 in the
standard ✏-� definition of a continuous function.

It is well-known that Weierstrass approximation theorem is e↵ectivizable in the
sense of Turing computability [45]. This means that a function f : [0, 1] ! R is
computable i↵ there is a computable sequence of polynomials (pi)i2N with rational
coe�cients with the property

supx2[0,1]|f(x)� pi(x)| < 2�i,

for every i.
We have seen that the most general definition of being online for combinatorial

structures involves being g-online for some primitive recursive function g. That is,
there is a translation between using g(n) many bits of ↵ to compute n bits of f(↵).
We have also seen that for most natural online situations, we can translate this to
a wider tree where ↵0 � n represents ↵ � g(n), so we can use obT procedures. It is
not completely clear if this is natural in the setting of analysis, since we might wish
to stick to standard representations of the spaces, like 2! and !!, as above.

We first consider the most general setting where we allow g-online for a primitive
recursive g, so using g(n) bits to decide the output for length n. We will call this
punctually computable. In this case, there are two natural definitions of what it
would mean for such an f to be “online” computable in the most general sense
of primitive recursion. The first notion is the most straightforward sub-recursive
version of the standard definition.

Definition 6.1. A function f : [0, 1] ! R is punctually computable if there is a
primitive recursive functional � such that, for each x 2 [0, 1] and for every fast
Cauchy sequence � converging to x, the functional � enumerates a fast Cauchy
sequence for f(x) using � as an oracle.

By restricting ourselves to dyadic rationals, we can assume that fast Cauchy
sequences come from a compact totally disconnected space of the names of dyadic
rationals in [0, 1]. Thus, Lemma 2.10 can be applied to ensure that there is no
ambiguity in the notion of a primitive recursive functional in this case. In particular,
the definition has a natural polynomial-time version which we omit (see [37]); the
same applies to any natural complexity class which may be of interest.

The second version filters through the theorem of Weierstrass. It views f as a
primitive recursive point in the metric space (C[0, 1], sup) rather than as a func-
tional.

Definition 6.2. A function f : [0, 1] ! R is uniformly punctually computable if
there is a primitive recursive function which on input i outputs (the index of) a
polynomial pi with rational coe�cients such that supx2[0,1]|f(x)� pi(x)| < 2�i.

Clearly, there is a natural polynomial-time modification of the definition above
which we omit.

Every uniformly punctually computable f is punctually computable. Are these
two definitions equivalent? It is not completely evident why Weierstrass approxi-
mation theorem should hold primitively recursively. Indeed, in the standard Turing
computable proof we would wait for a cover of [0, 1] by �i-balls Bi such that f(Bi)
has diameter < ✏, for every i. It seems that even when f is punctual this search
could be unbounded.
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Nonetheless, the theorem below shows that these definitions are equivalent. This
result is not really new. With some e↵ort its proof can be extracted from book [37],
but the book is mainly focused on polynomial time and exponential versions of the
definitions above. There is much combinatorics specific to complexity theory which
significantly obscures the idea behind the proof. Primitive recursion strips away
complex counting combinatorics thus clarifying the idea.

Theorem 6.3. Every punctually computable f : [0, 1] ! R is uniformly punctually

computable.

Proof sketch. The idea here is similar to that in the proof of Lemma 2.10. Fix n
and consider the functional  x

n
= �x(n) which uniformly primitively recursively

outputs the fest few bits of f(x) up to error 2�n, for any input x. Since  n is given
a primitive recursive scheme (with parameter n), we can work by induction on the
complexity of the scheme and emulate all its possible computations at once, as in
Lemma 2.10. Since the space of dyadic presentations of rationals is primitively
recursively compact, this will lead to a primitively recursively branching tree of
possible computations whose height is determined by the syntactical complexity of
the primitive recursive scheme. By the choice of n, one of these computations must
work for an arbitrary x 2 [0, 1]. Thus, we have primitively recursively calculated
an open cover [0, 1] by basic open intervals J1, . . . , Jk, such that whenever x, y 2 Ji
we have |f(x) � f(y)| < 2�n+1. If zi is the center of Ji, then define (the graph
of a) piecewise linear function hn by connecting points (zi, zi

n
) and (zi+1,�

zi+1
n ),

i = 1, . . . , n-1. Note that the values of the �zi
n

have already been calculated. Since
the intervals are overlapping, this piecewise linear function hn approximates f with
precision 2�n+2. We can primitively recursively smoothen hn by replacing it with
a polynomial pn such that supx2[0,1]|pn(x)� f(x)| < 2�n+3. ⇤

See Chapter 8 of [37] for a detailed analysis of the polynomial-time versions
of Weierstrass approximation theorem. Recall that in the proof sketch above we
generated the tree of possible computations. For a polynomial-time operator this
tree may be exponentially large at worst. This di�culty cannot be circumvented
and the polynomial-time analogy of the theorem above fails as explained in great
detail in [37].

We see that punctual analysis fits somewhere in-between computable analysis
and polynomial-time analysis, and there is likely much depth in the subject. Such
a theory could provide us with a stronger technical link between computable and
feasible analysis. Nonetheless, is seems there has been no dedicated study of prim-
itive recursive continuous functions and punctual presentations of analytic spaces.

Problem 6.4. Develop primitive recursive (“punctual”) analysis.

Now in the case that we want to look at the strictly online model, we are stuck
with using, for instance, the bit representation of a real x, and would be working,
for example, with 2!. Then to compute f(x) with precision 2�n we would need
x � n. We might ask for delay k so might use 2�(n+k). Now in this case, we
see that, for example addition is online (on 2! ⇥ 2!) with delay 2, and if f is a
given online computable function which is bounded then

R
x

0 f(x)dx would also be
online computable with delay 2. We remark that this model would seem to be
one emulating classical numerical analysis. This fine-grained analysis of what is
actually carefully online seems completely open.
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