
Journal of Computer and System Sciences 108 (2020) 49–63

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

On low for speed oracles

Laurent Bienvenu a,∗, Rod Downey b

a LaBRI, CNRS & Université de Bordeaux, France
b School of Mathematics and Statistics, Victoria University of Wellington, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 June 2018
Received in revised form 11 July 2019
Accepted 15 August 2019
Available online 17 September 2019

Keywords:
Oracle computations
Lowness for speed

Relativizing computations of Turing machines to an oracle is a central concept in the theory
of computation, both in complexity theory and in computability theory(!). Inspired by
lowness notions from computability theory, Allender introduced the concept of “low for
speed” oracles. An oracle A is low for speed if relativizing to A has essentially no effect
on computational complexity, meaning that if a decidable language can be decided in time
f (n) with access to oracle A, then it can be decided in time poly(f (n)) without any oracle.
The existence of non-computable such A’s was later proven by Bayer and Slaman, who even
constructed a computably enumerable one, and exhibited a number of properties of these
oracles. In this paper, we pursue this line of research, answering the questions left by Bayer
and Slaman and give further evidence that the class of low for speed oracles is a very rich
one.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The subject of this paper is oracle computation, more specifically the effect of oracles on the speed of computation. There
are many notable results about oracles in classical complexity, beginning with the Baker-Gill-Solovay result [4] which asserts
that there are oracles A such that PA = NPA , but that there are also oracles B such that PB ≠ NPB (thus demonstrating
that methods that relativize will not suffice to solve basic questions like P vs NP). An underlying question is whether oracle
results can say things about complexity questions in the unrelativized world. Eric Allender and his co-authors [1,2] showed
that oracle access to the sets of random strings could give insight into basic complexity questions. For example, in [2],
Allender et al. showed that PSPACE ⊆ ∩U PR KU ∩ COMP where R KU denotes the strings whose prefix-free Kolmogorov
complexity (relative to universal machine U) is at least their length, and COMP denotes the collection of computable sets.
Later the “∩COMP” was removed by Cai et al. [7]. Thus we conclude that reductions to very complex sets like the random
strings somehow give insight into very simple things like computable sets.

Inspired by lowness notions in computability theory, Allender asked whether there were non-trivial sets which were “low
for speed” in that, as oracles, they did not accelerate running times of computations by more than a polynomial amount. Of
course, as stated this makes little sense since using any X as oracle, we can decide membership in X in linear time, while
without oracle X may not even be computable at all! Thus, what we are really interested in is the set of oracles which do
not speed-up the computation of computable sets by more than a polynomial amount. More precisely, an oracle X is low for
speed if for any computable language L, if some Turing machine M with access to oracle X decides L in time f , then there
is a Turing machine M ′ without oracle and polynomial p such that M ′ decides L in time p ◦ f . (Here computation time of

* Corresponding author.
E-mail addresses: laurent.bienvenu@labri.fr (L. Bienvenu), rod.downey@vuw.ac.nz (R. Downey).

https://doi.org/10.1016/j.jcss.2019.08.007
0022-0000/© 2019 Elsevier Inc. All rights reserved.

50 L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63

oracle computation is counted in the usual complexity-theoretic fashion: we have a “query tape” on which we can write
strings, and once a string x is written on this tape, we get to ask the oracle whether x belongs to it in time O (1).)

There are trivial examples of such sets, namely oracles that belong to P, because any query to such an oracle can be
replaced by a polynomial-time computation. Allender’s precise question was therefore:

Is there an oracle X /∈ P which is low for speed?

Such an X , if it exists, has to be non-computable, for the same reason as above (if X is computable and low for speed,
then X is decidable in linear time using oracle X , thus – by lowness – decidable in polynomial time without oracle, i.e.,
X ∈ P).

A partial answer was given by Lance Fortnow (unpublished), who observed the following.

Theorem 1.1 (Fortnow). If X is a hypersimple and computably enumerable oracle, then X is low for polynomial time, in that if L ∈ PX ,
then L ∈ P.

Allender’s question was finally solved by Bayer and Slaman, who showed the following.

Theorem 1.2 (Bayer-Slaman [3]). There are non-computable, computably enumerable, sets X which are low for speed.

Once their existence is established, it is natural to wonder what kind of sets might be low for speed. A precise
characterization seems currently out of reach, but it is interesting to see how lowness for speed interacts with other
computability-theoretic properties. One needs however to keep in mind that lowness for speed is not closed under Tur-
ing equivalence: as we saw above that in the 0 degree (computable sets) some members are low for speed and others that
are not (on the other hand it is easy to see that if A is polynomial-time reducible to B and B is low for speed, then A is
also low for speed).

In his PhD thesis, Bayer showed that if X is computably enumerable and of promptly simple Turing degree, then X
is not low for speed, but also proved that this did not characterize the computable enumerable oracles that are low for
speed. Bayer also studied the size of the set of low for speed oracles, where ‘size’ is understood in terms of Baire category.
Surprisingly, whether the set of low for speed oracles is meager or co-meager depends on the answer of the famous P =?NP
question.

In this paper, we continue Bayer and Slaman’s investigation on the set of low for speed oracles. In the next section, we
give an easier proof of the existence of non-computable low for speed oracles which does not require the full Bayer-Slaman
machinery (but the oracle we construct is not computably enumerable). In Section 3, we focus on the computably enumer-
able low for speed oracles, and prove that – quite surprisingly – they cannot be low in the computability-theoretic sense,
but can however be low2. Finally, we pursue Bayer and Slaman’s idea to study how large the set of low for speed oracles is,
in terms of measure and category. In particular, we solve a question they left open by showing that the set of low for speed
oracles has measure 0 and obtain some interesting connections with algorithmic randomness. Finally, though lowness for
speed is not closed under Turing equivalence it is nonetheless natural to ask which Turing degrees contain a low for speed
member, which is what Section 5 is about.

Throughout this paper, we will denote by {0, 1}∗ the set of finite strings. In our setting, an oracle is a language, i.e., a
subset of {0, 1}∗; however, as is typical in computability theory, it is more convenient in some of the results we present
below to view oracles as infinite binary sequences (whose set we denote by {0, 1}ω), by first identifying finite strings with
integers (the (n +1)-th string in the length-lexicographic order being identified with n) making the oracle a subset of N and
then identifying the oracle with its characteristic sequence (the (n + 1)-th bit is 1 if n belongs to the oracle, 0 otherwise).
When building oracles X with certain computability-theoretic properties, viewed as infinite binary sequences, we will often
need to refer to prefixes of X , which are themselves binary strings. To avoid confusion between members and prefixes of
oracles, we will use Latin letters x, y, z, . . . to denote members of oracles, and Greek letters σ , τ , . . . for prefixes of oracles.
Two strings σ and τ are incompatible if for some i < min(|σ |, |τ |), σ (i) ̸= τ (i). We denote this by σ ⊥ τ . The join X ⊕ Y of
two infinite binary sequences X, Y is the sequence X(0)Y (0)X(1)Y (1) Finally X ! n is the prefix of X of length n.

Our paper requires some knowledge of computability theory and algorithmic randomness. One can consult the book [9]
for the results and concepts we allude to below. Our notation is mostly standard. We denote Cantor’s pairing function by
⟨., .⟩. We also fix an effective list ($e) of all oracle Turing functionals (or machines: $A

e is the Turing machine of index
e with oracle A, which for a fixed A is a partial function from {0, 1}∗ to {0, 1}). For a given functional $e and oracle A,
time($A

e , x) denotes the running time of $e on input x with oracle A (counting time according to the model of computation
described above) and time($A

e) is the function x ,→ time($A
e , x). We let (Ri) be an effective enumeration of all partial

computable functions from {0, 1}∗ to {0, 1}. We denote the set of low for speed oracles by LFS, and the subset of LFS
consisting of its non-computable elements by LFS∗ .

L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63 51

2. Existence of non-computable low for speed sets

In this section we will present a simple proof of the existence of a non-computable low for speed oracle. Define the set
S of strings by S = {02n | n ∈N} and – identifying S with a set of integers as discussed above – let S be the set of ‘sparse’
infinite binary sequences (viewed as sets of integers) that only contain elements from S , that is, S = {X ∈ {0, 1}ω | X ⊆ S}.

By extension, we say that a string σ is in S if it is a prefix of some element of S. The interest of the set S is that
there are only O (n) strings in S of length n. Thus, given a Turing machine $, it is possible to simulate in time poly(t) the
behavior of $X during t steps of computation on all X ∈ S (an idea which is already present in the Bayer-Slaman argument
presented in the next section).

Theorem 2.1. There exists a non-computable X which is low for speed.

Proof. We want X to satisfy all requirements R(e,i) , where e, i range over integers, defined as follows

R(e,i): either Ri is partial, or $X
e ≠ Ri , or $X

e = Ri but the computation of Ri via $X
e can be simulated by a functional

% running in time polynomial in time($X
e).

We build our oracle X by finite extension. Let σ0 be the empty string. At stage s + 1 = ⟨e, i⟩, do the following.

(a) If there is an n and a τ ∈ S extending σs such that $τ
e (n) and Ri(n) both converge and have different values, then let

σs+1 be the first (say in length-lexicographic order) such string τ .
(b) If there is no such string τ , then take σs+1 = σs0.

Finally let X be the unique infinite sequence extending all σs . We claim that X is as wanted. Let us first prove that X
must be incomputable. Suppose X = Ri for a total Ri . Let e be an index such that $e is the identity functional. By con-
struction, when choosing the prefix τ of X at stage s + 1 = ⟨e, i⟩, we must be in case (a), and thus τ is precisely chosen
to ensure X ≠ Ri , a contradiction. Let us now prove that X is low for speed. Fix a pair (e, i) let s + 1 = ⟨e, i⟩, and let us
see how σs+1 was constructed. If we were in case (a) at that stage, we have ensured $σs+1

e ⊥ Ri and thus $X
e ⊥ Ri , thereby

satisfying R(e,i) . If we were in case (b), there are three subcases:

• Either Ri is partial, then the requirement R(e,i) is satisfied.
• Or there is an n such that $τ

e (n) ↑ for any extension τ of σs , in which case $X
e (n) ↑ and thus $X

e ≠ Ri should Ri be
total.

• Or, if we are in neither of the two above cases, for every n there is an extension τ of σs such that $τ
e (n) ↓, and for any

such τ , we have $τ
e (n) = Ri(n). In this case, we can build a functional % which computes Ri as follows. On input n, at

stage t , it computes $τ
e (n) during t steps of computation for all τ ∈ S of length t extending σs . If a τ is found such

that $τ
e (n) ↓, then we set %(n) = $τ

e (n). As we already mentioned, there are only O (t) strings of length t in S and
it is obvious that they can be listed in polynomial time. Hence, simulating all computations $τ

e (n) during t steps can
be done in time p(t) for some polynomial t . This shows that for any Y ∈ S extending σs , if $Y

e (n) returns (the value
of Ri(n)) in time t , this is found out by the procedure % at stage t , which corresponds to

∑
s≤t p(s) + O (1) steps of

computation for %, which is also polynomial in t . This being true for any Y ∈ S extending σs , we have in particular
that time(%) = poly(time($X

e)). ✷

One should note that the case disjunction in this proof is a &1/'1 dichotomy, and therefore one can carry out the
construction below 0′ , therefore establishing the existence of a 0′-computable set that is low for speed. This is weaker than
the Bayer-Slaman result presented in the next section, which asserts the existence of a c.e. such set. However, this proof is
simpler and, as we will see in the remainder of the paper, has further useful corollaries.

3. Computably enumerable low for speed sets

We now restrict ourselves to the computably enumerable (c.e.) sets, and study which of these can be low for speed. For
the sake of completeness, we present the main ideas of the proof of Bayer and Slaman [3] that there are indeed c.e. sets in
LFS∗ . We give a full proof of this result as no proof has appeared beyond Bayer’s unpublished PhD Thesis.

Theorem 3.1 (Bayer-Slaman Theorem). There exist c.e. non-computable sets that are low for speed.

Proof sketch. The proof uses a tree-of-strategies argument. We need to satisfy

Pe : A ≠ We,

and

Le,i : If $A
e = Ri total, then some % computes Ri in time polynomial in time($A

e).

52 L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63

The Pe-strategy is a standard Friedberg-Muchnik strategy on a tree. A node ρ devoted to this requirement picks a fresh
follower x, waits for x ∈ We[s]and if this happens puts x into A. The ρ-node has two outcomes 1 <L 0. 1 represents the
fact we have actually diagonalized Pe .

We will represent Le,i on the tree of strategies as a node τ with outcomes ks <L kw <L ∞ <L w . The letters ki represent
the “kill” outcomes, meaning that we have or will successfully diagonalize Le,i , with ks we have actually diagonalized, and
kw meaning that either we don’t have to worry about it further or at some stage we will kill it, ∞ meaning that % emulates
$A

e and w means that $A
e is partial or Ri is partial. Before we discuss how this is played in the actual construction we will

look at the basic module.
The basic module for Le,i is the following. First, throughout the whole construction of A, we will promise that if we

add an element x to A at stage t , then we must immediately also add all y ∈ [x, t](this is often referred to as a dump
construction). This way, at any stage s, there will only be at most s strings α of length s that can potentially be a prefix of
(the final) A. And thus – just like in the previous section – at stage s, it is possible to emulate all computations $α

e (x)[s]
for all such α’s and x ≤ s in time poly(s).

During the construction, for every x ≤ s on which % is not defined yet, it computes all $α
e (x)[s]for all potential prefixes

α of A, and should one of them converge, defines %(x) to be the value of $α
e (x) for the α that has the fastest convergence.

If no $α
e (x)[s]converges, %(x) remains undefined.

In the actual tree construction, we will have several versions of % corresponding to the locations on the tree of strategies
on a single level. Each of these, as we see below, will have its own idea as to what might constitute a possible future
A-configuration, and hence for each such location τ it will be defining a version of %τ (x) only looking at τ -admissible
A-configurations α as oracles for $α

e (x), as described below.
For a single Le,i in isolation interacting with the P f , we will drop the τ , and only consider %. For each x with %(x) ↓,

if Ri ! x ↓= %(x) ! x we say that x is Ri -confirmed at stage s. Now, if at some later stage we find a value x such that Ri(x) ↓
and %(x) ̸= Ri(x), then we find the α such that %(x) = $α

e and add elements into A so that α becomes a prefix of A. On
the priority tree this corresponds to the outcome ks . We will protect this with priority Le,i . This action ensures $A

e ≠ Ri
and terminates the strategy. All strategies of lower priorities are then injured and must be reset. If we never find such an x,
this means that either $A

e is partial, or Ri is, or % = $A
e = Ri and by construction the running time of % is polynomial in

the running time of $A
e .

The above is enough for a single strategy in isolation. We now consider the modifications necessary for a single Le,i in
interacting with lower priority P f strategies which might want to add elements into A. The final key to the Bayer-Slaman
proof is the following. Suppose that at some stage s a strategy of lower priority wants to add an interval [y, s]of elements
into A. The problem is that the computations on this configuration might be slow. Perhaps for some x of length ≤ s we
have not as yet seen $As∪[y,s]

e (x) ↓. Even more importantly, we don’t even know that the value of this will agree with the
value %(x) we have already defined. (The problem with a c.e. set construction is that if we move away from a configuration
we cannot go back.)

The idea is the following. Ri has to confirm the computations, before we move to As ∪ [y, s]. That is, if n = ne,i,s is the
largest number for which we have defined %(n) and m = me,i,s is the largest number for which we have seen that

% ! m = $A
e ! m,

we would need to wait for a stage t where1

me,i,t > ne,i,s

to validly move A to At ∪[y, t]. Suppose that at stage s, P f asks us to make A extend As ∪[y, s]. We know that if we do this
action, that is make At extend As ∪ [y, s], at some stage t > s, then after stage t the only possible future A-configurations
will be ones extending As ∪ [z, t](and hence As ∪ [z, s]for z ≤ y) or extending As ∪ [q, u]for q ≥ t , and u > t and hence
extending [y, s]. We will call possible A-configurations extending As ∪[y′, t]for followers y′ ≤ y y-admissible at stage t . Thus,
as we see below, in the construction we will be defining %(n) on new values n only using subsets of the overall tree of
possible A-configurations. To wit: the strategy is predicated on the assumption that Ri = %A

e . Thus, the strategy “knows” that
the computations will be Ri -confirmed. Hence it is guessing that in the future A will move to a y-admissible configuration.
Now, if the longest Ri -confirmed %(x) computation at me,i,s , is not associated with a y-admissible configuration, we cannot
yet move to there. More subtly, while waiting for the confirmation of the existing $A

e computations, it would not be sensible
to issue new %(m) computations for m > me,i,s using y-inadmissible configurations, since this process might not terminate.
Thus the strategy is clear: For a single Le,i wanting to meet a P f by making At enter As ∪[y, t]for some t ≥ s, we will only
issue new %(m) values for m > me,i,s using $α

e (m)[t]-computations for y-admissible α.2 We will do so until % ! ne,i,s is
Ri -confirmed, or some y-admissible α gives us $α

e ! ne,i,s ≠ % ! ne,i,s . Whilst we are waiting we will let Le,i assert control
and ask that At extends As and in the tree construction, we’d be playing outcome τ w .

Now one of four things can happen.

1 The reader should note the t for the m function, and the s for the n. More on this point below.
2 The reader should note that we are not waiting for accessibility of the node representing Le,i to issue these descriptions, but at every stage t ≥ s. It is

only that we are constraining what oracles to use.

L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63 53

1. While we are waiting for the Ri confirmation for y, an even higher priority P f ′ asks us to extend As ∪ [y′, t]at some
t > s. In this case we’d replace y by y′ and continue but now using y′-consistent configurations. (In the construction,
by the way we assign followers it will be that y′ < y. Moreover this can only happen a finite number of times as the
priority is increasing.) The remaining cases assume that we are stuck on the highest priority y.

2. Ri -confirmation for y occurs at some stage t > s. In this case we would be free to let At+1 extend As ∪ [y, t]. This
corresponds to outcome τ∞. The reader should note that after this stage, if we enumerate any new % ! q computations
they must be consistent with Ri , assuming the hypothesis of Le,i , namely $A

e = Ri . If they were not, then Le,i would
assert control and ask that A extend the α giving this Ri -inconsistent computation, winning it forever.

3. We never see an Ri -confirmation for y. In this case, A will extend As with priority Le,i , and we have a global win for
Le,i . The true outcome of τ is w . (The reader should note that even though the outcome might be w , we might still
issue infinitely many new values for %.) As with all tree arguments, there will be another version of P f guessing this
&0

2-outcome for Le,i , and it is this version which will meet P f .
4. Some y-consistent α gives us $α

e ! ne,i,s ≠ % ! ne,i,s . Suppose that this disagreement occurs on argument x ≤ ne,i,s . In
this last case, we would abandon this version of P f , and Le,i would assert control to ask that A should extend one
of α or β , where β was the configuration which gave %(x). Note that β will be of the form of (an initial segment of)
At , or some As ∪ [q, t]for some q and α of the form As ∪ [r, t]. For a single Le,i , we would choose z = max{r, q}, and
let At+1 = As ∪ [z, t]. We would be waiting for Ri(x) ↓ and choose one of the two to extend to diagonalize Le,i . Note
that Le,i will request that At′ extend At+1 for t′ ≥ t + 1, until Ri chooses. This action would correspond to playing
τkw while we wait, and then τks should we see which Ri chooses and diagonalize. Note that this choice might never
happen, but in either case we have diagonalized Le,i . We will say that τ has transitioned into a Friedberg requirement, in
that our action will be the same as we would have done for some P f : we want to move A.

Now we consider two low for speed requirements Le,i and Le′,i′ say at nodes τ1 and τ2, respectively. This would mean
that Le,i has higher priority than Le′,i′ . In the usual method of tree arguments, if τ1 w ≤L τ2, then each time τ1∞ is played
we’d initialize τ2, meaning that all of its simulations and the like would need to start again. The case of interest is τ1∞ ≼ τ2.

As above, we’d be in a situation where the construction desires us to extend As ∪ [y, t]for some t ≥ s, either for the
sake of some P f guessing τ2∞, or some Le′′,i′′ at some τ3 guessing τ2∞ (in the sense of Case 4 above, which is also a
Friedberg-type situation). Before we would accede to this request, both of the τi ’s need to be made happy, meaning both
Ri - and Ri′ -confirmed. This happens in the obvious way.

First we would continue to extend As guessing τ2 f until τ2 processed the situation. Hence Le′,i′ would only be issuing
new %τ2 computations based on its view of y-consistent computations, that is y-τ2-consistent computations, which only
use α extending As ∪ [y′, t]for y′ ≤ y. Clearly this might never return, and hence τ1 needs to continue to issue new %τ1 (x)
computations on all possible configurations (for only 2 requirements). If τ2 never returns, τ1 does not care. If τ2 returns, it
will be in one of the 4 situations above. That is, either it will either have morphed in to a Friedberg action, and then in
the two requirement scenario, it is treated precisely as we did for one requirement by τ1, or τ1 returns as in Case 2. Now,
τ1, will work to extend As ∪ [y, t], and be exactly as in the original one requirement scenario. The only difference is that
the version τ2 guessing τ1∞ will only be issuing descriptions %τ2 consistent with its guess, and hence y-τ2-consistent, and
now τ1 only looks for y-consistent computations also.

Naturally, there will be a version of Le′ i′ guessing τ1 f which would act keeping Au extending At (the stage that τ2 was
confirmed), and pressing τ1 to confirm.

There are no difficulties extending this reasoning to more than 2 Le,i ’s, using similar inductive strategies. We turn to
some formal details, although we believe the reader could easily fill them in themselves at this point.

The construction. The priority tree will have nodes ρd for d ∈ {1, 0}, for each node ρ having odd length equal to 2e +1 and
associate with ρ a version Pρ of Pe . With each node τ of even length 2⟨e, i⟩, we put τ c on the tree for c ∈ {ks, kw , ∞, w},
associate a version of Le,i , Lτ with τ . Then the construction works in the obvious way. Beginning with the empty string λ,
we generate a string T P s which looks correct at stage s. This will have length ≤ s.

Case 1: Suppose that we have gotten to ν and |ν| = 2e + 1. In this case we will write ρ for ν to emphasize that it is a
P-type node.
1. It Pρ is already met (and has not been re-initialized), then ρ1 will be the next node to be processed.
2. If Pρ is not met and has no follower, we give Pρ a fresh follower y if it does not have one, and let T P s = ρ0.
3. If Pρ already has a follower y, see if y ∈ We(ρ),s . If y /∈ We(ρ),s , the next node to be examined at this stage will

be ρ0.
4. If y ∈ We(ρ),s , we set T P s = ρ1. If y ∈ As then Pρ is met, and we will keep At extending As with priority

ρ . Otherwise, for each τ∞ ≼ ρ , declare τ ’s target t(τ , s + 1) = s (which is greater than max{nρ,s, t(τ , s)} and
simpler to write) where 2⟨e, i⟩ = |τ |. For the longest such τ , declare that until the next τ -stage, τ -consistent
strings will only be of the form As ∪ [y′, t]for t ≥ s and followers y′ ≤ y. We will say that y is associated with
τ . In the case this is the stage we declared Pρ active, we let T P s = ρ1.
If there is no such τ∞ ≼ ρ , we will let As+1 = As ∪ [y, s]. Let T P s = ν1, and declare Pν as met.

Case 2: If |ν| = 2⟨e, i⟩. For clarity we will write τ for ν to emphasize that this is a L-type requirement.

54 L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63

1. This is the first time we visit ν (since initialization), give it target t(τ , s + 1) = 1. Let T P s = τ w .
2. If τ has been declared met and this has not been initialized, the next node is τks .
3. (i) If we see two τ -admissible As-configurations α = As ∪ [z, s]and β = As ∪ [y, s]and some x with $α

e (x) ↓̸=
$

β
e (x) ↓ and wlog z < y, then we would say that τ has become Friedberg, and we wish to make At extend

β at some future stage. In this case T P s = τkw . We will need to treat τ now as we did Pν above. That
is, for each τ ′∞ ≼ τ , declare τ ′ ’s new target t(τ ′, s + 1) = s where 2⟨e′, i′⟩ = |τ ′|. For the longest such τ ′ ,
declare that until the next τ -stage, τ ′-admissible strings will only be of the form As ∪ [y′, t]for t ≥ s and
y′ ≤ y. We will say that y is associated with τ ′ .

(ii) If τ has become Friedberg and we are visiting it again, declare that τ is waiting. Promise that At will extend
As+1 with priority τ henceforth unless the next item applies, playing τkw .

– If τ has become Friedberg and is waiting, there will be two τ -admissible configurations α and β and an
argument x where $α

e (x) ̸= $
β
e (x). If Ri(τ)(x) ↓ [s] ̸= $

As
e , declare that Lτ is met, and play outcome τks ,

as we will do henceforth. Promise that At extends As with priority τks . If Ri(τ)(x) = $
As
e , we will need

to move to the other configuration, which will be of the form As ∪ [y, s]for some y. Again we cannot do
this immediately, but will treat this as a new Friedberg action if this is the first time Ri (x) has chosen. We
declare τ as pending. Again we will treat the request to move to As ∪ [y, s]in the same way as we did Pν

as above.3 Let T P s = τkw . If there is no τ ′∞ ≼ τ we set As+1 = As ∪ [y, s]and T P s = τks . We declare Lτ

as met and promise to keep At extending As for t > s with priority τks .
For the rest of this case we are assuming that τ has not become Friedberg.
1. If t(τ , s) is defined see if Ri(τ) has confirmed %τ ! t(τ , s), using τ -admissible As-configurations α. If this ad-

missibility was determined by some y associated with some Pσ for σ extending τ then for each τ ′∞ ≼ τ ,
declare their targets to be t(τ ′, s) = s where 2⟨e, i⟩ is |τ ′|. For the longest such τ ′ , we associate y with τ ′ . The
τ ′-admissible configurations are now determined as we did for Pν , as those associated with y′ ≤ y. If there is no
such τ ′ define T P s = τ∞, and let As+1 = As ∪ [y, s]. This action will meet the active Pξ with follower y is there
was one. If there instead was a Lξ generating y then if ξ was pending, it will now be met. Otherwise make the
Lξ generating y waiting but now extending one of the two strings which kill it.
If τ is not associated with any y at this stage, then we declare that t(τ , s + 1) = t(τ , s) + 1, and that τ∞ is the
next node.
Finally, if t(τ , s) is defined and Ri(τ) has not confirmed %τ ! t(τ , s), declare τ w to be the next node.

Finally, at the end of stage, we increase the definition of any %τ (x) for any τ consistent with T P s and where $α(x) ↓ [s]
for the first time for α τ -admissible, initializing things strictly right of it.

This ends the construction.

The verification proves by simultaneous induction that if ν ≺ T P = lims T P s , then if ν has odd length, it will receive
attention finitely often and will be met, and if ν has even length, if νki ≺ T P , it is met by diagonalization, if ν∞ ≺ T P then
%τ correctly emulates $e(ν) , and m(ν, s) → ∞, so that Ri(ν) = $A

e(ν) , and if νw ≺ T P , then m(ν, s) ̸→ ∞. In the odd case
we would appoint a follower at some stage s. By induction we may assume that ν is visited infinitely often. Moreover as
this is the true path some follower appointed will be immortal. If this follower y never occurs in We(ν),s there is nothing
to prove as then ν0 ≺ T P and will be played each time ν is visited from some point onwards. If the follower is realized by
occurring in We(ν),s , then by assumption we will visit ν again, and put y into As+1, and henceforth play ν1.

In the case that ν has even length, suppose that we are at stage where we are never again strictly left of ν , nor dealing
with diagonalizations of strictly higher priority. Then %τ will never again be initialized, and ν has priority. If we saw
ν-consistent strings α, β we would thereafter play outcome νkw or νks , and ν would be met as it would be turned into a
Friedberg requirement and hence met for the same reason as for ν odd. Assuming that this does not occur, we can suppose
that any pair of ν-admissible strings give the same answer as %ν when used as oracles for $e(ν) . Note that if m(ν, s) ̸→ ∞,
then from some point onwards, we always play νw when we visit ν . Furthermore, this means that either $A

e is not total
since there must be some argument upon which no ν-admissible potential A paths (which are the A-paths if ν∞ ≺ T P)
gives a halting computation, or Ri is not total. So we may also suppose that m(ν, s) → ∞. The construction ensures that we
only ever move to τ -consistent strings from some point onwards. Numbers which will enter A will also come from nodes η
extending ν∞, or be canceled at ν∞ stages. This mechanism of the construction means that definitions of %ν come from
ν-admissible and confirmed computations, before we change to a new admissible path. Thus %ν correctly emulates $A

e(ν) .
The result follows. ✷

Within the c.e. sets, one would expect that a low for speed c.e. set would be one with little computational power, in the
same way that sets low for 1-randomness are all (super-)low (see Nies [18]). The next theorem is therefore quite surprising.

3 That is, again each τ ′∞ ≼ τ , declare τ ′ ’s target t(τ ′, s + 1) = s where 2⟨e′, i′⟩ is |τ ′|. For the longest such τ ′ , declare that until the next τ -stage,
τ ′-admissible strings will only be of the form As ∪ [y′, t]for t ≥ s and followers y′ ≤ y. We will say that y is associated with τ ′ .

L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63 55

Theorem 3.2. If A is non-computable, c.e. and of low Turing degree (i.e. A′ ≡T ∅′), then A is not low for speed.

Proof. Assume that A is not computable, is c.e., and is low. Let ($e, pe) be an enumeration of pairs of one functional and
one polynomial with coefficients in N . We will build a Turing functional % and a computable set R such that %A = R . This
is our global requirement and we make the following global commitment: if a value R(n) gets defined at some stage, %X (n)

is immediately defined to be equal to R(n) for all X ’s on which %X (n) is still undefined. We want to satisfy, for each e:

(Re) : $e does not compute R in time pe(time(%A))

thus proving that A is not low for speed. The strategy for a single requirement (Re) is the following. Throughout the
construction, we build a ‘verifier’, i.e., a partial computable S such that S(e, .) is the attempt by the (Re)-strategy to guess A,
that is, the (Re)-strategy will try to have S(e, l) = A ! l for all l (which is doomed to failure as A is non-computable). We
also define an auxiliary functional / common to all strategies whose index we know in advance, and use the lowness of
A to obtain a computable 0-1 valued function h(., .) such that limt h(e, t) exists for all e, and equals 1 when /A(e) ↓, 0
otherwise. (Informally, /X (e) ↓ means that a prefix of X is believed to be a prefix of A at some stage of the strategy for
(Re), and this will cause the strategy to enter Case 3 as described below.)

For the (Re)-strategy, we will need a variable l which is initially set to 0; for each l we will also have a pair of variables
(sl, tl) initially set to 0 (l, sl and tl are ‘local’ variables, other strategies will have their own l, sl and tl). Moreover, R , S and
/ are initially undefined everywhere. Then the procedure does the following.

Step I. Increase l by 1 and take for witness wl the smallest integer which has not been picked as a witness by any
strategy for any requirement.

Step II. Assign to sl the value of the current stage. Set %Asl !l(wl) = 0, and let tl be the time taken by this computation.

Step III. Simulate $e(wl) during pe(tl) steps of computation, and distinguish three cases.

Case 1: $e(wl) returns 1 in ≤ pe(tl) steps. In this case, we set R(wl) = 0 and R(wi) = 0 for all other witnesses wi
currently used by our (Re)-strategy. As indicated above, we further commit to having %A(wl) = 0 even after potential
future A-changes. This way we ensure $e ≠ R = %A , thus immediately satisfying (Re). We then mark this requirement
as satisfied (meaning it will never receive attention again), stop the strategy for this requirement and move on to other
requirements.

Case 2: $e(wl) returns 0 in ≤ pe(tl) steps. In this case, we do not define R(wl) just yet. Instead, we first check whether
for all i < l, S(e, i) = Asl ! i.

(a) If it is not the case, let i be smallest such that S(e, i) ̸= Asl ! i. This means that A ! i has changed between stages
si and sl , and so Asi ! i is not a true initial segment of A. Thus, even though we had set %Asi !i(wi) = 0 (during
Step II for i), we are free to set %Asl !i(wi) = 1 (and commit to keeping %A(wi) = 1), and then we can finally set
R(wi) = 1 = %A(wi) ̸= $e(wi). We also set R(w j) = 0 for all other witnesses w j currently used by our (Re)-strategy,
mark requirement (Re) as satisfied and terminate the strategy.

(b) If it is indeed the case, set S(e, l) = Asl ! l and then go back to Step I.

Case 3: $e(wl) is still undefined after pe(tl) steps. In this case, we set /Asl !l(e) ↓ (which should be interpreted as
signalling that we have entered Case 3). Observe that if Asl ! l is a true prefix of A, this implies /A(e) ↓ and therefore we
would have limt h(e, t) = 1. We again distinguish two subcases.

(a) The current value h(e, sl) is 0. Then we wait for a stage t > s such that either h(e, t) = 1 or At ! l ̸= Asl ! l (one of
the two must happen as we explained above). If the former happens first we move to subcase (b) below. If the latter
happens first, we go back to Step II.

(b) The current value h(e, sl) is 1. We then set R(wl) = 0 and commit to %A(wl) = 0 and further set R(wi) = 0 for all
other witnesses, and commit to %A(wi) = 0 as well. Then we wait – possibly forever – for a later stage t > sl where
h(e, t) = 0 and At ! l ̸= Asl ! l (moving on to other requirements while waiting). If this happens, we come back to our
(Re)-strategy where we left it and go back to Step I.

We claim that this strategy satisfies the requirement (Re). First let us see why the strategy eventually stops acting. We
can only find ourselves in Case 3b of Step III finitely many times during the whole strategy as each passage through this
case causes a flip of h(e, .), and we know h(e, .) converges. Similarly, Case 2b of Step III can also happen only finitely often,
because otherwise for every i, for every l > i, S(e, i) = Asl ! i which, since the sequence sl tends to ∞, means S(e, i) = A ! i
for all i, and thus A would be computed by S(e, .), a contradiction. Since Case 3b and Case 2b are the only cases that cause

56 L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63

l to change by going back to Step I, l must eventually stabilize. Now, once l has reached its final value, Case 3a can only
happen finitely many times at level l since As ! l can only change 2l times.

Thus we either eventually end up in Case 1, or Case 2a, or a terminal Case 3b (i.e., the strategy enters Case 3b and waits
there forever). This proves that the strategy stops acting eventually. To see that it further succeeds, notice that Case 1 and
Case 2a guarantee immediate success. It remains to check the scenario of a terminal Case 3b. Suppose the terminal Case 3b
happens for some Asl ! l which is not a prefix of A, this would mean that %A(wl) has not been defined yet and thus,
should nothing else happen, we would have limt h(e, t) = 0 and would see a change in A ! l, thus leaving this occurrence
of Case 3b, a contradiction. So Asl ! l is indeed a prefix of A and by construction %A(wl) returns 0 = R(wl) in a number of
steps tl while $e(wl) does not return in less than pe(tl) steps, thus the requirement is satisfied.

To finish the proof, it remains to notice a few things. First, this is an injury-free construction, different strategies pick
different witnesses and thus do not interact with each other. It thus suffices to address all requirements by dovetailing.
Moreover each strategy, when it stops acting, has defined R(w) for all its used witnesses w (be it in Case 1, Case 2a or
Case 3b). Given the way witnesses are picked at Step I, this guarantees that R will be defined everywhere. ✷

It is important to note that the above result fails to hold outside of the c.e. setting.

Theorem 3.3. There exists a low, non-computable set X which is low for speed.

Proof. See next section (Theorem 4.2). ✷

We next ask whether Theorem 3.2 is tight in terms of the lowness/highness hierarchy. Recall that A is low2 if A′′ ≡T ∅′′ .

Theorem 3.4. There is a low2 c.e. set that is low for speed.

Proof. The formal details of the proof of Beyer-Slaman Theorem are sufficiently complex that they hide the main ideas. In
this proof we will indicate the modifications necessary to make the proof work to make the set A low2, without resorting
to writing the whole proof in detail.

This time we must build A to satisfy the requirements of the Beyer-Slaman Theorem Pe and Le,i , and additionally:

Ne : (0A
e is total) → (/e is total),

where (/e) is a sequence of functionals we build. And 0e represents the e-th Turing procedure (We use 0e so as to
separate this requirement from the Le,i . Since we will be using a finitely branching priority tree we can replace Ne by the
following:

Ne : ∃∞s(0A
e believed to be total at s) → 0A

e total.

We have a node η devoted to his requirement. η will have two outcomes ∞ < f . So by this re-statement, we mean that
each time we believe 0A

e to be total playing η∞, we will increment /e , and hence &A
3 will be 00

3, as the true path of the
priority tree will be '0

2.
The basic idea is that at stages where the length of convergence ℓ(e, s) = max{x | ∀y ≤ x0A

e (y) ↓} increases we would
like to play η∞ and then preserve this computation.

To achieve this goal, we will add to the priority tree, not only mother nodes η where we build /, but below the outcome
η∞ nodes of the form νηx trying to preserve /A(x)[s], at any stage s we visit them. These nodes have only one outcome o,
since if η∞ ≺ T P , we must enforce νηx is met.

Of course, interpolated in these sub-requirements will be the ρ-type nodes (for P f) and τ -nodes (Le′,i), with these ηx
nodes arbitrarily deep down the tree, all occurring at some level for a fixed x. Note that they only occur below the ∞
outcome of η. Whenever we pass some νηx and the length ℓ(η, s) > x, we play outcome o, meaning that we think we can
preserve this computation and initialize all requirements of lower priority if this is the first time since νηx was initialized.

We now consider the interactions between these requirements. The key tension is that once we agree to move to an
A configuration of the form Â = As ∪ [n, s], then we are more or less committed to this. This is because the Friedberg
requirement (or one morphed into Friedberg) which began this request has limited the admissibility of α’s which it allows
various τ∞ requirements to build their simulations %τ . If now we were denied the ability to move to Â at some future
stage, then this belief is wrong. This fact means that if a lowness type requirement asks us to preserve the As current
configuration, this causes real conflict.

As we have seen, this timing conflict is strong enough that it is impossible to resolve if we want to make A low, but we
have a way around this if A needs only be low2.

P-type requirements above η or L ones that have morphed into Friedberg ones will simply initialize η. This can happen
only finitely often.

Consider an L-type requirement at a node τ . If τ∞ ≼ η, then there is no real problem, since η will await the conclusion
of any pending confirmations before it actually believes the ℓ(η, s) computation. That is, if we desired at some stage to

L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63 57

make A extend As ∪ [y, s]and we send confirmation requests up the priority tree if this request had reached τ and τ was
waiting for Ri(τ) to grow to confirm %τ ! t(τ , s), we would not pass τ∞ in the construction until the request was processes,
and when the highest priority request was processed, we would set At+1 = At ∪ [y, t]. Thus we would not even see an η
computation to preserve, except at a stage when there are no pending computations.

As always, the difficult configuration is when we have η∞ ≼ τ .
Now for a ρ requirement with η∞ ≼ ρ ≼ τ we would allow this to initialize τ as the action is finitary, and the same is

true of an νηx in place of ρ . This is similarly true for η∞ ≼ τ∞ ≼ ρ ≼ νηx , in the sense that νηx would be initialized when
ρ acts.

Thus the key configuration is η∞ ≼ τ∞ ≼ νηx ≺ ρ , since there are infinitely many such ρ .
The problem is that at a ρ stage we might issue a desire to make Â = As ∪ [y, s]be the new configuration. ρ is waiting

to do this until confirmation by τ , but in the interim νηx wakes up and declares that wants to preserve some computation,
whilst we are committing to Â = As ∪ [n, s]should we get Rτ confirmation.

The solution to this is to realize that this cannot happen. In the cone below η∞ the only outcome of ηx is o. That is, the
follower y of ρ can only be appointed after we have seen ℓ(η, s) > x, and at a τ∞ stage. Thus it will be too big to impact
the computation for x.

The remaining details go through as before. ✷

We can also combine the same ideas (dump construction together with awaiting for certification) with a more or less
standard proof that there exists an incomplete c.e. set A of high Turing degree (i.e., A′ ≡T ∅′′) to get the following. A little
care is needed with the coding markers for highness.

Theorem 3.5. There is a high c.e. set A which is low for speed.

Proof. We sketch the modifications needed for the highness requirements. To achieve this, for each e, we need coding
markers c(e, i, s) such that if e ∈ Tot then for almost all i, c(e, i, s) ∈ A, and if e ∈ Fin then only finitely many enter. The
location of a coding marker may be moved by the entry of some z ≤ c(e, i, s) into As . We set aside separate parts of ω for
each e.

Now the new highness He requirements replace P j . Consider the action at a node ρ . At stage s, ρ will have a least
unused coding marker c(e, i, s) which is not restrained. This can be thought of as taking the place of y. We see that ϕe
halts on another input so that Tot looks correct, and we desire to put c(e, i, s) into A. Again the target is At ∪ [c(e, i, s), t]
for some t ≥ s. The machinery in the Bayer-Slaman Theorem will allow this almost always along the true path. Now, when
we finally get to do this, at that stage, we will select new coding locations for

(i) All c(e, j, t + 1) for j > i, and for
(ii) Any c(e′, j′, t) where some c(e, i, s) < c(e′, k, t) for some k.

All we need to do is choose these so that they only move finitely often in the Fin case. Thus, for example, initially we might
have c(0, 0, s) < c(1, 0, s). Suppose that at stage t we enumerate [c(0, 0, s), t]into A and c(1, 0, s) was still alive at stage
t , then we’d ensure that c(0, 1, t + 1) > c(1, 0, t + 1), so that H0 could not force H1’s markers to ∞. With such a sharing
strategy, there are no new problems and the construction then goes through along the same lines. ✷

It might seem tempting to conjecture that if a is a degree computably enumerable in, and strictly above, 0′ then there is
some low for speed c.e. set A with A′ ∈ a. That is, the only restriction is lowness in terms of the jump hierarchy. However,
this is not true. Bayer [3] showed that no c.e. set of promptly simple degree can be low for speed. And Shore [21] and
Cooper [8] each showed that there are a degrees which are computably enumerable in, and strictly above, 0′ and such that
if A′ ∈ a, then A has promptly simple degree. Thus no such set can be low for speed.

Note that we do not say in Theorem 3.5 that A is Turing incomplete, because this in fact follows from lowness for speed,
as we will see in Proposition 5.6.

4. How big is LFS?

Bayer and Slaman showed that whether LFS is meager or not... depends on the answer to P vs NP question! More
precisely, if P = NP, then LFS is co-meager (more precisely, every 2-generic is low for speed), while if P ̸= NP, then LFS
is meager (more precisely, every weakly 1-generic is not low for speed).4 They left as an open question whether LFS has
Lebesgue measure 0 or 1 (by Kolmogorov’s 0/1-law, it has to be one or the other). One might expect that, just like the
meagerness of LFS depends on the P vs NP question, its measure depends on complexity-theoretic assumptions, such as
the ‘P vs BPP’ question. This is not the case: we show that LFS is – unconditionally – a nullset.

4 One may consult [9, Section 2.24] for an introduction to effective genericity.

58 L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63

Theorem 4.1. The set LFS has measure 0. Indeed, no Schnorr random is low for speed.

Proof. We first build a computable set R with the following properties: (1) the set R contains at most one string of any
given length and (2) for all e, if $e computes R , then time($e, x) > 2|x| for almost all x. To do so, we declare at the
beginning of the construction all indices e ‘active’, and for every n in order, do the following. We compute $e(x) during 2|x|

stages of computation for all x of length n and all currently active e ≤ n. If for some pair (e, x) we see that $e(x) converges,
we take the smallest such pair in the lexicographic order (smallest e first, then smallest x), we diagonalize against $e by
setting R(x) = 1 − $e(x) (thus ensuring $e ≠ R), as well as R(y) = 0 for all y ̸= x of length n, and then declare e inactive
from now on. If no such pair (e, x) exists, set R(y) = 0 for all y of length n. This finishes the construction of R . It is clear
that R is computable (it is even in EXPTIME) and that it contains at most one string of each length. To verify property
(2), suppose $e computes R , and observe that for any x such that time($e, x) ≤ 2|x| , the only way $e can escape being
diagonalized against by R is when some $i with i < e is diagonalized against on strings of length n, but this can only
happen e times. Thus if $e does indeed compute R , it must do so in time greater than 2|x| for almost all x.

Now we need to see how to speed up computations with a Schnorr random oracle. Consider the following procedure %.
Given oracle Z and input x, %Z (x) first splits Z (viewed as a binary sequence) as Z = ζ1ζ2 . . . with |ζi | = i and %Z (x) returns
0 if x = ζ|x| (thus the resulting computation is polynomial in |x|), and %Z (x) = R(x) otherwise, using a fixed procedure to
compute R . So there is a polynomial p such that for any Z , time(%Z , x) ≤ p(|x|) for infinitely many x’s. Furthermore, we
can only have %Z (x) ̸= R(x) if x = ζ|x| and ζ|x| happens to be the only string of its length in R . This has probability at most
2−|x| (‘at most’ because R can also have no string of length |x| at all) if Z is chosen at random. This means that, by setting
Cn = {Z | (∃x) |x| = n ∧ %Z (x) ̸= R(x)}, we have λ(Cn) ≤ 2−n .

The Cn ’s are uniformly computable clopen subsets of {0, 1}ω because % is a tt-functional. Thus, a Schnorr random A
can only belong to finitely many Cn ’s (see for example [5, Lemma 1.5.9]), meaning that %A(x) = R(x) for almost all x. Thus
there is a finite variation %̂ of % such that %̂A = R , and %̂A(x) is computed in polynomial time for infinitely many x while
time($i, x) > 2|x| for any $i computing R and almost all x. This shows that A is not low for speed. ✷

On the other hand, one can show that LFS is large in the set-theoretic sense, in that it has the size of the continuum.
While this easily follows from the results of the next section, we can prove more, namely, we can build a perfect '0

1 class
(i.e., a '0

1 class with no isolated point) of non-computable low for speed sets.

Theorem 4.2. There exists a perfect '0
1 class all of whose members are non-computable and low for speed.

To prove this theorem we shall use the notion of function trees (a.k.a. f-trees; here we follow the terminology of [22,
Chapter 12]). An f-tree is a total5 function T : {0, 1}∗ → {0, 1}∗ such that for every σ , T (σ0) and T (σ1) are strict extensions
of T (σ) and T (σ0) ⊥ T (σ1). We say that τ is a node of T if τ ∈ rng(T), and the level of the node T (σ) is |σ |. The children
of T (σ) are T (σ0) and T (σ1). The level of node T (σ) is |σ |. A tree T ′ is a sub-f-tree of T , which we denote by T ′ " T
when every node of S is a node of T . An infinite binary sequence Z is a path on an f-tree T if infinitely many prefixes of Z
are nodes of T . The set of paths of T is denoted by [T].

Proof (of Theorem 4.2). We want every member A of our '0
1 class to satisfy requirements

Pe : If Re is total, then A ≠ Re,

and

Le,i : If $A
e = Ri total, then some % computes Ri in time polynomial in time($A

e),

which we order in some effective fashion.
We prove the theorem by a full approximation over total computable function trees, that is, we start with an f-tree T0

which will evolve over time, and denoting Ts the s-th version of our tree, we will ensure that

T0 # T1 # T2 # T3 # . . .

and then take C = ⋂
s[Ts]as our '0

1 class.
For every s, Ts+1 will be obtained from Ts via the following type of transformation. Given an f-tree T , a string σ and

two strict extensions σ ′, σ ′′ of σ , we say that τ ′ = T (σ ′) and τ ′′ = T (σ ′′) become the children of τ = T (σ) to mean that we
are transforming the f-tree T into a tree T̂ where for all ξ , T̂ (σ0ξ) = T (σ ′ξ) and T̂ (σ1ξ) = T (σ ′′ξ), and T̂ (ζ) = T (ζ) for all
other strings ζ . (Note that this transformation implies T̂ " T).

Define T0 to be the tree whose paths are exactly the elements of S defined in Section 2, defined in a canonical way
(the nodes of level l are strings of length sl , where sl is the l-th element of S). For any given s, the nodes of Ts of level k

5 f-trees are defined in [22] as partial functions, but for our purposes total f-trees are enough.

L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63 59

are responsible for making all paths below them satisfy the k-th requirement. When changing a tree from Ts to Ts+1, some
nodes experience a level change, in which case they begin implementing the strategy for their new requirement.

The strategy (in isolation) for a node τ to satisfy Pe is easy: Wait for a stage t such that Re[t]is defined on an initial
segment of N longer than both children ξ0 and ξ1 of τ . Since ξ0, ξ1 are incomparable, we can find i ∈ {0, 1} such that ξi⊥Re
and we let the children of ξi become the children of τ .

The strategy (in isolation) for a node τ to satisfy Le,i follows the same idea as in Theorem 2.1 that is, the strategy is to
construct a functional % which runs in parallel $ξ

e for all nodes ξ below τ that are still in the f-tree T . By the sparseness
of T (remember that we started with T0 to be the tree whose nodes are members of S), every $ξ

e (x) is emulated in time
poly(time($ξ

e , x)). Whenever we find an x such that %(x) is still undefined and $ξ
e (x) ↓ for some node ξ below τ , we set

%(x) = $
ξ
e (x).

If at any point of time we see a z such that %(z) is already defined, having copied some computation $ξ0
e (z), and some

ξ1 below τ such that $ξ1
e (z) ↓̸= %(z), then ξ0 and ξ1 immediately become children of τ (if such a z is never found, the

requirement is satisfied by fiat). Then, the τ -strategy now simply waits for Re to be defined on an initial segment of N
longer than both ξ0 and ξ1, then finds i such that ξi⊥Re and let the children of ξi become the children of τ .

As usual, the only possible real conflict between strategies arises when a node τ follows an Le,i -strategy, building its
functional % by copying some computations of type $ξ

e (x) (with ξ below τ and x ∈N), but at some point a node τ ′ below
τ asks to thin out the f-tree and thus to remove from the f-tree some nodes ξ below τ whose computations have been
copied already. For two strategies, this conflict is solved in a similar way as in the proof of Theorem 3.1. Instead of allowing
τ ′ to perform its action immediately, τ asks for confirmation, i.e., waits to see Re(x) being defined on all x currently in
the domain of %. Meanwhile, τ and τ ′ treat the set V of nodes that τ ′ wants to remove as already dead, that is, the
nodes from V are ignored by % when it tries to copy some $e-computations and the ξ0 and ξ1 that τ ′ wants to pick
as children are now in charge of the requirement just below the τ ′-requirement in order of priority. Additionally, every
minimal element ζ of V (i.e., an element of V that has no ancestor in V) is asked to satisfy (on top of its own requirement)
the same requirement as τ ′ using its own strategy. Note that since τ treats any such ζ as dead, it will not interfere with
ζ ’s strategy.

Like before, one of three things can happen:

• The confirmation never comes, meaning in particular that Re is partial. This ensures that τ satisfies its requirement.
• For some x in the domain of %, Re(x) becomes defined but Re(x) ̸= %(x). Since %(x) was obtained by copying a

computation $ξ
e (x) for some ξ below x, τ ensures the satisfaction of its requirement by making the children of ξ

become its children.
• The confirmation comes and all values %(x) we were waiting confirmation on are indeed equal to Re(x). In this case, τ

permits τ ′ to thin out the tree in the way τ ′ asked for, which it immediately does.

So in the three above cases, τ gets to satisfy its Le,i-requirement. Let us now look at the τ ′-requirement. The second
case corresponds to an injury, so what happens to τ ′ does not matter since some new node will be asked to satisfy what
was previously the τ ′-requirement. In the third case, τ ′ gets to perform the action it wants, so all is well. Let us examine
the first case, where the confirmation never comes. In this case, τ ′ is never allowed to perform its action. However, below
τ ′ we have two types of nodes: ξ0, ξ1, the nodes that would have been the eventual children of τ ′ if τ ′ had been allowed to
carry on with its strategy, and the other nodes, namely the set V . Below ξ0 and ξ1 the τ ′-requirement is satisfied (precisely
because in both P-strategies and L-strategies, if the node that carries out the strategy asks to pick new children at least
once, then its final children force the satisfaction of the requirement (i.e., all their extensions, in the f-tree or not, satisfy the
requirement) and nodes in V will also satisfy the τ ′-requirement they are asked to satisfy, because they can freely follow
their strategy without interference from τ .

Thus, if we add this conflict resolution method between L-strategies and strategies of lower priority, it is straightforward
to see that, by finite injury, the final f-tree T∞ = lims Ts (which is well defined because a node can only change its children
finitely many times) is such that its paths form a perfect '0

1-class, and satisfy all requirements. ✷

The low basis theorem asserts that every '0
1 class contains a member of low Turing degree, thus we get Theorem 3.3 as

an immediate corollary.
Finally, there is one last notion of size for subsets of {0, 1}ω that is dear to computability theorists, namely, a set is

‘large’ if it contains a Turing upper cone and is ‘small’ if it disjoints from a Turing upper cone. Martin’s Turing determinacy
theorem tells us that any Borel set which is closed under Turing equivalence must be either large or small on this account.
The set LFS is indeed Borel (this is easy to see from the definition), but it is not closed under Turing equivalence, so Martin’s
theorem does not apply. In the next section, we will use a classical result from complexity theory to show that LFS is in
fact disjoint from a Turing upper cone (Theorem 5.7).

5. Lowness for speed and Turing degrees

While lowness for speed is not closed under Turing equivalence, the following question is nonetheless interesting:

60 L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63

Which sets are Turing equivalent to some low for speed X? Which sets compute some non-computable low for speed X?

We denote by LFS and LFS∗ the set of Turing degrees that contain a low for speed set and a non-computable low for
speed set, respectively. One of the main results of Bayer [3] is that not all degrees are in LFS. Indeed, there exists a c.e.
degree a /∈ LFS. The main question left open by Bayer regarding LFS is whether it is downward closed under ≤T or closed
under join. We give a negative answer to both questions. To show that it is not downward closed, we need the following
extension of Theorem 3.2 to degrees.

Theorem 5.1. For any low c.e. degree a > 0, we have a /∈ LFS.

Proof. We now suppose that A only is of c.e. degree (as opposed to being c.e.) and is low. Let (As) be a 00
2 approximation

of A, and let µ be its modulus of convergence, i.e., µ(n) is the smallest s such that all {At | t ≥ s} have the same prefix
of length n (which must thus be the prefix of A of length n). Observe that µ is a lower semi-computable function, and
let µs be its approximation at stage n (setting µ0(n) = 0 for all n). On the other hand µ cannot be computable because
Aµ(n) ! n = A ! n for all n, which would make A computable. The fact that A has c.e. degree is equivalent to the fact that µ
is A-computable (see [22, Theorem 3.6.5]), so let M be a functional such that M A(n) = µ(n) for all n.

The rest of the proof is very similar to that of Theorem 3.2, so we only indicate which modifications are needed. This
time, the function S(e, .) we build is going to be an attempt to compute µ. The three steps for the Re -strategy are now:

Step I. Increase l by 1 and take for witness wl the smallest integer which has not been picked as a witness by any
strategy for any requirement.

Step II. Let sl be the value of the first stage beyond the current stage at which we have M Asl (l) = µsl (l). Set %Asl !l(wl) = 0,
and let tl be the time taken by this computation.

Step III. Simulate $e(wl) during pe(tl) steps of computation, and distinguish three cases.

Case 1: $e(wl) returns 1 in ≤ pe(tl) steps. In this case, we set R(wl) = 0 and R(wi) = 0 for all other witnesses wi
currently used by our (Re)-strategy, further commit to having %A(wl) = 0 even after potential future A-changes, mark this
requirement as satisfied, stop the strategy for this requirement and move on to other requirements.

Case 2: $e(wl) returns 0 in ≤ pe(tl) steps. In this case, we do not define R(wl) yet, but check whether for all i < l,
S(e, i) = µsl (i).

(a) If it is not the case, let i be smallest such that S(e, i) ̸= µsl (i). This means that A ! i has changed between stages si and
sl . Thus, Asi ! i is not a true initial segment of A because we had M Asi (i) = µsi (i), and we know that M A(i) = µ(i) ≥
µsl (i) > µsi (i). Thus, even though we had set %Asi !i(wi) = 0 (during Step II for i), we are free to set %Asl !i(wi) = 1 (and
commit to keeping %A(wi) = 1), and then we can finally set R(wi) = 1 = %A(wi) ̸= $e(wi). We also set R(w j) = 0 for
all other witnesses w j currently used by our (Re)-strategy, mark requirement (Re) as satisfied and terminate the
strategy.

(b) If it is indeed the case, set S(e, l) = Asl ! l and then go back to Step I.

Case 3: $e(wl) is still undefined after pe(tl) steps. In this case, we set /Asl !l(e) ↓ (which should be interpreted as
signalling that we have entered Case 3). Observe that if Asl ! l is a true prefix of A, this implies /A(e) ↓ and therefore we
would have limt h(e, t) = 1. We again distinguish two subcases.

(a) The current value h(e, sl) is 0. Then we wait for a stage t > s such that either h(e, t) = 1 or At ! 1 ̸= Asl ! l (one of
the two must happen as we explained above). If the former happens first we move to subcase (b) below. If the latter
happens first, we go back to Step II.

(b) The current value h(e, sl) is 1. We then set R(wl) = 0 and commit to %A(wl) = 0 and further set R(wi) = 0 for all
other witnesses, and commit to %A(wi) = 0 as well. Then we wait – possibly forever – for a later stage t > sl where
h(e, t) = 0 and At ! l ̸= Asl ! l (moving on to other requirements while waiting). If this happens, we come back to our
(Re)-strategy where we left it and go back to Step I.

The verification is the same. ✷

Corollary 5.2. LFS is not downward closed under ≤T , even within c.e. degrees.

Proof. Let a > 0 be a c.e. degree in LFS whose existence was explained in Section 3. By Sacks’s splitting theorem [20], there
is a low c.e. degree 0 < b < a. By Theorem 5.1, b /∈ LFS. ✷

L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63 61

The next theorem will show that while not every c.e. degree contains a low for speed member, every non-zero c.e.
degree a bounds a degree b ∈ LFS. Recall Bayer’s result that whether 2-generics are low for speed or not depends on the ‘P
vs NP’ question. When it comes to the degree of generics, we have that every 1-generic is Turing-equivalent to a set that is
low for speed, independently of complexity-theoretic assumptions.

Theorem 5.3. Every 1-generic degree g belongs to LFS∗ .

Proof. We get this result by refining the proof of Theorem 2.1. In that proof, we built an X low for speed by finite extension,
and ensuring that X was a subset of S = {02n | n ∈N}. For G ⊆N , let SG = {02n | n ∈ G}. We claim that when G is 1-generic,
SG = {02n | n ∈ G} is low for speed (and clearly SG ≡T G). In the proof of Theorem 2.1, if we let Ue,i be the effectively open
set of those Z such that for some n, $S Z

e (n) and Ri(n) both converge to different values, we know that G , being 1-generic,
is either in Ue,i (hence satisfying the requirement Re,i as per case (a)), or in the interior of the complement of Ue,i , which
precisely corresponds to case (b), hence the requirement is also satisfied in this case. ✷

We can derive a number of useful corollaries from this theorem. First of all, we get a new proof that LFS has the size
of the continuum since G ,→ SG is one-to-one, and there are continuum many 1-generic G . We also get another proof of
the existence of a set of low degree that is low for speed (Theorem 3.3). Indeed, take a 00

2 1-generic G; the corresponding
set SG is low for speed and is low as it is both 00

2 and of GL1 (Indeed a result of Jockusch [11] states that every 1-generic
degree G is GL1, that is, G ′ ≡T G ⊕ ∅′; when G ≤T ∅′ , this is equivalent to G ′ ≡T ∅′).

A similar idea allows us to show that LFS contains a non-trivial interval in the Turing degrees.

Corollary 5.4. There is a degree a > 0 such that every 0 ≤ b ≤ a is in LFS.

Proof. By a result of Haught [10], if a is a 00
2 1-generic degree, every b > 0 below a is of 1-generic degree. Then the result

follows immediately from Theorem 5.3. ✷

Another interesting corollary is that every non-computable c.e. set bounds a non-computable low for speed set. Likewise
almost every set, in the measure-theoretic sense, bounds a non-computable low for speed set.

Corollary 5.5. Every non-zero c.e. degree bounds a member LFS∗ , every 2-random degree bounds a member of LFS∗ .

Proof. This is simply because every non-zero c.e. degree and every 2-random degree bounds a 1-generic degree [17,13]. ✷

After generic degrees, let us move to random degrees. We have seen in Theorem 4.1 that LFS is a nullset, and in fact
no Schnorr random is low for speed. Interestingly, this result does not extend to Turing degrees: by a result of Nies et
al. [19], every high degree has a Schnorr random member and we have seen that there is a low for speed of high degree.
This leaves open the possibility that almost all X are Turing-equivalent to a low for speed set. This would be similar to
the category situation where – under the reasonable assumption P ̸= NP – the set LFS is meager (as proven by Bayer and
Slaman) but the set of A’s whose degree is in LFS is co-meager (Theorem 5.3). This is not the case however: if we increase
the algorithmic randomness level from Schnorr randomness to Martin-Löf randomness, then the distinction disappears.

Proposition 5.6. If a is, or simply bounds, a Martin-Löf random degree then a /∈ LFS (equivalently: if A ∈ {0, 1}ω computes a Martin-
Löf random, A is not low for speed).

Note that this shows in particular that {A | deg(A) ∈ LFS} has measure 0, and also that any A ≥T ∅′ is not low for speed,
as Chaitin’s 4 number is Martin-Löf random and Turing equivalent to ∅′ .

Instead of proving Proposition 5.6 directly, we will prove a stronger theorem for DNC degrees. We recall that a diagonally-
non-computable (DNC) function is a total function f : N → N such that f (e) ̸= ϕe(e) whenever ϕe(e) is defined, where
(ϕe)e is an effective enumeration of partial computable functions from N to N; a DNC degree is a degree which contains –
or, equivalently, bounds – a DNC function.

Theorem 5.7. If a is a DNC degree, then a /∈ LFS (equivalently: if A ∈ {0, 1}ω computes a DNC function, A is not low for speed).

Proposition 5.6 follows from this theorem because DNC degrees are closed upwards, and by a result of Kučera [16], every
Martin-Löf random degree is a DNC degree.

Proof. The proof of this theorem relies on the proof of a classical computational complexity theorem, namely Blum’s speed-
up theorem [6] (see also [15, Theorem 32.2]), which asserts that for every sufficiently fast-growing computable function f ,

62 L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63

there exists a computable set R which admits no fastest algorithm in that for every i such that $i = R , there is a j such
that $ j = R and f (time($ j, x)) ≤ time($i, x) for almost every x.

Let us first discuss how to prove Blum’s speed-up theorem. As it happens, we have already seen a proof with similar
features, namely the proof of Theorem 4.1 (this is no coincidence, as it is the proof Blum’s speed-up theorem that inspired
this other proof). We build R by diagonalization against all $i , where for all x in order we try to find an active i ≤ |x| such
that $i(x) converges in less than f |x|−i(|x|) steps (here the exponent is understood as composition: f 0 is the identity, and
f n+1 = f ◦ f n) and if such an i is found, we diagonalize against $i by setting R(x) = 1 − $i(x) for the smallest such i,
and declare i inactive from that point on. If no such i is found, set R(x) = 0. Obviously R is computable, and the same
argument as in the proof of Theorem 4.1 shows that for any $i computing R , one must have time($i, x) ≥ f |x|−i(|x|) for
almost all x. Now, suppose $e is a functional that computes R . We need to show that there is another functional which
computes R much faster than $e . Fix a large k and assume we are given as ‘advice’ the finite list σk of indices i < k
such that $i eventually gets diagonalized against (and therefore i becomes inactive) in the construction of R . Now, we can
compute R via the following procedure. In a first phase, simply follow the construction of R as described above, until we
reach a point where all i ∈ σk have become inactive. At this point, we know (only because we know σk!) that none of the
{$i | i < k} are relevant for the construction of R on future x. Thus, we enter a second phase where to compute each R(x),
we only need to simulate, for k ≤ j ≤ |x|, $ j(x) during f |x|− j(|x|) steps of computation. By dovetailing, this can be done
in poly(|x| · f |x|−k(|x|)) (the polynomial being independent of k) which, if f is fast growing enough and k large enough
compared to e, is < f

(
f |x|−e(|x|)

)
, which in turn is < f (time($e, x)) for almost all x (note that such a k can be computed

uniformly given e), and this finishes the proof of Blum’s speed-up theorem.
Looking more closely, the core of the argument is that for a given x and a given i, if we somehow knew that $i is

not diagonalized againstexactly at that point x, then we can save the computation of $i(x)[f |x|−i(|x|)]in the computation
of R(x). We already see why DNC-ness naturally comes into play. Let θ : N → {0, 1}∗ be the partial computable function
such that θ(i) is the one string x on which $i is diagonalized against during the construction of R , and θ(i) ↑ if there is
no such x. Having a DNC function as oracle allows us to find, for any given i, a y ̸= θ(i) should θ(i) be defined, and thus
one can speed up a bit the computation of R(y) for this y. In fact we can do much better: by a result of Jockusch [12],
having access to a DNC function allows us to uniformly avoid a finite number of values of a given partial recursive function.
Here this means that with our DNC oracle, we can, uniformly in k, find a y ̸= θ(i) for any i < k on which θ is defined, or
equivalently, a y such that none of the $i with i < k gets diagonalized at y. Applying Blum’s argument, one can indeed use
this information to truly speed up the computation of R(y). We are not quite done yet however: our argument shows that
once we have computed y from k we can speed-up the computation of R(y), but the computation of y itself might take a
long time and offset the time we save on the computation of R(y).

To overcome this problem, we need to refine the above idea. Let ⟨., ., .⟩ be the canonical ‘tripling’ function: ⟨a, b, c⟩ =
⟨a, ⟨b, c⟩⟩ and for 1 ≤ i ≤ 3, let π i

3 be the i-th projection (π i
3(⟨x1, x2, x3⟩) = xi , note that these functions are polynomial-time

computable). Since A has DNC degree, again using Jockusch’s result, A computes, via a fixed functional 7, a function F such
that F (k) ̸= π2

3 (θ(i)) for any i < k on which θ is defined (here and in the rest of the proof we identify strings and integers).
Said otherwise, for any pair (a, c) of integers, none of the functionals {$i | i < k} gets diagonalized against at y = ⟨a, F (k), c⟩.

Now let % be the functional which computes R as follows using oracle A. On input x, it first computes the projections
of x, i.e., finds k, l, m such that x = ⟨k, l, m⟩. Then, it tries to compute F (k) via 7 and using oracle A during m steps of
computation. If it fails to do so, it then computes R(x) using a fixed procedure (with no access to the oracle) and returns
this value. If it does succeed to compute F (k), it then checks whether l = F (k). If not, %A(x) again returns R(x) using a
fixed procedure to perform the computation, without access to the oracle. Finally, and this is the interesting case, if F (k)
is computed in ≤ m steps of computation, and l = F (k), we know by definition of F that none of the {$i | i < k} gets
diagonalized against at x. Thus %A can compute R(x) by only simulating, like in the proof of Blum’s theorem $ j(x) during
f |x|− j(|x|) steps of computation for k ≤ j ≤ |x|. In that case, the total computation time is still poly(|x| · f |x|−k(|x|)) because
the m steps of computation needed to get F (k) are simply poly(|x|). For a given k, taking m sufficiently large will give
enough time for the computation of F (k) by A, and make x = ⟨k, F (k), m⟩ large enough to ensure that the computation time
of %A(x) is < f (time($e, x)), as long as f is sufficiently fast growing. This shows that A is not low for speed. ✷

As an immediate corollary, we get the result mentioned in the previous section that LFS is disjoint from a cone in the
Turing degrees, again because DNC degrees are closed upwards. Another interesting consequence is that the analogue of the
low basis theorem for '0

1 class does not extend to lowness for speed: it is not true that every non-empty '0
1 class contains

a member of low for speed degree. For example, one can take a '0
1 class of Martin-Löf randoms: all its elements have DNC

degree by Kučera’s theorem, and thus do not have low for speed degree.
Another corollary is that LFS is not closed under join.

Theorem 5.8. There are a, b ∈ LFS such that a ∨ b /∈ LFS.

Proof. Let G0 be 2-generic, i.e., 1-generic relative to ∅′. Consider G1 = G00∅′ where 0 is the symmetric difference. It is
easy to check that G1 is also 2-generic. Thus SG0 and SG1 (defined as in the proof of Theorem 5.3) are both low for speed
(again from the proof of Theorem 5.3) but SG0 ⊕ SG1 ≥T G0 ⊕ G1 ≥T G00G1 = ∅′ . Since ∅′ has DNC degree (this is obvious
from the definition of DNC function), it follows from Theorem 5.7 that deg(SG0 ⊕ SG1) /∈ LFS. ✷

L. Bienvenu, R. Downey / Journal of Computer and System Sciences 108 (2020) 49–63 63

At this point, we know that the set of X ’s which compute a member of LFS∗ is very large: it has measure 1 and is
co-meager, it contains every c.e. set, etc. We might even start thinking that every non-computable X computes a member
of LFS∗ . This is not the case however, as shown by the following theorem (which contrasts Corollary 5.4).

Theorem 5.9. There is a degree a > 0 such that no 0 < b ≤ a is in LFS∗ . Indeed, a can be chosen to be a minimal Turing degree.

Proof. Kumabe and Lewis [14] proved that there exists a minimal degree DNC degree. By Theorem 5.7, such a degree is not
low for speed, and by minimality there is no b such that 0 < b < a. ✷

Note that another way to obtain a degree a > 0 such that no 0 < b ≤ a is in LFS∗ is by taking a to be a hyperimmune-free
degree containing a Martin-Löf random member, which ensures that every 0 < b ≤ a also computes a 1-random (see [9,
Corollary 8.6.2]), and apply Proposition 5.6.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This paper grew from interactions between complexity theory and classical computability theory originating from the
2012 Dagstuhl Seminar “Computability, Complexity and Randomness” (Seminar 12012). Bienvenu acknowledges support
of the Agence Nationale de la Recherche (ANR-15-CE40-0016-01 RaCAF grant), Downey thanks the Marsden Fund of New
Zealand (grant 16-VUW-131), and the LIRMM (University of Montpellier) where this research was undertaken. The authors
would like to thank the anonymous referees for their insightful comments and suggestions.

References

[1] Eric Allender, Harry Buhrman, Michal Koucký, What can be efficiently reduced to the Kolmogorov-random strings?, Ann. Pure Appl. Logic 138 (2006)
2–19.

[2] Eric Allender, Luke Friedman, William I. Gasarch, Limits on the computational power of random strings, Inf. Comput. 222 (2013) 80–92.
[3] Robertson Bayer, Lowness for Computational Speed, PhD thesis, University of California Berkeley, 2012.
[4] Theodore Baker, John Gill, Robert Solovay, Relativizations of the P =?NP question, SIAM J. Comput. 4 (4) (1975) 431–442.
[5] Laurent Bienvenu, Game-Theoretic Characterizations of Randomness: Unpredictability and Stochasticity, PhD thesis, Université de Provence, 2008,

https://tel .archives -ouvertes .fr /tel -00332425v2.
[6] Manuel Blum, On effective procedures for speeding up algorithms, J. ACM 18 (290–305) (1971).
[7] Mingzhong Cai, Rodney Downey, Rachel Epstein, Steffen Lempp, Joseph Miller, Random strings and tt-degrees of Turing complete c.e. sets, Log. Methods

Comput. Sci. 10 (3) (2014).
[8] S. Barry Cooper, A jump class of noncappable degrees, J. Symb. Log. 324 (353) (1989).
[9] Rodney Downey, Denis Hirschfeldt, Algorithmic Randomness and Complexity, Theory and Applications of Computability, Springer, 2010.

[10] Christine A. Haught, The degrees below a 1-generic degree < 0′ , J. Symb. Log. 51 (1986).
[11] Carl Jockusch, Degrees of generic sets, in: Frank Drake, Stanley S. Wainer (Eds.), Recursion Theory: Its Generalizations and Applications, in: London

Mathematical Society Lecture Note Series, vol. 45, Cambridge University Press, 1980, pp. 110–139.
[12] Carl Jockusch, Degrees of Functions with No Fixed Points, North-Holland, Amsterdam, 1989, pp. 191–201.
[13] Steven M. Kautz, Degrees of Random Sets, PhD thesis, Cornell University, 1991.
[14] Masahiro Kumabe, Andrew E.M. Lewis, A fixed-point-free minimal degree, J. Lond. Math. Soc. 80 (3) (2009) 785–797.
[15] Dexter Kozen, Theory of Computation, Springer, New York, 2006.
[16] Antonin Kučera, Measure, '0

1 classes, and complete extensions of PA, Lect. Notes Math. 1141 (1985) 245–259.
[17] Stuart Kurtz, Randomness and Genericity in the Degrees of Unsolvability, PhD dissertation, University of Illinois at Urbana, 1981.
[18] André Nies, Computability and Randomness, Oxford Logic Guides, Oxford University Press, 2009.
[19] André Nies, Frank Stephan, Sebastiaan Terwijn, Randomness, relativization and Turing degrees, J. Symb. Log. 70 (2005) 515–535.
[20] Gerald Sacks, On the degrees less than 0’, Ann. Math. 77 (1963) 211–231.
[21] Richard A. Shore, A non-inversion theorem for the jump operator, Ann. Pure Appl. Logic 40 (1988) 277–303.
[22] Robert Soare, Turing Computability: Theory and Applications, Theory and Applications of Computability, Springer, 2016.

