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I. Introduction

In this paper we continue our investigations into the structure of W, the r.e.
weak truth table (W-) degrees. We use lower case boldface letters (a,b,...) to
denote r.c. W-degrees. In [4] Fischer showed there exist initial segments of W
that form lattices. In the notation of [2], this would be written as: there exist a #0
such that W[0, a] forms a lattice. In [2] we improved this result to show that all
incomplete r.e. degrees are bottoms of lattices, and lattices are dense in W. That
is
(1.1) Va0’ 3b>a(W[a, b] alattice).

(1.2) Va,b(a<b—dc,d(asc<d=b & W[c, d] alattice)).

The goal of this paper is to show that (1.1) and (1.2) cannot be combined even for
a = (0. Specifically, we show

.

(1.3) Theorem. Ja+ 0Vb =< a (W[0, b] is a lattice implies b=0).
Actually we do a little better than (1.3). We show

(1.4) Theorem. There exists an r.e. set A of high T-degree such that if W and V
are r.e. nonrecursive sets with W, V< A, then there exist r.e. sets C and D with
C=w W, D=y V and W-deg(C) N W-deg(D) doesn’t exist.

We remark that (1.4) should be compared with Cooper’s [1] result that every
r.e. high T-degree T-bounds a minimal pair, since (1.4) also gives the existence of
an r.e. set of high degree that W-bounds no (T-) minimal pairs.

Notation and terminology are fairly standard and follow [2, 3]. We use upper
case Greek letters (@, I,...) for functionals, and such letters with ‘hats’
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(@, | .) to denote W-functionals. The relevant use functions will be the
corresponding lower case Greek letters (¢, v, . .. ). We always assume such use
functions are increasing where defined. This saves on notation. We let (, )
denote a standard pairing function monotone in both variables, and @@ =
{{e, x):x € w}. All computations are bounded by s at stage s.

We have decided to present our argument using the elegant methods of Soare
[8, Ch. XIV], and thus assume familiarity with this. Although we describe the
basic module and construction in detail, we refer the reader to {7,8] for
motivational comments regarding the intuition behind this type of construction,
and furthermore the devices (such as Slaman’s ‘linking’) we use. For the purposes
of this paper references such as [8, Lemma 3.7] refer to [8, Ch. XIV].

2. The proof of (1.4)

Let H =|_J, H, be an r.e. set such that for all e,

eef’ implies H finite,
(2‘ 1) s : (e) (e)

e¢@” implies H =o'
For example, define HO =J, H® in stages. Define H® =@ if W,, =9 and
HE® = {{0,j):j<h(e, 5)} where h(e, s) =max{y:Vx <y (x € W,,)}. To make A
of high degree it suffices to make A a thick subset of H. That is we build Ac H
and satisfy the requirements _—_

P: A®W=*H®,

To meet the P, we basically add as much of H; to A, as possible at any stage. The
complexity of our argument is derived from the non-bounding requirements. We
build auxiliary r.e. sets C, and D, and O, ; to satisfy

R, if §(A)=W,&I(A)=V, then
C.syw W, and D, =y V, and _
“either W, is recursive, or V, is recursive, or
{if ®(C.) = «D.) =W,
then Q. <w C,, D, and &;(W) # Q. ..

We use a gap—cogap argument wherein we attempt to satisfy the part of the
R, .; given by (2.2) by the Jockusch [5] non-infinum strategy.

2.2)

(2.3) The basic module. To discuss the basic module, we need several auxiliary
functions

I(e, s) = max{x: ¥y <x (D.(As; y) = W. () & I} (A3 ) = Vo . (Y},
I(e, i, 5) = max{x: Vy <x (D,,(C.s;¥) = D:s(D.s;¥) = W, s(¥)}, and
I(e, i, j, 5)=max{x: ¥y <x (D, (W, 5;¥) = Q....(y) & ¢;(y) <I(e, i, 5))}.




R.e. weak truth table degrees 155

It is again important to remember the monotonicity of the use functions here.
We shall need 3 restraints associated with the above r(e, i, j, s) and r(e, i, j, 5)
that restrain A and g(e, i, j, s} which restrains C, and D,. Now assume that
(e, i, s)—> . For the next discussion it is convenient to drop some of the
subscripts, etc., and thus use r,(s) for r(e, i, j, s) etc. The basic module for this
construction consists of the following steps.

Step 1. For some candidate x ¢ Q, wait till (e, i, j, s) >x. This candidate is
targeted for C,, D, and Q. ;. At stage s + 1 open a W,-gap by resetting ri(s) =0
and g(s) = $:(#(x)).

Step 2. Wait for the least stage ¢>s with [(e, t) > mli(e, t) where ml(e, t) =
max{l(e, t'):t' <t}. At this stage we close the W.-gap. We adopt the appropriate
case below. ‘

Case 2a (Successful closure). If W, [x] # W, [x], then enumerate x into C, ,.
Now declare an (e, {)-squeeze to be open. Go to Step 3.

Case 2b (Unsuccessful closure). If W, [x]=W, [x], then set n(t+1)=
¢.(x), g{t +1) =0, reset x and go to Step 1.

Step 3. Wait for the least stage m >t such that I(e, i, j, m) >x. Declare the
(e, i)-squeeze to close. Open a V,-gap by setting r,(m +1)=0. (Thus now
g(m + 1) = ¢i(¢;(x)), r(m + 1) =r,(m + 1)=0.) Go to Step 4.

Step 4. Wait for the least stage n > m such that I(e, n) > mli(e, n). Declare the
V.-gap to be closed and adopt the appropriate case below. ’

Case 4a (Successful closure): V, ,[x]# V. ,[x]. Enumerate x into D, and x
into Q.;, keeping gq(n+1)=¢(¢;(x)) to preserve the disagreement
éfm(vVi,n; x) =0#1= Qe,i,n+1(x)-

Case 4b (Unsuccessful closure): V, ,[x] = V_ .[x]. Define-r,(n + )=r(n+1)
= max{¢.(x), y.(x)}, reset x, set g(n + 1) =0 and go to Step 1.

Analysis of outcomes (for one requirement). The easy outcomes are that some
W,-gap or V,-gap or (e, i)-squeeze is opened but not closed. This means that
respectively &,(A)#W, or &,(4)#V,, or ($,(C.)= &(D,)=W,). Assuming
that each attack is openable and closable the infinitary cutcomes are that if there
are infinitely many W,-gaps, but only finitely many V,-gaps then W,=10, just as
in Lachlan’s nonbounding theorem of [6, 7, §].

Remark. An important, but slightly more subtle point is that we don’t use stage
numbers for resetting restraints (as in [7,8]) but use {e.g.) ¢.(x). Strictly
speaking this is unimportant from the basic module’s point of view, but crucial
from the point of view of the ‘a-strategy’ since we shall need to argue that at the
end of a gap ‘a-correct computations’ (for x) are still ‘@-correct’, and so our
restraints will be obeyed. The point here is that we will need to guess which H®
of higher priority are infinite and only believe computations when they are correct
according to these guesses.

As in Soare [8], we view the basic module as an automaton that has state F(s)
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at the end of stage 5. The possible outcomes (we list for F) are
N={s, g2, 81, v},
ordered as s =y 8. =n 81 =n W. The intended meaning is that
w = wait for I(e, 5) > x forever for some x,
g, = infinitely many W,-gaps and finitely many V, gaps,
g = infinitely many V,-gaps, and
s = successful C,-gap closure.

The reader should note that g, and g; both incorporate the fact that every
(e, i)-squeeze opened is closed. Like the outcomes ‘W,-opened but not closed’
and ‘V,-opened but not closed’ the outcome ‘(e, i)-squeeze opened but not closed’
is tested by (essentially) one node above the node coding R, ;; and doesn’t
specifically appear in the listed outcomes. (This aspect does make our construc-
tion a little more complicated since it necessitates our use of multiple linking.)

(2.4) The priority tree. Let A= {s, g5, g;, w, 0, 1}. Define the priority tree via
(forn=1)

T={acA™” a(Bn)e{0,1} & a(3n + 1) {0, 1}
&aBn+2)e{0, 1} & aBn +2) € {s, g2, g1, w}}.
For 0 e T define os tviaos tiff octor

Av,Lj(yico&yjcr&[(i=0&j=1)v (i, jeN&i=y)]).

(2.5) The lists and priority assignment. To each node « on the tree we wish to
assign requirements. For nodes « with Ih(a)=3n+2, we assign a thickness
requirement F,. We can preset this in advance, whereas any other assignments
are done inductively. Thus if o€ T and lh(o) =3e +2, then o0 indicates an
outcome (guess) that H® = ©® and ¢*1 indicates that H® is finite. For such o
define e(o) = ¢, where Ih(o) =3e + 2.

For the other nodes we assign requirements via lists L, and L,. We have
auxiliary partial functions e, j and i/ which map T— w. For nodes a € T with
Ib(e) =3n +j for j#2, e(a) will be defined. If lh(a) =3n, then only e(a) is
guaranteed defined but perhaps e(«) and i(«) are both defined, perhaps not. This
depends on the type of « (to be later defined). Finally, if Ih(a) =3n + 1, then all
of e(a), i(«) and j(«) are defined. The intention here is that the primary task of
node « is to test the hypotheses: does /(e(«), 5) < for Ih(«) = 3n and « of type
A; does l(e(w), i(a), s)—« for lh(&)=3n and « of type B, and what is the
outcome of R.(ay,i(a).k(ey assuming that I(e(o), s)— » and I(e(«), i(«), s)—> o for
Ih{a) =3h + 1.
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(2.6) Convention. It is convenient to regard our pairing functions to be
enumerated in such a way that i < (i, j) for all j, and (i, j) < (i, j, k) for all k.

(2.7) Lists. We define e(w), i(a), j(«) and the lsts by induction on Ih(a) =n as
follows.

There will be two lists L, and L,. In the list L, the even numbers 2¢ will code
requirements of type R, and the odd numbers 2n + 1 will code requirements of
type R,,; where (e, i) =n. By our convention, please note that (e, i} occurs
after e.

n =0. Define e(#) =0 and Ly(#) = L,(@) = w.

n>0. Let @ = 0"a for a € A. Assume that Ly(o) and L,(0) are defined. Adopt
the apropriate case below.

Case 1: lh(a)=0(mod 3). Define Ly(a)= Ly(0o) and L,(«)= L,(0). Define
m(a) = px (x € Lo(a)). If m(a) is even, define e(«) =e where 2¢ = m(«) (and
have e(a) and j(«) undefined). If m(a) is odd, define e(a) = e and i{ e} = i where
m(a)=2(e, i) +1 (and j(a) is undefined). If m(a) is even, declare «a to be of
type A and declare o to be of type B otherwise.

Case 2: Ih(a) =1 (mod 3).

Step 1. Adopt the appropriate subcase below.
Subcase 1: o is of type A and a =1. Then e(0) is defined. Set

Lo(@) = (Lo(0) — ({2e(0)} U {2(e(0), k) + 1: k € ®}))
U {m: m>2e(0) &3k (m =2({e(0), k)) +1}, and
Ly(e)=(Ly(0) = {{e(0), i, j): , je 0} ) U{{&,4, j): i, je o & &> e}.
Subcase 2: o is of type A and @ = 0. Then e(0o) is defined. Set
Lo(a) = Lo(0) — {2e(0)}, and L,(a)=L(0).
Subcase 3: o is of type B and a = 1. Then ¢(0) and i(o) are defined. Set
Lo(@) = (Lo(0) — {2(e(0), i(0)) +1})
‘ U{m: m>2(e(0),i(o)) +1}, and
Ly(@) = (Li(0) — {{e(0), i(0), k}: k e 5})
U{(& L j): (&, i) > (e(0), i(0)) &j € w}.
Subcase 4: o is of type B and a = 0. Then e(o) and i(0) are defined. Set
Lo(@) = (Lo(0) ~ {2(e(0), i(0)) +1}), and Li(a)=L,(0).

Case 2, Step 2. Set e(a)=e, i(a)=1i and j(0)=j where (e,i,j)=px(x e
Ly(a)).
Case 3: lh(a)=2(mod 3). Then e(0), i(0) and j(o) are defined. Adopt the
appropriate subcase below.
Subcase 1: a €{g, g,}. Define Ly(a) and L,(a) as in Case 2 (Step 1)
Subcase 1. Go to Step 2.
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Subcase 2: a € {s, w}. Define

Lo(a)=Lo(0) and Ly{a)=Li(0) - {{e(a), i(a), j(a))}}.

This concludes the description of the priority assignment.

(2.8) Remarks. We remark that the intention here is that for & € T (as we shall

see in the construction) the nodes have (roughly) the following meanings.
For h(«) =2 (mod 3):

a0 means “HEEN = i@
a1l means “H®®) s finite”.
For Ih(a) =1 (mod 3):

a«”g, means “infinitely many W, -gaps, infinitely many
(e(a@), i{«))-squeezes, & finitely many V,,\-gaps”,

a"g, means “infinitely many V,,-gaps”,
a”s means “we get a disagreement”,
a”™w means ‘‘some candidate is not realized”.
For lh(a) =0 (mod 3) and « of type A:
a”0 means “I(e(a),s)—=".
a*l means “l(e(a),s)—p "
For Ih{a)=0 (mod 3) and « of type B:
a0 means “I(e(a), i(a), s)—> =",
a”l means “I(e(a), i(a), s)p ="
(2.9) The regions. Fix ke Tand e, i € w.
(i) Define 7(«, ) via
(e, e) = (uo < a)[lh(e) =0 (mod 3) & ois of type A
&e(o)=e&(Ip)[ocpca&|[lh(p)=0(mod3)
& a(lh{p))=1& ((pisoftype A&e(p) <e)
v (pis of type B &2{e(p), i(p)) + 1 <2e))]
v [Ih(p) =1 (mod 3) & e(p) < e & a(ln(p)) € {g1, 211}

If none exists, then 7(w, e) is undefined. Now, if z(«, ) is defined, define
E(a, €), the e-region containing «, to be

E(x,e)={0:0eT&1(a,e)c o0& 1(a, ¢) = 1(0, ¢)}.
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We call =(a, e) the top of E(w, e). We shall say that « is an e-boundary if
a=o0"a, e =e(0), a €{gy, g2, 1} and either o is of type A and lh(c) =0 (mod 3)
or Ih(o) =1 (mod 3).

(ii) Define 7(c, e, i) via

7, e, i)=(poc a)[lh(o)=0(mod 3) & ois of type B & e(o)=e
& i(6)=i &(3p)[o = p = a &[Ih(p) =0 (mod 3)
& a(lh(p)) = 1& ((p is of type A & 2e(p) < (e, i) +1)
v (pisof type B & {e(p}, i(p)} < (e, i}))
v [In(p) =1 (mod 3) & e(p) < e & ex(lh(p)) € {2, g}

If none exists, then t(w, e, i) is undefined. Now define the (e, i)-region
containing « to be

E(w,e,)={0:0eT&t(a,e,i)co&t(a, e)=1(0, ¢, i).

We call t(w, ¢, i) the top of E(a, e, i). We say that « is an (e, i)-boundary if
either & = o”a for a € {g,, g,} with e = e(a) and lh(o)=1(mod 3), or &= 0"1,
1h(o) = 0 (mod 3) and either (a} or (b) below holds:

(a) ois type A and e =e(0).

(b) ois type B, e =e(0) and i = i(7).
(2.10) Lemma. (i) Let E be an e-region with fop © and e = e(t). Then
(@) (HoeE)o=a"a&e(a)<e&lh(aw)=1(mod3)&ae{g,g:}]

(b) "(Fo e E)o=a"1&h(a)=0(mod3) & a of type A &e(a)<e],

(©) (FoeE)[o=a"1&Ih(a)=0(mod3) & « of type B
&2{e(a), i(a)) +1<2¢], and

(d) (FoeE)tco&r#0&ih(o)=0(mod3)& o of type A&e(0)=e).
(ii) Let E be an (e, i)-region with top © and with e = e(v) and i = i(t). Then
(a) "(HoeE)o=a"a&lh(a)=1(mod3)&e(x)<e&ac{g, g}l

(b) (30 e E)[o = a1 &Ih(a) =0 (mod 3) & « of type A
&2e(a)<{e, i) +1],

(c) (o€ E)[oc=a"1&lh(«)=0(mod3)& « of type B
& (e(a), i{a)) <{e, i}],

(d) "(AoeE)[trco&t#0c&lh(o)=0(mod3)& o of type A
&e(o)=e], and .

() "(FoeE)rco&t#0&lh(o)=0(mod3)& o of type B
- &e(o)=e&i(o)=1il.
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Proof. Straightforward induction (cf. [8, Lemma 4.6]). O

Our next lemma is our analogue of Soare’s ‘finite injury along any path’ lemma
{8, Lemma 4.7].
(2.11) Lemma. For any infinite path B of T, and for. any e, i € @,

(a) 3Facp)le(e)=e&lh(w)=0(mod3)& « of type A,

(b) @ acB)e(a) =¢ &i(a) =i &Ih{a)=0(mod 3) & « of type B], and

(©) Fach)le(@)=e&lh(a)=1(mod3)&a*acf&ae{g;, g2}]
Proof. Fix f3, e, and i and assume the lemma holds for all f, &, i and f <e and
2(h, i) +1<2e. Let y < B be least such that for all o, if y = o, then

(i) lh(0)=0(mod3) and o of type A implies e(o)=e,
(i) m(oc)=0(mod3)and coftype B implies 2{e(0), i(0)) +1=2e, and
(i) Ih(c)=1(mod3) and e(s)<e implies o"g, ¢ B and o°g, ¢ B.

It is not too difficult to see that the next & with y c @ = § and lh(o) =0 (mod 3)
will be of type A and have e(&) =e. Now 2e is deleted from the list Ly(a™) for
a* = B(Ih{e)). Also 2¢ can only be added back to this list at some p* € T if

(a) e(p)<e&lh(p)=1(mod3)&p*=p"g,&p” =p"g,,
(b) e(p)<e&Ih(p)=0(mod3)&p™=p"1&pisof type A, or
(c) 2{e(p), i(p)) +1<2¢&Ih(p)=0(mod3) & p* =p~1&p is of type B.

By our assumptions (i), (ii) and (iii) above, no such p* can exist with y = p* < §.
Therefore (a) holds since for all o o @, if o is type A and h(o) =0 (mod 3) then
e(0) > e. Parts (b) and (c) are entirely similar and are left to the reader. O

Take ¢, i € @ and any path § through T. Let « be the «=-maximal node with
«c B, Ih(e)=0(mod3), and & of type A and e(a)=e. In this case we say
E(a, e) is the final e-region of  and write E(B, e) = E(a, €). Similarly define
7(B, ¢) = 1(e, €). Let y be the c-maximal node with y = § and lh(y) =0 (mod 3),
e(y) =e, and i(y) =i with y of type B. Define E(8, e, )= E(y, ¢, i), ©(f, ¢, i) =
7(7, e, i) and refer to E(B, e, i) as the final (e, i)-region of B. We note that

(2.12) Vy[(z(B e}y B&e(y)=e)—=>yeE(B, e)].
213) Vy[(z(B, e, i)cycB&e(y)=e&ki(y) =i)—>veE(B ¢ i)
(2.14) Vi(z(B, e, i) > (B, e)).
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(2.15) Parameters and notation. To state the construction we need a little more
notation. For a € T with lh(«)=1 (mod 3) we have the ‘a-parameters’ for the
a-module as in the basic module.

x(a@, s) = the current candidate for the a-module,

r(a, s) = the current restraint imposed on A to preserve W,,[x(a, s)],
r(@, s} = the current restraint imposed on A to preserve V,(,[x[a, 5)],
r(a, s)=max{n(a, s), n(a, 5)},

q(e, 5) =the current restraint imposed on D, to preserve
,(a)(De(a),z) for z < ¢jay(x(a, 5)) or on C,,y to preserve
:(af)(ce(zr)a Z) forz=< ¢J(Q’)(x(a S)) and

F(w, s) = the current state a € {s, g;, g1, @} of the a-module.

Remark. We point out that strictly speaking the restraint g(ea,s) will be
unnecessary because of cancellation. It is merely convenient for our presentation.

To reset a candidate x(a, s — 1) at stage s means to cancel x(«, s — 1) and find a
large fresh number y (exceeding all previously mientioned ones) and set
x(a, s) =y. To initialize node « at stage 5 means: rest x(«, ), set F(a, s)=w, set
r{a, s}=0 for i =1, 2; cancel any W, (- or V,.y-links with top or bottom equal
to . (Links are defined later.)

For & with Ih(«) # 1 (mod 3) we always have r,(«, s) = r(a, 5) =0 for all a.

At the end of the construction, we will have the true path B through T. We
approximate f at each stage s by a string o, € 7. This is defined in substages  <s
during which we define a string o(t, s) with o(¢, s) c o(t + 1, 5). We let o, denote
the last o(t, 5) defined for ¢ <s.

(2.16) o-correct computation. Because we are guessing whether or not H® =

'a)(“) we need a notion of a-correct computation. We say a computation
“d, (A;;¥)=W, ()" is a-correct where e=e(w) if for all 7"0c a with
lh(z) =2 (mod 3), (2.17) below holds.

(2.17) X max{r(p, s):psSLa}<z< ¢, (y) &z € @ then z € A4,.

We can similarly define: “f} (4,;y) = V. ,(y)” to be a-correct as above, but
with v, ; in place of ¢, in (2.17).

Now for e¢eT with Ih(e)=0(mod3) or Ih(e)=1(mod3) we define the
a-length of agreement via

e, )y =max{z: ¥y <z (&..(4;; ) =W, (0) & L. .(As ) = Ve (y)

and these computations are a-correct}.
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For a e T with I{l(w) =0(mod 3) and « of type B or lh(a) =1 (mod 3), define
“Dia),s(Cr53 X) = Diga,o(Dr,53 X} = Wiy 5(x)” for 7= (e, e(a)) to be a-correct if
() x<max{z:Vy <z (Pyays(Crrs; ) = Pigar,o(Drs3¥) = Wi e(¥))}, and
(ii) both cfie,s (As;2)=W, (z) and f;_s (As;2) =V, 4(z) are a-correct for all
z< ¢(y).
Now for & € T' with Ih(a) =0 (mod 3) and « of fype B or Ih(a) = (mod 3), let

(e, i, s) =max{x: Vy <x ($,,(C. 3 y) = D,,(D,;;y) =W, .(y) for i=
i(a) and 7 = t(e, e(@)) and the computations are a-correct}.

Finally, we say a computation @;.(W,,;y)=Q..(y) is a-correct (where
j=j(e), i=i(e) and v=1(a, e(a), (@) if max{x:Vy <x (D, ,(W,;y)=
O.(¥)} > d(y)&l(e, i, 5) > ¢p(y). In this way we define (of course, for
Ih(a) =1 (mod 3))

(e, i, j, s)=max{x: Vy<x (&, ,(W.,;¥)=Q, (y) via a-correct computations}

(where 7= 1(a, e(a), i(a)).

(2.18) Definition. Let v e T.

(i) We say s + 1 is an a-stage if & — 0;.;. In addition 0 is an a-stage.

(ii) We say s + 1 is a genuine a-stage if o(t, s + 1) = « for some substage ¢ of
stage s + 1. Let G denote the collection of genuine o-stages.

(iii) Suppose lh(a)=0(mod3) and « has type A. We say that u is an
a-expansionary stage if u =0 or u =5 + 1 where

(a) s+1isa genuine a-stage, and
(b) (@, s)>max{l(e, @1): 4 is an a-expansionary stage and # <u}.

Let Is(w, s) denote the last a~expansionary stage <.
(iv) Suppose lh(a)=0(mod3) and « has type B. We say that u is an
(«, P)-expansionary stage fori =i(a) if u=0oru=s+1 and

(a) s+1isa genuine a-stage, and

(b) e, i(a), u)>max{l(e, i(a), &): 4 is an (a, i)-expansionary stage
with & <u}.

Similarly define Is(a, i, 5).
(v) Finally, if Ih(e) =1 (mod 3), we say that u is an {«, i, j)-expansionary stage
fori=i(a) and j=j(e) if u=0o0ru=s+1 and '

(a) s+1isa genuine a-stage, and

(b) Ha, i(a@), j(a), v) >max{l(a, i(a), j(a), &): i is an (a, i, j)-expansionary
stage with & <u}.

Similarly we define Is(w, i, j, 5).
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(2.19) Linking. At stage s, if a node « (necessarily, with lh(a)=1 (mod 3))
opens a W,y-gap, then at the same time it opens an (e(w), i(@))-squeeze. We
indicate this by constructing a pair of ‘short-circuits’ or links (7, @) and (7,, @)
where

n=1(e, e(®)), and 7,=1(e, e(a), i{a)).

The link (7;, «) remains in force until the next 7,-expansionary stage when we
travel the link (7, «). Namely, there will be a substage o(t, s +1) with
o(t,s+1)=1, and o(t+ 1,5+ 1)= . The link (r,, &) is then cancelled. The
link (75, @) remains in force until the next 7,-expansionary stage when we travel
(2, &) and then cancel it. The idea of linking is an important idea used to
simplify 0"”-arguments and is due to Slaman. The reader should either consider
them as short circuits or promises at 7 that we are allowed to hop like a kangaroo
directly from 7, to « ignoring what happens in between. The reader should note
that when the link (e.g.) (7,, @) is travelled, the nodes y with T, Sy S « are
y-stages but not genuine y-stages since they are not accessible to receive
attention.
Finally we only have one type of link (t(«, e(«)), &) for V,(,)-gaps.

Construction
Stage 0. Initialize all & € T. Define o, =@.
Stage s + 1

Step 1. We refer to substage ¢ of stage s -+ 1 as stage (¢, s + 1) The value of a
parameter p with p # o at the end of substage ¢ is denoted by p,.

Substage t = 0. Define o(0, s + 1) = §.

Substage t+1 (t<s). We are given o(t,s+1) and for all oeT with
ih(a) =2 (mod 3), F(«). We recall that F(«) = F(a, s + 1) € {s, g1, g2, w} and is
the current stage of the a-module. First define off + 1, s + 1) as follows.,

Case 1: lh(o(t, s + 1) =1(mod3). Define o(t+1,s+1)=0o(, s +1)"
E(o(t, s + 1)).
Case 2: In(o(t, s +1)=0(mod 3) and o(t, s +1) has type A. Adopt the
appropriate subcase below.
Subcase 1: Stage s+ 1 is not o(f, s + 1)-expansionary. Define o(t +1,
s+1D)=o(t, s+ 1"
Subcase 2: Stage s + 1 is o(t, 5 + 1)-expansionary and there is no link with
top o(t, s + 1). Define o(t + 1, s + 1) = o(¢, s + 1)"0.
Subcase 3: Stage s + 1 is o(t, s + 1)-expansionary and there is a link (o, p)
with top ¢ = o(¢, s +1). Define o(t +1, s +1) = p. (This will set o,,, = o(zt+ 1,
s + 1), as we shall see later.)
Case 3: Ih(o(t,s +1)=0(mod 3) and o(t, s+ 1) has type B. Adopt the
appropriate subcase below (for o= o(t, s + 1)).
Subcase 1. Stage s + 1 is not (o, i)-expansionary. Define o(t+ 1,5 +1) =
o(t, s + 1)"1.
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Subcase 2: Stage s + 1 is (0, i)-expansionary and there is no link with top
«. Define o(t + 1, s + 1} = a(z, s + 1)*0.

Subcase 3: Stage s+ 1 is (o, {)-expansionary and there is a link (o, p).
Define oft + 1, s + 1) = p. (This will set (as we see later) o, =o(t+1,5+1)=p
or we will create a new link (&, p) with 6 c ¢.)

Case 4: Ih(o(t,s +1))=2(mod3). Let Ih(o(t,s+1)=3e+2 If
card(H®; — HF) >0 where g is the last genuine o(r, s + 1)-stage <s, set
ot +1,s+1)=o0(t, s +1)*0. Otherwise set o(t+1,s+1)=o(z, s + 1)*1. Now
let @ = ot + 1, s + 1). We say that « requires attention at stage s -+ 1 if one of the
following conditions holds (as defined precisely later): '

ready to open a W,(,)-gap (at a),
ready to close a W,,)-gap (at a),
ready to close an (e(), i(@))-squeeze (at «), or
ready to close a V,(,)-gap (at ).

(2.20)

If & does not require attention and ¢<s to to substage ¢+ 2. If & requires
attention choose the first clause (2.21-2.24) below to pertain. If ¢ <s and & opens
a We-gap or « closes an (e(a), i(a))-squeeze and opens a V,,)-gap, then go to
substage ¢ + 2. Otherwise go to step 2 setting g, = o(t + 1, s + 1).

(2.21) Ready to open a W,,-gap:
(a) Ih(a)=1 (mod 3),
(b) (e, e(a)) is defined,
(¢) t{a, e(a), i(«)) is defined,
(d) F(a)=w, and
(e) (o, e, i, j) >x(a).

Action. Open a W,,)-gap by defining F(a, s + 1) =g;, r(a, s + 1) =0. Initial-
ize all y such that e"w=_y. Create links (7;, ), (72, @) with tops 7,=
(a, e(a)) and 7,=1(e, e(w), i(e)) and bottom «. Set g(a,s+1)=
$:(9,(x())) where i = i(e) and j = j(@).

(2.22) Ready to close a W,(,)-gap.
(a) Ik{a)=1 (mod 3),
(b) F(a)=g,, and .
(c) s +1is r-expansionary for v = 1(a, e(«)).

Action. Let u +1<s +1 be the stage when the current W, (x)-gap opened. Let
x =x(a, 5). Close the W,,)-gap by adopting the appropriate case below.

Case (a) (Successful closure): W. [x]# Weiny[x]. Keep F(ay=g, and
(e, s+1)=nr(a,s), n(e,s+1)=0, and gq(a,s+1)=gq(a,s). Declare an
(e(a), i(@))-squeeze to be open. Enumerate x into C, ., where (e, e(a)) = 1.
Remove the link with top z(&, e(a)) but keep the link (7(q, e(), i(a)), a).
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Case (b) (Unsuccessful closure): W,iu Jx]=W.s[x]. Set nia,s+1)=
Pe(a)(x). Reset x(e, s +1) and initialize all ¥ such that a*1 <, y. Remove both
links (7(e, e(@)), @) and (t{e, e(a), i(a)), &). Set q(a, s +1) =0.

(2.23) Ready to close an {e(a), i(a))-squeeze.

(a) lh(a)=1 (mod 3),

(b) E(a)=g,, and

(¢) s +1 is z-expansionary for 7 = 7(&, e(a), i()).

Action. Close the (e(a@),i(@))-squeeze by removing the link (v(a, e(a),
i(a)), ). Open a V. gap by setting r(a, s+ 1)=r(e, s +1)=0. Set g(e,
s+ 1) =q(a, 5). Create a link (%, o) where © = 1(a, e(«)). Define F(a) = g, and
initialize all y with a"g,<7y.

(2.24) Ready to close a V,(,)-gap.

(a) Ih(a) =1 (mod 3),

(b) F(«) =g, and

(¢) s +11is r-expansionary where = 7(«, e(a)).

Action. Let u+1<s+1 be the stage where the current Ve(a)-gap opened and
let x =x(a, 5). Remove the link (7, a) and close the Ve(ay-gap by adopting the
appropriate case below.

Case 1 (Successful closure). If V,(4 Jx]# Vi(s..[x], then enumerate x into
Qr(e,e(eiays+1 a0d into Doy ay).s+1- Keep ga,s +1) = q(a,s). Initialize all 7
for a*g, =< 7. Set F(«&) =s.

Case 2 (Unsuccessful closure). If Vo [x]=V.ia.[x], set r(a, s+1)=
Peey(x(@, 5)), r@, 5 +1)= Vo(a)(x(a, 5)). Reset x(a, s +1) and initialize all 7
for a”g; <. 7. Set g(a, s +1)=0. Set F(a) =w.

This completes the description of Step 1 of the construction. The reader should
note that (in Step 1) if @ receives attention, then Th(a) =1 (mod 3).

Step 2. Now for any x € H®, with x ¢ A,, enumerate x into A,y if x>
max{r(p, s +1): p=<, & for Ih(a) =3¢ +2}. O End of Construction

We turn to the verification. This is accomplished by a series of lemmas based
on Soare’s [8] scheme.

The following lemma summarizes the elementary properties of links that we
shall implicitly use in the later lemmas. Most of its proof is left to the reader sirice
although tedious it is essentially straightforward, and mainly depends on the
construction of the priority tree.

(2.25) Lemma (‘The link lemma’). (i) If (1, &) is a link, then a5 t"0.
Furthermore Ih(«) =1 (mod 3) and either

(a) In(z)=0(mod 3), 7= 1(y, e(@)), T has type A, and e(a) = e(%), or

(b) Ih(z)=0(mod 3), tv=1(y, e(a), i(x)), T has type B, e(a)=e(r) and
i(a) =i(7).
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(ii) Any link (t, &) once created may be travelled at most once before it is
removed.

(iii) There are at most two links with bottom « at any stage. Furthermore, if
(11, @) and (T,, @) are two links existing at the end of stage s, then for some i,
;= 7, e(®)) and 7,_; = t(a, e(w), i(«)), without loss, ©o= t(a, e(x)). Then
To = T; and Ty # 7,. (Hence the links are nested with (1., &) inside (1, «).)

(iv) Suppose (t,, &) is a link created at stage s and (t,, ) is a link with
7,"0 = &, which is created at a later substage of stage s, or (t,, &) is created at a
later stage, and suppose o, # . Then o, c o, and

(a) if T, has type A, and 1, C 1, then

(1) if 7, has type A then e(1,) <e(ry),
(i) if 7, has type B then 2e(7;) <2{e(7y), i(7))) + 1,
(iii) there is no é-boundary p with o, c p c o, and & <e(1,),
(iv) there is no &', i'-boundary p’ with aycp'ca, and 2{e’,i’) +1=<
2e(t,), and
(v) furthermore, if T, has type B then there is a unique link (73, a;) with
T3 % 7y, Then T3 has type A and 1, 13 7y, and
(b) if 7, has type B and t, T, then
(i) if t, has type A then 2{e(7,), i(T:)) +1<2e(7y),
(ii) if 7; has type B then {e(7,), i(%2)) < {e(ry), i(71)),
(iii) there is no é-boundary p with o, c p c @, and 28 < 2{e(7,), i(1)) + L or
é<e(7,). . .
(iv) there is no e',i'-boundary p’' with ajcp’'ca, and (¢',i’)<
(8(1’2), i(%.))! and
(v) furthermore, if T, has type B then there is a (unique) link (t;, o) with
137 T,. Then T3 has type A and t, < 13 < 1y, and
(c) if T, has either type A or B, but t, c %, then o, c 1.

Remark. The gist of the lemma is that links may be nested but never crossed.
Also if (1, a;) is nested within (75, @), so is any link (z, &;), and furthermore
either &, = o, or (73, &) is created after {7,, @;) and has higher priority than
(7, &,) (and will be removed first).

Proof. Each of the above is proved by straightforward induction and/or analysis
of the priority tree. We simply sketch the details.

To see (i) links are only created when « requires attention and then only when
(2.23) or (2.21) holds. In both cases, lh{a} =1 (mod 3) and one of (a) or (b) must
hold. Finally, suppose 1”1 < «. First suppose 7 has type A. Then by construction
of the priority tree for all j, i € w all {e(7), i, ) are deleted from L(7"1) and all
2{e(7), i) + 1 are deleted from Ly(r"1). Now as e{a)=e(r) and 7 is the top of
o’s E(w, e(a)) region, (2.10) says that there is no higher priority boundary
between t and «. But then it is impossible for e(a)=e(7) since e cannot be
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re-added to the Ly(p)-list for any "1 < p = @. If 7 has type B, the argument is
similar.

(ii) is very easy and is left to the reader.

For (iii) we need that e < {e, i) and whenever e is put back onto the Lg-list, so
is (e, i) and so e is always removed first. Given these facts, it is quite easy to see
that (iii) holds.

(iv) (a) Suppose (7, ;) is created at stage s and (7,, a») is later created. z,
has type A and 7, < 7,. By (i) above since (7;, ) is a link Ih{&) =1 (mod 3) and
®,"g; < a, for i =1, 2. Now, if e(1,) <e(7,), then e(z,) would be re-added to the
Lylist and by definition of t(a;, e(a2)) (as @, cannot cross the e(t;)-boundary,
1) T2 = T(%, () must occur below 7, and so 7; < 7,. Similarly e(7,) = e(%,) is
only possible if e(r,) has somehow been re-added to the list. Only higher priority
boundaries do this and this would contradict the position of 7, and ;. 7, of type
B is similar.

We remark that all of the remaining observations of the lemma may be proved
by entirely similar methods and are left to the reader. 0

(2.26) Definition. The true path § of T is defined by induction on n as follows.
Let « = B with Ih(a) = n. Define a”i = 8 via:

Case 1: lh(a)=0(mod3) and & of type A. Then a"0cp if I (s is
a-expansionary); and o1 < § otherwise.

Case 2: Ih(a)=0(mod3) and « of type B. Then a"0cp if s (s is
(&, i(a))-expansionary); and a”1 c 8 otherwise.

Case 3: lh(«w)=1 (mod 3). Then a"a c § if lim, F(a, s) exists and a € {s, w},
«”"g, < B if o opens infinitely many V,,)-gaps, and a"g, c # otherwise.

Case 4: Ih(a)=2(mod3). Then a"0c g if there are infinitely many &”0-
stages and a1 c f§ otherwise.

(2.27) Lemma (‘The leftmost path lemma’). Fix n and let « < f with lh(e) =n.
Then

(i) I~s (o, <sLa& o, ¢ «), and

(ii) |G = (where G* denotes the set of genuine «-stages).

Proof. Clearly, (i) and (ii) hold for » =0. Fix n =0 and assume (i) and (ii) hold
for n. Let p = B with lh(p) =r and let @ = p”a for a < B. For an induction, let
s, be a stage such that for all s =5, '

(a) o,=<p p implies o, c p,

(b) if Ih(p)=0(mod3) and p is of type A and a=1, then s is not
p-expansionary,

(c) if Ih(p)=0(mod3) and p is of type B and a=1, then s is not
(p, i)-expansionary,

(d) if Ih(a) = 1 (mod 3), then F(p, s) € a, and

(e) for all e, x with 3¢ +2=<1h(p), H® is finite and x € H® we have x € A iff
xe H®,




168 R.G. Downey

(i) Now, suppose 0, < a but ¢, ¢ « for infinitely many s. Choose b <, a with
p"b c o, for infinitely many s. Now by choice of s, there is no genuine p”b-stage
s = 5,. Hence there are infinitely many stages s = s, at which there is some link of
the form (7, #) with 7 = p and p"b < 5 such that (7, ) is travelled at stage s.

By the hypotheses, the collection of genuine p-stages is infinite. Let s, + 1>,
with s, +1 € G”. Let ¢t be such that o(f, s + 1) = p. At stage #(s, + 1) there can be
at most one link (7, ) as above, and furthermore 7t =#. This link must be
travelled at stage (¢ + 1, 5, + 1) and this link will then be removed.

Now, if 7= 1(7, ¢) for some e =e(n), by the paragraph following (2.20) the
removal of this link finishes stage s, + 1. In particular at the end of stage s, + 1
there is no link (%, ) with # < p and p~b c 4. But now it follows that p"b ¢ g,
for all s > 55+ 1 and there cannot be any further (7, n).

Thus the only possibility is that 7= 7(n, e, {) with e =e(n) and i =i(n). Now,
by the analysis above if infinitely many (%, /) exist, it must be that at stage
(¢+1,5,+1) we successfully close an (e(7), i(n))-squeeze. We thus open a
V.ny-gap with a link (z,, n) for 7, = 7 by the link lemma. Also by the link lemma
this link is the innermost of any link (7, 1,) created after stage (t + 1, s, + 1) but
before (z,, n) is removed. In particular we note that there is now no link with top
7= p. Now since there must be infinitely many (genuine) p-stages there must be
some stage (¢, s3+1) with s34+1>5,+1 and o(ty, s3+ 1) =7,. Then at stage
(t;+1, 53+ 1), we remove (7;, 1) and then by the paragraph following (2.20), we
finish stage s, + 1. It again now follows that there are no links (%, ) with tcp
alive at stage s3+2 and so for all s >s5;+1, p~b ¢ g, and there cannot be any
further (%, /). This clinches (i).

(i) We must show that G *is infinite. If Ih(a) =0 (mod 3) and « has type A or
@ has type B or lh(a) =2 (mod 3), then this follows because the above analysis
says that there are infinitely many genuine p-stages with no links originating at p.
If, for example, « = p”~0 and p has type A, then no link can originate from p
until the next genuine p-expansionary stage. The other cases are similar. Finally,
if Ih(p)=1(mod 3), then the result follows because if (t, s + 1) for s>s; is a
genuine p-stage, then it is a genuine p”i-stage forie {s, w, g,, g2}. 0O

(2.28) Lemma (‘Restraint lemma’). Let o« cf and let a*=a"B(n) where
n =1h{&). Then

im{#(a, s):s€a™} exists
where

o is the set of a*-stages, and (e, s)=max{r(p, s):p<_ a}.
Furthermore, if q(«, s) is defined, then §(a)=lim{4{w, 5):5 € w} exists, where
4(a, s) = max{q(p, s):p<p a}.
Proof. Let a” be the predecessor (if any) of o and define

MaT)y=lim{r(a", s):s e w}.
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Now, if Ih(a)#1 (mod3), then r(«,s)=0 for all s. The lemma then holds
because — by choice of o= f — lim,{r(p,s):p< a& p ¢ B} exists (by the
previous lemma, and the fact that r(p, 5) is reset only at genuine p-stages).

On the other hand, if lh(&)=1 (mod 3), choose s, such that for all s=s,,
o;<p« implies o;ca (via (2.27)). Now as in the basic module, r(a)=
lim inf r(a, 5) exists as does g(&)=liminfg(e,s). If o = «"a and a € {5, w},
the neither r(a, s) nor g(w, 5) are reset after the next a“a-stage. If a = g,, then
g(«)=0 and r(a)=0. Finally, if a =g;, then after the final a"g,-stage s, we
have r{a, s) =r{a, 5;). O

(2.29) Lemma. All the P, are met. That is, for all e, H® =* A®,

Proof. Let a < § with Ih(e) = 3e + 2. Then by (2.28) liminf #(«&, 5) = F(a) exists.
By Step 2 of the construction if x € H® & x > #(0), then we add x to A at some
genuine a-stage, since at such a stage r(#, s) =0 for n $fra. O

(2.30) Lemma (‘Truth of outcome lemma’). Let o < 8.
(i) If Ih(a) =2 (mod 3), then a0 < B implies HE) = gle(a),
(i) If Ih{e) =2 (mod 3), then o"1 < B implies HD) finjte.
(iii) If Ih(e)=0(mod 3) and « has type A, then a™0c B implies there are
infinitely many w«-expansionary stages.
(iv) If Ih{e)=1 (mod 3) and «o has type A, then a1 B implies that either
D2y (A) # Wy 0F Fiory(A) # Vi
(v) If Ih(a) =0 (mod 3) and « has type B, then a"0c B implies that there are
infinitely many («, i(a))-expansionary stages.
(vi) If Ih(a@) = (mod 3) and « has type B, then a"1 < B implies that

either (ff',-(o,)(C,) * I’V,‘(“), or d\j,-(n,)(Dt) #* ?V,-(a,),

where i = i(«) and 7 = 1(a, e(a), i(®)).
(vii) If Ih(e) =1 (mod 3) and a’g, < B, then W, is recursive.
(viii) If Ih(e) =1 (mod 3) and a*g, = B, then V., is recursive.
(ix) If Ih(aw)=1(mod3) and a*wc B and v=1(w, e(a), i()) is defined,
then ®;(0y(Wicay) # D...
(X)) IfIh(e) =1 (mod3) and a"s < B, then 1 = 1(«, e(a), i(a)) is deﬁned and
for some x(&) = x(a, s) we have &, iy Wigeys X(@)) # Q. (x(@)).

Proof. (i) and (ii). There are infinitely many genuine a-stages. At such stages
a”i is genuine and we choose &0 only if H¥% exceeds H ) where u is the
last genuine a-stage. Thus a"0 c g iff H®“) = w0 and so HE@) = gle@),

Parts (iii)—(vi) are entirely similar and are left to the reader.

(vii) Let a"g, = B as above, We claim W,,, is recursive. This is where use the
fact that we are using W-reductions rather than T-reductions. Choose a genuine
a-stage s; such that Vs >s, (0,=<; a"g, implies 0, = a"g,) (by Lemma (2.27)).
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Now we may also assume by the link lemma that there are no links (7, «) alive at
stage s,. Also, since a"g; — B, it must be that 7(«, e{w), i(«)) and (e, e(a)) are
defined. Set e =e(«) and i =i(«). Also, by Lemma (2.28) we may assume that
#(o, s) =F(0) at each (genuine) «”g,; stage for all o< a. Let 5,25, be an
a”g;-stage at which we open a W,,-gap. This is only possible if (w, i, j, 5,) >
x(a, 5,) via a-correct computations. Now by monotonicity we know I{w, 5,)>x
via @-correct computations. In particular then by choice of s, we know that if
70 < & with [h(7) =3 + 2, then if z € @) and 2 < @, (,y(x) then

(2.31) zeA iff zeA,,.
Also, if 71 c & with lh(t) = 3j + 2, then if z € " we have
(2.32) zeA iff zeA,, |

Now at the next genuine wo-stage s;>s; when we close the W, -gap, this
closure must be unsuccessful. In particular, Wy, 5,[x] = We(a).s,[x]. At this stage
we have I, 51) > x(&, 55). Now since we are dealing with W-reductions, our use
function ¢.(x) has not changed and hence our computations

“ @8,53(We(a),s3; Z) = We(ar),s;;(z) fOT z=sx"

are (still) a-correct.

Now at stage s3 we re-impose the r(«, s;)-restraint to hold W, ,,[x] and by
a-correctness this restraint succeeds in holding W, .,[x] during the co-gap, that
is, until the next genuine a"g,-stage. By similar reasoning, we see W, ,[x]=
Weqay,slx], for larger and larger x and so W, is recursive.

(viii) As in (vii) but using Il (4, V.(s and g,.

(ix) Then lim, F(a, 5) =w and lim, x(@, 5) = x(a) for some x. It is really quite
easy to see .that — as 7(«, e(«)) and 7(«, e(e), i(a)) are defined — we have
la, e(a))— < but l(a, i(a), j(a))-p .

(x) Assume lim, F(ea, 5) =5 and hence lim, x(«, s) = x(&) exists. Choose s, 50
that these values are constant for all s>s, Then, if we take the (genuine)
o-stage s§,>>5o where the W,,)-gap eventually adds x(a) to O, where 7=
(o, e(a), i(a)), we must have I(a,i(w),j(a),s)>x(a). By the g(w,s,)-
restraint it is quite easy to see that D, ;[¢:(¢;(x(«)))]= D, . [¢d:(¢;(x(a)))]
where 7, = 7(e, e(®)) and s, is the stage where we open the V,y-gap for x(«).
But at this stage is must be that /(«a, i(a), j(a)) >x(a). Hence the g(e, 5,) =
q(«, s,) = gq(a)-restraint ensures that C. [¢:(¢;(x(«))] = C,,[¢:(¢;(x(a)))] and
hence (o, i(@), j(a))>x(0) and we must have Wy [dia(x(a))]=
Wito)[@icay(*(a))]. This means that

By (Wiays () = 0£ 1= 0 1 (x()).

This gives the desired result. O
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Thus it remains to prove that all the reduction procedures we need exist. This is
accomplished by the following lemma, which concludes our proof.

(2.34) Lemma (‘The regions lemma’). Fix e such that ®,(A)=W, and [,(A)=V,
with W, and V, non-recursive. Let T=t(B, €). Then C, and D, are r.e., C,<w W,
and D, <y V,. Furthermore, if @,-(C,) = tfi,-(D,) =W, then Q. <wC,, D, and if
W, and V, are nonrecursive, then Q. Fg W; where t, = (B, e, i).

Proof. By the finite injury lemma fix 7. Then C, is the collection of x(a) such
that o € E(7, e) and e(a) =e and « enumerates x(a) into C, at the close of a
(successful) W,(q)-gap (so the W,,[x] changes). Then C, is clearly r.e. To see
that C, <y W,(,, it suffices to show that every E,,)-gap opened by « for e(«) =e,
o € E(7, €) and Ih(a) =1 (mod 3) is eventually closed. But this is immediate. As
tcf any link (7, &) created at an «-stage is removed at the next genuine
T-stage, and we know (by Lemma (2.27)) that there are infinitely many genuine
7-stages. Thus C; <y W,(,). The proof that D, <y V,(,, is virtually the same and
is left to the reader.

Now suppose that additionally @,-(C,) = d‘),-(D,) =W.. Now as above for
a € E(ty, e, i) any (7, «) link (and of course any (7, &) link) created is later
removed and so every (e(w), i(a))-squeeze once opened is later closed, and
moreover, opens a V,,-gap if successful. We only add x to Q,, at the end of a
successful V,,-gap. These facts together mean Q. < D, by simple permitting.
Furthermore, Q. <w C; by delayed permitting; that is, if x enters Q., at the close
of the V,(,)-gap that is opened at the time x enters C.. Hence O, <w C,, D..

Finally, we need to show that Q. sw W;. Suppose for a contradiction that
Q. <w W;. Find & € E(B, e, i} with Ih(a) =1 (mod 3) and &;.,,(W;) = Q... By the
truth of outcomes as W, and V, are nonrecursive, a”g; ¢ g for i =1, 2. But now
this means «”s or a”wcf and again by truth of outcome this means
@,-(“)(W,-) # Q,, giving the desired result, O

We believe that the above techniques can be extended to show
(2.35) Va#0'b>aVec((asc<b& W]a,c] a lattice) —>a = ¢)).
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