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Abstract

Downey, R., Every recursive boolean algebra is isomorphic to one with incomplete atoms,
Annals of Pure and Applied Logic 60 (1993) 193-206.

The theorem of the title is proven, solving an old question of Remmel. The method of proof
uses an algebraic technique of Remmel-Vaught combined with a complex tree of strategies
argument where the true path is needed to figure out the final isomorphism.
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any recursive boolean algebra B, there is a recursive boolean algebra B,
isomorphic to B, such that the atoms of B, are Turing incomplete. This result
should be seen in the context of theoretic studies looking at the behavior under
isomorphism of distinguished relations in recursive models, going back to, for
instance, Ash and Nerode [1]. Remmel [10, 11] had earlier proven that if a
boolean algebra B, has a recursive presentation with an infinite recursive set of
atoms, then for any given r.e. degree, B, had a recursive copy whose atoms had
degree d.

Modifying the difficuit coding argument of Feiner [5, 6], Remmel, however,
also showed that there exists a recursive boolean algebra B, whose atoms are
intrinsically nonlow. That is, if B, is a recursive boolean algebra isomorphic to
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194 R. Downey

B, then the atoms of B, form a nonlow IT{ set, and in particular are not
recursive. Every recursive boolean algebra is the interval algebra of a recursive
linear ordering. If B =Intal(L), then the atoms of B correspond to the
successivities of L. It is not difficult to show that if L is a linear ordering with an
infinite recursive set of successivities, then there is a recursive L' isomorphic to L
such that the successivities of L’ have degree d. Using this sort of reasoning many
theorems concerning boolean algebra can be deduced by manipulating results on
linear settings.

Our result cannot be so deduced. In [4] Downey and Moses constructed a
recursive linear ordering L whose successivities were intrinsically complete; that
is, all recursive linear orderings isomorphic to L have complete successivities.

Our result is proven by a tree of strategies priority argument. A crucial
ingredient is Remmel’s extension (from [10, 11]) of Vaught’s theorem. We discuss
such preliminaries in Section 2 and prove the main result in Section 3. We remark
that the combination of an isomorphism construction with the Remmel-Vaught
lemma has other applications. In particular, Carl Jockusch and the author [3]
used this technique to prove that all low boolean algebras are isomorphic to
recursive ones, thereby solving a question dating back to Feiner’s 1967 thesis [5].

Notation is standard and follows Soare [12], Downey [2] and Monk [9].

2. Preliminaries

Let B be a recursive boolean algebra. It is well known that B is recursively
isomorphic to a recursive subalgebra of Q, the atomless boolean algebra. This is
shown in, for instance, Remmel [10, Theorem 1.2]. The same proof also shows
that there is a recursive linear ordering L so that B is recursively isomorphic to
Intal(L), the interval subalgebra of left closed right open intervals of L. We will
suppose that our boolean algebras are so presented as subalgebras of Q given an
interval algebra of recursive suborderings of the rationals. Furthermore, for
convenience, we shall suppose that the orderings have endpoints.

We will need the following result of Remmel that extends one of Vaught.

2.1. Theorem (Remmel-Vaught [10, Theorem 2.1]). Let A ve a subalgebra of Q
and suppose the atoms of B are infinite in number. Let Atom(B)={dy, d,, ... }.
For each i, suppose e\, ...,e. are pairwise disjoint elements of Q with
d;= /\j, .. Let C be the subalgebra of Q generated by B together with all the e;.

Then C is isomorphic to B.
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2.2. Corollary. Let L, and L, be suborderings of Q with infinitely many
successivities. Suppose that there is an injective mapping g : L,— L, which is order
preserving and has the property that if y ¢ ra g then there exist ¢, d in ra g such that
I[c, d]l <® and [g"'(c), g7'(d)] is a successivity of L,.

Then Intal(L,) is isomorphic to Intal(L,).

3. The proof

In view of Lemma 2.2, to prove our main result, it will suffice to consider a
recursive subordering A = {a;:i € w} of ) and to construct a recursive linear
subordering B of Q together with an isotone injection f : A— B with the property
of Lemma 2.2 which we restate here for convenience.

3.1. If bé¢raf then there exist c,deraf such that c<b<d, |[c,d]| < and
[f~(c), F7'(d)] is a successivity in A.

Let S(L) denote the collection of pairs that constitute successivity of L. We
build an r.e. set D and meet the requirements

R,: eS®#D.

Here we use e to represent the eth Turing procedure, and will similarly in the
construction let at stage s, e denote e”. We shall use a Fredberg type strategy
to meet R,: We pick a follower x, wait till

I(e, s) = max{x: (Vy <x)(e5®)(x) = D,(x) = 0)}

and then act to diagonalize and preserve S(B;) = S(B). There may be infinitely
many attacks on this requirement, through infinitely many x, but if this is the case
then the requirement will meet by divergence. (More on this later.)

The most difficult part of the construction will be controlling the definition of f.
In fact f will be defined in a A} way via the ‘true path’ of the construction. While
this phenomenon is not unique (see e.g. Downey [2]), it is quite unusual. So we
shall in fact construct a tree of partial injections with f(a;) = lim, f; ((a;) where 6
denotes the initial segment of the true path (7P) of the construction devoted to
a;. Hence to our list of requirements we add the additional ones:

Ryei1: If e(8)=2e+ 1 and 6 c TP then lim f5 (a.) = f;(a.) exists.

Furthermore we must ensure that the function f(a;) = f5(a;) for e(8) =2e¢ + 1 and
& < TP satisfies 3.1.

To discuss the method whereby we achieve the goals above, we consider the
situation for satisfying an R,, in isolation, but in the ‘a-correct’ environment
within which it will be working. Now R,,, from some point onwards, will be living
in an environment where there will be a finite number of points ¢, <---<g,
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(including a,, ..., a.) of A such that, as far as R,, is concerned, f(c;) is fixed.
That is if 6 is the correct node devoted to solving R,,, then at §-stages s (i.e.,
when & looks correct) it will be the case that B, must respect exactly the
commitments:

(i) f5.5(c:) = b;, (b, fixed), and

(ii) (This will actually be implicit from (i), as we see.) If [q, r] is declared to be
a preserved block by some y devoted to some Ry, of higher priority than 8, then
d is committed to keeping [g, r] to be the same size in B,,, as it is in B,.

Diagram 1 below might be helpful for visualizing (i) and (ii) above; in a typical
situation at a §-stage s.

In Diagram 1, the lined arrows must be respected by R,,, but the dotted ones
can be shifted. Note also that the pullback of [g, r] in B is a successivity in A,.
The idea here is that [g, r] would be, in a manner we will see, devoted to meeting
R, for some k.

As we noted earlier, the basic idea used to meet the R,, is to use a Friedberg
procedure. So we would like to pick an x, wait till e5®)(x)| =0, put x into D and
ensure that S(B,)= S(B). Unfortunately, ensuring that S(B,)=S(B) is a very
difficult task, when combined with the isomorphism property. For instance, if we
need to ensure for the sake of higher priority isomorphism conditions that ¢, — b;,
and c¢,— b, then if [c,, c;] is, say dense, then [b;, b;,] in B must be dense too.
Now if at a finite step s we try to preserve some successivity in [b;, b ], we will
fail. We need to guess at the behavior of A relative to the fixed points.

To make the description simpler, we now concentrate upon only one interval,
namely [c,, ¢,]. Essentially we will try to guess the behavior and existence of
successivity in A between ¢, and c,. At the least refined level, we will need an
outcome guessing that, at some s, |[c1, ;]| = |[cy, ¢3] in A f. We write [¢;, ¢,], for
‘[c1, €2] in A’. This outcome is guessing that [c,, c,] is finite in A.

Now if this finite outcome f is truly the correct one then S(B) contains all

w N

—e

|
|
t:zit:qz...::ii:;

Diagram 1.
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consecutive pairs in S([c;, ¢,]). If e5®(x) = D(x), then in this case we must see at
some stage s a computation ¢°?(x) = D,(x) where S(B,)= S(B) on the interval
[cy, 2] = [c1, ¢2]s- Hence a version of R,, guessing this outcome f will believe that
[cy, ¢2]s = [c1, ¢2]- As a consequence, on f([cy, ¢2]), R,. guessing f believe that
S(B,) = S(B) (essentially).

1'\11 UUICI VUlblUllb Ul [‘Ze cqunppcu Wll.l ther

guesses will wait for certai
successivity to be killed in [c,, ¢,] before they will be prepared to believe that
S(B;) = S(B).

The remaining cases depend on whether [c;, ¢,] contains a successivity, and
whether neither, either or both [c,, x,] or [x3, ¢;] is a successivity for some x;, x,
in A. The reason that this is important can be seen considering the case of a
version of R,, guessing that [c,, ¢,] is dense (outcome d). In this case this version
of R,. will never believe a computation which relies on (x, y) € S(B,) with
f(cy) <x <y =<f(c,;). The reader should note that ‘[c,, c,] dense’ is IT, behavior.
We can play the outcome d when this ‘appears correct’. In this case one way to do
this is to use a fest set which we call test(c,, c,, d, 5). At some stage s, we put all
the current elements of [c;, c,], into test(cy, ¢, d, s). We keep test(cy, ¢,, d, t) =
test(c,, ¢;, d, s) until a stage s,>s occurs where for all elements x <y in
test(cy, ¢;, d, 5,) (=test(cy, ¢, d,s)) there is an element z=2z(x,y) with
z€ley, ¢)y, and x <z <y. At stage s; we could then play outcome d for [c,, ¢;]
and reset the test set as test(c;, ¢, d, 5;) = [c;, ¢;);,. Clearly if we play outcome 4
infinitely often, then [c,, ¢,] is dense. Note that if [c,, ¢,] is dense, at the end
there will be an isomorphism between [c,, ¢,] and {z € B | f(¢,) <z <f(c,)}.

For the remaining outcomes which are stronger than f, but weaker than d, the
strategy is more intricate, and depends not only on the existence of successivities
in [cy, c,] but their overall location. Note that, as above, it is I, to determine if
¢, and/or c, are limit points from respectively the right and/or the left. Namely
for c,, for instance, we will have a test set limit(c,, s). This contains at a stage s
the successor of ¢, at stage s. We issue another chip to the outcomes that believe
¢, is a limit point in [cy, ¢;] if limit(c,, s) # limit(c,, s + 1).

We will arrange the outcome in the following order of ascending priority.

f — the finite outcome that [c,, c,] is finite,
(c1, ¢2) — that ¢, and ¢, are not limit points,
(c1, ®) — ¢, is a limit point but ¢, is not,
(oo cz) — ¢, is a limit point but ¢, is not,
\w W} —both Cq and C, arc limit t poi ints but
d - [c,, ¢,] is dense.

[PPS P . U PSS, o
[c1, ¢,] contains a successivity,

We can consider the outcomes between f and d as suboutcomes of s the outcome
that believes there is a successivity in [c,, ¢,].

The (c,, c,)-strategy. The (c,, cz) -strategy comes €

..D
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Diagram 2.

when d does not look correct, but a new element z enters [cy, ¢,]s41 — [c1, C2)s
and z is not in [c1, X;,,) U (x5, ¢]. For this situation, an e5®)(x) computation
will only be believable if, upon [c,, ¢,], the members of S(B;) are partitioned into
two disjoint sets with no common endpoints, and including f(c,) and f(c,). A
typical situation is given in Diagram 2 above.

The consistency condition for S(B;) is that for all pairs (p, q) of the form
(f(cy), 2), (2, ) (j>1i) or (z;, f(c2)) or (f(c1), f(c2)) with GSdel numbers below
u=u(e’ x) =0, we can believe o = S(B,) iff

() #(p, q) e aiff (p, q) € S(B,) for #(p, q) <u, and

(ii) for some i, #(z;, z;+1) > u.

The reason for (ii) is that we are, after all believing that |[c,, ¢,]| = ® and hence
if the outcome is (cy, ¢,) then there will need to be infinitely many ‘splitting’
elements entering between f(c;) and f(c,).

The idea is to now force S(B) to extend o (should this be the correct outcome).
To do this we find the least i with #(z;, z;,1) >« and map x;, to z; and x, to
Z+1. Adding |[c;, ¢;]| — 4 new elements (with large Godel numbers) between z3

RILRN

e % 2 £(c,)
Cc
fle)) =z 3 2 Zg Zg 2

Diagram 3.
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and z, to serve as images for the remaining elements of [¢;, ¢,]. (See Diagram 3 in
the case ¢ =2.)

The reader should note that the elements z; are no longer in the range of . If it
is indeed the case that x, = x, ; and x, = x, , then the fact that the z; are no longer
in the range of f is fine since, in essence, all we are doing is splitting the
successivities [c;, x;] and [x,, c,] finitely. Thus we get a temporary win by
restraining the definition of f, as above (and so keeping S(B,) extending o) and
putting x into D, causing a disagreement. The strategy above can only be injured
if at least one of the stage s successivities ([c;, x,,] and [x,,, ¢;]) contain a
nonsuccessivity in B. So we cancel the maps above if there occurs a number a
entering [c;, ¢5], — [c1, ¢3], with a splitting one of [c,, x, ] or [x,,, ¢,]. After this
entry of a occurs, to make the cominatorics simpler, we agree that we won’t play
the [c,, ¢,] infinite outcome till [[c,, c2],| = |[f(c1), f(c2)].l-

The (c;, ) strategy. This is of course similar to the above. It is played at a
‘[e1, ¢,] infinite’ stage where we have seen x, ; change since the last such stage. To
be (c;, ) believable, an e*®” computation needs to include [f(c;), z;] as a
successively (if #[f(c,), z1] is below its use), it cannot believe [z, f(cy)] is a
successivity and the computation must be consistent with the current information.
We preserve such a situation by mapping x, ,, to z, with [z,, f(c;)], a successivity.
For the situation in Diagram 2, if instead of it being a (c;, c,)-stage it was a
(c;, ) stage we would not get Diagram 2, rather we would get Diagram 4 below.

Again note the addition of |[c;, ¢;] — 3| new points between z, and f; and f(c,),
to serve as images to the ‘uncovered’ elements of [c,, c,]. As with the previous
action, this action can only be injured if its premise is falsified; that is, [c;, x, ] is
split at some later s stage f. Again we agree that we would play the infinite
outcome after stage ¢ until we get [c,, c;}, =[[f(c}), f(c)]-

The («, ©) strategy. This strategy is the most involved of all. A string o
(potentially S(B)) is (%, ©) correct if
(i) for all z;, z; if #(z;, z;) <u(e’ x) then o(#(z, z;)) = 1iff (z;, z;) € S(B,),

“1 *1,s €2
/ . “\\\\\\
Z3 z, Zg Zg f(cz)

f(cl) zy z,

Diagram 4.
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(ii) if #(f(cy), z)) <u(e® x) then o(#(f(cy), z;)) =0, and

(iii) if #(z;, f(cy)) <u(e? x) then o(#(z, f(cz))) =0.

The idea is that we try to preserve o by mapping the block [z;, z,] to the least
candidate for a successivity in [c;, ¢,] consistent with all the outcomes so far.
After all, since we are not playing outcome d it must be that for at least some of
the S(A,) successivities are still in test(c;, ¢», d, s). For a typical situation, in

Diagram 5 below, we will indicate by [d;, d;,,] the possible successivities of
e .1 1f it 1¢ the case that tect{c. d sY=lm tect{c. A r\ That ic ecaome
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real successivity is already present. The action will be to map the whole of [z;, z,]
to the least [d,, d;,,]. In Diagram 5, we suppose #[d;, d;,,]| < #[d;.,, di»], etc.
Again we need to add new points to get consistency.

The situation above can only be injured if we find out [d, d,] is not a
successivity. Suppose this occurs at stage ¢, that is [d,, d,] is split in A,. If we
don’t wish to play outcome d, it must be the case that at stage ¢, either [d3, d,] or
[d,, ds] is still a successivity of A,. Suppose for a typical situation [d, d4] has
been destroyed also so that only [d,, ds] remains. For simplicity, let y,, denote
the current predecessor of f(c,), and let y, , denote the current successor of f(c,).
The action is the same as the one for Diagram 5 except we can use y; , in place of
t; and y,, and d;s to a y;, add new points to the rest, and attempt to preserve the
block [yi.,, ¥2..]- Diagram 6 below typifies this situation.

Finally, if we discover that all of the members of test(c,, ¢,, d, s) are not
successivities in A (so in our situation [d,, ds] gets split), we will play the outcome
d. Again we wait till |[cy, ;]| > |[f(c1), f(c2))) = I[f(c1), f(c2) ]l

The general R,, strategy. The above discussion is for a single pair ¢, c¢,. In
general, R, will need to be believe a number of S-fixed points, ¢y, . . ., Cpe)s It
will need to play the appropriate [c;, ¢;,,] strategy for each interval, and similarly
need strategies to work in the ends. For simplicity we suppose that A has end
points p, and p, so that ¢, ; = p; and ¢, ; = p,, at all stages. The guesses will be
represented as n-tuples of the form (s, i, u) corresponding to the belief at stage
S, Crg -« -5 Cney,s Stabilized (i.e., at all S-stages>s, c¢;;=c;, and n(e)(s)=
n(e)(#)) and in the interval |[c;, ¢, ] the outcome is ue{f, (¢, ),

(clx °°)! (oo) cl)’ (oo’ oo), d}

The R, strategy. Presented with the above, R, ,, will request that f5;(a;) map to
the least element in (or added to) B, consistent with the higher priority requests.
Again, this can cause some interval |[a, b];| to no longer match |[f(a), f(b)],.
This is only a worry if |[a, b],| <|(f(a), f(b)]s| so that new elements have been
added. This causes no grief since either [a, b] is a finite block so that the
Vaught-Remmel theorem applies, or eventually enough points will appear in
[a, b] to cover things.

We now turn to the formal details. The priority tree T is generated in stages by
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associating the R; on paths in order. Suppose we have generated T on a string o
and R,,.; is the requirement of highest priority not as yet dealt with. For
convenience we shall add extra ‘layers’ to the outcome. First for each canonical
finite set D, and for each s € N we wish an outcome (s, D,) of . We order these
lexicographically. The intention here is that s is the stage where we are never left
of o again, all higher priority actions are known, and D, codes the fixed points we
must respect. Moreover, we only consider D, with the property that i, je D,, i <j

iff 0. < g. where G denotac the Lth rational Ta each cuch a7 (¢ D ) we assgociate

L L TR 2 aconotes e Xin rationas. 10 cacn sucnl g \Py &0/ WO ASOU

the outcomes of the form v=(1,,..., Tp+1) Where 7,€{o, f} and 7,
T,p,;+1 = %, which are ordered lexicographically with < f. An outcome v with
7, = is meant to encode the belief that |[g;_;, q]| = .

Finally, we expand each outcome 7 into its appropriate suboutcomes. So for
each 7; in 7 with 7; =%, we have outcomes {d, (», ©), (%, ¢,), (¢,, ®), (c1, ¢2)}
ordered from left to right, and so to each string v we associate by lexicographical
ordering outcomes f = (i, ..., fp +1) such that pu,=f iff 7,=f and y; e
{d, (, ), («, ¢;), (c1, *®), (¢, ¢2)} otherwise. This is where we begin to play
Ry.+1. We assign R,, to each string of the form n=0"(s, D,)"t"u and write
e(n) =2+ 1.

To each stage n we associate R,,’s outcomes i with i € {0, 1}. We associate
R,.,1 with the outcomes of R,.,, and hence to a string of the form y=
o™ (s, D,)"t"u"i. The outcomes of R,.,, are Q= {g;:i € w} representing the
possible choices for f(a,). We assume a_; =0 and f:0—0so b_,; =0.

Construction

Stage s. We perform the following substages ¢ for 0<t=<s+ 1. We refer to
substage ¢ of stage s + 1 as stage (s, t). We append a subscript ¢ to a parameter to
indicate its value at the end of stage (s, #). As with all other stages, we will define
f(ag) = by (=a,), as without loss of generality, we can assume 0 < g, so we will

ha rnnecarnad with tact gate inunlving ~ — 0N nd -~ At giihatoaa N Af ctaaga N
UC VULILLLIIVG WlLll VoL O lllVUlV1115 bl YV, allu u2 - u() LAl auuotasu v VL ol.asp U,

we set test(cy, ¢,, d, 0) = limit(c,, 0) = limit(0, c,) = {c,, ¢,}. At stages s >0 these
sets will already be defined at a previous stage. Let fixed(A, s) = {c,, c,}.

Substage t
Case 1. We are considering a string o with || =0 or o is an outcome of some
R,j.1. Also we will have defined a set fixed(o, s), denoting the fixed points
generated by the above. Let fixed(o, s) = {c;, . . ., ¢;} in the A-coding, and let
D, be the corresponding finite set coding fixed(o, s). Let ¢t <s be the least o-stage
such that fixed(o, s) = fixed(o, u) for all u with t<u=<s. Declare s to be a
o7 (t, D, )-stage.

Now for each subinterval [c;, ¢;,1] see if |[c;, ¢;v1)s| > |[ci, €iv1],| Where g is the
largest o-stage <s with g =t. Let t=1,, ..., T4, be the string with 7; € {f, <},
T, = Tx41 = (we can assume that both (o, ¢;], and [c, *), have increased in
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size) and T=0o iff |[c;, c;v1)il > e, civi]yl, otherwise. Declare s to be a
o~ (t, D) "t-stage. Now for each 7; with 7,=c, we need to determine the
appropriate outcome.

For each subinterval of the form 7; = [c;, ¢;+,] adopt the case below.

Case 1. Each [d,, d;,,] in test(c,, c,, d, s — 1) is split in A,.

Action. Then reset test(c;, c5,d,s) to be {lq1, 9], ...,[d,, gp+1]} where
[x1, c2)s={q:, ..., 49,+1} in A-order of magnitude. In this case declare that
p=d.

Case 2. Not Case 1, and both limit(c;, s) and limit(s, c¢;;,) have been reset since
the last 67(t, D, )" T-stage.

Action. Declare that p; = (%, »). Initialize limit(c;, s), limit(s, ¢;;,) to their
current apparent values (i.e., limit(c;, s) = {[c,, d,]} where d, is the successor of
¢; in Ay, for instance).

Case 3. Neither Case 1 nor Case 2 apply, and limit(c;, s) has changed since the
last 67(t, D, )" 1-stage.

Action. Declare gy, =(%, ¢;;;) and initialize limit(c;, s) to its current apparent
value.

Case 4. As with Case 3, except for (c;, ®).
Case 5. Otherwise. Declare that u; = (¢;, ¢;11)-

Now we can similarly deal with intervals of the form (e, ¢,] and [¢, ®), except
they can only have y; of the form d, (», ®), (», c;) or (c, ©). With this
modification we generate u, and p,,,. We then declare that s is a o' =
o~(t, D,)"t"u-stage where pu=p,, ..., ey where p,=f iff 7,=f and y; is
generated by the above if 7, = . Initialize all y for y %, 0¥, where <_ denotes
the standard lexicographical ordering.

Now we deal with R,,.,, where e(0")=2e+ 1. We assume first that R,,,, is
not as yet declared satisfied. If it does not yet have a follower with guess ™, give
it one, say (o™, s}, and declare that s is a 0" "0-stage. Otherwise we can assume
it has a follower x =x(o™, s) not yet in D,. As with discussion preceding the
construction, we can decide if a computation

el(x)=0

is compatible with y being an initial segment of S(B) according to the guess o™
Let u(y) be the use of such a computation. Then for all z <u(y) we need that if z
is the code a pair {p, gq) then (i) and (ii) below hold.

(i) [p, q] not a successivity in B iff y(z) =0.

(ii) If [p, q] is a successivity in B; then find i with [p, g]=(, ¢, or
[p, gl < lci, cina] o [P, gl = ek, ®).
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Without loss of generality we suppose [p, q] <|c;, ¢iv1]. We ask that y is
consistent with y;, as with the discussion before the construction. So we ask that
p; #d. If y; = (», ©) then p #c; and q #c¢;,,. If u; =(x, ¢;) then p #¢;. And if
;= (cy, ©) then g # ¢,y

If we see a string y coding successivities of B, compatible with o™, then we
declare that R,,,, is safisfied (at ¢"), and declare that s is a 0" 1-stage. We
enumerate x into D. Now we will restrain y to preserve this win. Again we follow
the technique of the basic module, now on each interval [c;, ¢;41], (, ¢;] and
[¢is1, ©). Again we only look at [c;, ;1]

If u;,=d, then there is nothing to restrain for y. If u, = (o, ), define
restrain(o*, [Ci: Ci+1]) S) = [er Z,,] where fO([Ci: ci+1]s) = {fo(ci)r 21y -+ 5 Zns
fs(ci+1)} in B-order. Find the least j such that [d;, d;,] etest(o, c;, Civy, 5)
and [d;, d;,1] is a successivity in A,. Define f,. (d;) =2z and f,+ (d;+)) = z,.
Put d; and d,,, into fixed(o™, s). The cases (®, ¢,), (¢, ©), (c;, ¢;) are treated
similarly.

Now for the case that R, has been declared satisfied at guess o™, for each i
with u;=(», ©) find the least j with [d;, d;,,] e test(o, ¢;, ¢; 41, s) and with
[d;, d;,,] still a successivity in A,. Define f,+ ; as above. (This may or may not
change f,+ since the last o™ -stage.)

If none of the above apply declare that s is a 0% "0-stage.

Case 2. o is devoted to R,.. We wish to define f, (a.). Let fixed(o, s)=
{c1,...,c} and let a, € [c;, ¢;+1], Without loss of generality, end points being
treated similarly. If a, € {cy, ..., cx} we need do nothing. If a, ¢ {cy, ..., ¢}
find the least b;, if any, with b; € [f, ;(¢;), fs.,(ci+1)] and b; ¢ restrain(z, s) for any
1<, 0. If b; exists, define f, ;= b; and declare that s is a 6" b;-stage. If no such b;
exists find a new rational b, with G6del numbering bigger than s, such that b, is
consistent with f, (c,), - . ., fo.s(ck) as well as respecting all of restrain(z, s) for
1<y 0. Define f, (a.) = b,.
Now at substage ¢ =s, initialize all T with T o and where s is a o-stage.

End of construction

Verification. Let 8 be the true path. Let S(e) denote the node on B devoted to
R,. We prove by simultaneous induction that R,. ., only receives attention finitely
often at f-stages, and hence lim, restrain(z, s) =r(0) exists for all 0 = B, and
lim, fg(2).(a.) = fp2)(a.) exists, and has the desired properties.

First we argue for the R,.,,. Let 5o be a stage where we are never again left of
B(2e +1) and all the R; for j <2e + 1 have ceased activity. Then fixed(B(2e), s)
has come to a limit. It is easy to see that it suffices to show that if R,, ., receives
attention after stage s, at B(2e + 1), this action will succeed. If R,.,,; does not
again receive attention, no string y is compatible with the (true) guess B(2e¢ + 1)
exists with e”(x)| =0, and hence R,.,, is met by nonagreement. Suppose that
R,. .1 receives attention via y. It suffices to argue that for each interval [c

fixed(B(2e + 1), s) = fixed(B(2e + 1)) we succeed with restraint(B(2e + 1), s).
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Now this restraint is successful at all §-stages s > s, where é < 8 by choice of s,
(for the R; for j <2e + 1) and by the fact that R,, of lower priority than R, .,
must respect restraint(8(2e + 1), s), due to the fact that the end points are in the
fixed point set of (B(2e + 1), q) for all stages g =s. We are now again left of
f(2e + 1) by choice of s.

So suppose we move right of S(2e + 1) at stage ¢ =s. The oniy possibie injury
to the restraint set is due to the action of an R,, . ;, while such a requirement can
define f; to differ from fg..1), We claim that restrain(9, ¢) = restrain((2e +
1), 5).

To see this we need some case analysis. Let $(2¢e +1)= 0" (s, D,) 1" u. We
argue locally on u; for each i. If u,=d, [c;, c;+;] has no elements of
restrain(B(2e + 1), s). If u; = (%, »), since we are never again left of u, one of the
apparent successivities at stage s is a real successivity. Since we adjust the map to
the apparent successivity at each stage, we can presume that in fact restrain(y;, )
is the image of a real successivity of A, say [d,, d,]. This implies that the
restrain(y;, s) is well defined and is never reset. Since the placement of new
points b, must respect higher priority restraints, it follows that no b; is added
between the least and greatest element of restrain(y;, s). The other cases are
similar.

Finally, we need to argue that f works. Clearly lim; f5 .(a.) = fs(a.) exists for all
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and b; ¢ ra fz. We claim that either there is a 0 < 8 such that for almost all stages
b, e restrain(o, s), or for some k, fg(a,) = b;, or b; € fy[c;, c;+1] and |(c;, ¢; 1] <.
Suppose that this claim is valid for all b, with d <J and s, be the stage witnessing
the truth of the claim for all d<j. That is for all such b,, either b, ¢
restrain(o(d)) = restrain(o(d), s) or fg (axa)) = b, henceforth. Let 6 < B be the
guess by which all such b, are resolved. We may assume b; € B;. Let fixed(d, s) =
{c1, ..., ¢} =fixed(6). Now for some i, b; € fs([c;, ¢;1,]). If it is the case that
|[¢:y €i+1]) <<, there is nothing to prove. So suppose otherwise. Let a,, be the
least element to enter [c;, ¢;,,] after stage s. Now let ¢ be the first 6- and p-stage
with p < B and p denoted by R,,,. We might as well suppose that § c p. Let ¢t; >¢
be the least p-stage where all of the restrain(z, ¢,) for 7<, p are now fixed, we
are never again left of p, and all fixed(z, ¢;) are final. Now if we define
fo.Aa,,) = b; then we are done since this map will be refined to all p-stages > ¢,.
The only reason we would not define f, (a,,)=5; would be because b, e
restrain(z, ¢;) for some 7<=, p. But then it follows that since restrain(z, ﬁ)—
restrain(z), for some 7 with ncp and t<_7, it will be the case that
b; e restrain(n). By construction this means that if restrain(n)=[z;, z,], then
[f7'(z1), f~'n(22)] is a successivity in A. This concludes the proof.
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