# JUMPS OF MINIMAL DEGREES BELOW 0' 

RODNEY G. DOWNEY, STEFFEN LEMPP and RICHARD A. SHORE


#### Abstract

We show that there is a degree a REA in and low over $0^{\prime}$ such that no minimal degree below $0^{\prime}$ jumps to a degree above a. We also show that every nonlow recursively enumerable degree bounds a nonlow minimal degree.


## Introduction

An important and long-standing area of investigation in recursion theory has been the relationship between quantifier complexity of the definitions of sets in arithmetic as expressed by the jump operator, and the basic notion of relative computability as expressed by the ordering of the (Turing) degrees. In this paper we are concerned with an aspect of the general problem of characterizing the range of the jump operator on various classes of degrees. The first such result was the completeness or jump inversion theorem of Friedberg [3].

Theorem (Friedberg Jump Inversion). If $\mathbf{c} \geqslant \mathbf{0}^{\prime}$ then there is an a such that $\mathbf{a}^{\prime}=\mathbf{c}$.

As $\mathbf{a}^{\prime}$ is obviously at least 0 ' for every degree $\mathbf{a}$, this result says that every 'possible' degree $\mathbf{c}$ (that is, every degree not ruled out on trivial grounds) is the jump of some degree a. A number of other important jump inversion theorems of this sort followed Friedberg's. In particular Shoenfield [12] and Sacks [9] characterized the jumps of the degrees below $0^{\prime}$ and of the recursively enumerable degrees, respectively, as all 'possible' degrees.

Theorem (Shoenfield Jump Inversion). If $\mathbf{c} \geqslant \mathbf{0}^{\prime}$ and $\mathbf{c}$ is recursively enumerable in $\mathbf{0}^{\prime}$ then there is a degree $\mathbf{d} \leqslant \mathbf{0}^{\prime}$ such that $\mathbf{d}^{\prime}=\mathbf{c}$.

Theorem (Sacks Jump Inversion). If $\mathbf{c} \geqslant \mathbf{0}^{\prime}$ and $\mathbf{c}$ is recursively enumerable in $\mathbf{0}^{\prime}$ then there is a recursively enumerable degree $\mathbf{d}$ such that $\mathbf{d}^{\prime}=\mathbf{c}$.

Our concern in this paper is the problem of jump inversion into the minimal degrees below $\mathbf{0}^{\prime}$. The general problem for the degrees as a whole was solved by Cooper [1].

[^0]Theorem (Cooper Jump Inversion). If $\mathbf{c} \geqslant \mathbf{0}^{\prime}$ then there is a minimal degree $\mathbf{m}$ such that $\mathbf{m}^{\prime}=\mathbf{c}$.

The natural conjecture at this point would have been that the Shoenfield jump inversion theorem could be extended analogously, that is, if $\mathbf{c} \geqslant \boldsymbol{0}^{\prime}$ is recursively enumerable (r.e., for short) in $0^{\prime}$ then there should be a minimal $\mathbf{m} \leqslant 0^{\prime}$ with $\mathbf{m}^{\prime}=\mathbf{c}$. Cooper [1], however, refuted this by showing that no high degree $\mathbf{m}$ below $\mathbf{0}^{\prime}$ (that is, no degree with $\mathbf{m}^{\prime}=\mathbf{0}^{\prime \prime}$ ) can be minimal. The only known positive result at the time was that there were minimal $\mathbf{m}<\mathbf{0}^{\prime}$ with $\mathbf{m}^{\prime}=\mathbf{0}^{\prime}$. (This follows from the existence of a minimal degree below any r.e. degree a (Yates [18]) by taking a to be low (that is, $\mathbf{a}^{\prime}=\mathbf{0}^{\prime}$ ). Indeed, the minimal degrees $\mathbf{d}$ constructed in the proof of the Cooper jump inversion theorem all had the property that $\mathbf{m}^{\prime}=\mathbf{m} \vee \mathbf{0}^{\prime}$ (where $\mathbf{m}$ is in $\mathbf{G L}_{1}$ or generalized low $\mathbf{1}_{1}$ ). Answering a question from Yates [19], Sasso [11] proved that this is not always the case by constructing a minimal $\mathbf{m}<\mathbf{0}^{\prime}$ with $\mathbf{m}^{\prime}>\mathbf{0}^{\prime}$.

In the early 1970's Jockusch conjectured (see Sasso [11, p. 573], Yates [19, p. 235]) that the jumps of minimal degrees $\mathbf{m}<0^{\prime}$ are precisely the set of $\mathbf{c} \geqslant 0^{\prime}$ with $\mathbf{c}$ r.e. in $\mathbf{0}^{\prime}$ and low over $\mathbf{0}^{\prime}$, that is, $\mathbf{c}^{\prime}=\mathbf{0}^{\prime \prime}$. Jockusch and Posner [4] eventually proved the (remarkable) half of this conjecture.

Theorem (Jockusch and Posner [4]). Every minimal degree $\mathbf{m}$ is in $\mathbf{G L}_{2}$, that is, $\left(\mathbf{m} \vee \mathbf{0}^{\prime}\right)^{\prime}=\mathbf{m}^{\prime \prime}$. In particular, every minimal $\mathbf{m} \leqslant \mathbf{0}^{\prime}$ is low $w_{2}$, that is, $\mathbf{m}^{\prime \prime}=\mathbf{0}^{\prime \prime}$.

The other half of Jockusch's conjecture, that the jumps of minimal degrees $\mathbf{m} \leqslant \mathbf{0}^{\prime}$ include all those $\mathbf{c} \geqslant \mathbf{0}^{\prime}$ r.e. in $\mathbf{0}^{\prime}$ with $\mathbf{c}^{\prime}=\mathbf{0}^{\prime \prime}$, has remained an open problem.

In this paper we refute this attractive conjecture by exhibiting an entire upward cone of such degrees which contains no jump of a minimal degree below $\mathbf{0}^{\prime}$.

Theorem 1.1. There is a degree a recursively enumerable in and above $\mathbf{0}^{\prime}$ with $\mathbf{a}^{\prime}=\mathbf{0}^{\prime \prime}$ such that $\mathbf{a}$ is not recursive in the jump of any minimal degree below $\mathbf{0}^{\prime}$.

At a slightly earlier date a similar but (in terms of determining the range of the jump on the minimal degrees below $0^{\prime}$ ) somewhat weaker result was independently obtained by Cooper and Seetapun (personal communication). Recently, Cooper has claimed a full characterization of this class of degrees as the class of what he calls the almost $\Delta_{2}$-degrees.

Theorem (Cooper and Seetapun). There is a degree a r.e. in and above $\mathbf{0}^{\prime}$ with $\mathbf{a}^{\prime}=\mathbf{0}^{\prime \prime}$ such that if $\mathbf{d} \leqslant \mathbf{0}^{\prime}$ and $\mathbf{a}$ is r.e. in $\mathbf{d}$, then there is a 1-generic degree below $\mathbf{d}$.

We have not seen Cooper and Seetapun's proof but they have told us that it is a $\mathbf{0}^{\prime \prime \prime}$-argument like the proof of Lachlan's nonbounding theorem as presented in Soare [16, Chapter XIV]. Our construction is of a considerably simpler type. Indeed, it is really a finite injury argument relative to $K$ (as one might expect in building a low r.e. degree a relative to $K$ ). As we cannot actually deal with potential minimal degrees $\mathbf{d}<\mathbf{0}^{\prime}$ in a construction recursive in $K$, we use recursive approximation procedures for $K$ and $A$ which turn the construction into a $0^{\prime \prime}$-tree argument.

We also prove that the theorem fails if we try to replace upward cones by downward ones.

Theorem 2.1. If $D$ is any r.e. set with $\varnothing^{\prime}<_{T} D^{\prime}$, then there is a set $M$ of minimal degree with $M \leqslant_{T} D$ and $\varnothing^{\prime}<_{T} M^{\prime} \leqslant_{T} D^{\prime}$.

Corollary 2.3. If $\mathbf{c}>\mathbf{0}^{\prime}$ is r.e. in $\mathbf{0}^{\prime}$, then there is a minimal degree $\mathbf{m}<\mathbf{0}^{\prime}$ such that $\mathbf{0}^{\prime}<\mathbf{m}^{\prime} \leqslant \mathbf{c}$.

Thus the range of the jump operator on the minimal degrees below $\mathbf{0}^{\prime}$ cannot be characterized simply in terms of the jump classes of degrees r.e. in and above $\mathbf{0}^{\prime}$.

We finally include sketches of the proofs of two old unpublished related results by the third author concerning cone avoiding by the jumps of minimal degrees below $0^{\prime}$.

Theorem 3.1. If $\mathbf{c}$ is r.e. in and above $\mathbf{0}^{\prime}$ and $\mathbf{c}^{\prime}=\mathbf{0}^{\prime \prime}$ then (uniformly in the information) there is a minimal degree $\mathbf{a}<\mathbf{0}^{\prime}$ with $\mathbf{a}^{\prime} \nless \mathbf{c}$.

Theorem 3.2. There are minimal degrees $\mathbf{a}_{0}, \mathbf{a}_{1}<\mathbf{0}^{\prime}$ such that $\mathbf{a}_{0}^{\prime} \cup \mathbf{a}_{1}^{\prime}=\mathbf{0}^{\prime \prime}$.

## 1. An upward cone with no jumps of minimal degrees

In this section we shall prove that there is a degree a r.e. in $0^{\prime}$ and low over $K$ such that no minimal degree $\mathbf{m}<\mathbf{0}^{\prime}$ jumps above it.

Theorem 1.1. There is a degree a r.e. in and above $\mathbf{0}^{\prime}$ with $\mathbf{a}^{\prime}=\mathbf{0}^{\prime \prime}$ such that a is not recursive in the jump of any minimal degree below $\mathbf{0}^{\prime}$.

We let $K=\left\{\langle x, y\rangle \mid \phi_{x}(y) \downarrow\right\}$ be the complete r.e. set. Our plan is to define a $\Sigma_{2}$-set $A$ via a recursive approximation so that the degree of $A \oplus K$ is the a of our theorem. There are two types of requirements that we must satisfy. The first is the standard lowness requirement relativized to $K$, that is,

$$
N:(A \oplus K)^{\prime} \equiv{ }_{T} K^{\prime}
$$

As usual, $N$ is divided up into infinitely many requirements

$$
N_{e}: \text { preserve } \Phi_{e}(A \oplus K ; e)
$$

As our construction will be recursive, we can only expect to succeed modulo the $K$ correctness of our computations (and, of course, the outcomes of requirements of higher priority).

The second type of requirements, $P$, deal with the jumps of minimal degrees below $\boldsymbol{0}^{\prime}$. We can list all candidates, $\Delta$, for minimal degrees below $0^{\prime}$ by taking a list of all partial recursive $\{0,1\}$-valued functions $\Delta(x, s)$. If we let $\Delta(x)=\lim _{s \rightarrow \infty} \Delta(x, s)$, we have, by the limit lemma, a list which includes all sets recursive in $K$. One more application of the limit lemma tells us how to represent sets recursive in $\Delta^{\prime}$, the jump of $\Delta$. They are all those of the form $\Gamma=\lambda y \lim _{n \rightarrow \infty} \Gamma(\Delta, y, n)$ for some partial recursive functional $\Gamma$ of the appropriate form. Thus we can express the remaining conditions of the theorem by the requirements $P_{\Delta, \Gamma}$ as $\Delta(x, s)$ and $\Gamma(\Delta, y, x)$ range over the appropriate classes of partial recursive functionals:
$P_{\Delta, \Gamma}:$ If $\Delta$ and $\Gamma$ are total functions and $\Gamma=A$, then there is a $Z$ such that $0<{ }_{T} Z<{ }_{T} \Delta$.

We divide each requirement $P_{\Delta, \Gamma}$ into two infinite sequences of subrequirements

$$
\begin{gathered}
R_{\Delta, \Gamma, \Psi}: Z \neq \Psi, \\
S_{\Delta, \Gamma, \Psi}: \Psi(Z) \neq \Delta,
\end{gathered}
$$

where $\Psi$ ranges over all partial recursive functionals (and $\Psi$ is short for $\Psi(\varnothing)$ ).
If the hypotheses of $P_{\Delta, \Gamma}$ hold, $\Delta$ and $\Gamma$ are total and $\Gamma=A$, then our plan is to define a recursive functional $\Lambda$ so that setting $\Lambda(\Delta)=Z$ satisfies $R_{\Delta, \Gamma, \Psi}$ and $S_{\Delta, \Lambda, \Psi}$ for each functional $\Psi$. For each subrequirement we shall have a number $y$ called the killing point, which we shall alternately put into and take out of $A$ to try to force a win. (We shall explain the precise mechanics of this later. For now just note that the killing point for the version of a requirement at node $\alpha$ will be (the code of) $\alpha$.) Roughly speaking, the plan for $R=R_{\Delta, \Gamma, \Psi}$ is as follows: we put $y$ into $A$ and wait for an $n$ such that $\Gamma(\Delta, y, n)=1$. (If there is no such $n$, then $\Gamma \neq A$.) When we get such an $n$, we use it by choosing a follower $x$ and setting $Z(x)=0=\Lambda(\Delta, x)$ by an axiom from $\Delta$ of length $\gamma(y, n)$. We now wait for $x$ to be realized, that is, for $\Psi(x)=0$. At this point, we remove $y$ from $A$. If $\Delta$ changes on $\gamma(y, n)$ we can redefine $\Lambda(\Delta, x)=Z(x)$ to be 1 and win $R$. If not, we can put $y$ back into $A$ and try again for a new $n$ and $x$. The idea is that if we never get a $\operatorname{win}(Z(x) \neq \Psi(x))$ we cycle through this scenario infinitely often each time getting an $n$ with $\Gamma(\Delta, y, n)=1$ via a $\Delta$-correct computation. As we remove $y$ from $A$ infinitely often, $y \notin A^{K}$. As $y \notin A^{K}$ requires that $\lim _{n \rightarrow \infty} \Gamma(\Delta, y, n)=0$, we have the desired failure of the hypotheses of $P_{\Delta, \Gamma}$.

Note that if $x \in \omega^{[i]}$ and the $i$ th requirement is not an $R_{\Delta, \Gamma, \Psi}$ for any $\Psi$ then $Z(x)=0$ by a trivial axiom $\langle\varnothing, x, 0\rangle$ which we put into $\Lambda$ at stage 0 .

The basic plan for satisfying $S=S_{\Delta, \Gamma, \Psi}$ is similar. We begin by putting $y$ into $A$ and waiting for an $n$ such that $\Gamma(\Delta, y, n)=1$ that we can use. We also want a $\Psi$ computation, $\Psi(Z) \upharpoonright \gamma(y, n)=\Delta \upharpoonright \gamma(y, n)$ of the $\Delta$ use from $Z$. At this point, we remove $y$ from $A$. If we should get a $\Delta$ change on $\gamma(y, n)$ we would hope to be able to restore $Z \upharpoonright \psi \gamma(y, n)$ to its previous value for a diagonalization $\Psi(Z) \upharpoonright \gamma(y, n) \neq \Delta \upharpoonright \gamma(y, n)$. If we cannot do this, we return $y$ to $A$ and try again for a new $n$ with $\Gamma(\Delta, y, n)=1$ and $\Psi(Z)=\Delta \upharpoonright \gamma(y, n)$. We shall have to argue that we can be prevented from eventually restoring $Z$ to one of these older desired values only if there are infinitely many $n$ with $\Delta$-correct computations $\Gamma(\Delta, y, n)=1$. As $y \notin A$ we shall again have contradicted the hypotheses of $P_{\Delta, \Gamma}$.

The general structure of our argument is actually that of a finite injury argument (modulo the approximations to $K$ ). Although this may seem surprisingly simple, we are after all constructing (relative to $K$ ) a low r.e. set. General considerations as in Soare [16] then suggest that our argument should be a finite injury one (over $K$ ). As the actual construction must be recursive, our approximation procedure produces a standard tree structure for it.

We begin by listing all the requirements $N_{e}, R_{\Delta, \Gamma, \Psi}$ and $S_{\Delta, \Gamma, \Psi}$ in an $\omega$-list $Q_{i}$. As usual, the tree structure will consist of sequences $\alpha$ of outcomes of the requirements $Q_{i}$ for $i<|\alpha|$. Such a node $\alpha$ will be devoted to requirement $Q_{|x|}$. We say that $\alpha$ is associated with $P_{\Delta, \Gamma}$ if $Q_{|\alpha|}$ is $R_{\Delta, \Gamma, \Psi}$ or $S_{\Delta, \Gamma, \Psi}$ for some $\Psi$. The possible outcomes of a requirement $R_{\Delta, \Gamma, \Psi}$ or $S_{\Delta, \Gamma, \Psi}$ are 0 and 1 depending on whether it believes $y \notin A$ or $y \in A$, respectively. A requirement $N_{e}$ can have any element of $\omega$ as its outcome. It will
be the use of $\Phi_{e}\left(A^{K} \oplus K ; e\right)$ if it is believed to converge and 0 otherwise. To specify the actions and outcomes of the requirements more precisely we need to fix various approximation procedures.

Approximations. We have already fixed $K$ as the complete r.e. set. We also fix some recursive one-one enumeration $k(s)$ of $K$. As usual, $K_{s}=\{k(t) \mid t<s\}$. We approximate $\Delta$ in the obvious way: $\Delta_{s}(x)=\Delta(x, s)$. We follow the convention of adding an $s$ in brackets at the end of an expression to denote that we are using the $s$ th stage approximation to each set or functional in the expression. Thus $K(x)[s]$ and $\Delta(x)[s]$ mean $K_{s}(x)$ and $\Delta_{s}(x)$. More interestingly, $\Gamma(\Delta, y, n)=1[s]$ means that $\Gamma_{s}\left(\Delta_{s}, y, n\right) \downarrow=1$. If we wish to denote the state of affairs at substage $i$ of stage $s$ we append ' $[s, i]$ ' to the relevant expression. We also adopt the standard conventions that small Greek letters such as $\gamma(y, n)$ indicate the use of the functional denoted by the corresponding capital Greek letters $\Gamma(\Delta, y, n)$ and that uses are nondecreasing in both the input and stage of the approximation.

For each $\Delta$ and $\Gamma$ we shall enumerate axioms into a functional $\Lambda_{\Delta, \Gamma}=\Lambda$ to define $Z=\Lambda(\Delta)$. We can take the axioms to be of the form $\langle\sigma, x, j\rangle$, where $\sigma$ is a binary string and

$$
\Lambda(\Delta ; x)=j \Leftrightarrow \exists \sigma(\langle\sigma, x, j\rangle \in \Lambda \& \sigma \subseteq \Delta)
$$

for $j=0,1$. This defines the obvious approximations to $Z$ :

$$
Z_{s}(x)=j \Leftrightarrow \exists \sigma\left(\langle\sigma, x, j\rangle \in \Lambda_{s} \& \sigma \subseteq \Delta_{s}\right)
$$

Of course, we must make sure that axioms are enumerated so that $\Lambda$ is consistent and that $\Lambda(\Delta)$ is total if $\Delta$ and $\Gamma$ satisfy the hypotheses of $P_{\Delta, \Gamma}$.

The last approximation is the one to the $\Sigma_{2}$ set $A$ that we are constructing. We begin with $A=\varnothing$ at stage 0 . At various times during the construction we may put a number $y$ into $A$ or take it out. Our approximations to, or beliefs about, $A$ at any point in the construction are the obvious ones: we believe that $A(x)=1$ if the last action we took was to put $x$ into $A$ and $A(x)=0$ otherwise. Our final $\Sigma_{2}$ set $A$ is defined by $A(x)=1$ if and only if there is a point in the construction at which we put $x$ into $A$ and then never take it out. We can now describe our construction.

## Construction, stage s

We begin each stage $s$ of the construction by declaring the empty sequence $\varnothing$ to be accessible. Stage $s$ will now have $s$ substages each of which starts with some node $\alpha$ being accessible. If $\alpha$ is the node accessible at the beginning of substage $i$, we remove $\beta$ from $A$ for every $\beta$ to the right of $\alpha$. If permitted, we may now act for requirement $Q_{i}$. In any case, we declare $\hat{\alpha} q$ to be accessible for some $q \in \omega$. If $i<s$, we proceed to substage $i+1$. If $i+1=s$, we finish stage $s$ and move on to stage $s+1$. Our actions at substage $i$ depend on the form of the requirement $Q_{i}$.
$Q_{i}=N_{e}$. Let $r$ be the last $\alpha$-stage, that is, one at which $\alpha$ was accessible ( 0 if this is the first $\alpha$-stage). Let $k(\alpha, s)$ be the least number enumerated in $K$ since stage $r$, that is, $k(\alpha, s)=\min \left(K_{s}-K_{r}\right)$. We say that there is an $\alpha$-believable computation of $\Phi_{e}(A \oplus K ; e) \downarrow$ if $\Phi_{e}(A \oplus K \upharpoonright k(\alpha, s) ; e) \downarrow[s, i]$. If there is such a computation with use $u$ we declare $\alpha u$ to be accessible. If not, we declare $\alpha^{\wedge} 0$ to be accessible.

If $Q_{i}$ is of the form $R_{\Delta, \Gamma, \Psi}$ or $S_{\Delta, \Gamma, \Psi}$, the killing point for $\alpha$ is $\alpha$ itself, that is, the natural number coding the sequence $\alpha$. The dependence of the action of $\alpha$ on higher
priority requirements in terms of its enumerating axioms in $\Lambda$ is expressed in terms of its dependency set, $D(\alpha, s)=\left\{\langle\beta, m\rangle \mid \beta \leqslant \alpha \wedge \beta\right.$ is associated with $P_{\Delta, \Gamma}$ and has used $m$ at some point prior to substage $|\alpha|$ of stage $s\}$.

We begin substage $i$ by having $\alpha$ impose a global wait for $\Gamma(\Delta, \beta, m)$ to be convergent for every $\langle\beta, m\rangle \in D(\alpha, s)$, that is, no node $\gamma \geqslant \alpha$ associated with $P_{\Delta, \Gamma}$ can act at any stage $t \geqslant s$ unless $\Gamma(\Delta, \beta, m) \downarrow[t]$ for all $\langle\beta, m\rangle \in D(\alpha, s)$. If this condition is not met, we proceed directly to the terminal Step 5 below of substage $i$. Otherwise, our actions depend on whether $Q_{i}$ is $R_{\Delta, \Gamma, \Psi}$ or $S_{\Delta, \Gamma, \psi}$.
$Q_{i}=R_{\Delta, \Gamma, \Psi}$. Step 1. If there is a marker $x$ such that $\alpha$ is satisfied by $x$, that is, $Z(x) \downarrow=1$ and $\Psi(x) \downarrow=0$, then we proceed to Step 4 below. If not, we see if we can satisfy $\alpha$ via some marked $x$, that is, we see if there is a marked $x$ not controlled by any $\beta<\alpha$ such that $Z(x) \uparrow$. In this case we set $Z(x)=1$ by enumerating an axiom $\left\langle\Delta_{s} \upharpoonright m, x, 1\right\rangle$ into $\Lambda$, where $m$ is the maximum of the length of any previous axiom for $x$ in $\Lambda$ and $u(\alpha, s)=\max \{\gamma(\beta, m)[s] \mid\langle\beta, m\rangle \in D(\alpha, s)\}$. (Note that all such $\gamma(\beta, m)$ are defined by our global wait requirements.) If so, go to Step 4. Otherwise, let $d$ be the number of times $\alpha$ has been taken out of $A$ and proceed to Step 2.

Step 2. If $\alpha$ is not in $A$, put $\alpha$ into $A$ and impose a global wait for an $n>d$, with $\Gamma(\Delta, \alpha, n) \downarrow=1$, that is, no action can be taken for any $\beta \geqslant \alpha$ associated with $P_{\Delta, \Gamma}$ at any stage $t \geqslant s$ unless there is an $n>d$ with $\Gamma(\Delta, \alpha, n) \downarrow=1[t]$ until $\alpha$ is removed from $A$. If at any $t \geqslant s$ we act for a requirement $\beta$ on the basis of such a computation $\Gamma(\Delta, \alpha, n)=1$, we say that $\alpha$ uses $n$ at $t$. If this global wait condition is satisfied, we proceed to Step 3. Otherwise, we go to Step 5.

Step 3. If there is an unrealized follower $x$ of $\alpha$ we proceed to Step 4. If there is a realized follower $x$ of $\alpha$ which is associated with a number $n>d$ and $\Gamma(\Delta, \alpha, n)=1[s]$, then we mark $x$, remove $\alpha$ from $A$ and proceed to Step 4. If there is no such $x$ but there is an $m>d$ not used by $\alpha$ such that $\Gamma(\Delta, \alpha, m)=1[s]$, let $n$ be the least such. We now use $n$ by associating it with a follower $x \in \omega^{[i]}$ of $\alpha$ which is larger than any number mentioned so far. We set $Z(x)=0$ by an axiom of length

$$
u(\alpha, s)=\max (\{\gamma(\beta, m)[s] \mid\langle\beta, m\rangle \in D(\alpha, s)\} \cup\{\gamma(\alpha, n)[s]\}) .
$$

We say that $x$ is realized at $t \geqslant s$ if $\Psi_{t}(x)=0$, otherwise it is unrealized. In any case, we now go to Step 4.

Step 4. We have $\alpha$ take control of every $x<s$ with $x \in \omega^{[i]}$ which is not currently controlled by any $\beta<\alpha$. (Of course, if $\delta>\alpha$ had control of $x$ before, it no longer does.) If $x \in \omega^{[i]}$ is now controlled by some $\delta \leqslant \alpha$ (which is necessarily associated with $P_{\Delta, \Gamma}$ ), then $\delta$ first took control of $x$ at $t \leqslant s$ and $Z(x)$ is now undefined (that is, $\sigma \nsubseteq \Delta_{\varepsilon}$ for every $\langle\sigma, x, j\rangle$ now in $\Lambda$ ), we redefine $Z(x)$ to be its value at the last $\delta$-stage ( 0 if there is none) via an axiom of length the maximum of that of any axiom previously defining $Z(x)$ and $u(\delta, t, s)$, where $u(\delta, t, s)=\max \left\{\gamma(\beta, m)[s] \mid\langle\beta, m\rangle \in D^{\prime}(\delta, t)\right\}$ and $D^{\prime}(\delta, t)=\left\{\langle\beta, m\rangle \mid \beta \leqslant \delta \wedge \beta\right.$ is associated with the same $P_{\Delta, \Gamma}$ as $\delta$ and $\beta$ have used $n$ at some point prior to the end of substage $|\delta|$ of stage $t\}$. We now go to Step 5.

Step 5. If $\alpha$ is now in $A$, we let $\alpha 1$ be accessible. Otherwise, we let $\alpha^{\alpha} 0$ be accessible. This ends substage $i$ of stage $s$.
$Q_{i}: S_{\Delta, \Gamma, \Psi .}$ Step 1. If $\alpha$ is satisfied, that is, there is an $x$ controlled by $\alpha$ such that $\Psi(Z ; x) \downarrow \neq \Delta(x)[s]$, we go to Step 4. Otherwise, we see if we can satisfy $\alpha$, that is, there is an $n$ marked for $\alpha$ at some $r<s$ such that $Z(x)[s, i]$ is either undefined or equal to $Z(x)[r, i])$ for every $x<\psi(\gamma(\alpha, n))[r, i]$. If so, $\alpha$ takes control of every $x<\psi(\gamma(\alpha, n))[r, i]$ with $x \in \omega^{[i]}$ such that $Q_{i}$ is associated with $P_{\Delta, r}$ (no others can ever even appear to be in $Z$ ) not controlled by some $\beta<\alpha$. (Of course, no $\beta>\alpha$ controls any such $x$ from now on.) For each such $x$, we redefine $Z(x)$ to be $Z(x)[r, i]$ by an axiom of length $u(\alpha, s)$. (The relevant $\gamma(\beta, n)$ are all defined by our global wait requirements. Moreover, our procedures for redefining $Z(x)$ (in Steps 4) guarantee that $Z(x) \downarrow[s, i]$ for all $x$ controlled by some $\beta<\alpha$.) We now go to Step 4. If we cannot satisfy $\alpha$, we let $d$ be the number of times $\alpha$ has been removed from $A$ and proceed to Step 2.

Step 2. If $\alpha$ is not in $A$, put $\alpha$ into $A$ and impose a global wait for an $n>d$ with $\Gamma(\Delta, \alpha, n)=1$. If this condition is now satisfied we got to Step 3. Otherwise we go to Step 5.

Step 3. If there is an $n$ marked for $\alpha$ such that $\Psi(Z ; x)$ is undefined for some $x<\gamma(\alpha, n)[s]$, go to Step 4. If not and there is an unmarked $n>d$ such that $\Gamma(\Delta, \alpha, n)=1[s]$ and $\Psi(z) \upharpoonright \gamma(\gamma, n)=\Delta \upharpoonright \gamma(\alpha, n)[s, i]$ then $\alpha$ uses and marks the least such $n$. We remove $\alpha$ from $A$ and proceed to Step 4.

Step 4. If $x$ is controlled by some $\beta \leqslant \alpha$ and $Z(x) \uparrow[s, i]$, we redefine $Z(x)$ as we $\operatorname{did}$ for $R_{\Delta, \Gamma, \Psi}$.

Step 5. If $\alpha$ is now in $A$, then $\alpha 1$ is accessible. Otherwise, $\alpha^{2} 0$ is accessible. This ends substage $i$ of stage $s$.

End of construction.

We must now verify that the construction defines a set $A$ which satisfies all the requirements $N$ and $P_{\Delta, \Gamma}$. We begin by showing that there is a leftmost path $f$ on the tree $T$ of nodes $\alpha$ which are ever accessible, and that $(A \oplus K)^{\prime}$ is determined by the outcome along $f$. Remember that an infinite path $f$ on $T$ is the leftmost path on $T$ if $\forall \alpha \subset f(\alpha$ is the leftmost node on level $|\alpha|$ of $T$ which is accessible infinitely often).

Lemma 1.2. There is a leftmost path $f$ on $T$ and the outcomes along $f$ are the true ones.
(i) If $Q_{i}$ is $R_{\Delta, \Gamma, \Psi}$ or $S_{\Delta, \Gamma, \Psi}$ and $\alpha=f \upharpoonright i$, then $\alpha \in A \Leftrightarrow f(\alpha)=1$.
(ii) If $Q_{i}=N_{e}$, then $\Phi_{e}(A \oplus K ; e) \downarrow \Leftrightarrow f(i)=1$.

Proof. We proceed by induction on the length of $\alpha \subset f$. Clearly $\alpha=\varnothing$ is the leftmost sequence of length 0 accessible infinitely often. Suppose by induction that $|\alpha|=i$ and $\alpha$ is the leftmost node of length $i$ accessible infinitely often. Let $s_{0}$ be such that no node $\beta<_{L} \alpha$ is accessible at any $s \geqslant s_{0}$.
(i) If $Q_{i}$ is $R_{\Delta, \Gamma, \Psi}$ or $S_{\Delta, \Gamma, \Psi}$ and $\alpha$ is accessible at $s$, then $\alpha 1$ is accessible if $\alpha$ is in $A$ and $\alpha^{\wedge} 0$ is accessible otherwise. As $\alpha \in A$ if and only if it is in $A$ from some point on, $\alpha^{\wedge} A(\alpha)$ is clearly the left-most immediate successor of $\alpha$ which is accessible infinitely often.
(ii) Suppose that $Q_{i}=N_{e}$. We say an $\alpha$-stage $s$ is $K$-true if $K_{\varepsilon} \upharpoonright k(\alpha, s)=K \upharpoonright k(\alpha, s)$. There are clearly infinitely many such stages. The outcomes of $\alpha$ at such stages are what really matter.

Sublemma 1.2.1. If there is a $K$-true $\alpha$-stage $s_{1} \geqslant s_{0}$ at which there is an $\alpha$ believable computation of $\Phi_{e}(A \oplus K$;e) with use $u$, then this computation is $A \oplus K$ correct, that is, $(A \oplus K) \upharpoonright u=(A \otimes K) \upharpoonright u[s, i]$ and $\alpha \hat{u}$ is accessible at every $\alpha$-stage $s \geqslant s_{1}$.

Proof. First note that the $\alpha$ beliefs about $A(\beta)$ for $\beta<u$ and $\beta \neq \alpha$ are correct and return to their correct state at every $\alpha$-stage $s \geqslant s_{1}$. For $\beta<{ }_{L} \alpha$, this holds by our choice of $s_{0}$. For $\beta>_{L} \alpha$, it holds by our removing $\beta$ from $A$ at the beginning of substage $i$ of every $\alpha$-stage. For $\beta \subset \alpha$, it holds by induction. On the other hand, as long as $\alpha \hat{\alpha}$ is accessible, we cannot change $A(\beta)$ for any $\beta<_{L} \alpha^{\hat{\alpha}} u$. As $K_{s} \upharpoonright u$ never changes by the definitions of a $K$-true $\alpha$-stage and $\alpha$-believability, we see that the current computation at $s$ is $\alpha$-believable at every $\alpha$-stage. Of course, any $\beta \supseteq \alpha v$ for $v \geqslant u$ is itself bigger than $u$ and so irrelevant. Thus $A(\beta)$ is never changed at $s \geqslant s_{1}$ for $\beta<u$ and $\beta \supset \alpha$ and so the computation is $A \oplus K$ correct as well.

Note that we have now proved that $\alpha$ has a leftmost successor which is accessible infinitely often. If the hypotheses of Sublemma 1.2 .1 hold then $\alpha u$ is accessible at all sufficiently large $\alpha$-stages. If not, $\alpha^{\wedge} 0$ is accessible at every $K$-true $\alpha$-stage. Thus there is a leftmost path $f$ on $\Gamma$ whose outcomes for nodes $R_{\Delta . \Gamma, \Psi}$ and $S_{\Delta . \Gamma . \Psi}$ are correct, that is, (i) holds. We conclude the verification of Lemma 1.2 by establishing the following.

Sublemma 1.2.2. If $\Phi_{e}(A \oplus K ; e) \downarrow$ with use $u$, then $\alpha \hat{u}$ is accessible at all sufficiently large $\alpha$-stages.

Proof. The proof of Sublemma 1.2 .1 shows that it suffices to prove that the correct computation is $\alpha$-believable at some $\alpha$-stage $s \geqslant s_{0}$ by which $K_{s} \upharpoonright u=K \upharpoonright u$ and $k(\alpha, s)>u$. It also shows that the $\alpha$ beliefs are correct at all such stages for all $\beta \neq \alpha$. Let $\delta \subset f$ be of length $u$ and suppose that $\delta$ is accessible at $s_{1} \geqslant s_{0}$. By our results so far, ((i) holds), we know that $A \upharpoonright u\left[s_{1}, s_{1}\right]=A \upharpoonright u$. If $s$ is the first $\alpha$-stage after $s_{1}$, then no changes have been made on $A(\beta)$ for $\beta<\alpha$ and so $A\lceil u[s, i]=A \upharpoonright u$ and the true computation of $\Phi_{e}(A \oplus K ; e) \downarrow$ is $\alpha$-believable as required.

Corollary 1.3. $\quad(A \oplus K)^{\prime} \equiv K^{\prime}$.

Proof. Clearly $K^{\prime} \leqslant(A \oplus K)^{\prime}$. It thus suffices to show that we can compute $(A \oplus K)^{\prime}$ from $K^{\prime}$. Now, by Lemma 1.2, there is a leftmost path $f$ on $T$. By definition, $f \leqslant K^{\prime}$. As Lemma 1.2 also shows that $\Phi_{e}(A \oplus K ; e) \downarrow \Leftrightarrow f(i)=1$ where $Q_{i}=N_{e}$ we have the desired reduction.

We now wish to show that the requirements $P_{\Delta, \Gamma}$ are met. If the hypotheses of $P_{\Delta, \Gamma}$ fail then there is nothing to prove. Note, however, that in any case no subrequirement of $P_{\Delta, \Gamma}$ has an effect on any $\alpha$ on the true path $f$ which is associated with any other $P_{\Delta^{\prime}, \Gamma^{\prime}}$ (at least not after a stage after which no node to the left of $\alpha$ is ever accessible).

Suppose, therefore, that the hypotheses of $P_{\Delta, \Gamma}$ are met. We prove by induction along $f$ that the outcome of $\alpha \subset f$ associated with $P_{\Delta, \Gamma}$ satisfies the subrequirements of $P_{\Delta, \Gamma}$. We must also show that $\Lambda(\Delta)=Z$ is total.

Lemma 1.4. Suppose the hypotheses of $P_{\Delta, \Gamma}$ are met and $\alpha \subset f$ is associated with $P_{\Delta, \Gamma}$.
(i) If $Q_{|\alpha|}=R_{\Delta, \Gamma, \Psi}$ then there is a stage $t_{0}$ such that at every $s \geqslant t_{0}$ either (as defined in Step 1) $\alpha$ is already satisfied, or we satisfy $\alpha$ at $s$, or $\alpha$ has an unrealized follower.
(ii) If $Q_{|\alpha|}=S_{\Delta, \Gamma, \Psi}$ then there is a stage $t_{0}$ such that at every $s \geqslant t_{0}$ either (as defined in Step 1) $\alpha$ is already satisfied, or we satisfy $\alpha$ at $s$, or there is an $n$ marked for $\alpha$ and an $x<\gamma(\alpha, n)[s]$ such that $\Psi(Z ; x)$ is undefined.

Proof. We suppose that the hypotheses of $P_{\Delta, \Gamma}$ are met and proceed by induction on $\alpha \subset f$. First, note that (i) and (ii) imply that from some point on no action is taken for $\alpha$, except possibly in Step 4 to redefine $Z(x)$ for those $x$ which $\alpha$ controls. More specifically, no more numbers are used or marked or followers appointed by $\alpha ; Z(x)$ is not changed from its last value by $\alpha$ for any $x$; and no more global waits are imposed by $\alpha$. All global waits for $\Gamma(\Delta, \alpha, n) \downarrow$ are eventually met by the hypotheses of $P_{\Delta, \mathrm{r}}$. Any global wait for any $n$ with $\Gamma(\Delta, \alpha, n) \downarrow=1$ imposed in Step 2 is permanent only if $\alpha$ is never removed from $A$ (and so $\alpha \in A$ ). Thus, by the hypotheses of $P_{\Delta, \Gamma}$, any such condition is also eventually permanently met. Of course if $\beta<_{L} \alpha$, then $\beta$ is accessible only finitely often and the same conditions eventually hold for $\beta$ as well. Suppose, therefore, that $s_{0}$ is a stage after which no $\beta<_{L} \alpha$ is ever accessible but all these conditions always hold for $\beta<\alpha$.

We divide the proof into cases according to whether $\alpha \in A$ or not.
$\alpha \in A$. In this case, there is a stage $s_{1} \geqslant s_{0}$ after which $\alpha$ is never removed from $A$. Let $d$ be the number of times $\alpha$ is removed from $A$. By the hypotheses of $P_{\Delta, \Gamma}$, there is eventually a permanent current computation of $\Gamma\left(\Delta, \alpha, n_{0}\right)=1$ for some $n_{0}>d, s_{1}$, say by $s_{2} \geqslant s_{1}$. Similarly, for any finite set $F$ we must eventually have $\Gamma(\Delta, \alpha, n) \downarrow$ for every $n \in F$. Thus $\alpha$ must be accessible infinitely often at stages $s \geqslant s_{2}$ when all global wait conditions are satisfied.

It is now clear that if the conclusions of Lemma 1.3 do not hold, then we shall eventually associate some follower $x$ with $n_{0}$ and later mark it (if $Q_{|x|}=R_{\Delta, \Gamma, \psi}$ ) or use and mark $n_{0}$ (if $Q_{|\alpha|}=S_{\Delta, \Gamma, \Psi}$ ). In either case, we would remove $\alpha$ from $A$ for the desired contradiction.
$\alpha \notin A$. When $\alpha$ is accessible after $s_{0}$ and not in $A$ and all global wait conditions are met, we can be prevented from putting $\alpha$ into $A$ only by satisfying $\alpha$. Thus we may assume that we put $\alpha$ into $A$ and remove it infinitely often. By the hypotheses of $P_{\Delta, \Gamma}$, there must be an $n_{0}$ such that $\Gamma(\Delta, \alpha, n)=0$ for every $n \geqslant n_{0}$. Consider now the $n_{0}$ th time we put $\alpha$ into $A$, say at stage $s_{1} \geqslant s_{0}$. We impose a global wait for an $n \geqslant n_{0}$ such that $\Gamma(\Delta, \alpha, n)=1$. Note that we can now act for $\alpha$ (and so define $Z(x)$ for any new $x$ at an $s \geqslant s_{1}$ for $\left.Q_{|\alpha|}=R_{\Delta, \Gamma, \Psi}\right)$ only when we have either $\alpha$ satisfied or an $n \geqslant n_{0}$ with $\Gamma(\Delta, \alpha, n)=1$ which we have used.

We now assume that $Q_{|\alpha|}=R_{\Delta, \Gamma, \Psi}$ and prove (i). As we remove $\alpha$ from $A$ infinitely often, we must eventually appoint and then mark an $x \geqslant n_{0}$ at stages $s_{3} \geqslant s_{2} \geqslant s_{1}$, respectively. By our induction hypotheses and choice of $s_{0}$, it follows that $\alpha$ retains control of $x$ and so $Z(x)$ is, for all sufficiently large $\alpha$-stages $s$, defined by axioms of
length $u(\delta, t, s)$ (plus a constant) for a fixed $t$. By our hypotheses in $P_{\Delta, \Gamma}$, we have that $\lim _{s \rightarrow \infty} u(\delta, t, s)$ exists and $\Delta$ is eventually constant on all the relevant uses. If $\alpha$ is not already satisfied, we can be prevented from satisfying $\alpha$ by defining $Z(x)=1$ at such a point only by there being some axiom $\sigma$ defining $Z(x)=0$ which was put into $\Delta$ at some stage since $x$ was appointed and is now $\Delta$-correct. As we have noted, any such axiom contains the information needed either to satisfy $\alpha$ via some other $x$, or to give a computation $\Gamma(\Delta, \alpha, n)=1$ for some $n \geqslant n_{0}$. As this correct $\Delta$-information is, in fact, correct, we have the desired contradiction.

Finally, we assume that $Q_{|\alpha|}=S_{\Delta, \Gamma, \Psi}$ and prove (ii). Consider the numbers $x$ controlled by some $\delta<\alpha$ at $s_{1}$. For each such $x$ we have that $Z(x)$ is defined by an axiom of length $u(\delta, t, s)$ (plus a constant) for a fixed $t$. By our hypotheses on $P_{\Delta, \Gamma}$, we may choose a stage $s_{2} \geqslant s_{1}$ after which $u(\delta, t, s)$ is fixed, as is $\Delta \upharpoonright u(\delta, t, s)$ for each such $x$. As we remove $\alpha$ from $A$ infinitely often, there is a stage $s_{3} \geqslant s_{2}$ at which we mark some $n>n_{0}$. By our choice of $n_{0}$, we have that $\Gamma(\Delta, \alpha, n)=0$. Once $\Delta \upharpoonright \gamma(\alpha, n)$ has reached its correct value, we can be prevented from satisfying $\alpha$ (if it is not yet satisfied) only by there being an axiom $\sigma$ defining some $Z(x)$ inappropriately. By our assumptions, $\sigma$ was put into $\Lambda$ at a stage at which we had $\alpha$ satisfied or an $n \geqslant n_{0}$ with $\Gamma(\Delta, \alpha, n)=1$ and this information was included in $\sigma$. Thus this information (about $\Delta$ ) must be correct and we would either have $\alpha$ satisfied or have a correct computation $\Gamma(\Delta, \alpha, n)=1$ for $n>n_{0}$ for the desired contradiction.

Lemma 1.5. If the hypotheses of $P_{\Delta, \Gamma}$ are met then $\Lambda(\Delta)=Z$ (for the associated functional $\Lambda$ ) is well defined and total.

Proof. As we only add a new axiom $\langle\sigma, x, j\rangle$ for $x$ to $\Lambda$ when all previous ones are incorrect $(\sigma \nsubseteq \Lambda)$ and any new axiom is always at least as long as any previous one, $\Lambda$ is consistent. Consider now any number $x$. If $x \notin \omega^{[i]}$ for some $i$ such that $Q_{i}$ is an $R_{\Delta, \Lambda, \Psi}$, then $Z(x)$ is set to be 0 by a trivial axiom. Suppose that $x \in \omega^{[i]}$, $Q_{i}=R_{\Delta, \Gamma, \Psi}$ and $\alpha \subset f$ is of length $i$. It is clear from the construction that $\alpha$ eventually takes control of $x$ if it is not controlled by a higher priority requirement. As the priority ordering is well ordered, there is a highest priority $\beta$ such that $\beta$ ever controls $x$. Suppose that $\beta$ first takes control of $x$ at $t$. It then controls $x$ at every stage $s \geqslant t$. Further, $Z(x)$, if undefined, is redefined when $\alpha$ is accessible at $s$ via an axiom of length $u(\delta, t, s)$. Our assumptions on $P_{\Delta, \Gamma}$ guarantee that $\lim _{s \rightarrow \infty} u(\delta, t, s)$ exists and so $Z(x)$ is eventually defined by a fixed (necessarily $\Delta$-correct) axiom.

Lemma 1.6. If the hypotheses of $P_{\Delta, \Gamma}$ are met then $Z=\Lambda(\Delta)$ meets every subrequirement $Q_{i}$ of the form $R_{\Delta, \Gamma, \Psi}$ or $S_{\Delta, \Gamma, \Psi}$ and so $\varnothing<{ }_{T} Z<_{T} \Delta$.

Proof. Let $\alpha$ be the initial segment of $f$ of length $i$ and let $t_{0}$ be as in the conclusions of Lemma 1.4.
(i) $Q_{i}=R_{\Delta, \Gamma, \Psi}$. No new followers are ever appointed after $t_{0}$. If one of them, $x$, is unrealized then $\Psi(x) \neq 0$ but $Z(x)=0$ as we can never change the value of $Z(x)$ once it is defined. Thus $\Psi \neq Z$ as required. Otherwise, there is a $t_{1} \geqslant t_{0}$ by which all the followers are realized. At every $\alpha$-stage $s \geqslant t_{1}$, it follows that $\alpha$ must be satisfied, that is, $Z(x) \downarrow=1[s]$ and $\Psi(x)=0[s]$ for some follower $x$ of $\alpha$. As $Z(x)$ is eventually constant by Lemma 1.4, $\Psi(x) \neq Z(x)$ for one of these $x$. Again $\Psi \neq Z$ are required.
(ii) $Q_{i}=S_{\Delta, \Gamma, \psi}$. No numbers $n$ are marked for $\alpha$ after $t_{0}$. By our hypotheses on $P_{\Delta, \Gamma}$, it follows that $\gamma(\alpha, n)[s]$ is eventually constant for all $n$ marked for $\alpha$. If $\Psi(Z ; x)$
is not defined for some $x<\gamma(\alpha, n)$ for a marked $n$, then $\Psi(Z) \neq \Delta$. Otherwise, $\alpha$ is satisfied at every sufficiently large $\alpha$-stage by $\Psi(Z ; x) \neq \Delta(x)$ for some $x<\gamma(\alpha, n)$ for one of the marked $n$. As $\Delta(x)$ and $\Psi(Z ; x)$ eventually stabilize for each such $x$, there is some $x$ such that $\Psi(Z ; x) \downarrow \neq \Delta(x)$ as required.

## 2. Jumps of minimal degrees in downward cones

Theorem 2.1. Let $D$ be any r.e. set with $D^{\prime}>_{T} \varnothing^{\prime}$. Then there exists a set $M$ of minimal degree with $M \leqslant_{T} D$ and $\varnothing^{\prime}<_{T} M^{\prime} \leqslant_{T} D^{\prime}$.

Proof. We shall construct $M \leqslant_{T} D$ by a full approximation construction along the lines of, for instance, Lerman [5], Epstein [2] and Yates [18] with $M=\lim _{8} M_{8}$. At each stage $s$, we shall construct nested sequences of recursive trees $T_{\alpha, \delta} \supseteq \ldots \supseteq T_{\lambda, \delta}$ for certain paths $\alpha$ on the stage $s$ priority tree. At stage $s$, if $|\sigma| \leqslant s,|\beta| \geqslant e$, and $\sigma$ is on $T_{\beta, s}$, then $\sigma$ will have a $j$-state for some $j \leqslant e$. Such a state is a string of length $j+1$ that codes guesses as to the 'arena' in which $\sigma$ must live. (We shall assume that the reader has at least nodding acquaintance, if not familiarity, with the full approximation technique. In particular, the notion of state will be somewhat similar to the usual notion of $e$-state, in the sense that it will characterize whether the node at hand is locally $e$-splitting. The notion of state will also need to encode additional $\Pi_{2}$ behaviour, namely the behaviour of diagonalization requirements of stronger priority as they affect the trees we search to decide if splittings exist. Because of this nonstandard notion of state, in the full construction we shall replace 'state' by 'guess' to avoid confusion. However, in the discussion of the basic modules we shall stick to state since the need for more elaborate notions only becomes apparent when we look at interaction between the requirements.) We shall meet the minimality requirements

$$
N_{e}: \Phi_{e}(M) \text { total } \Rightarrow\left[\left(M \leqslant_{T} \Phi_{e}(M)\right) \vee\left(\varnothing \equiv_{T} \Phi_{e}(M)\right)\right]
$$

for all partial recursive functionals $\Delta_{e}$. Additionally, we need to ensure that $\varnothing^{\prime}(=K)$ cannot compute the jump of $M$. In fact, we build a set $V$ which is r.e. in $M$, and satisfies the following requirements,

$$
R_{e}: \Delta_{e}(K) \neq V
$$

Let $Q=K^{D}$ denote the standard enumeration of $D^{\prime}$ so that $K_{s}^{D_{s}}=Q_{s}=$ $\left\{e:\{e\}_{s}^{D_{s}}(e) \downarrow \& e \leqslant s\right\}$. We briefly remind the reader of the manner by which one satisfies the $N_{e}$. We assume that the reader is familiar with, for instance, the Sacks [8] construction of a minimal degree below $0^{\prime}$. However, our construction will be a full approximation one as follows. As with all known minimal degree constructions, in a full approximation argument, one tries to get $M$ on either an $e$-splitting (partial recursive) tree or a tree with no $e$-splittings. For simplicity in the following discussion we shall drop some of the tree notation and pretend that we are only constructing a nested sequence $T_{0, s} \subseteq \ldots \subseteq T_{s, s}$ and are working to maximise $e$-states on $T_{e, s}$. In the perfect set version à la Spector [17] and Shoenfield [14], one does this using recursive total trees, and uses $0^{\prime \prime}$ as an oracle to achieve this in one step. In the present construction, one can only work locally. With no permitting around, this simply corresponds to waiting till one sees extensions $\tau_{1}, \tau_{2}$ of some node $\tau$ which are $e$ splitting at stage $s$. Clearly we need $\tau_{1}$ and $\tau_{2}$ on tree $T_{e, 8}, \tau_{1}$ and $\tau_{2}$ having the same (e-1)-state as $\tau$, and $\tau_{i} \subseteq M_{s}$ for some $i$. If we see such $\tau_{1}$ and $\tau_{2}$ we can raise the state of $\tau$ to the high $e$-state $\hat{v 1}$, assuming it was in the low $e$-state $\hat{v} 0$. [We reserve $v$ for states; $\alpha, \beta$, and $\gamma$ for nodes on the priority tree (and sometimes states); $\mu, \sigma, \tau, \lambda$ for
strings; and $\phi$ and $\delta$ for uses corresponding to $\Phi$ and $\Delta$, respectively.] So the idea is to slowly build the trees $T_{e, s}$ as subtrees of $T_{e-1, s}$ so that $\lim _{s} T_{e, s}$ is achieved stringwise. At each state $s$, this enables us to define a string, $M_{s}$, of length $s$, the leftmost common path on $T_{0, s}, \ldots, T_{s, s}$ of length $s$. By the way we define $e$-states and by construction, $\lim _{s} M_{s}(x)=M(x)$ will exist for all $x$. One can argue that $M$ has minimal degree as in Sacks [10], except that in a full approximation argument we use $e$-states as follows. Let $\hat{v i}$ (for $i=0$ or 1) be the well-resided e-state. By well-resided, we mean that for almost all $\sigma$ on $\lim _{s} T_{e, s}$, if $\sigma$ is an initial segment of $M$, then $\sigma$ has state $\hat{v i}$. If this state is $\hat{v} 1$ then we simply go to some $\sigma \subset M$ on $T_{e}$ such that all $\tau \supseteq \sigma$ on $T_{e}$ have final $e$ state $\hat{v} 1$. From this parameter, as in the Sacks construction, we know that we can inductively generate $M$ from the tree of extensions on $T_{e}$ that achieve state $\hat{v 1}$ and $\Phi_{e}(M)$. Similarly, if $i=0$, then there are no $e$-splittings on the 'well-resided tree', so any computation $\Phi_{e, s}\left(M_{s} ; x\right)$ with $M_{s}$ of the correct $e$-state must agree with $\Phi_{e}(M)$. [Minimality will then follow by the fact that we meet the $R_{e}$ and hence $M \not \equiv_{T} \varnothing$.]

We remark that in the present construction, the above is not quite correct, since we shall construct at each stage $s$ a path $\alpha_{s}$ (through the priority tree) that 'looks correct', and $M_{s}$ will lie on the trees $T_{\gamma, s}$ for $\gamma \subseteq \alpha_{s}$, where $\alpha_{s}$ denotes the path of length $s$ that looks correct at stage $s$. As we shall see, this means that the trees are actually determined also by the actions of the jump requirements. The idea, however, is essentially the same.

Keeping $M \leqslant_{T} D$ in the above construction entails adding r.e. permitting. For this theorem, we are able to use simple permitting. That is, we ensure that

$$
D_{s}[x]=D[x] \text { implies that } M_{s}[x]=M[x], \quad \text { where } E[x]=\{z \mid z \in E \& z \leqslant x\} .
$$

Such permitting really causes no problems with the $e$-state machinery. Remember, we seek $e$-splittings $\tau_{1}, \tau_{2}$ extending $\tau$ such that $M_{s} \supset \tau_{1}$ or $M_{s} \supset \tau_{2}$. Without loss of generality, suppose that $M_{s} \supset \tau_{1}$. Then all that the minimality machinery requests is that we refine the tree to cause either $M \supset \tau_{1}$ or $M \supset \tau_{2}$ should $M \supset \tau$. The point is that we can ensure this refinement while keeping $M_{s} \supset \tau_{1}$. It follows that if $\Phi_{e}(M)$ is total then either $\Phi_{e}(M) \equiv_{T} M$ or $\Phi_{e}(M) \equiv_{T} \varnothing$.

What becomes more difficult is to ensure that $M$ is nonlow by meeting the $R_{e}$. Now we are only able to diagonalize against an ' $\alpha$-correct' version of $V$ when permitted by $D$.

Thus, we now turn to the satisfaction of the jump requirements, keeping $M^{\prime}>_{T} \varnothing^{\prime}$. To meet these requirements, the reader should recall that the plan is to build a set $V$ which is $\Sigma_{1}^{M}$, making sure that $\Delta_{e}(K) \neq V$. Let $\ell(e, s)=$ $\max \left\{x:(\forall y<x)\left[\Delta_{e, s}\left(K_{s} ; y\right)=V_{s}(y)\right]\right\}$. Of course, $V$ is built by enumerating axioms relative to $M$. We meet these $R_{e}$ requirements via a Sacks encoding type strategy, only here we desire to encode $Q=K^{D}$ into $V$ via axioms about $M$. The idea is to try to encode more and more of $Q$ into more and more of $V$ so that if $\Delta_{e}(K)=V$, then $K$ will be able to compute $Q$, since $K$ will be able to ascertain if a coding location $c(i, s)$ for $i \in Q$ is final, for a contradiction.

So the idea is that when $\ell(e, s)>c(i-1, s)$ we choose a coding location $c(i, s)$ for coding whether ' $i \in Q$ '. For simplicity we shall not worry about the interaction with the state machinery, but consider only the basic module. The idea in the basic module is to pick some number $d(i, s)$ (intuitively, the (lower bound on the) use of $c(i, s)$ ) so that the following four conditions are satisfied:
(i) there exists $\sigma$ on $T_{e, s}$ with $\sigma=T_{e, s}(\tau)$, say, so that one of $T_{e, s}\left(\tau^{\wedge} 0\right)$ and $T_{e, s}\left(\tau^{\wedge} 1\right)$ is an initial segment of $M_{s}$; without loss of generality, assume this to be $T_{e, s}\left(\hat{\tau^{\wedge} 0}\right)$;
(ii) $|\sigma|=d(i, s)$;
(iii) $i \in K_{s}^{D_{s}}=Q_{s}$ and $u\left(\{i\}_{s}^{D_{s}}(i)\right)<d(i, s)$;
(iv) $d(i, s)>t$, where $t$ is the greatest stage, if any, where $d(i, t)$ was previously defined.

If such a number exists, we declare that $d(i, s)$ is the axiom location for ' $c(i, s) \in V$ at $s^{\prime}$. We enumerate an axiom saying that

$$
\text { if } T_{e, s}\left(\tau^{\hat{}} 0\right) \subset M, \quad \text { then } c(i, s) \in V
$$

Also $R_{e}$ will assert control of the construction in the sense that it will constrain $M$ to travel through $T_{e, s}\left(\tau^{\wedge} 0\right)$ while the conditions above are maintained.

The key idea is that if $i$ leaves $Q$ (that is, $i \in Q_{s}-Q_{\varepsilon_{1}}$ for some least $s_{1}>s$ ) it must be that $D_{s}\left[u\left(\{i\}_{s}^{D_{s}}(i)\right)\right] \neq D_{s_{1}}\left[u\left(\{i\}_{s}^{D_{s}}(i)\right)\right]$. Hence, in particular, $D$ permits below $d(i, s)$ by (iii) above. Therefore by (i) and (ii), we can cause $M$ now to extend $T_{e, s}\left(\tau^{\wedge} 1\right)$ [instead of $\left.T_{e, s}\left(\tau^{\prime} 0\right)\right]$, since we are $D$-permitted to do so. In such a case we shall abandon $T_{e, s}(\hat{\tau} 0)$ forever. [This abandonment makes it necessary to ensure that some strings are set aside from other lower priority requirements, but this causes no special problems. See the remarks below.]

Now $d\left(i, s_{1}\right)$ becomes undefined (and hence the parameter $d(i,-)$ will need to be redefined to a new number) and $c(i, s)=c\left(i, s_{1}\right)$ leaves $V_{s_{1}}$. The next axiom location for $c(i, s)$, if any, will be chosen so that the relevant analogues of (i) to (iv) all hold. Note that if the cycle recurs infinitely often then $c(i, s) \notin V$ and $i \notin Q$.

The only problem that occurs with the cycle for $i$ outlined above is the following. The cycle could cause unbounded constraint on $M$ because $\Delta_{e}(K)$ may not be total, but could have unbounded use for some $c=c(i, s)$. Imagine $\delta_{e, s}(c) \rightarrow \infty$. As with the density theorem for the r.e. degrees, we might define coding locations $c\left(i^{\prime}, s\right)$ for all $i^{\prime}>i$ and eventually this might cause $M$ to be recursive, although $\Delta_{e}(K ; c) \uparrow$, since $\lim \sup \ell(e, s)=\infty$. To overcome this familiar problem, when we pick a coding location $c(i, s)$ for $i$ at stage $s$ if the $\Delta_{e}\left(K_{s} ; c\right) \downarrow$ computation is later seen to have incorrect $K$-use we cancel $c\left(i^{\prime}, s\right)$ for all $i^{\prime}>i$ and pick $c\left(i^{\prime}, t\right)$ anew later (where $c\left(i^{\prime}, t\right)>s$ ) (we call this kicking). For all such $c\left(i^{\prime}, s\right)$, we also declare $d\left(i^{\prime}, s\right)$ to be undefined; we do not cancel the corresponding $T_{e, s}\left(\tau^{\hat{0}} 0\right)$ or $T_{e, s}\left(\tau^{\wedge} 1\right)$ but release them to the construction.

The conclusion that $\Delta_{e}(K) \neq V$ remains correct, since using $\delta_{e, s}$ and $K_{s}, K$ can still decide if a coding location is final.

Finally, in the full construction, we shall need to deal with various versions of the $R_{e}$ and $N_{e}$ above, working in a 'tree of strategies' type of setting. Coding locations with the wrong guesses will need to be initialized and kicked as above. An $R_{e}$ requirement at node $\alpha$ which is guessing that $v$ is the well-resided ' $e$ ' guess (note 'guess' not 'state') will need to wait till it sees the $\sigma$ and the $\tau$ of guess $v$ before it enumerates an axiom involving an axiom location $d(\alpha, i, s)$ for the coding location $c(\alpha, i, s)$. The reader should note that the trickiest part of the construction is to get the correct environment within which each $R_{e}$ operates. Here, not only do we need to guess the lim inf of the length of agreement associated with $R_{e-1}$, but also the exact behaviour of the various markers associated with this lim inf. We now turn to the formal details.

Remarks. As we mentioned above, the reader should note that a single $c(\alpha, i, s)$ has the potential of killing all of the three $T_{\alpha}$ save for one branch (making $M$ recursive) if we are not careful. If $i \notin Q$ but $i$ is in $Q_{s}$ infinitely often, then the $R_{e}$ cycle
could be repeated infinitely often for the sake of $i$. As above the action of the $R_{e}$ is to kill $T_{\alpha}\left(\sigma^{\hat{j}}\right)$ and if we then killed one extension of $T_{\alpha}\left(\sigma^{\hat{( }}(1-j)\right)$ and so forth, one could kill all but one path on the tree. This is fine from the $R_{e}$ point of view, but has the potential for making $M$ recursive. To ensure that this problem is avoided we shall use various control devices to guarantee that there will be enough available branches for the relevant requirements when we play the appropriate outcome of $R_{e}$. This is a little messy but it is the point of the control functions count $(\alpha, s)$ and maxcount ( $\alpha, s$ ), and the freezing machinery. The idea is to suppose that we wish to play an outcome $o$ of $\alpha$, as its guess has just looked correct. At this stage we acknowledge that we want a supply of strings available to the nodes guessing $\hat{\alpha 0}$ when we pass $\hat{\alpha o}$. We shall not allow $\alpha$, or any guesses extending $\hat{\alpha} 0$, to assign any strings until we see count ( $\alpha 0, s$ ) exceed a previous bound maxcount ( $\alpha_{0}, s, s$ ), or we unfreeze the node because we see many strings of the appropriate guess. We increment count ( $\alpha^{\hat{0}}, s, s$ ) each time we
 many strings to assign to nodes guessing $\hat{\alpha}$ o.

The priority tree. We generate the priority tree PT by induction first on length and then on the lexicographic ordering generated by the ordering $<$ that we define on outcomes. We also denote this lexicographic ordering on nodes by $<$. It is the usual priority ordering. The left-to-right ordering $\alpha<_{L} \beta$ is defined as usual by $\alpha<\beta$ and $\alpha \nsubseteq \beta$. On any path $\rho$ a requirement is assigned to a node $\sigma \subset \rho$ as follows. Assign $N_{0}$ to $\lambda$, the empty string. We write $e(\lambda)=0$ and req $(\lambda)=N_{0}$. Then $\lambda$ will have outcomes 0 and 1 , meaning that $\lambda^{\wedge} 0=0$ and $\lambda^{\wedge} 1=1$ are on PT. The idea here is that the outcome 1 corresponds to $M$ lying upon a 0 -splitting tree and we set $1<0$. To each of the $\lambda$ outcomes we now assign a version of $R_{0}$ so that req ( 0 ) $=$ req (1) $=R_{0}$, and $e(0)=e(1)=0$.

Each version of $R_{0}$ will sit atop an infinite tree of outcomes of $R_{0}$, the $R_{0}$ tree, coding the precise behaviour of the coding locations, axiom locations and $K$-uses. At the top level will be the node $\sigma$ with the $c(0)$-outcomes of $R_{0}$. Namely, $\sigma$ will have outcomes (in < order)

$$
\langle 0, u\rangle,\langle 0, \infty\rangle,\langle 0, d\rangle,\langle 0, f\rangle .
$$

The intended meaning of these outcomes is as follows:
$\langle 0, u\rangle: c(\sigma, 0)\left(=\lim _{s} c(\sigma, 0, s)\right)$ has unbounded $\Delta_{0}(K)$-use ('u' for 'unbounded');
$\langle 0, \infty\rangle$ : this corresponds to no win via $c(\sigma, 0)$, but we change $d(\sigma, 0, s)$ infinitely often; in essence, this entails $\Delta_{0}(K ; c(\sigma, 0))=0$ and cycling through $\langle 0, d\rangle$ infinitely often;
$\langle 0, d\rangle$ : $c(\sigma, 0)$ witnesses a win by a disagreement (' d ' for 'disagreement');
$\langle 0, f\rangle$ : no win via $c(\sigma, 0)$ and we only change $d(\sigma, 0, s)$ finitely often (' f ' for 'finite').

Remark. The reader should note that the outcomes $\langle 0, \infty\rangle$ and $\langle 0, f\rangle$ do not code a win for $\sigma$ but do code the behaviour of the action of $\sigma$ with respect to $c(\sigma, 0)$. The idea is that we shall continue to try to satisfy $R_{0}$ at each of these outcomes generating an $R_{0}$ tree as described below.

In general to define the $R_{0}$ tree below $\sigma$, suppose that we have defined $\tau$ to be in this tree. If $\tau$ is of the form $\hat{\mu}\langle i, u\rangle$ or $\hat{\mu}\langle i, d\rangle$, then $\tau$ represents a win for $R_{0}$ and we would assign $N_{1}$ to $\tau$. If $\tau$ is of the form $\hat{\mu}\langle i, \infty\rangle$ or $\hat{\mu}\langle i, f\rangle$, then we again assign $R_{0}$ to $\tau$ and give it outcomes $\langle i+1, u\rangle, \ldots,\langle i+1, f\rangle$. (See Diagram 1.)


Diag. 1. A portion of the priority tree.
For the full priority tree we assign $N_{e}$ and $R_{e}$ in order as above with $e$ in place of 0 for the highest priority requirement not yet (completely) assigned. Note that the presence of $R_{e}$ trees means that there exist paths $P$ on PT whose nodes are only assigned to finitely many requirements. For such a path, almost all of the nodes will be assigned to a fixed $R_{e}$ and will be of the form $\hat{\mu}\langle i, \infty\rangle$ or $\hat{\mu}\langle i, f\rangle$. We shall need to argue that none of these paths is the true path of the construction, and hence all requirements get their chance to be met.

## Parameters and terminology for the construction

$c(\alpha, i, s)$ : The coding marker associated with ' $i \in D^{\prime}$ ' at guess $\alpha$ at stage $s ; c(\alpha, i, s)$ is targeted for $V$. We attempt to code $D^{\prime}$ into $V$ via these markers.
$d(\alpha, i, s)$ : The current axiom location for ' $c(\alpha, i, s)$ in $V$ at stage $s$ '.
count $(\alpha, s)$ : A control function at guess $\alpha$ used to ensure that when we play an $N_{e}$-node $\alpha$ then there are many unused strings available for guesses below $\alpha$.
maxcount $(\alpha, s)$ : The reference control function that count ( $\alpha, s$ ) must exceed before we can play $\alpha$.
$\alpha$-freezing: While a node $\alpha$ is waiting to see enough strings to make it seem reasonable to play outcome $o$, then we say that the node is frozen with outcome $o$.
req $(\alpha)$ : The requirement assigned to $\alpha$.
$e(\alpha)$ : The index of the requirement req $(\alpha)$.
$j(\alpha)$ : The $j$ for which $\alpha$ is used to code ' $c(\alpha, j, s) \in V$ '.
Finally, $\left.\ell(e(\alpha), s)=\max \left\{x: \forall y<x\left(\Delta_{e, s}\left(K_{s} ; y\right)=V_{s}(y)\right)\right)\right\}$.
The most complex requirements are the higher level Sacks coding requirements, the $R_{e}$. The reader should think of their action as that of an automaton.

## Construction, stage $s+1$

In substages we shall generate a guess (that is, a node on the tree) $\alpha_{8+1}$ that looks correct, and a collection of trees $T_{\gamma, s+1}$ (for $\gamma \subseteq \alpha_{s+1}$ and req $(\gamma)$ of the form $N_{e}$ ). For convenience, let $T_{\lambda, 0}=2^{<\omega}$. Initially, let all $\mu$ on $T_{\gamma, 0}$ have $e$-guess $\lambda$. We proceed in substages $t \leqslant s+1$. We shall append a superscript $t$ to a parameter to indicate its guess at the end of substage $t$. (At substage 0 , the initial value of a parameter will be its value at the end of stage $s$ ). We also suppose that we are told that $s+1$ is an $\alpha$-stage ( $\alpha=\alpha_{s+1}^{l}$ ) at the end of each substage $t(\alpha=\lambda$ initially).

Our action will be to determine how to modify trees, guesses, etc., and to define the outcome of $\alpha_{s+1}^{t}$. Our actions will be determined by $s, t$, and req $(\alpha)$. We shall assume that if req $(\alpha)=R_{e}$, we are at the top of an $R_{e}$ tree. We often use the phrase 'initialize $\alpha$ '. This follows standard usage, and means cancelling the followers of $\alpha$, etc. Furthermore, if $\beta<{ }_{L} \alpha$ initializes $\alpha$ (so that $\beta$ is visited at $s+1$, say) then we let $T_{\alpha, s+1}$ be the full subtree of $T_{\beta, s+1}$ extending $M_{s+1}$ above $T_{\beta, s+1}(\tau)$ with $|\tau|=s+1$ and $M_{s+1} \supset T_{\beta, s+1}$, with all guesses becoming initialized. Finally setting a value for $\alpha_{s+1}$ ends a stage.

Convention. We shall also adopt the following convention that saves on terminology. During the construction we can visit nodes $v$ in one of two ways. One way is to visit them at substage $t$ of stage $s$ such that for all $v^{\prime} \subseteq v$ we also visited $v^{\prime}$ at the same stage. The other possibility is that we did not visit some $v^{\prime} \subseteq v$ during stage $s$ but jumped directly to $v$ because although $v^{\prime}$ was not accessible, there was a permitted action at $v$. In the latter case, we adopt the convention that visiting $v$ either ends the stage or we visit some $\hat{v} \supset v$ via a permitted action. As we shall see when we act in this way we do not appoint markers etc., but merely modify trees.

Definition 2.2. We say that $\alpha$ (on PT) has a permitted action at substage $t$ of stage $s+1$ if, for some $j$, we have
(i) $c=c^{t}(\alpha, j, s+1)$ is defined,
(ii) $c \in V_{\alpha, s+1}^{t}$, and
(iii) $j \notin Q_{s+1}^{\alpha, s+1}$ (that is, $\{j\}^{D}(j)[s+1] \uparrow$ ).

Substage $t$. Let $\alpha$ be the node eligible to act at substage $t$.
Case 1: req $(\alpha)$ is $N_{e}$.
Subcase 1: there exist $\tau, \tau_{0}, \tau_{1}$ such that $\tau, \tau_{0}$, and $\tau_{1}$ are on $T_{\alpha, s+1}^{t}$ with $\tau=T_{\alpha, s+1}^{t}(\eta), \tau_{1}=T_{\alpha, s+1}^{t}\left(\eta_{1}\right), \tau_{2}=T_{\alpha, s+1}^{t}\left(\eta_{2}\right)$, and
(i) $\tau_{0}$ and $\tau_{1} e$-split $\tau$,
(ii) $\tau_{0}<_{L} \tau_{1}$,
(iii) $\tau_{0} \subseteq M_{s}$ or $\tau_{1} \subseteq M_{s}$,
(iv) $\tau, \tau_{0}, \tau_{1}$ had $e$-guess $\alpha^{0} 0$ at the beginning of substage $t$,
(v) $\left|\eta_{0}\right|,\left|\eta_{1}\right|>\operatorname{maxcount}\left(\alpha^{\wedge} 1, s\right)$ (the last stage at which $\alpha$ genuinely had outcome 1) and
(vi) $\tau$ is the shortest such string.

Action. For $\rho \not \ddagger \eta$, let $T_{\alpha, s+1}^{t+1}(\rho)=T_{\alpha, s+1}^{t}(\rho)$. For $\rho \supset \eta$ and $i<2$, define $T_{\alpha, s+1}^{t+1}$ via

$$
T_{\alpha, s+1}^{t+1}(\hat{\eta} \hat{i} \sigma)=T_{\alpha, s+1}^{t}\left(\hat{\eta_{i} \sigma}\right)
$$

Raise the $e$-guess of $\tau$ to $\alpha^{\wedge}$. All else remains the same.
Set count $\left(\alpha^{\wedge} 1, s+1\right)=$ count $\left(\alpha^{\wedge} 1, s\right)+1$. There are three subcases.

Subcase la: count $\left(\alpha^{\hat{1}} 1, s+1\right)<\operatorname{maxcount}\left(\alpha^{\hat{1}} 1, s\right)$ and there exists a $\beta \supseteq \alpha 1$ with a permitted action.

Action. Set $\alpha_{s+1}^{t+1}=\beta$ and declare $s+1$ to be an $\alpha \hat{\gamma}$-stage for all $\alpha \hat{\gamma} \subseteq \beta$. [For all $\gamma$ with $\alpha^{\wedge} 1 \subseteq \alpha^{\hat{\gamma} \gamma} \varsubsetneqq \beta$, however, $s+1$ not a genuine $\hat{\alpha} \gamma$-stage. A stage is a genuine $\eta$-stage if we actually visit $\eta$ at one of its substages.]

Subcase 1b: count $\left(\alpha^{\wedge} 1, s+1\right)<\operatorname{maxcount}\left(\alpha^{\wedge} 1, s\right)$ but Subcase 1a fails to apply.
Action. Set $\alpha_{s+1}=\alpha^{\wedge} 0$ and declare $s+1$ to be an $\alpha^{\alpha} 0$-stage. [This ends the stage. Recall that a low count indicates we have not yet seen enough potential strings in the good guess.]

Subcase 1c: $\operatorname{count}\left(\alpha^{\wedge} 1, s+1\right) \geqslant \operatorname{maxcount}(\alpha 1, s)$.
Action. Set maxcount $\left(\alpha^{\wedge} 1, s+1\right)=s+1$ and reset count $\left(\alpha^{\wedge} 1, s+1\right)=0$. Declare $s+1$ to be an $\alpha^{\wedge} 1$-stage and set $\alpha_{s+1}^{t+1}=\alpha^{\wedge} 1$.

Subcase 2.: Subcase 1 does not hold, but there exists a permitted action at some $\beta \supseteq \alpha^{\wedge}$.

Action. For the highest priority such $\beta$ (that is, the lexicographically least) let $\alpha_{\delta+1}^{t+1}$ be $\beta$ and declare $s+1$ to be an $\alpha^{\hat{\gamma}} \gamma$-stage for all $\alpha^{\hat{\gamma}} \gamma \subseteq \beta$. [For all $\gamma$ with $\alpha^{\hat{1}} \subseteq \alpha^{\hat{\gamma}} \varsubsetneqq \beta$, however, $s+1$ is not a genuine $\alpha^{\hat{\gamma}} \gamma$-stage]. Otherwise nothing changes.

Subcase 3: otherwise.
Action. Nothing changes. Set $\alpha_{s+1}^{t+1}=\alpha^{\wedge} 0$. Declare $s+1$ to be an $\alpha^{\wedge} 0$-stage.

Case 2: req $(\alpha)$ is $R_{e}$. We begin with the case that $\alpha$ is the top of an $R_{e}$-tree. We continue to consider $R_{e}$ until we play either an outcome $\langle j, d\rangle$ or an outcome $\langle j, u\rangle$ for some $j$. We consider the $j$ in order, beginning with $j=0$. Suppose that $j=0$ or we have already considered $j-1$ and are considering $j$. We can assume that we have inductively generated a string $\alpha \hat{\gamma}(j)$ so that $\hat{\alpha \gamma}(j) \subseteq \alpha_{\varepsilon+1}$ and for all $j^{\prime}<j$, there exist $\eta, k$ with $\alpha^{\hat{\eta}}\left\langle\left\langle j^{\prime}, k\right\rangle \subseteq \alpha^{\hat{\alpha}} \gamma(j)\right.$ and $k \in\{\infty, f\}$. [For $j=0 ; \gamma(j)=\lambda$.] Finally, we let $T_{\eta, s+1}^{t}=T_{\alpha, s+1}^{t}$ for all $\eta$ extending $\alpha$ which are devoted to $R_{e}$ below $\alpha$, that is, they all use the same tree.

Pick the first subcase that applies and perform the action indicated. Here let $s_{0}$ be the last genuine $\hat{\alpha} \gamma(j)$-stage at (the beginning of) which $\alpha^{\hat{\alpha}}(j)$ was not frozen.

Subcase 1: $c=c^{t}(\alpha, j, s+1)$ is undefined.
Action. Pick a large fresh number $c=c^{t+1}(\alpha, j, s+1)$ and set $\alpha_{s+1}=\alpha_{\delta+1}^{t+1}=\alpha \hat{\gamma}(j)$.
SUbCase 2: $\alpha$ has a permitted action at substage $t$ of stage $s+1$.
Action. Let $d=\left|T_{\alpha, s+1}^{t}\left(\tau^{\prime} i\right)\right|$ be the use of ' $c \in V_{\alpha, s+1}^{t}$ ' $\left(\right.$ where $\left.T_{\alpha, s+1}^{t}\left(\tau^{\prime} i\right) \subset M_{s+1}^{t}\right)$; abandon the part of $T_{\alpha, s+1}^{t}$ above $T_{\alpha, s+1}^{t}\left(\tau^{\hat{\imath}}\right)$ by setting

$$
T_{\alpha, s+1}^{t+1}(\eta)= \begin{cases}T_{\alpha, s+1}^{t}(\eta) & \text { if } \eta \nsupseteq \tau, \\ T_{\alpha, s+1}^{t}\left(\tau^{( }(1-i)^{\wedge} \eta_{0}\right) & \text { if } \eta \supseteq \tau, \text { say } \eta=\hat{\tau} \eta_{0}\end{cases}
$$

(and so $\left.c \notin V_{\alpha, s+1}^{t+1}\right)$; let $M_{s+1}^{t+1}$ be a path through $T_{\alpha, s+1}^{t+1}$ extending $T_{\alpha, s+1}^{t+1}\left(\tau^{\wedge}(1-i)\right)$; declare $\alpha^{\wedge} \gamma(j)$ frozen with outcome $u$ (if $\alpha^{\hat{\alpha}} \gamma(j)$ was already frozen with outcome $u$ or if $\Delta_{e}^{K}\left\lceil(c+1)\right.$ was not defined at any time since stage $s_{0}$ ) or with outcome $\infty$ (otherwise); and set $\alpha_{s+1}^{l+1}=\alpha^{\hat{\gamma}}(j)^{\hat{\wedge}}\langle j, u\rangle$ or $\alpha^{\hat{\gamma}}(j)^{\wedge}\langle j, \infty\rangle$, respectively.

Subcase 3: $\hat{\alpha} \gamma(j)$ is frozen (with outcome $o$ since stage $s_{0}$, say).
Action. Check if there are at least $s_{0}$ strings $\tau$ such that
(i) $\tau$ is on $T_{\alpha, s+1}^{t}$, say $\tau=T_{\alpha, s+1}^{t}(v)$,
(ii) $\tau \subset M_{s+1}^{t}$,
(iii) the $e(\eta)$-guess of $T_{\alpha, s+1}^{t}(\hat{v i})$ is $\alpha(e(\eta))$ for all $N$-strategies $\eta \subset \alpha$ and all $i<2$, and
(iv) $\left|\left(T_{\alpha, s+1}^{t}\right)^{-1}(\tau)\right|>s_{0}$.

If so then declare $\alpha^{\hat{\gamma}} \gamma(j)$ no longer frozen, and let $\hat{\alpha} \gamma(j)$ have outcome $o$. If, furthermore,
(v) $\alpha^{\wedge} \gamma(j)$ was frozen with outcome $\infty$, and
(vi) $c \notin V_{\alpha, s+1}^{t}$ and $j \in Q_{s+1}$ (that is, $\{j\}^{D}(j)[s+1] \downarrow$ ),
then enumerate $c$ into $V_{\alpha, s+1}^{t+1}$ with use $T_{\alpha, s+1}^{t}(\hat{v i})$, where $\tau$ is the longest string satisfying (i) to (iv) not used by a strategy $\subset \alpha \hat{\gamma}(j)$ for $V$-enumeration and $T_{\alpha, \delta+1}^{t}(\hat{v i}) \subset M_{s+1}^{t}$.

Otherwise, that is, if (i) to (iv) fail, $\alpha^{\hat{\gamma}}(j)$ remains frozen with outcome $o$. In either case, we set $\alpha_{s+1}^{t+1}=\alpha^{\hat{\gamma}}(j)^{\wedge}\langle j, o\rangle$.

Subcase 4: $\Delta_{e}^{K}\left\lceil(c+1)\right.$ has not always been defined since stage $s_{0}$.
Action. Declare $\alpha \hat{\gamma}(j)$ frozen with outcome $u$ and set $\alpha_{s+1}^{t+1}=\alpha \hat{\alpha}(j)\langle j, u\rangle$.
Subcase 5: $Q(j)$ has changed since stage $s_{0}$, that is, there are stages $s_{1}, s_{2} \in\left[s_{0}, s+1\right]$ such that exactly one of $\{j\}^{D}(j)\left[s_{1}\right] \downarrow$ and $\{j\}^{D}(j)\left[s_{2}\right] \downarrow$ holds.

Action. Declare $\alpha^{\hat{\gamma} \gamma}(j)$ frozen with outcome $\infty$ and set $\alpha_{s+1}^{t+1}=\alpha \hat{\alpha} \gamma(j)\langle j, \infty\rangle$.
Subcase 6: $j \in Q_{s+1}$ and $c \notin V_{\alpha, s+1}^{t}$.
Action. Declare $\alpha^{\hat{\alpha}} \gamma(j)$ frozen with outcome $\infty$ and set $\alpha_{s+1}^{t+1}=\alpha \hat{\alpha}(j)\langle j, \infty\rangle$.
Subcase 7: $\Delta_{e}^{K}\left\lceil(c+1)=V_{\alpha}\left\lceil(c+1)\right.\right.$ has not always held since stage $s_{0}$.
Action. Declare $\alpha^{\hat{\gamma} \gamma}(j)$ frozen with outcome $d$ and set $\alpha_{s+1}^{t+1}=\alpha^{\wedge} \gamma(j)\langle j, d\rangle$.
Subcase 8: otherwise.
Action. Let $\hat{\alpha^{\gamma}}(j)$ have outcome $f$ and set $\alpha_{s+1}^{t+1}=\hat{\alpha} \gamma(j)^{\wedge}\langle j, f\rangle$.
This completes the action of $\hat{\alpha} \gamma(j)$. We now initialize all strategies $\xi>_{L} \alpha_{s+1}^{t+1}$ and check whether
(i) $\alpha^{\wedge} \gamma(j)$ is now frozen and there is a strategy $\beta<_{L} \alpha_{s+1}^{t+1}$ or $\supseteq \alpha_{s+1}^{t+1}$ with a permitted action (as defined in Subcase 2 above), or
(ii) there is a strategy $\beta<_{L} \alpha_{s+1}^{t+1}$ with a permitted action.

If so then let the highest-priority such $\beta$ act next. Otherwise, let $\alpha_{s+1}^{t+1}$ act at the next substage (if $\alpha^{\hat{\alpha}} \gamma(j)$ is not frozen now and Subcase 1 above did not apply) or end the stage (otherwise).

End of construction.

## Verification

The reader should note that $M \leqslant_{T} D$ because we always maintain the simple permitting invariant: $M_{s}[x]=M[x]$ if $D_{s}[x]=D[x]$. [While we might refine the underlying trees, we only change $M$ due to a permitted action.] Let TP denote the true path.

We need to argue that for all $\alpha \subseteq \mathrm{TP}$, the following hold.
(i) The limit $\lim _{s} T_{\alpha, s}=T_{\alpha}$ exists stringwise.
(ii) Let $\alpha=\alpha^{-} a$. If req $\left(\alpha^{-}\right)=N_{e}$, then for almost all $\sigma$ on $T_{\alpha}$ with $\sigma \subseteq M$ the $e\left(\alpha^{-}\right)$-guess of $\sigma$ agrees with $\alpha$.
(iii) If $\alpha \subseteq \mathrm{TP}$, then there are infinitely many $\alpha$-stages and $\alpha$ is initialized only finitely often.
(iv) If $\operatorname{req}(\alpha)=R_{e}$, then there are at most finitely many $\alpha^{\prime}$ on TP with req $\left(\alpha^{\prime}\right)=R_{e}$ and $R_{e}$ is met by some such $\alpha^{\prime}$. Furthermore, if req $(\alpha)=\operatorname{req}\left(\alpha^{\prime}\right)$ then for all $\eta$ with $\alpha \subseteq \eta \subseteq \alpha^{\prime}$ we have req $(\eta)=R_{e}$.
(v) Let $\alpha$ be the shortest string on TP with req $(\alpha)=R_{e}$ and let $\tau$ be any such string. Let $\hat{\tau} a \subset \mathrm{TP}$. Then $a$ is of the form $\langle j$,$\rangle , and \lim _{s} c(\alpha, j, s)=c(\alpha, j)$ exists.

Furthermore the following hold.
(va) If $a=\langle j, u\rangle$, then the $K$-use of $\Delta_{e}(K ; c(\alpha, j))$ is unbounded.
(vb) If $a=\langle j, \infty\rangle$, then $\Delta_{e}(K ; c(\alpha, j))=0$ and $j \notin Q, c(\alpha, j) \notin V$, and $d(\alpha, j, s)$ tends to infinity as $s$ does.
(vc) If $a=\langle j, d\rangle$, then $\Delta_{e}(K ; c(\alpha, j)) \neq V(c(j))$ and $d(\alpha, j, s)$ is reset only finitely often.
(vd) If $a=\langle j, f\rangle$, then $\Delta_{e}(K ; c(\alpha, j))$ is defined and equals $V(c(j))$, and $d(\alpha, j, s)$ is reset only finitely often.

These are all fairly straightforward and are verified by simultaneous induction. Let $\alpha \subseteq$ TP and let $s_{0}$ be a stage such that we are never again to the left of $\alpha$, and $\alpha$ is not initialized after $s_{0}$.

We begin with (i). If req $(\alpha)$ is $R e_{e}$, then $\alpha$ is devoted to some subrequirement attempting to produce a disagreement at some $j$ in the $R_{e}$ tree below some $\sigma$. Note that all the $\alpha^{\prime}$ in this tree work on the same $T_{\sigma}$. Now $\alpha$ only modifies trees in Subcase 2, where it deletes nodes, and redefines the tree. But whenever we do this we pick $v$ at the end of Subcase 3 much longer the next time. From this and the induction hypothesis it follows that $\lim _{s} T_{\alpha, s}=\lim _{s} T_{\sigma, s}$ exists stringwise. In the case that req $(\alpha)=N_{e}$, we see that (i) follows immediately for $\alpha$ since we were permitting, and only raise guesses.

To see that (ii) holds, after stage $s_{0}$, we know that $\alpha^{-}$and $\alpha$ will not be initialized, and that req $\left(\alpha^{-}\right)=N_{e}$. If $\alpha=\alpha^{-\wedge 1, ~ t h e n ~ w e ~ o n l y ~ g e t ~ t o ~ p l a y ~} \alpha$ when we see a new splitting (Case 1, Subcase 1), or there is a permitted action at some $\beta \supseteq \alpha$. In either case, the only places where we shall change $M_{\varepsilon}$ will be on trees $T_{\gamma}$ for $\gamma \supseteq \alpha$, and by induction, these will only involve strings of $e$ guess $\alpha$. Note that the same can be said of the case $\alpha=\alpha^{-\wedge} 0$ since we shall not be to the left of $\alpha$ again.

Turning to (iii), we can suppose that there are infinitely many $\alpha^{-}$-stages and all of the above holds for $\alpha^{-}$. If req $\left(\alpha^{-}\right)=N_{e}$, then we know that $\alpha=\alpha^{-\wedge} 0$ or $\alpha=\alpha^{-1} 1$. In the former case, after some stage we shall set a new count which is never exceeded. (Otherwise, we would move left of $\alpha$.) This means that $T_{\alpha, s}$ is never again reset and all the nodes on it are of guess $\subseteq \alpha^{-\wedge} 0$. Since (iii) holds for nodes $\subseteq \alpha^{-}$, it follows that $\alpha^{-}$is given arbitrarily large numbers of strings of guess $\alpha^{-}$. These strings constitute an infinite collection with guess $\alpha^{-\wedge} 0=\alpha$. The case $\alpha=\alpha^{-\wedge} 1$, is similar, only there we know that infinitely often we see further strings with guess $\alpha^{-}$. We only need to argue that infinitely often count $\left(\alpha^{-}, s+1\right)$ is exceeded.

We remark that the same argument works for req $\left(\alpha^{-}\right)=R_{e}$ via the freezing machinery in place of the count machinery. Thus a node is frozen and waits in Subcase 3. The result now follows from (ii) and the induction hypothesis applied to $\alpha^{-}$.

To establish (iv) and (v) we argue exactly as in the basic module. The trees $T_{\alpha}$ for $\alpha \subseteq \mathrm{TP}$ are not initialized after a certain stage $s_{0}$. Let $\alpha$ be the top of an $R_{e}$ tree with
$\alpha \subseteq \mathrm{TP}$. All its nodes $\beta \supset \alpha$ are devoted to $R_{e}$ and $T_{\alpha}$. Now the key point is that for nodes in the $R_{e}$-tree of the form $\alpha^{\hat{\gamma}} \gamma(j)=\alpha^{j}$, if $d=d(j, \alpha, s)$ is defined, then whenever $j$ leaves $Q$ at stage $s+1$ we will be able to cancel $d$ via Subcase 2 as there will be a permitted action at $\alpha^{j}$ and hence either $s$ will be a genuine $\alpha^{j}$-stage, or $s$ will be a $\beta$ stage for some $\beta$ to the left of, or below $\alpha^{j}$. In the latter case we will have picked $d$ after we visited $\beta$ and hence the action of $\beta$ will also move $M_{s}$ from extending the string corresponding to $d$ at $\alpha^{j}$. The remaining details are to do a routine case by case analysis of the subcases to show that our construction mirrors the basic module, with the additional freezing delay put in to ensure that $\beta \supset \alpha$ have enough strings to work with. These details are by and large straightforward, and should probably be apparent now to the reader, but we supply some as examples. First note that (va) holds since we only play the outcome $\langle j, u\rangle$ when the $K$ use of $\Delta_{e}(K ; c(\alpha, j))$ has been seen to increase. Since $\tau^{\wedge}\langle j, u\rangle \subset \mathrm{TP}$, we know that $c(\alpha, j)$ reaches a limit and hence the fact that the use increases infinitely often implies that for the final $c(\alpha, j)$ the use is unbounded. Similarly for (vb), we must have that $\Delta_{e}(K ; c(\alpha, j))$ equals 0 . As with the basic module, each time we unfreeze $\tau$ we get to assign $d(\alpha, j, s)$ corresponding to the same $c(\alpha, j)$, and after this $j$ will later leave $Q$, and hence ( vb ) follows since then the $\Delta_{e}$ use has finite limit but $\{j\}_{s}^{D}(j) \uparrow$ by divergence. The other two cases are similar. Finally, to see that (iv) holds, suppose that it fails. Then below $\alpha$ the only nodes on the true path are ones of the form $\tau^{\hat{\prime}} a$ with $e(\tau)=e=e(\alpha)$, and $a \in\{\infty, f\}$. We claim that $K$ can compute $Q$. To see this, once $\alpha$ will never again be initialized, any $c(\alpha, j, s)$ once defined will be fixed unless the $K$-use of $c(\alpha, i, s)$ changes for some $i<j$. We know that all such uses reach a limit so for each $j$, some incarnation of $c(\alpha, j, s)$ is eventually fixed. Furthermore, note that since $K$ can figure out if the use at $c$ is final, $K$ can figure out if an incarnation of $c(\alpha, j)$ is the final one. By induction, and the argument above we see that ( vb ) or (vd) applies to all nodes on the true path above $\alpha$. We can therefore apply the argument of the basic module, and conclude that $j \in Q$ if and only if $c(\alpha, j) \in V$.

The argument that $M$ is minimal is totally routine. To see that all the $N_{e}$ are met, pick $\rho$ on TP devoted to $N_{e}$, and look at its outcomes. First, since $\rho$ is only initialized finitely often, for almost all strings on $T_{\rho}$, it follows that $\rho$ will be able to raise guesses at will. Because of this the standard argument will work. We leave the details to the reader.

We now immediately have the desired corollary showing that the range of the jump operator on the minimal degrees below $\mathbf{0}^{\prime}$ cannot be characterized simply in terms of the jump classes of degrees r.e. in and above $\mathbf{0}^{\prime}$.

Corollary 2.3. If $\mathbf{c}>\mathbf{0}^{\prime}$ is r.e. in $\mathbf{0}^{\prime}$, then there is a minimal degree $\mathbf{m}<\mathbf{0}^{\prime}$ such that $\mathbf{0}^{\prime}<\mathbf{m}^{\prime} \leqslant \mathbf{c}$.

## 3. Some related results on minimal degrees

We now sketch the proof of two related results on jumps of minimal degrees below $\mathbf{0}^{\prime}$. We assume familiarity with the standard oracle construction of a minimal degree below $0^{\prime}$ introduced by Shoenfield [13] as in Lerman [5, IX.2] (whose notation we adopt below) and the diagonalization method introduced by Sasso [11] using what Lerman [5, V.3] calls narrow trees to construct a minimal degree a $<0^{\prime}$ with $0^{\prime}<\mathbf{a}^{\prime}$ as in Lerman [5, V. 3 and IX.2.11]. We also assume familiarity with the standard
method of recursively approximating the answer to a $\Sigma_{1}^{B}$ question for low $B$, originally introduced in Robinson [7] and in Soare [16, XI.3]. We use this method relativized to $\mathbf{0}^{\prime}$.

Theorem 3.1. If $\mathbf{c}$ is r.e. in and above $\mathbf{0}^{\prime}$ and $\mathbf{c}^{\prime}=\mathbf{0}^{\prime \prime}$ then (uniformly in the information) there is a minimal degree $\mathbf{a}<\mathbf{0}^{\prime}$ with $\mathbf{a}^{\prime} \nless \mathbf{c}$.

Proof (Sketch). We replace the nonrecursiveness requirements in the oracle construction of a minimal degree $\mathbf{a}<\boldsymbol{0}^{\prime}$ by ones which guarantee that $\Phi_{i}(C) \neq A^{\prime}$. At each stage $s$ of the standard construction we would have a sequence of partial recursive trees $T_{0, s}, \ldots, T_{n_{s}, s}$ such that $T_{i+1, s}$ is either $\operatorname{Ext}\left(T_{i, s}, \sigma\right)$ the full subtree of $T_{i, s}$ above $\sigma$ for some $\sigma$, or $S p\left(T_{i, s}, i\right)$, the (partial recursive) $i$-splitting subtree of $T_{i, s}$. Instead, we now have a sequence in which $T_{2 i+1, s}$ is either a full subtree of $T_{2 i, s}$, or $\operatorname{Nar}\left(\operatorname{Ext}\left(T_{2 i, s}, \sigma\right)\right.$ ), the narrow subtree of some full subtree of $T_{2 i, s}$. (The narrow subtree of $T$ is the tree which eliminates the right hand branches above all nodes at odd levels of $T$. Thus $\operatorname{Nar}(T)(\sigma)=T\left(\sigma \oplus 0^{n}\right)$, where $n=\ln (\sigma)$.) Moreover, $T_{2 i+2, \delta}$ is either a full subtree of $T_{2 i+1, s}$ or the $i$-splitting subtree of $T_{2 i+1, s}$.

It is easy to see that we can recursively in (the index for) $T_{2 i, 8}$ calculate an $x$ such that if $A$ is on $T_{2 i, s}$ then $x \notin A^{\prime}$ if and only if $A$ is on $T_{2 i+1, s}$, the narrow subtree of $T_{2 i, s}$. If, at stage $s$ of our construction, we see that $\Phi_{i}(C ; x)[s]=0$, then we would like to let $T_{2 t+1, s+1}$ be some full subtree of $T_{2 i, s}$ which forces $A$ off $T_{2 i+1,8}$ such as $\operatorname{Ext}\left(T_{2 i+1, s}, 01\right)$. The problem is that, as the construction is recursive in $0^{\prime}$ and $C$ is only r.e. in $\mathbf{0}^{\prime}$, this computation may prove false. We use the low oracle approximation procedure to prevent us from acting infinitely often for this requirement.

At stage $s$ we first redefine the trees $T_{0, s}, \ldots, T_{n_{g}, s}$ as in the standard construction (to attempt to satisfy the minimality condition). We then see if there is a $2 i<n_{s}$ for which we do not think we have satisfied the requirement $\Phi_{i}(C) \neq A^{\prime} ; \Phi_{i}(C ; x)=0[s]$, where $x$ is calculated from $T_{2 i, s}$ as above; and our oracle approximation procedure says that there is a stage with these properties at which the $C$ computation is actually correct. (If the approximation says 'no' we speed up our enumeration of $C$ and the approximation until either we no longer have $\Phi_{i}(C ; x)=0$ or the approximation says 'yes'.) If so, we let $T_{2 i+1, s+1}$ be a full subtree of $T_{2 i, s}\left(=T_{2 i, s+1}\right)$ which forces $A$ off $T_{2 i+1, s}$. (As usual, $n_{s+1}=2 i+1$.) If not, we make no additional changes in the trees to get the other $T_{i, s+1}$.

The only new element of the verification is the analysis of the effects of moving off the narrow subtrees. The lowness of $C$ over $0^{\prime}$ (and the recursion theorem relative to $K$ ) guarantees that our $K$-recursive approximation is correct and so we act only finitely often to satisfy the requirement $\Phi_{i}(C) \neq A^{\prime}$ and we eventually $C$-correctly satisfy it. As this action is finite, the argument that the trees $T_{i, s}$ are eventually constant and the minimality requirements are satisfied proceeds as usual.

A nonuniform version of the above result can be deduced from the following.
Theorem 3.2. There are minimal degrees $\mathbf{a}_{0}, \mathbf{a}_{1}<\mathbf{0}^{\prime}$ such that $\mathbf{a}_{0}^{\prime} \cup \mathbf{a}_{1}^{\prime}=\mathbf{0}^{\prime \prime}$.
Proof (Sketch). Simultaneously build two sets $A_{0}, A_{1}$ of minimal degree, as above, but use the narrow subtrees in each construction to code the final result of the other in an interleaved way as in Simpson [15]. Suppose that the sequences of trees for $A_{0}$ and $A_{1}$ at stage $s$ are $\left\langle T_{0, s}^{0}, \ldots, T_{n, s}^{0}\right\rangle$ and $\left\langle T_{0, s}^{1}, \ldots, T_{n_{s}, s}^{1}\right\rangle$, respectively, and
$\alpha_{j, s}=T_{i}^{j}\left(\sigma_{i, j}, s\right)$ for $j=0,1$. We shall also use the narrow subtrees to code $\varnothing^{\prime \prime}$ into $A_{0}^{\prime} \vee A_{1}^{\prime}$ in place of diagonalization. At each stage $s$ of our construction we shall have, for $j=0,1$, a sequence of (partial recursive) trees $\left\langle T_{0, s}^{j}, \ldots, T_{n_{s}, s}^{j}\right\rangle$ and an initial segment $\alpha_{j, s}$ of $A_{j}$ with strings $\sigma_{i, j, s}$ for $i \leqslant n_{s}$, such that $T_{i, s}^{j}\left(\sigma_{i, j, s}\right)=\alpha_{j, s}$. In particular, $\sigma_{n_{s}, j, s}=\varnothing$. Then $T_{0, s}^{j}=$ id for every $s$ while, for $k \geqslant 0$, it follows that $T_{2 k+j+1, s}^{j}$ will be either the $k$-splitting subtree of $T_{2 k+j, s}^{j}$ or a full subtree of $T_{2 k+j, s}^{j}$. Alternating with these trees, we shall have trees $T_{2 k+j+2, s}^{j}($ for $k \geqslant 0)$ which will be narrow subtrees of some full subtree of $T_{2 k+j+1, s}^{j}$.

At stage $s$, we first find the least $k$ such that $T_{2 k+j+1}^{j}$ is not defined at $\alpha_{2 k+j+1, s} * 01$, (for $j=0,1$ ). If there is an $i<k$ enumerated in $\varnothing^{\prime \prime}$ at $s$, we record this fact by forcing $A_{1}$ off the narrow subtree of $T_{2 i, s}^{1}$. We let $n_{s+1}=2 i+1$ and $T_{2 i+1, s+1}^{1}=$ $\operatorname{Nar}\left(\operatorname{Ext}\left(T_{2 i}^{1}, \alpha_{2 i, 1, s} * 01\right)\right)$. No other trees are changed.

If no $i<k$ is enumerated in $\varnothing^{\prime \prime}$ at stage $s$ and $2 k+j+1 \leqslant n_{s}$, we let $n_{s+1}=2 k+j+1$ and set $T_{n_{s+1}, s+1}^{j}=\operatorname{Ext}\left(T_{2 k+j, s}^{j}, \tau\right)$, where $T_{2 k+j, s}^{j}(\tau)=T_{2 k+j+1}^{j}\left(\alpha_{2 k+j+1} * 0\right)$ and $T_{n_{s+1}, s+1}^{1-j}=\operatorname{Ext}\left(T_{2 k+j, s}^{1-j}, \alpha_{2 k+j, s} * 01\right)$. All trees with smaller indices remain as at stage $s$. In this case, we satisfy the $k$ th minimality requirement for $A^{j}$ as there are no $k$ splittings on $T_{2 k+j, s+1}^{j}$ above $\alpha_{j, s+1}$. We also record the fact in $A^{1-j}$ that we switched from a $k$-splitting subtree by forcing $\alpha_{1-j, s+1}$ off the narrow subtree of $T_{2 k+j, s+1}^{1-3}$.

If no $i<k$ is enumerated and $2 k+j+1=n_{s}+1$ we extend our sequences of trees by setting $n_{s+1}=n_{s}+1$ and

$$
T_{n_{s}+1}^{j}=\operatorname{Nar}\left(T_{n_{s}}^{j}\right), \quad T_{n_{s}+1}^{1-j}=S p\left(T_{n, s}^{1-j}, k\right)
$$

Clearly the number of times a tree $T_{i, s}^{j}$ is changed is finite and so we can argue as usual that the $A_{j}$ are of minimal degrees. We claim that we can compute $\varnothing^{\prime \prime}$ and recover the sequence (of indices for) $T_{i}^{j}=\lim T_{i, s}^{j}$ from $A_{0}^{\prime} \oplus A_{1}^{\prime}$. Suppose we have $T_{0}^{0}, \ldots, T_{2 i}^{0}$ and $T_{s}^{1}, \ldots, T_{2 i}^{1}$ and have computed $\varnothing^{\prime \prime} \upharpoonright i$ and a stage $s_{2 i}$ by which all of these have settled down. We ask $A_{1}^{\prime}$ if $A_{1}$ is on $\operatorname{Nar}\left(T_{2 i}^{1}\right)$. If so, $i \notin \varnothing^{\prime \prime}, T_{2 i+1}^{0}=S p\left(T_{2 i}^{0}\right)$, $T_{2 i+1}^{1}=\operatorname{Nar}\left(T_{2 i}^{1}\right)$ and all have settled down by $s_{2 i+1}=s_{2 i}$. If not, we wait for a stage $s$ at which we forced $A_{1}$ off $\operatorname{Nar}\left(T_{2 i}^{1}\right)$. At stage $s$, we set $T_{2 i+1, s}^{1}=\operatorname{Nar}\left(\operatorname{Ext}\left(T_{2 i}^{1}, \tau\right)\right)$ for some $\tau$ (possibly $\varnothing$ ). We again ask $A_{1}^{\prime}$ if $A_{1}$ is on $T_{2 i+1, s}^{1}$. If so, $T_{2 i+1}^{j}$ has reached its limit for $j=0,1$ as has $\varnothing^{\prime \prime}(i)$. If not, we find $s^{\prime}>s$ at which we force $A_{1}$ off $T_{2 t+1, s}^{1}$. As we can do this at most twice, we then have $T_{2 i+1, s^{\prime}}^{j}=T_{2 i+1}^{j}$ and $\varnothing^{\prime \prime}(i)=\varnothing_{s^{\prime}}^{\prime \prime}(i)$. We can now find $T_{2 i+2}^{j}$ by asking of $A_{0}^{\prime}$ if $A_{0}$ is on $\operatorname{Nar}\left(T_{2 i+1}^{0}\right)$. If so, the $T_{2 i+2}^{j}$ are already fixed and if not they become fixed when we force $A_{0}$ off $\operatorname{Nar}\left(T_{2 i+1}^{0}\right)$.

## References

1. S. B. Cooper, 'Minimal degrees and the jump operator', J. Symbolic Logic 38 (1973) 249-271.
2. R. L. Epstein, 'Minimal degrees of unsolvability and the full approximation construction', Mem. Amer. Math. Soc. 162 (1975).
3. R. M. Friedberg, 'A criterion for completeness of degrees of unsolvability', J. Symbolic Logic 22 (1957) 159-160.
4. C. G. Jockusch Jr. and D. B. Posner, 'Double jumps of minimal degrees', J. Symbolic Logic 43 (1978) 715-724.
5. M. Lerman, Degrees of unsolvability (Springer, Berlin, 1983).
6. D. B. Posner, 'A survey of non-r.e. degrees $\leqslant 0^{\prime}$ ', Recursion theory: its generalizations and applications (Proceedings of the Logic Colloquium 1979, Leeds, August 1979) London Mathematical Society Lecture Note Series 45 (eds. F. R. Drake and S. S. Wainer; Cambridge University Press, 1980)
7. R. W. Robinson, 'Interpolation and embedding in the recursively enumerable degrees', Ann. of Math. (2) 93 (1971) 586-596.
8. G. E. Sacks, 'A minimal degree below 0'', Bull. Amer. Math. Soc. (N.S.) 67 (1961) 416-419.
9. G. E. Sacks, 'Recursive enumerability and the jump operator', Trans. Amer. Math. Soc. 108 (1963) 223-239.
10. G. E. Sacks, 'On the degrees less than $\mathbf{0}^{\prime}$ ', Ann. of Math. (2) 77 (1963) 211-231.
11. L. Sasso, 'A minimal degree not realizing the least possible jump', J. Symbolic Logic 39 (1974) 571-573.
12. J. R. Shoenfield, 'On degrees of unsolvability', Ann. of Math. (2) 69 (1959) 644-653.
13. J. R. Shoenfield, 'A theorem on minimal degrees', J. Symbolic Logic 31 (1966) 539-544.
14. J. R. Shoenfield, Degrees of unsolvability, North-Holland Mathematics Studies 2 (North-Holland, Amsterdam, 1971).
15. S. G. Simpson, 'Minimal covers and hyperdegrees', Trans. Amer. Math. Soc. 209 (1975) 45-64.
16. R. I. Soare, Recursively enumerable sets (Springer, Berlin, 1987).
17. C. Spector, 'On degrees of recursive unsolvability', Ann. of Math. (2) 64 (1956) 581-592.
18. C. E. M. Yates, 'Initial segments of the degrees of unsolvability, Part II: Minimal degrees', J. Symbolic Logic 35 (1970) 243-266.
19. C. E. M. Yates, 'Prioric games and minimal degrees below 0', Fund. Math. 82 (1974) 217-237.

R.G.D.<br>Department of Mathematics<br>Victoria University of Wellington Wellington<br>New Zealand

E-mail: downey@math.vuw.ac.nz
R.A.S.

Department of Mathematics
Cornell University
Ithaca
New York 14853-7901
USA
E-mail: shore@math.cornell.edu

# S.L. <br> Department of Mathematics University of Wisconsin Madison <br> Wisconsin 53706-1388 <br> USA 

E-mail: lempp@math.wisc.edu


[^0]:    Received 24 August 1994.
    1991 Mathematics Subject Classification 03D25.
    Research partially supported by NSF Grants DMS-9100114 (Lempp), DMS-9344740 (Shore), a U.S.-New Zealand Binational Cooperative Research grant including NSF INT 90-20558 (Downey, Lempp and Shore), ARO through ACSyAm at MSI, Cornell University, DAAL-03-91-C-0027 (Downey and Shore), and IGC of Victoria University, Wellington (Downey).

