ON A QUESTION OF KALIMULLIN

ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

ABSTRACT. We prove that for every computable limit ordinal «
there exists a computable structure A which is AY-categorical and
« is smallest such, but nonetheless for every isomorphic computable
copy B of A there exists a § < « such that A = A9 B. This answers

a question raised by Kalimullin in personal communication with
the third author.

1. INTRODUCTION

Much of classical mathematics is concerned with classification of
mathematical structures by their isomorphism types. Two mathemat-
ical structures are usually identified if they are isomorphic. However,
such a classification blurs fine-grained distinctions related to the algo-
rithmic nature of the structures. For example, it is easy to construct
two algorithmically presented structures, both isomorphic to a simple
structure like (N, <) but with wildly differing computability-theoretic
properties, such as decidability (or non-decidability) of the adjacency
relation. On the other hand, sometimes computable isomorphism type
coincides with classical isomorphism type, which is the case for a dense
countable linear ordering or a finitely presented group.

Computable structure theory [AK00, EG00] has grown to understand
the computability-theoretic properties of computably presented struc-
tures. Recall that a countably infinite algebraic structure is computable
if its domain is the natural numbers N and its operations are Turing
computable functions. If an algebraic structure A is isomorphic to a
computable structure B, then we say that B is a computable copy, a
computable presentation, or a constructivization of A. As we noted
above, an algebraic structure may have computable copies with wildly
differing computability-theoretic properties. Based on this observation,
Maltsev [Mal61] suggested that computable structures should be stud-
ied under computable isomorphism. In particular, we say that a count-
ably infinite structure is computably categorical if it has a unique com-
putable copy up to computable isomorphism. Although computably
categorial structures are “unclassifiable” in general (see [DKL*15]),

computable categoricity tends to be very well-behaved within many
1

2 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

standard algebraic classes. For instance, a Boolean algebra is com-
putably categorical iff it has only finitely many atoms [Gon97, LaR77],
and a torsion-free abelian group is computably categorical iff its rank is
finite [Nur74]. For most of these “nice” algebraic classes, computable
categoricity is equivalent to the stronger notion of relative computable
categoricity; we omit the definition of relative computable categoricity,
see [AKO00]. In contrast to computable categoricity in general, relative
computable categoricity admits a syntactical description, a so-called
computably enumerable Scott family [AKO00]. There have been many
successful applications of various syntactical techniques to the study of
relative computable categoricity and related notions, see e.g. the recent
work of Montalban [Mon13, Mon15] that relate computable structure
theory with descriptive set theory and model theory. On the other
hand, the study of the more “wild” general computable categoricity
enjoys applications of advanced recursion-theoretic techniques; it also
often leads to novel methods and new results which are not necessarily
related to categoricity questions (see e.g. [DM13, Gon81]). One of the
most remarkable theorems of this kind says that there is a structure
with exactly two computable copies up to computable isomorphism; see
Goncharov [Gon80], and see Hirschfeldt [Hir01] for further applications
of the technique of Goncharov.

As we see, there are two main strands within modern computable
structure theory. The first seeks to relate definability with effectiv-
ity [AKO00], and the other tends to be concerned with properties which
revolve around the specifics of the computation level and the struc-
tures concerned, see [EG00]. In this paper, we will be working on the
interaction between the two strands. More specifically, we answer the
following question of Kalimullin. A few years ago, Kalimullin asked
whether a computable structure could be arithmetically categorical in
the following unbounded way. Can there be a computable structure A,
such that for any computable structure B isomorphic to A, there is an n
such that A is AY-isomorphic to B, but for each m < w there is a com-
putable C,, with C, isomorphic to A but not by a A? -isomorphism? In
other words, can there be a computable structure such that every iso-
morphic computable structure is arithmetically isomorphic, but such
that this fact is not witnessed by any fixed level of the arithmetic hi-
erarchy? In this paper we answer this question affirmatively. In fact,
we prove more.

Theorem 1.1. For every computable limit ordinal o there exists a
computable structure A, such that:

ON A QUESTION OF KALIMULLIN 3

e [For every computable structure M, there exists a 5 < a such
that M EA% Aa.

e For every < «, there exists a computable structure B = A,
such that B %A% A

We note that the structure A, witnessing Theorem 1.1 will be built
up from structures that are themselves relatively A%—Categorical. Al-
though the isomorphism types of these substructures will depend on
the construction, their nice uniform properties will allow us to exploit
techniques borrowed from the “syntactical” strand, more specifically
a result of Ash [Ash86]. The construction will be an iterated priority
argument, along the lines of a “worker” argument. We believe that the
easiest presentation is to give a direct proof rather than to try to use
any of the existing metatheorems ([AK00, Mon14, LL97]), aside from
using the above mentioned result of Ash!. The remainder of this paper
will be focused on proving Theorem 1.1.

2. PROOF

2.1. Setup and notation. Let o be a fixed computable limit ordinal.
For notational convenience, when we wish to discuss A% constructions
as oracle constructions, we will use 0(g) as the name of the oracle which
is equal to 00°~Y when 1 < 8 < w, and is equal to the #'th jump (using
specifically chosen Turing degree representatives that can uniformly
resolve A% questions) when w < 8 < a.

Let (ay, : n € w) be a computable increasing sequence of ordinals
whose limit is «, with ay > 0. For each n, let 5, = 2 - a,, + 1, and note
that (8, : n € w) is also a computable increasing sequence of ordinals
whose limit is a, but with gy > 2.

The signature of our structure will have an edge relation, an ordering
relation, and a collection of unary predicates P, ;, denoting disjoint
portions of the structure which we will use to meet diagonalization
requirements. We will call the part of the structure restricted to one
such P,; a P-box. The ordering relation and edge relation will never
hold between elements of different P-boxes.

2.1.1. The requirements. Let (M, :n € 1,2,...) be a listing of all the
computable structures in our signature, which will be specified later.

IThanks to Noam Greenberg, we are aware that Asher Kach and Antonio Mon-
talban have (independently) announced the case & = w. As far as we know, their
proof has not yet been formally written or published.

4 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

We will have isomorphism requirements and diagonalization require-
ments:

1% I/x4n S§J4.—+ j»1n 2§A0

Bp—1+1

D,, : 3B, (B, is computable & B, 2 A & B, Za A)

Note that if we meet all of these requirements, then we will have
proved the theorem. (For trivial counting reasons such as (3,1 above
and without loss of generality, we may assume that n ranges over the
positive natural numbers.)

We will discuss two different diagonalization strategies. The “at-
tempted diagonalization strategy” will be the naive attempt of meeting
a D,, requirement, in isolation. The “actual diagonalization strategy”
will be different from the attempted one due to interactions between
requirements. The isomorphism-building strategy Z, will be formally
described only after the tree of strategies is introduced, but we will
give some intuition already in the next subsection.

2.2. One diagonalization strategy in isolation. In this subsection,
we describe the attempted diagonalization strategy that will have to
be modified before placing it onto the tree.

2.2.1. The result of Ash. Our primary tool for the attempted diago-
nalization strategy will be the following result of Ash (Theorem 18.15
of [AKO00]).

Theorem 2.1 (Ash). Let v be a computable ordinal, and suppose L is
a Agvﬂ linear ordering. Then we can uniformly produce a computable
presentation F(L) of wY - L.

It will be crucial that the proof of Theorem 2.1 is uniform as long as
L does not have a least element. Moreover, there is a A9 ., function
f taking a € L to the first element of the corresponding copy of w?” in
F(L). The AY_ |, index of the function is also uniform in (the notation
for) v and the index for L.

Remark 2.2. Using the uniformity of Theorem 2.1 we will shortly define our
attempted diagonalization strategy on P, ;. In the proof of the main result, all
such P, ; will be put together using sequences of guesses. All such sequences (in
essence) form is a degenerate priority tree. At every node of the tree, we will use
the uniform version of Theorem 2.1 to produce copies of linear orders (they will be
slightly modified, but with all possible uniformity). One could use the recursion
theorem to make the tree work.

We remark here that the recursion theorem is not really necessary here. Each
local version of the construction from Theorem 2.1 will be used by its node with-
out essential modifications. It can be paused, then perhaps restarted, or perhaps

ON A QUESTION OF KALIMULLIN 5

permanently terminated, depending only on our current guess. The Ag,y 4 1-index of
the input order L will also depend only on our current guess and some elementary
actions, all being uniform. We simply dynamically outsource the task of building
F(L) to the construction from Theorem 2.1 whose index is known (by the s-m-n
Theorem).

For our attempted diagonalization strategy on P, ;, we begin by con-
structing two linear orders in A and B,,, that we will ensure are isomor-
phic, but not a A%n isomorphism. This will be done by constructing
linear orderings Ly and L;, computably in 0(g,), both of order type
w*, and then constructing F'(Lg) as our linear ordering in P, ; of A
and F(Ly) as our linear ordering in P,; of B,. Here, we are using

Theorem 2.1 with v = «,, and hence 2y + 1 = f,,.

2.2.2. The construction of F(Lg) and F(Ly). We build two Aj -copies
of w*. We diagonalize against the e’th potential Agn isomorphism
fe : Lo — Ly, as follows. Construct w* in both Ly and Ly, initially
letting x¢. and z;. be adjacent elements in Ly. Wait for f, to con-
verge on oo and x; .. If the images are adjacent, insert one extra point
between them, and preserve the interval. Note that this construction is
computable in 0¢g,). Both Ly and L; have no least element, so that we
can apply Theorem 2.1 with all possible uniformity. In particular, we
obtain F(Lg) and F(L,) which are isomorphic, but not by a Aj -map.

For each element of our linear orders F(Lg) and F(L;), we will have
one extra element that is attached to it by the edge relation. The
additional elements will not be related to any elements via the ordering
relation.

Remark 2.3. At this stage we owe the reader an informal explanation of why we
need this extra edge relation. The idea is as follows. Suppose at stage s our linear
order that we’ve build in P, ; of A looks as follows:

60<61 <63<64,

and we also have build a partial map from the opponent’s structure fs : My — As.
The hat indicates that a point carries a label, i.e., it is adjacent to an extra point
via the edge relation. (The ith extra point is specific and unique for each such a;
and is not connected to anything else.) According to our dynamic definition of the
linear order in P, ;, we will attempt to extend to P, ; by adding one more point,
say b. We add the point without a label:

ag < b<ay; <as<ay,

and then wait for M to respond. Note the location of b is uniquely determined by
the configuration at the previous stage s. If M gives us some other configuration,
we permanently “kill” M by, say, freezing our enumeration in P, ;. In particular,
if M is too quick in its enumeration then it will be “killed”. As soon as we see a

6 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

suitable candidate for f~1(b) (if ever), we extend fs to b. Only then we put a label
onto b:
60 </5<61 <63 <ZL\47

and wait for f~1(b) to be labeled in M as well. Finally, we then extend f to that
label. Repeat. This way we force M to follow us very closely. At the end M is
either dead (i.e., not isomorphic to .A) or is forced to copy us via the computable
isomorphism f. (W.lo.g., we assume from the beginning that the domain of M
is a c.e. subset of w.) In B,, we don’t have to do anything too carefully. We just
build a copy of F'(L1) by stages, unless interrupted.

In A we will later need to implement the idea from Remark 2.3.
However, in isolation the construction of P, ; in both A and B,, look
the same (with Ly replaced by L;), as follows.

2.2.3. The attempted D,, strategy. The way that we construct this struc-
ture in A in stages is as follows. During the first stage, we put the first
two elements into F'(Lg), and we attach an element to each of them.

After this, each time we wish to add a new element to F'(Lg), we
will do so over the course of two substages. At the beginning of the
first substage, there will be a finite number of elements in F'(Ly), each
with an element attached by an edge.

Substage 1: Add a new element = to F'(Ly).
Substage 2: Create a new element and attach by an edge to x.

At the end of the construction, we will have constructed F'(Lg) with
an extra element attached to each element of F'(Lg). (This ends the
strategy.)

The lemma below if fairly straightforward. As we have already noted
above, the actual strategy may be interrupted by higher priority re-
quirements, and thus may never finish building its P, ; block in 4 and
B,. The lemma below describes what happens in absence of such in-
teraction, i.e. when it acts as intended.

Lemma 2.4. The attempted diagonalization strategy on P, ; in A sat-
isfies the following properties.

(1) The attempted diagonalization strategy is uniform (in n,i).

(2) If the attempted diagonalization strategy is completed, then A
s not isomorphic to B, via a A%ﬂ map.

(3) If the attempted diagonalization strategy is completed, then P, ;
of A is relatively A%nﬂ—categom’cal.

ON A QUESTION OF KALIMULLIN 7

Proof. (1) The uniformity follows from the fact that the sequence (a,)
is computable, as well as the fact that the proof of Theorem 2.1 is
uniform. (Also, see Remark 2.2 above.)

(2) Any isomorphism between A and ,, must also be an isomorphism
when restricted to P, ;, and must therefore also be an isomorphism
when restricted to the linear order part of F,;. In our construction,
we ensured that F(Lg) and F(Ly) were not isomorphic by the ith Aj
map, for each .

(3) This folklore fact follows at once from a straightforward defin-
ability analysis (see the book [AKO00]) O

The properties of the attempted diagonalization strategy (e.g., Lemma
2.4(2)) ensure that if for every n and i there exists a j such that P, ;
completes its attempted construction, then all of the D,, requirements
will be met.

2.3. Construction. As we noted above, the attempted diagonaliza-
tion strategy needs to be modified in the actual construction. We have
already discussed the idea in Remark 2.3. In this subsection we give
the formal details.

2.3.1. Informal discussion. The construction will be phrased as a tree
construction. We note that the tree itself will be a standard com-
putable tree in which the true path can be approximated in the usual
[19-fashion. Each node will have two outcomes, oo and fin. The out-
comes at level n will reflect our current guess on whether the nth partial
computable structure has followed us for one more step or not, in the
sense of Remark 2.3. (This can be formally implemented using, e.g.,
expansionary stages.) Since there is nothing special about this partic-
ular tree, we will not waste our time formally defining the true path,
expansionary stages etc. This is left to the reader.

What is unusual in this proof is that each node at level n will be
associated with a copy of the diagonalization strategy, and thus will
be working relative to 0(g,) within its P-box. Using the construction
of Ash (Theorem 2.1), we uniformly extend the 0(g,)-linear order pro-
duced by the strategy to a computable linear order.

2.3.2. The tree of strategies. The tree of strategies is {oo, fin}<>.
Each level of the tree will be monitoring the nth partial computable
structure M,,. Each node at this level will attempt to build a com-
putable partial isomorphism on the P-boxes (in .4 and M,,) which are
controlled by requirements of priorities no stronger than the priority

8 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

of o. This will be done as follows. Every time ¢ or any weaker pri-
ority requirement below o'oco puts a new point into their part of A,
we wait for M, to respond by giving us the exact same configuration,
restricted to this part. (Clearly, the node o cannot hope to force the
higher priority My, k < n.) We will clarify later that the actions of o

2.3.3. Assignment of P-boxes to strategies. Recall that each such strat-
egy is working within its P-box. If ¢ is at level n, then at stage s at
which we access it the first time we reserve P,; (with ¢ least never
used for this purpose) for the infinitary action of . We denote this
P-box of o by P°. We will be pressing M = M,, = M|, to follow A
computably within P2° by pausing our actions within Pg° of A (thus,
of B as well) until the P>-box of M is extended to be isomorphic
to P of A built so far. We will give formal details of the modified
diagonalization strategy in the next paragraph, but we have already
seen the main idea in Remark 2.3. Since M may never respond, we
have to restart the diagonalization strategy within some P, ; (where j
is least never used so far by nodes at level n). We denote this box by
P/ Within this box, we will try to implement the attempted diago-
nalization strategy ignoring M, until (if ever) M responds on P2 or
the current true path moves to the left of o. In the former case, we
initialize only P/ in the latter case we initialize both P> and Py
as will be described below shortly. Next time o is visited again it will
pick a new fresh pair of P-boxes. (We can arrange the construction so
that no P-box can be ever left unattended at the end.)

2.3.4. The actual diagonalization strategy. Each P-box will be eventu-
ally assigned to a node on the tree, suppose P is assigned to o. Each
such box will be following the attempted diagonalization strategy, but
with one important modification. Between Substage 1 and Substage 2
(see the previous section) it will be waiting for every M|, with 7c0 C o
to reveal x. (If P is of the form P;° it will also wait for M,y .) After
Substage 2 is finished, it will also wait for each such M| to reveal the
extra element now attached to x by an edge. (Note that this pause
also applies to the respective P-box of Bj,/.)

2.3.5. Initialization. Suppose we need to initialize a P-box (denote it
simply by P) for one of the reasons described above. This is done as
follows. Currently P contains a finite linear order, at most one element

ON A QUESTION OF KALIMULLIN 9

of which is labeled (using the edge relation). We leave this box forever
unattended. The finite structure within it will never be changed again.

As we noted above, the definition of the current true path is standard.
At stage s of the construction, we simply let the strategies along the
current true path act according to their instructions.

2.4. Verification. The intuition is as follows. We will argue that M &
A implies that the true outcome of the node o at level n of the true path
is 0o. The strategy of o cannot control the finitely many nodes above it,
but for ¢ this is just a finite noise. For each strategy 7 at deeper levels
of the tree, there are only two possibilities. It will either be eventually
left finite, in which case their box will be finite and thus uniformly
AY-categorical. Otherwise, each box ever controlled by 7 will have to
respect M,, as well as the structure M;|. Note that 0” can see which
boxes are initialized, since it can compute the true path. Thus, ¢ can
ensure that almost all P-boxes of M are uniformly A%n, _4+1-isomorphic
to the respective boxes of A (see Lemma 2.4(3)).

To the details. We now verify that the construction as described
above will meet all of the D,, requirements as well as all of the 7,
requirements. Although the actions of each individual diagonalization
strategy could be computationally relatively complex, the guessing pro-
cedure that determines the current true path is merely I19. Tt is clear
that M|, can be either isomorphic to A or not isomorphic to A. (The
same can be said if we restrict our guessing to a computable collection
of P-boxes.) The definitions of the true path and the true outcome
are standard. We conclude that there are only two possible (true) out-
comes of the guessing procedure. The tree does not depend on our
diagonalisation actions whose outcomes are not even put onto the tree.
It is thus straightforward that the true path is infinite.

We need to argue that, for every o'z along the true path (where
x € {oo, fin}), the diagonalization requirement Dy, is met within P?
(and, thus, for the whole A and B). We also need to check that, if
M4 is isomorphic to A then it is isomorphic to A via an isomorphism
strictly computationally simpler than 0.

Lemma 2.5. For every n, the diagonalization requirement D,, is met
within the P*-box, where o’x is along the true path and |o| = n.

Proof. For simplicity, we first consider the highest priority diagonal-
ization requirement. If there were no higher priority Z-requirements

10 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

to respect, this would be exactly Lemma 2.4. However, according to
our setup, o = e (the empty string) must respect My. But if the true
outcome of Zj is oo, then M always responds by copying us at the
intermediate stage, see the description of the actual diagonalization
strategy at the previous section. Thus, the diagonalization strategy
within P2° will be acting at infinitely many stages. Apart from paus-
ing at the intermediate stage, the actual diagonalization strategy (see
2.3.4) is no different from the attempted one (see 2.2.3). Thus, we can
appeal to Lemma 2.4 and conclude that Dy is met within the P>°-box.
On the other hand, if M eventually either never responds or proves
to be non-isomorphic, then we implement the diagonalization strategy
within some other, fresh box P/™ which will never be initialized. The
strategy will ignore My and will be exactly the same as the attempted
one (see 2.2.3). We thus can safely appeal to Lemma 2.4.

The general case of n > 0 is not very much different from the basic
case n = 0. it is sufficient to take o with |o| = n along the true path
and consider the box P7, where x is the true outcome of 0. The only
difference is that the strategy within P? will have to respect only those
M. with 7700 C o*. O

Lemma 2.6. For every n, if M,, = A then M, =g

is, I, is met.)

A (That

1+

Proof. Consider M,, and assume that M, = A. This is where we use
the modification to the attempted diagonalization strategy (see 2.3.4).
There are several types of P-boxes that we need to consider. We ar-
gue that in each case we can (uniformly) produce an isomorphism of
complexity at most Aj | between the respective boxes in A and
M,,.

Suppose m < n. Then P, ; is either eventually permanently assigned
to P? for some 7 of length m, or is eventually initialised (and thus
is permanently left with a finite structure inside it). With the help
of 0” we can see which case applies to any such P, ;, m < n. By
Lemma 2.4, P,,; of A is relatively A%mfl 4 -categorical. By the choice
of the sequence of (8,)new, 07 is no greater than each such f,,, thus
the isomorphism within each P,,; is (uniformly) computable Og, .

If m > n, then we should appeal to the intermediate stage of the
actual diagonalization strategy (2.3.4). Again, each P-box is either
eventually initialised or is stably controlled by one of the diagonaliza-
tion strategies. As above, with the help of 0” we can see it. If the box
is eventually initialized then this means that the substructure within
it is finite, and thus 0” can uniformly and fully reconstruct its open

ON A QUESTION OF KALIMULLIN 11

diagram. If it is never initialized, then suppose it is permanently de-
clared P? for some 7 of length m > n. Consider o of length n along
the true path. Then ¢ monitors M,,, and it must be the case that the
true outcome of o is co. In partucular, c’co C 7. This means that
the actual diagonalization strategy of P? will not add another point to
the box unless M, responds by giving the previous point, see 2.3.4. At
every such stage, P* will either be a finite linear order with at most one
element not labeled. We will define a computable isomorphism between
P? in M,,, and P? in A by stages, as follows.

Let P[s] denote the substructure of A restricted to the P*-box, at
stage s. Similarly, P'[s] will denote the respective substructure of M,,,
also at stage s. Suppose we have already defined an isomorphism f :
P[s| — P'[s]. We may assume that P]s| is either empty (in which case
fs is also empty) or it is a finite linear order all of whose elements are
labeled using the edge relation. (See 2.2.2 for the description of labels.)

At the next stage s* at which 7 is visited again, we will expand P[s]
by one extra point b to get P[s*]. For now, we will keep this extra
point not labeled. Here is a “typical” configuration within P[s*]:

Gy < ... <@ <b<Tp1 <...<Tps),

where only the elements that carry a hat are labeled. The hatted
elements and the auxiliary elements that use to label them, form the
domain of f,. Since f is an isomorphism [restricted to its domain], in
M., [s*] we have

— e~ e~

fs(a0> <...< fs(ai) < fs(ai+1) <...< fs(ak(s))7

where the auxiliary elements labelling each of the @ have the aux-
iliary elements labelling the respective a; as their f,-preimages. After
stage s*, 7 will enter the waiting phase (see 2.3.4). During this sub-
stage, it will be waiting for M,, (and perhaps for finitely many other
structures as well) to respond. More formally, it will wait until M,,
reveals a point ¢ such that

—

fs(ao)<...<ff(a\i)<c<f@)<...<fs(/a\k(s)),

and so that it is currently not labeled. If M, never responds or gives
some other configuration, we will permanently abandon the infinitary
outcome of ¢. This will be done by simply freezing this P-box of A.
This way we will make sure A % M,, contradicting the assumption. It
is crucial that the configuration of labels and the linear order uniquely
define the location of b. Thus, such a ¢ must eventually be found in

12 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

M,,, and it must necessarily be between f,(a;) and fs(a;1+1). Once ¢ is
found, at stage t, we extend fs to f; by setting f;(b) = c.

After this is done, we add a label to b by introducing an auxiliary y
and declaring E(b,y) on it. This element y will not be related to any
other element in the construction by <, and it will not be connected to
anything else via the edge relation F. Thus, similarly to how we argued
that ¢ can be found for b, we could argue that a z in M,, can be found
for y. It is also necessary that z labels c. We extend f accordingly.

Note that f is computable. Furthermore, fs is an isomorphism of
Pls] onto P'[s], for every s. It follows that f is a computable iso-
morphism from P} of A to P! in M,,. The index of f can be found
uniformly in 0”.

We return to the proof of the lemma. We have argued that in ev-
ery possible case we can, A%L_l 41 -uniformly in 4,7, find a A%n_

n

isomorphism between P, ;-boxes in A and M,,.

1+1

We conclude that all requirements are met, and thus Theorem 1.1 is
proved.

2.5. Finding examples in nice classes. From the algebraic stand-
point, our structure A is an abomination. It was designed to prove the
theorem. Can we find examples in nice classes?

Problem. Find structures with the property from Theorem 1.1 in nat-
ural non-universal classes, such as linear orders or abelian groups.

We strongly suspect that manufacturing examples of such linear or-
ders should not be too hard. In contrast, we have no idea how to
approach this question in the class of abelian groups.

REFERENCES

[AKO00] C. Ash and J. Knight. Computable structures and the hyperarithmeti-
cal hierarchy, volume 144 of Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Co., Amsterdam, 2000.

[Ash86] C. Ash. Recursive labeling systems and stability of recursive structures
in hyperarithmetical degrees. Trans. Amer. Math. Soc., 298:497-514,
1986.

[DKL*15] Rodney G. Downey, Asher M. Kach, Steffen Lempp, Andrew E. M.
Lewis-Pye, Antonio Montalbdn, and Daniel D. Turetsky. The complexity
of computable categoricity. Adv. Math., 268:423-466, 2015.

[DM13] R. Downey and A. Melnikov. Effectively categorical abelian groups. J.
Algebra, 373:223-248, 2013.

[EGO00] Y. Ershov and S. Goncharov. Constructive models. Siberian School of
Algebra and Logic. Consultants Bureau, New York, 2000.

[Gong0]
[Gong1]
[Gon97]
[Hir01]

[LaR77]

[LLI7]

[Mal61]
[Mon13]
[Mon14]
[Mon15]

[Nur74]

ON A QUESTION OF KALIMULLIN 13

S. Goncharov. The problem of the number of nonautoequivalent con-
structivizations. Algebra i Logika, 19(6):621-639, 745, 1980.

S. Goncharov. Groups with a finite number of constructivizations. Dokl.
Akad. Nauk SSSR, 256(2):269-272, 1981.

S. Goncharov. Countable Boolean algebras and decidability. Siberian
School of Algebra and Logic. Consultants Bureau, New York, 1997.
Denis R. Hirschfeldt. Degree spectra of intrinsically c.e. relations. J.
Symbolic Logic, 66(2):441-469, 2001.

P. LaRoche. Recursively presented boolean algebras. Notices AMS,
24:552-553, 1977.

Steffen Lempp and Manuel Lerman. Iterated trees of strategies and pri-
ority arguments. Arch. Math. Logic, 36(4-5):297-312, 1997. Sacks Sym-
posium (Cambridge, MA, 1993).

A. Mal’cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3-60,
1961.

Antonio Montalban. A computability theoretic equivalent to Vaught’s
conjecture. Adv. Math., 235:56-73, 2013.

Antonio Montalbédn. Priority arguments via true stages. J. Symb. Log.,
79(4):1315-1335, 2014.

Antonio Montalban. Analytic equivalence relations satisfying
hyperarithmetic-is-recursive. Forum Math. Sigma, 3:e8, 11, 2015.

A. Nurtazin. Computable classes and algebraic criteria of autostability.
Summary of Scientific Schools, Math. Inst. SB USSRAS, Novosibirsk,
1974.

