
ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE

THEORY

MATTHEW ASKES AND ROD DOWNEY

Abstract. Several papers (for example [7, 23, 42]) have recently sought to

give general frameworks for online structures and algorithms ([4]), and seeking
to connect, if only by analogy, online and computable structure theory. These

initiatives build on earlier work on online colouring and other combinatorial
algorithms by Bean [10], Kierstead, Trotter et. al. [48, 57, 54] and others, as

we discuss below. In this paper we will look at such frameworks, and illustrate

them with examples from the first author’s MSc Thesis ([58]). In this thesis,
Askes looks at online, adversarial online, and strongly online algorithms and

structures. Additionally, we prove some new theorems about online algorithms

on graphs of bounded pathwidth as well as some new results on punctually
1-decidable structures.

Contents

1. Introduction 1
1.1. Offline and online 1
1.2. Turing computable mathematics 3
1.3. Highly computable graphs 7
2. Online structures I 8
3. Online structures II 16
4. (Online) Adversarial Algorithmic 23
4.1. Adversarial 23
4.2. Online adversarial 24
5. Random advice 24
6. Strongly Online Algorithms and Functional Parameterizations 26
6.1. Colouring Strongly Online Graphs 29
6.2. Graphs of Bounded Pathwidth 33
6.3. Strongly Online Pathwidth 39
References 42

1. Introduction

1.1. Offline and online. In most of classical mathematics, we tend to think of
objects being presented as fully formed wholes. This is particularly true in com-
binatorics where we consider a graph (or a partial ordering, etc.) as offline. That

Both authors were partially supported by Marsden Fund of New Zealand. This paper was

written for the John Crossley Logic Colloquium, 2022. Crossley was Downey PhD adviser back in
the late 1970’s, and Downey has many fond memories of his time at Monash with the logic group
John established there.

1

2 MATTHEW ASKES AND ROD DOWNEY

is, given as a set of vertices with edges between them. In computability theory,
we think of objects as being formed with time, and the key ideas are dealing with
approximations to the truth. Proofs tend to be a kind a game played between the
us and the hostile universe, where the goal tends to be the discovery of a strategy.
Anyone who has worked in classical complexity theory knows that, for example,
polynomial time reductions are usually quite static. Indeed they are defined in
terms of the given input structure. In computability theory, constructions tend to
be wildly adaptive and highly recursive.

However one uniting area is that of online algorithms. The online version of
the famous NP-complete Bin Packing problem is the minimization of the number
of bins needed to pack objects being given as a stream o1, o2, . . . , and we put the
first n into bins before we are given on+1. (See Karp [44]). You are in an online
situation and this is the Online Bin Packing problem. The “first fit” method
is well-known to give a 2-approximation algorithm for this problem. That is, the
performance ratio is ≤ 2, where this is the fraction of the online cost (the number
of bins used for n objects) divided by the number of bins for an optimal solution

Conline(n)

Coffline(n)

We remark that this ratio is a standard measure of the efficacy of any online min-
imization algorithm (Sleator and Tarjan [66]). Alternatively imagine you are a
scheduler, and your goal is to schedule requests within a computer for memory
allocation amongst users. Again you are in an online situation, but here you might
want to change the order of allocation depending on priorities of the requests. Or
from algorithmic randomness, you have a (computable) KC-set of requests of the
form (2−ni , σi) with

∑∞
i=1 2−ni ≤ 1, and need to build a prefix-free Turing machine

M with strings τi such that |τi| = ni and M(τi) = σi. Then the proof from e.g.
Downey and Hirschfeldt [27] Theorem 3.6.1, is online in the sense that for each
request at step i we generate the string τi. Another example from algorithmic ran-
domness is a computable martingale m1 betting on bits of α ∈ 2ω, where it succeeds
if lim supnm(α � n) = ∞, and α is computably random if no computable martin-
gale succeeds. An online algorithm is one which acts on a input which is given
piece by piece in a serial fashion and with an unknown future. In the case where
the input is finite, Karp [45] suggested this as a sequence of “requests” r1, r2, . . .
with the algorithm f specifying an action f(r1), f(r1r2), In the corresponding
offline version (at least in the finite case), the whole input is known in advance.

As per Albers [4], we know that that there are many examples of such online
algorithms in computing: examples include insertion sort, perceptron, paging, job
shop scheduling, ski rental, navigation with only local understanding, etc.

On the other hand, there seems no general theory which we can use as a con-
ceptual basis for the theory of (finite and infinite) online algorithms, and online
structures. Books on online algorithms tend to be taxonomies. In the next subsec-
tions we will look at various recent general settings for such studies 2.

1Which the reader might recall is a computable function m : 2<ω → R+ ∪ {0} such that

m(σ) =
m(σ0)+m(σ1)

2
.

2The reader might wonder why we would need general models. Online algorithms are ev-

erywhere without such a model. We see the situation as being akin to the development of, for
example, asymptotic counting of computation steps as a measure of computational complexity by
Hartmanis and Stearns in 1965 [40] (amongst others). Before this, people ran algorithms and had

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 3

1.2. Turing computable mathematics. In this area, we study structures with
computable (or perhaps sub-computable) presentations. To wit, A = 〈A,Ri, fj , ck |
i ∈ D, j ∈ B, k ∈ C〉 where the Ri (i ∈ D) are a uniformly computable set of
relations, fj a uniformly computable set of functions and ck a uniformly computable
set of constants. For instance, a computable field 〈F,+, ·, 0, 1〉 has F a computable
set (typically identified with N), + and · computable functions so that, for example,
x · z = y would be a computable relation on the set of triple 〈x, y, z〉. The idea
of an algorithm is implicit in virtually all pre-19th century mathematics. It was
in the early 20th century that authors such as Borel, Dedekind, Herrmann and
others realized intuitively that processes might not be algorithmic. For example,
we have the following quote from one of the first papers in what might be called
modern computable mathematics. Frölich and Shepderdson [32] studied algorithmic
procedures in field theory, such as whether there is an algorithm to classify the
algebraic closure. This paper clearly shows the historical context of the subject, the
clear intuition of van der Waerden (which apparently came from Emmy Noether’s
lecture notes) and the fact that isomorphic computable structures (here fields) can
have distinct algorithmic properties, and hence cannot be computably isomorphic.
Here we quote from the abstract.

“Van der Waerden (1930a, pp. 128–131) has discussed the problem of carry-

ing out certain field theoretical procedures effectively, i.e. in a finite number of

steps. He defined an ‘explicitly given’ field as one whose elements are uniquely
represented by distinguishable symbols with which one can perform the opera-

tions of addition, multiplication, subtraction and division in a finite number of

steps. He pointed out that if a field K is explicitly given then any finite exten-
sion K′ of K can be explicitly given, and that if there is a splitting algorithm for

K i.e. an effective procedure for splitting polynomials with coefficients in K into

their irreducible factors in K[x], then (1) there is a splitting algorithm for K′.
He observed in (1930b), however, that there was no general splitting algorithm

applicable to all explicitly given fields K, [. . .] We sharpen van der Waerden’s

result on the non-existence of a general splitting algorithm by constructing (§7)
a particular explicitly given field which has no splitting algorithm. We show

(§7) that the result on the existence of a splitting algorithm for a finite exten-

sion field does not hold for inseparable extensions, i.e. we construct a particular
explicitly given field K and an explicitly given inseparable algebraic extension

K(x) such that K has a splitting algorithm but K(x) has not.”

In modern terms Frölich and Shepderdson [32] showed that the halting problem
is many-one reducible to the problem of having a splitting algorithm.

We remark that Turing’s first paper [69] was not concerned with countable struc-
tures as above but with computational processes on the reals (at least the field of
computable reals). Suppose that we are wishing to investigate computation on a
smooth space of analysis, such as the real numbers between 0 and 1. There is no
essential problem extending the definition of a computable structure to a contin-
uous one with a computable dense set. Following the modern “type 2” definition,
we think of elements of, for instance, a computable metric space as being repre-
sented by fast Cauchy sequences of rationals and computable functions as being
those which are uniformly computable operators Φα(n) = β(n), meaning that Φ
represents the computation of f with Φα(n) computing f(α) = β to precision 2−n.

an intuitive understanding of complexity, but the development of a framework allows for formal
analysis. Similar comments apply to, for example, the development of parameterized complexity

by the second author and Fellows [25, 24]. People already had been pre-processing in algorithmics,

but the explicit identification of a complexity theory based on the multivariable contribution of
the various aspects of the input (in place of simply the overall size) hastened the introduction of

standard tools for such algorithmics ([25, 63]). We have similar hopes for online algorithmics.

4 MATTHEW ASKES AND ROD DOWNEY

Notice that it is immediate that a function f being computable implies that it is
continuous. The converse is somewhat true, in that f is continuous means that
there is some X such that f is computable relative to X. That is because we only
need the information as to where balls or radius 2−m around rational points are
sent to, the countable information X given by balls around dense sets specifies f .

A nice arena of computable mathematics is computable combinatorics. We know
that all planar graphs are 4-colourable. What about computable planar graphs?
The following is more or less folklore and certainly implicit in Bean [10]. The
reference given is where it was—more or less—first explicitly stated (we will clarify
this comment later.).

Theorem 1.1 (Gyárfás and Lehel [38]). There is a computable forest which cannot
be finitely coloured by a computable algorithm.

Proof. (sketch) We break the forest into components Ce where we defeat the e-th
partial computable colouring ϕe. The k-th task for Ce is to make ϕe use at least k
colours, or, equivalently use the k-th colour. In this component, we first introduce
a vertex v1, wait for ϕe to colour it, and then introduce another v2, waiting for
ϕe to colour it also. Assuming he has played with only one colour, then these are
both the same, and we can add one vertex v3 joined to one of them v2. Again
after ϕe colours it he must choose at worst colour 2. Then if we join v4 to v1

and v3, the opponent must choose colour 3 for v4. Thus we have a way of making
sub-components which use at least 3 colours. Using enough of these components,
we can join up as trees to force him to use 4 colours etc. �

The reader might note that if we are given a computable tree (with the knowledge
it is a tree T) then it must be computably 2-colourable. This is because we can see
where each new vertex lies on the tree by waiting for the tree to become connected.
That is, at stage s we will have Ts and a new vertex x is added, we can run the
enumeration of T =

⋃
s Ts till there is a path from x to Ts.

Bean gave a similar argument to that of Theorem 1.1 to demonstrate the follow-
ing.

Theorem 1.2 (Bean [10]). There is a computable 3-colourable connected planar
graph which cannot be coloured computably with a finite number of colours.

To prove this, Bean had layers of planarity all joined to a single vertex, and
growing outwards. The component Ce to defeat ϕe forced one new colour per layer.
So the structural parameters of planarity and being a tree don’t seem to help with
computable colouring. However, sometimes structural parameters do help.

Definition 1.3. (1) A graph G is an interval graph if there is a mapping ι :
V (G)→ {(a, b) : a < b∧a, b ∈ [0, 1]} such that xy ∈ E(G) iff ι(x)∩ι(y) 6= ∅.

(2) Let c be the cutwidth −1 of this interval decomposition, that is, the max-
imum intersection of intervals (a, b) in the range of ι. Then the quantity
c − 1 is called the width if the decomposition, and the width of G is the
minimum width of the widths of all decompositions. It is not hard to see
that this width is the same as the size of the maximum clique minus 1.

The “−1” is to make sure that paths have width 1. But there are graphs of
width 1 which are not paths, such as “fuzzy balls”, that is a vertex v at the centre
of disjoint edges all incident with v. Indeed a connected G has pathwidth 1 iff G is
path consisting of such fuzzy balls (this is called a caterpillar graph).

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 5

If G is a subgraph of H with the same vertex set, and H is an interval graph,
then we say that H is an interval completion of G. The interval width of G can
be taken as the minimum interval width of an interval completion of G. Interval
width and pathwidth are the same concepts, where G has a path decomposition of
width k iff there is path P = {p1, . . . , pd} so that pipi+1 is an edge, and a function
h associating a set of vertices of G with each element of P , such that

(1) Every v ∈ V (G) is in some h(pi),
(2) If xy ∈ E(G) then there is some i with x, y ∈ h(pi), and
(3) If x ∈ pi and x ∈ pj for i < j, then x ∈ pq for all i ≤ q ≤ j. (Interpolation

property.)

The width is then the maximum size of |h(pi)| − 1 for 1 ≤ i ≤ n, and again the
pathwidth of G is the minimum over all path decompositions. Each set h(pi) is
usually referred to as a bag, Bpi = Bi. Note that, if G has pathwidth k then if
we take any path decomposition with bags B1, . . . , Bd, then form the graph G∗ by
making each of these bags a clique (specifically a k + 1-clique if the width is k),
then G∗ also has pathwidth k and is called a k-path, so that paths of pathwidth k
are partial k-paths.

It is routine to show that G has a path decomposition of with k iff it has an
interval decomposition of width k. Following standard practice, we will let Ix denote
ι(x) in an interval decomposition, and hence we will use these terms interchangeably.
If a graph has pathwidth k then it can be coloured with k+1 many colours simply by
taking the path decomposition and colouring vertices using the greedy algorithm.

Theorem 1.4. 3 If G is a computable graph of pathwidth k, then G can be com-
putably coloured by 3k + 1 many colours.

Proof. This is proven by induction on the width k, and for each k we recursively
construct an algorithm Ak. If k = 1 then G is a caterpillar graph and we can use
greedy minimization which will use at most 3 colours. So suppose k > 1, and let
Gn have vertices {v1, . . . , vn}. The computable algorithm Ak will have computed
a computable partition of G, which we denote by {Dy | y < k}. We refer to the Dy

as layers. Consider vn+1. If the pathwidth of Gn+1 = Gn ∪ {vn+1} is < k, colour
vn+1 by Ak−1, and put into one of the cells Dy, for y < k − 1 recursively. (In the
case of pathwidth 1, this will all go into D0.) We will be colouring using using the
set of colours {1, . . . , 3k − 2}.

If the pathwidth of Gn+1 is k, consider Hn+1, the induced subgraph of Gn+1

generated by Gn+1 \Dk. If the pathwidth of Hn+1 is < k, then again colour vn+1

by Ak−1, and put into one of the cells Dy, for y < k − 1, recursively, and colour
using the set of colours {1, . . . , 3k − 2}. If the pathwidth of Hn+1 is k, then we
put vn+1 into Dk−1. In this case, that is in Dk−1, we will use first fit using colours
3k − 2 < j ≤ 3k + 1.

The validity of this method follows from the fact that the maximum degree of
vertices restricted to Dk−1 is 2, and induction on k. Assume that Ak−1 is correct
and colours the subgraph of Gn induced by the layers {Dy | y < k−1} using colours
{1, . . . , 3k − 2}.

3After Kierstead and Trotter [54] and Downey and Fellows [25]. Strictly speaking, this result

was proven by Kierstead and Trotter only for interval graphs, and hence for k-paths. Downey
and Fellows state the result (incorrectly as 3k− 2 rather than 3k+ 1) for pathwidth, but it is not

altogether clear that the proof is correct. We show that we can modify one of Kierstead-Trotter

proofs so that it works for partial k-paths, i.e. pathwidth k graphs.

6 MATTHEW ASKES AND ROD DOWNEY

Note that the construction ensures that the pathwidth of this subgraph Hk is at
most k − 1. Moreover, induction on n ensures that Ak−1 would colour the vertices
of the subgraph of Gn induced by {Dy | y < k − 1} using colours {1, . . . , 3k − 2}
assuming the vertices of Gn in Dk−1 did not exist, the same as Ak colours them.
To see this, assuming that it is true up to step n, then if vn+1 is added to Dk−1

then there is nothing to prove, and if it is added to ∪j<k−1Dj , then this step will
invoke Ak−1 and since the colours of Dk−1 will exceed 3k − 2, they have no effect
on the colouring of the subgraph of Gn+1 induced by ∪j<k−1Dj ∪ {vn+1}.

Suppose that that vn+1’s addition to Gn has pathwidth k. Now consider a path
decomposition B1, . . . , Bq of Gn+1. Suppose, for a contradiction, that the degree of
v = vn+1 in Dk is ≥ 3. Thus there are x, y, and z in Dk which are each connected
to v. Without loss of generality, let’s suppose that that they were added at stages
sx < sy < sz ≤ n. Since each is in Dk, when we added them to Dk, we could not
have added them to Dy for y < k − 1. Since they were not added to such Dy it
follows that at the stages they were added, they made the pathwidth of the relevant
Hs (s ∈ {sx, sy, sz} to be k. Consider sx. As the pathwidth of Hsx was k, there
must be some bag in any path decomposition of Gsx , consisting of only members
of Gsx which has size k + 1, and containing x. For t > sx, this must still hold,
that is, x must be in, at stage t, a bag of size k + 1 consisting only of elements
of Gsx . For suppose this was not true at stage t. The pathwidth of Gt is k, and
has bags P1, . . . , Pv, say. Now delete all of the elements of Gt \Gsx from the bags
forming bags P ′1, . . . , P

′
v. This is a path decomposition of Gsx , and hence must have

pathwidth k, so there must be one of size k + 1 containing x, and it only consists
of elements of Gsx .

Consider sy. Since the pathwidth of Hsy is k, it follows that sy must be in
a bag of size k in the path decomposition of Hsy containing none of Dk−1. In
particular, in any path decomposition of Gsy , x and y must appear in bags Qx and
Qy, respectively, of size k with x 6∈ Qy and y 6∈ Qx,

Using the same reasoning, as above, this fact must hold also for each stage t > sy.
So we can conclude, using the same reasoning, that at stage n + 1, x, y, z, and v
are all in bags of size k, Bx, By, Bz, Bv, where x 6∈ By ∪Bz ∪Bv, and similarly for
y, z and v.

Now consider Bv. Since xv is an edge, x and v lie together in some bag Bxv. If
Bxv is left of Bv but Bxv is right of Bv we get a contradiction, since this would put
x into Bv, by the interpolation property of pathwidth. So Bxv and Bx both lie,
without loss of generality left of Bv. Similarly Byv and By must lie on the same
side, and this must be right. For if there were both left of Bv, then the interpolation
property would make either Bx or By contain y of x respectively (considering the
relevant orientations of Bx and By). But now we get a contradiction, since Bz
cannot be either right or left of Bv without one of the Bx, By, or Bz containing a
forbidden element. Thus, within Dk1 the degree of v is at most 2. �

We remark that the proof of the theorem above gives an algorithm which is linear
time (as k-Pathwidth is linear time FPT), but is inefficient as the constants for
the pathwidth algorithm (Bodlaender’s Algorithm for treewidth.) are of the order

of 235k3 which is pretty horrible. This algorithm is invoked at each step. We
don’t know the best complexity for the following (online) promise problem, which
is highlighted by such considerations.

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 7

Input: An online graph G, and a vertex v and a graph H with vertices V (G)∪ {v}
G a subgraph of H.
Promise: G has pathwidth k.
Parameter: An integer k.
Question: Does H have pathwidth k?

We remark that Kierstead and Trotter [54] proved that Theorem 1.4 is sharp,
in that for all k, there is a computable graph G of pathwidth k that cannot be 3k
coloured. For example, for pathwidth 1, we can force 3 colours, begin with an edge
uv causing colours 1 and 2, and a disjoint one u1, v1 causing 1 and 2. Add a new
vertex x joined to make a path with the vertices of each colour. Then x needs a
third colour. Now again take two disjoint edges using 2 colours again and add one
further vertex y joined to each of the vertices of the three colours. This still has
pathwidth 1 and needs a fourth colour. The general case follows by similar ideas,
and induction.

1.3. Highly computable graphs. The reader may note that the arguments we
have used to force the number of colours the computable colourer must use, mostly
rely on the fact that we don’t know the answer to Σ0

1 questions about the structure.
In particular, if we have a vertex v ∈ Gs we know the neighbours of v in Gs, but
not necessarily in G, as later there might appear y ∈ Gt for t > s with yv ∈ E(G).
For the remainder of this section we assume that graphs are locally finite.

Definition 1.5. We say that G is highly computable (historically “highly recur-
sive”) if there is a computable function f such that, for all v, f(v) computes the
degree of v in G.

There have been a number of results proven about computable combinatorics of
highly computable graphs. We will see some later in § 6 but as an easy example,
we give the following well-known result.

Theorem 1.6 (Bean [10]). If G is a highly computable graph with chromatic number
χ(G) then G can be computably coloured with 2χ(G) many colours.

Proof. Let G = limsGs be a k-colourable highly computable graph.
We define the colouring at odd and even stages. In the even stages we use colours

1, . . . , k and in the odd stages k + 1, . . . , 2k.
We colour G0 = ∅ with no colours.
For the even stage 2s + 2: Suppose we have coloured G2s+1 using 2k colours.

Let v be the next vertex presented. Since we can compute the degrees of vertices
in G, we can compute N [G2s+1 ∪ {v}], the whole induced subgraph of G2s+1 ∪ {v}
together with any edges joined to it. Let G2s+2 = N [G2s+1 ∪ {v}]. At stage 2s+ 2
we can see all of G2s+2. Let Ḡ2s+2 = G2s+2 \Gs. We assign every vertex in Ḡ2s+2

a colour from 1, . . . , k. This can be done using brute force as G is k-colourable and
Ḡ2s+2 is finite.

The odd stage is analogous, but we colour Ḡ2s+1 with colours from k+ 1, . . . , 2k
This gives a colouring of G as Ḡs is disconnected from Ḡs+2. �

We also have the following tight extension of Bean’s Theorem by Schmerl.

Theorem 1.7 (Schmerl [64]). If G is a highly computable, k-colourable graph, then
G is computably (2k − 1)-colourable.

We will look at this again in § 6.

8 MATTHEW ASKES AND ROD DOWNEY

2. Online structures I

One of the first attempts to give a general framework for online structures,
focused upon the intuition that online decisions in practice have lack of delay.
That is, we need to pack the object into some bin immediately, before the next one
is presented to us (as in the Bin Packing example). This led to a theory of online
structures and algorithms we generally referred to as punctual structure theory.

What is the most general reasonable form of “punctual”? In [7] Bazhenov et.
al. gave several pages of analysis as to why we chose to interpret punctuality as
primitive recursive. That is, we chose primitive recursive as a unifying abstraction
of the notion of lack of delay.

There are several related reasons for this choice. There had been some investiga-
tions into subcomputable structure theory. Khoussainov and Nerode [46] initiated
a systematic study into automatically presentable algebraic structures; but these
seem quite rare. In their approach we considered functions as relations, and for
example, “x + y = z” in an abelian group would be modeled by a three tape au-
tomaton which accepted with x, y, z on the relevant tapes. The additive group of the
rationals is not automatic [68]. Approaching lack of delay using finite automata
is highly sensitive to how we define what we mean by automatic. For example
treating a function as a relation yields quite a different kind of automatic presenta-
tion. See [31] for an alternate approach to automatic groups. Cenzer and Remmel,
Grigorieff, Alaev, and others [16, 37, 3, 1] studied polynomial time presentable
structures. We omit the formal definitions, but we note that they are sensitive to
how exactly we code the domain.

In the end, a nice unifying abstraction was introduced by Kalimullin, Melnikov
and Ng [43, 42], which they called fully primitive recursive, but has subsequently
been re-named as punctual.

Definition 2.1 (Kalimullin, Melnikov and Ng [42]). A countable structure is fully
primitive recursive or punctual if its domain is N and the operations and predicates
of the structure are (uniformly) primitive recursive. (For simplicity, we assume the
languages are finite.)

We stress that the domain of the structure is N, which codes the timestamps of
the enumeration of the structure. Various pathologies occur if arbitrary primitive
recursive subsets are allowed as domains as mentioned in [7]. There are several
arguments supporting the choice of primitive recursive as a unifying abstraction.
First, we have a nice version of the Church-Turing Thesis for these functions as
being those computable without while loops. They have nice closure properties, and
are relatively insensitive to coding. In [7], Bazhenov et. al. also noted that many
results stated in terms of primitive recursion, can likely be pushed to polynomial
time structures. Furthermore, some of our counterexamples can in fact be stated
in terms of any class with sufficiently nice closure properties; e.g. for a class of
total computable functions having a uniformly computable enumeration and closed
under composition and primitive recursion. However, this does not mean that our
choice of primitive recursive algorithms as a central model is arbitrary.

For example, from a logician’s point of view these structures are completely
natural: One of the fundamental results of computable structure theory is that:

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 9

A decidable theory has a decidable model.4

The proof of this elementary fact is to observe that the Henkin construction is
effective, in that if the theory is decidable then the constructed model is decidable
as a model. Many standard computable structures come from decidable theories.

Most natural decidable theories are elementary decidable in that the decision
procedures are relatively low level. We have to go out of our way to have natural
decidable theories whose decision procedures are not primitive recursive. In [7],
Bazhenov et. al. observed that a theory with a primitive recursive decision proce-
dure has a model which is decidable in a primitive recursive sense; meaning that it
has primitive recursive Skolem functions providing witnesses quickly (more on this
below when we look at primitive recursive 1-decidability and honesty).

We remark that it is easy to give intuition why punctual structure theory is not
a simple generalization of Turing computable structure theory. Consider colouring
a computable line. We are given this as a collection of vertices. We are given v0

and colour it 1. We are given v2 and should we colour it 1 or 2 if v0v1 is not an
edge. In the computable case, we can wait for v0 and v1 to be connected, since
we are dealing with a path and only then decide. In the punctual case, even with
primitive recursive delay of t(2) many steps, where t is the relevant punctual time
bound, it may be that v0 and v1 remain disconnected. Then whatever we choose
for v2 this colour might then force up the number of colours from 2 to 3.

Bazhenov et. al. [7] showed that the theory of punctual structures is surprisingly
rich. There is a fascinating interplay between computable and punctual structure
theory. For example, consider the following Theorem.

Theorem 2.2 (Kalimullin, Melnikov, and Ng [42]). The following structures all
have computable presentations iff they have fully primitive recursive ones.

(1) Linear orderings (Grigorieff [37])
(2) Boolean algebras
(3) Equivalence structures
(4) Torsion-free abelian groups
(5) Abelian p-groups
(6) Locally finite graphs

Proof. We sketch a couple of proofs as they will be useful in what follows. Let
〈E,≡E〉 be a computable equivalence relation. We build a primitive computable
〈F,≡F 〉 ∼= 〈E ≡E〉. One way to do this is to break it into several cases. Suppose
that there is an infinite equivalence class C1 in E. Then to build F , we will build a
primitive computable equivalence class D1 to which C1 will be mapped. That is, at
each stage, whilst we are waiting for new elements to be enumerated into E, along
with their equivalence classes, we can always put the next element into D1[s + 1]
and always be safe. Otherwise when a new element x arrives in Es we will wait
for a stage t > s when we know exactly which of the stage s equivalence classes
C1, . . . , Cp(s), of Es, x lies. If it lies in one of those Dj with a current image in
Ft, then add a new element to increase the cardinality of Dj [t + 1]. If not, then
begin a new equivalence class in Dt+1 corresponding to one which contains x in E.

4Recall that a complete, first-order theory in a computable language is decidable if the collec-

tion of all Gödel codes of its sentences forms a computable set. A model upon the domain N is
decidable if there is a Turing computable algorithm which, given a first-order formula with pa-

rameters from the domain of the structure, can decide whether the formula holds in the structure.

10 MATTHEW ASKES AND ROD DOWNEY

This “marking time and waiting to see what happens” is quite useful. It can also
be adapted to the situation where all equivalence classes of E are finite, because at
every stage we can begin a new equivalence class to mark time, and later include
it in the range of the intended isomorphism to F .

A similar strategy can be used for linear orderings (This is not Grigorieff’s strat-

egy.) Given a computable L we need to build primitive recursive L̂ ∼= L. Then we
can break into cases as follows. By Rosenstein [62], L has a computable suborder-
ing or order type ω∗, ω, ω + ω∗ or ω + η · ζ + ω∗, where η is the order type of the
rationals and ζ that of the integers. So suppose, for instance, L has a computable
subordering L1 of type ω. Then we can use this to mark time, building a subor-
dering of L̂ of this type, and then paying attention when other element are slotted
into L. The other cases are similar. �

All such proofs seem to rely on enumerating a “nice” subset of the structure.

Remark 2.3. The reader should note that the in the proofs above, not only do we
construct a punctual copy, but also the isomorphism from the computable copy to
the punctual one is a computable isomorphism.

Whilst many structures have punctual copies of computable models, some like
graphs and partial orders can have computable copies such that no punctual struc-
ture is isomorphic to any of the copies. For instance, we have the following:

Theorem 2.4 (Kalimullin, Melnikov, and Ng [42]). In each of the classes below,
there are examples of computably presentable structures without punctual presenta-
tions.

(1) Torsion abelian groups
(2) Undirected graphs
(3) Archimedean ordered abelian groups.

The proof of Theorem 2.4 has no common technique for the parts.

Proof. We offer a proof for (2). We can enumerate all primitive recursive graphs
Me for e ∈ ω. The graph G we build will consist of disjoint loops Li. To diagonalize
M0, and define our first loop, we have 0 in M0 and we run M0’s enumeration till
we find it giving us the fact that 0 is in a n0 loop for suitably chosen n0. If M0

has such a loop then we make L0 have size bigger than n0, and then promise that
all loops in G will have size bigger than n0, diagonalizing M0. If M0 does not
enumerate such a loop, then we can make a loop of size smaller than n0 to put in
G. At the next stage, we can attack again using a bigger n0[s+ 1] and if ever the
opponent gives us a loop, we can diagonalize since all of our loops will have size
smaller than n0[t] but if he returns, then all subsequent loops will be bigger. For
more than one requirement the action is similar depending on the guess as to the
outcome, and simply play a strategy “behind the n0[s] boundary, when it assumes
that it is tending to infinity.” �

You might ask if there is some reasonable description of the structures with
punctual presentations. If {Ae | e ∈ ω} lists partial computable algebraic struc-
tures, then we have the following saying that those with punctual presentations are
unclassifiable.

Theorem 2.5 (Bazhenov et. al. [8]). The index set {e : Ae has a punctual presentation}
is Σ1

1-complete.

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 11

The theorem actually works for “automatic” or “polynomial time” in place of
“punctual”, and involves direct coding of Turing machines in a novel way. There
is a very rich structure of the punctual degrees of punctual copies of a computable
isomorphism type, once we define the appropriate reducibility. One notable result
is that graphs are not universal structures for punctual structures, but there is are
universal structures built from one function symbol:

Theorem 2.6 (Downey et. al. [26]). The class of structures with only one binary
functional symbol is punctually universal

Finally there are strange examples of structures which are, for example, punctu-
ally categorical but not computably categorical. We refer the reader to [7] for more
on this topic.

Perhaps inspired by the notion of being highly computable, people have stud-
ied punctual structures with stronger online characteristics. To have a notion of
punctually decidable we need punctual Skolem functions, as knowing an existential
formula being true is not much help unless you have access to witnesses.

In particular a formula ∃xΦ(a, x) is punctually decidable in a structure A, if
there exists a primitive recursive g, and if a ∈ A, then if ∃xΦ(a, x) is true in A,
g(a) = b ∈ A and Φ(a, b), and if ¬∃xΦ(a, x) in A then g(a) = ⊥.

Then, following [9], we can say that A is punctually 1-decidable if it is punctually
decidable for all Σ0

1-formulae (and hence all Π0
1 formulae). Little is known about

this class. We mention a couple of results. We have seen above that every linear
ordering with a computable is computably isomorphic to one with a punctual copy.
This fails for 1-decidability. Note that a punctual linear ordering is punctually
1-decidable iff it has punctual successivities (e.g. Blinov [11]), an analog of the fact
that L is 1-decidable iff the adjacencies of L are computable.

Theorem 2.7. There is a computable 1-decidable linear ordering of order type Zω
not computably isomorphic to a punctually 1-decidable copy.

Proof. Let {〈ϕe, Le, Ae〉 | e ∈ ω} list all partial computable functions together with
all punctually 1-decidable linear orderings, where Ae(x, y) either punctually yields
T or gives z with x <Le

z <Le
y. (That is, or course, we are listing a primitive

recursive function enumerating Le and one generating Ae.)

We build L̂ as ω∗+O1 +O2 +. . . where the ordering Oe is devoted to the e-triple.
The sections Oe work independently. For Oe we begin with a pair [a, b] and start to
build an ω+ω∗ sequence, by making a < a1 < a2 < . . . asbs < bs−1 < · · · < b1 < b,
at stage s so that [as, bs] is the single stage s adjacency not yet declared as an

adjacency in L̂.
If this continue forever, clearly we will build ω+ω∗ with endpoints a and b. We

are waiting for ϕ(a) ↓, ϕ(b) ↓ [s]. Now if s occurs, before we move to stage s + 1,
we will now invoke Le and Ae sequentially on [ϕ(a), ϕ(b)] and then on elements
produced inside of this interval by Le and Ae, to see whether

∣∣[ϕ(a), ϕ(b)]Le

∣∣ >
2s + 3. If the answer is yes, then we add a single element ds between as and bs
and declare that [as, ds], [ds, bs] to be adjacencies. Note this diagonalizes the e-th
triple. In the case that

∣∣[ϕ(a), ϕ(b)]Le

∣∣ ≤ 2s+3, then we will simply decide to make
[a, b] an ω + ω∗ sequence, again diagonalizing e.

Note that if we choose the first option, then the outcome is that [a, b] is finite
and will be absorbed by the next pair. Since there are infinitely many pairs with
the second outcome, the final order type is of the desired form. �

12 MATTHEW ASKES AND ROD DOWNEY

The above can be extended to show that punctual 1-decidability and 1-decidability
talk about distinct classes of orderings.

Theorem 2.8. There is a 1-decidable linear ordering L̂ which is not isomorphic
to a punctually 1-decidable one.

Proof. This time we build L̂ to meet the requirements:

Re : L̂ 6∼= 〈Le, Ae〉
Here 〈Le, Ae〉 are as in Theorem 2.7. We will use an analog of the Jockusch-Soare
idea of separators. ([41])

The ordering we build will be of the form S1 +O1 + S2 +O2 + S3 + . . . , where
Si is of the form 2 + Q + 2i + 1 + Q + 2. In the orderings Oi we will never have
a complete block with odd number of adjacencies, so the separators in some Le, if
present, are completely determined by a 6-tuple, x1, . . . , x6, with x1, x2 and x5, x6

adjacencies, x3, x4 the block of 2i+ 1 elements. In any Le, Ae, note that x1, . . . , x6

being a separator is a Σ0
2 event, as the successivities are primitive recursive. At

and stage we can believe that at most one 12-tuple codes a pair of consecutive
separators, we can stick to believing it unless it proves wrong at some stage; and
if this ever proves wrong then that tuple never again looks correct. We can have a
list of possible 12-tuples coding separators corresponding to Se and Se+1 in Le, Ae.

For the sake of Re we work in Oe. In L̂ our copy of the separator e and e+1, will
be given as (a1, . . . , a6), (b1, . . . , b6), and Oe is built between a6 and b1. At every
stage we will densify the regions [a2, a3], [a4, a5], [b2, b3], [b4, b5].

The strategy is as follows. Initially, we will begin to build an ω-sequence
a6, c1, c2, c3, . . . c2nb1, above a6, and making b1 a left limit point if nothing else
happens. At every stage, we have declared every [ci, ci+1] and adjacency, as is
[a6, c1], with the last pair [c2n, b1] declared a non-adjacency. Initially, we will have
kse = b1.

We letRe require attention at stage n, if 〈Le, Ae〉 has a 12-tuple (x1, . . . , x6)(y1, . . . , y6)
which appears to be correspond to the separators Se, Se+1. Now at such a stage,
before we move to stage n + 1, we will run the enumeration of Le, Ae a primitive
recursive number of steps and examine the ordering [x6, y1] in Le. There are several
cases.

(1) There are ≤ 2n + 4 many points in [x6, y1) in Le (and hence all are adja-
cencies).

Action. In this case we simply continue to add two new points c2n+1, c2n+2

to the end of the sequence, declaring [c2n, c2n+1] and [c2n+1, c2n+2] as ad-
jacencies and [c2n+2, b1] a non-adjacency, as usual. Note that after we add
two new points in the next stage, Re will be met if, indeed, the 12-tuple
(x1, . . . , x6)(y1, . . . , y6) is correct. Continue to keep kn+1

e = kne = b1.
(2) There are more than 2n + 4 many points x6, p1, . . . , pq in [x6, y1) in Le In

this case, let de,n be the point of Le[n] immediately left of y1. Note that
de,n ≥ p2n+4 in Le.
Subcase 1. The points in Le p1, . . . , p2n+4 form consist of adjacencies
[x6, p1], [p1, p2], . . . [p2n+3, p2n+4].

Action. Define hse = c2n+2 and in L̂ we will now begin to build an ω∗

sequence with right limit point hse.
Note that if Le has correctly identified (x1, . . . , x6)(y1, . . . , y6), then we

will build between a6 and b1 and ordering of type (2n + 2) + ω∗ whereas

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 13

whatever Le tries to build, he has told us that there are at least 2n + 4
adjacencies immediately right of x6. So we diagonalize Le, Ae.
Subcase 2. He has not yet given us at least 2n+ 4 adjacencies immediately
left of x6. Let dne = pq, the point of Le immediately left of y1 at this stage
n. Note that there are more that 2n+ 4 points left of de,n and above x6.

Action. In this case we will move to the next stage and continue to
monitor the situation, each time continuing to build our ω-sequence with
limit kse = b1. The key observation is that, at each stage n′ > n if he ever
includes de,n into an initial segment of adjacencies we can diagonalize via
Subcase 1. That is, for example, at stage n + 1 we will have constructed
c1, . . . , c2n+2 as adjacencies. We will then look at Le, Ae and see if de,s is
included in an initial segment of adjacencies from x1. If it is, then since
this must have at least 2n+ 4 elements we can switch back to building an
ω∗ sequence, setting c2n+2 = hse. Moreover, at this stage, we will also be
similarly be able to diagonalize of there is an initial segment of adjacencies
of size at least 2n+ 4, so, inductively, we can conclude that
• dne will never be part of an initial segment of adjacencies from x6.
• We build a sequence of type ω with limit point b1.

That means that we diagonalize 〈Le, Ae〉, because he has some element
dne < y1 with infinitely many elements left of it in the interval [x6, y1], and
we don’t.

The conclusion is that after this attack, either we will will be building a sequence
of type hne + ω∗ or one of type ω + 1.

Suppose that later we see that our 12-tuple is wrong. By induction we can
assume that we are building a sequence of type hne + ω∗ or one of type ω + kne .
Once the 12-tuple is wrong, within the interval we would go back to building a
sequence of type ω+kne . Now when a new 12-tuple (x′1, . . . , x

′
6)(y′1, . . . , y

′
6) appears

correct, there will be analogous cardinality questions. In general we’ll be at some
stage where we will have constructed a6, c1, . . . , c2s immediately right of a block of
size kse = kne , with [c2s, k

s
e] declared a non-adjacency. We need to do nothing until

a stage is reached where the last kse many elements form a block in Le. Assume
that this already the case. We would examine 〈Le, Ae〉 to see if there are more
than 2s+ 4 + kse many elements in this interval in Le between the separators. Note
that if not we win but continuing as we have done. If there are, then either we
can identify an element dse which will be left of the final kse-block and has infinitely
many elements left of it in [x′6, y

′
1] and our corresponding order type is ω+kse, or at

some stage he gives us too many adjacencies right of x′6, and we then diagonalize
via an order type hte + ω∗.

If he switches 12-tuples infinitely often he loses. Thus we have shown that
Se +Oe + Se+1 diagonalizes 〈Le, Ae〉. �

Many results about linear orderings have analogs for boolean algebras, often
because of the following representation theorem.

Theorem 2.9 (The Representation Theorem, folklore after Stone). Every count-
able boolean algebra is isomorphic to an interval algebra Intalg(L) of a linear or-
dering of the same degree. (Recall that Intalg(L) is the algebra generated by the
finite unions of left closed right open intervals of the ordering L.)

14 MATTHEW ASKES AND ROD DOWNEY

This first result is proven by effectivizing Stone’s proof. Of course, this also
shows that every computable boolean algebra is a computable subalgebra of Q,
here denoting the free boolean algebra (this will be clear from context). Theorem
2.8 is, however, not true for boolean algebras. We need the following well-known
result.

Theorem 2.10 (Remmel-Vaught [61]). 5

Suppose that B is any boolean subalgebra of Q with infinitely many atoms {di :

i ∈ N}. Let B̂ be the subalgebra of Q obtained from B by splitting each atom of B

a finite number of times in Q (together with B). (Thus the atoms of B̂ would be

{ei1 , ..., ein(i)
: i ∈ N where di = ei1 ∨ ... ∨ ein(i)

}.) Then B̂ is isomorphic to B.

For proof of these two results, we refer the reader to, for example, Downey [22].
Note that, again, B is punctually 1-decidable iff the atom relation is punctually
decidable with a function f which says that either T (if a is an atom) and, if a is
not an atom, then f(a) produces a splitting of a. Of course, atoms correspond to
adjacencies in the interval representation of B. The following would be known to
anyone who thought about it, and was first noted by Alaev, as part of a proof of
more complex result (Theorem 2.14) with a different proof.

Theorem 2.11 (Alaev [2]). If B is a 1-decidable boolean algebra, then B is iso-
morphic to a punctually 1-decidable boolean algebra.

Proof. We start by being given B, a 1-decidable boolean subalgebra of Q and, since
it is trivial otherwise, we assume B has in finitely many atoms, with a suitable
algorithm A where A(x) declares whether a ∈ B is an atom. Thus at each stage s,
we will have enumerated Bs, and are waiting for t > s where, for a ∈ Bs, A(a) to
declare whether a is an atom of B. This must happen by some stage t = t(a) > s,
and moreover if a is not an atom, then we can also wait for a1 ∨ a2 = a to occur
in Bt, before allowing A(a) ↓ [t]. To construct B̂ we will follow Bs but continue to
split a ∈ Atom(Bs), initially as a = e1 ∨ e2, and for stages v > s until A(a) ↓ [t],
continue to split the splittings of a. If A(a) says that ”s is an atom of B”, then we

will have, in B̂, enumerated d1 ∨ d2 ∨ · · · ∨ dq = a. At this stage we declare in B̂
that d1, . . . , dq are atoms. If A(a) says that a = a1 ∨ a2, then we identify a1 with
e1 and a2 with e2, and continue now with these each taking the same role as a.

The result now follows by Theorem 2.10. �

By a result of Tarski, the theory of boolean algebras admits effective elimination
of quantifiers down to the atom relation. Thus, if B is 1-decidable, then in fact
B is a decidable boolean algebra (e.g. Goncharov [35]). Since Tarski’s decision
procedure ([67]) is primitive recursive (see e.g. Doner and Hodges [21]) we get the
following. corollary.

Corollary 2.12. Every decidable boolean algebra is isomorphic to a punctually
decidable one.

There are a couple of further results about punctually 1-decidable linear order-
ings and boolean algebras.

5In his Thesis, Vaught proved this result for atomic boolean algebras and Remmel extended
the result to all countable boolean algebras

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 15

Theorem 2.13 (Blinov [11]). In the class of primitively recursive 1-decidable linear
orderings, the ones which are primitively recursively categorical are exactly those
with a finite number of adjacencies.

We omit the proof of Blinov’s Theorem. His result occurred after the analogous
result for boolean algebras.

Theorem 2.14 (Alaev [2]). (1) A boolean algebra B has a punctually 1-decidable
presentation iff it has a computable presentation with a computable set of
atoms.

(2) A punctually 1-decidable boolean algebra is punctually categorical in the
class of punctually 1-decidable boolean algebras iff it has a finite set of
atoms.

Proof. We give a new proof, using a technique along the lines of Theorem 2.11. For
the hard direction, we are given a boolean algebra B which is 1-decidable and has
infinitely many atoms, and we will suppose that A is a primitive recursive algorithm
which either splits a ∈ A or asserts a is an atom. We must build C ∼= B with C
not primitive recursively isomorphic to B. The strategies work independently. Let
{φe | e ∈ N} list the primitive recursive functions. We work by diagonalization.
for φ0 we will enumerate B until A says some a ∈ Bs is an atom. Whilst we are
doing this, we will have Cs copying Bs. Now the only problem is that φe might be
slower than the enumeration of B and the algorithm A. Thus what we will now do
continue to split everything in Ct for t > s until φ0(a) ↓ (so that it is a member of
Ct) and split everything in Ct for one more step, t+ 1, and declare that this is t0,
the diagonalization stage for φ0. φ0 is diagonalized as φ0(a) is a member of Ct and
everything in Ct is not an atom. At stage t + 1, we will declare any heir of a (i.e.
splits of this in Ct+1) now to be atoms of C, and furthermore for any d which has
occurred in Ct+1 −Cs, which also has been split, and which A says is an an atom,
we will declare the heirs of such d in Ct+1 as atoms. We now move on to φ1.

For φ1 the method is similar but slightly more combinatorial. Now we ask for
t0 + 1 many atoms of Cs − Ct0 , say a1, . . . , at0+1 where in Cv as these new atoms
appear in Av, we will continue to split all of the elements of Cu where are not atoms
of Ct0 for u ≥ v until φa(ai) ↓ [q] for all 1 ≤ i ≤ t0 + 1. This time we will split
one further time, and again know we have diagonalized, as there are are more than
t0 + 1 many atoms of Aq and at least one must me mapped to a non-atom of Cq+1.
Then we let t1 = q + 1 and move on to the next requirement in the same manner.

The result then follows by Theorem 2.10. �

Whilst it is possible to define punctual 1-decidability for more general structures,
there is as yet little further work.

Another approach to defining analogs of being strongly computable was defined
by Bazhenov, Kalimullin, Melnikov and Ng [9] for finite functional languages. Let
A be a punctual structure in a finite functional language. We say that A is honestly
generated if there is a primitive recursive procedure which, for every term t and
each element a ∈ A,

(1) decides whether ∃x (t(x = a), and
(2) if the answer is “yes”, it gives such an x.

One of the result from [9] shows that being honestly generated still does not
characterize the primitive recursive presentations.

16 MATTHEW ASKES AND ROD DOWNEY

Theorem 2.15 (Bazhenov et. al. [9]). There is a finitely generated structure A with
infinitely many non-punctually isomorphic punctual presentations and for which A
has a unique (up to punctual isomorphism) honestly generated punctual presenta-
tion.

3. Online structures II

In [23], Downey, Melnikov and Ng observed that the punctual model did not
capture all of the intuition of online combinatorics. Consider online colouring a
graph. In the simplest case, we would be given the graph G = limsGs, where Gs
has s vertices. When the vertex s is introduced, we are also given at the same
time precisely which vertices amongst {1, . . . , s − 1} has an edge with s (and this
cannot change later). (This is the “request set” in Karp’s paper.) Our task is to
colour s so that no two vertices which are connected have the same colour, before
the opponent presents us with Gs+1.

Although in practice the task will be finite, since we have no idea how large the
graph is, we can construe this as an infinite process. Imagine this online colouring
of a finite graph as an infinite process where we need to colour the whole of an
infinite graph G given to us as incremental induced subgraphs. We can think of
each possible version of G as being a path through an infinite tree of possibilities.
Each node σ of length s of the tree will represent some graph. Each node σ of
length s of the tree will represent some graph Gσ with s vertices, and if σ ≺ σ′

then Gσ is the subgraph of Gσ′ induced by vertices {1, . . . , s}. Note that there are
only primitively recursively many non-isomorphic graphs with s vertices6. Then
this view of an online algorithm differs from that given in [7] for the following core
reason:

Although G can be viewed a path on an infinite primitive recur-
sive tree of possibilities, there is no a priori reason that we should
only consider a primitive recursive graph G. There are continuum
many such paths and the online graph colouring problem can be
considered for an infinite countable graph of any complexity.

Thus the area becomes one where we are looking at punctual computable op-
erators acting uniformly (and continuously) on trees of possibilities. A filtration
(terminology of [23]) or online presentation is a path through the tree of possibili-
ties given stage by stage. The area becomes a subarea of computable analysis, and
is a “type II” theory7.

The reader will note that an online presentation of a structure Gα is limσ≺αGσ
where |σ| = s will be quite sensitive to coding. For example, any computable model
could be slowed down, so what is achieved? However, any natural online structure
arising in practice has a natural online presentation, and we see this as a feature
rather than a deficiency.

6Meaning that this number is u(s), where u is primitive recursive.
7Here “type II” refers to the fact that we are concerned with computable functionals, this

terminology going back to work of Kleene in the 1950’s. The connection between finite combi-
natorics and analysis is well-known especially in number theory, and a modern formal example
is Avigad [6]. The stress here is on the uniformity of the finite combinatorics. For example, we

know that for planar graphs given offline, we can 4-colour them in polynomial time. However, if
we are given a huge planar graph where we cannot know the graph as a whole, we are essentially
in an online situation and we know the situation becomes algorithmically hopeless

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 17

For the present, we consider only relational structures with a finite signature.

Definition 3.1. A online problem is a triple (I, S, s), where I is the space of inputs
(i.e. the filtration) viewed as finite strings in a finite or infinite computable alphabet,
S is the space of outputs viewed as finite strings in (perhaps, some other) alphabet,
and s : I ⇒ S<ω is a (multi-)function which maps each σ ∈ I to the set s(σ) of
admissible solutions of σ in S.

For instance, for a colouring problem I will be codes for finite graphs and S for
finite coloured graphs. Then s(σ) will correspond to the collection of all admissible
colourings, e.g. such that adjacent vertices are distinctly coloured. These colourings
will form the space of admissible solutions.

Definition 3.2. A punctual solution to (a representation of) an online problem
(I, S, s) is a computable function f : I → S with the properties:

(O1) f(σ) ∈ s(σ) for every σ ∈ I;
(O2) If σ ≺ τ then f(σ) � f(τ);
(O3) f is primitive recursive. (Moreover f(σ) halts before any f(σ′) for σ ≺ σ′).

One natural example of an online problem in this general sense is the construction
of computable martingales betting on α ∈ 2ω. m bets on σ0 and σ1 using the
capital m(σ). The set of “solutions” are the possible values for m(σ), which can be
calculated in advance.

The reader should note that several of the theorems we have already met do
translate into the “operator online” setting. This is particularly true of results
parameterized by some structural metric. Without giving as general definition,
Downey and McCartin [28, 30] introduced online parameterized complexity analysis
especially in the context of parameterized approximation for graphs, and partial
orderings. (See Downey and Fellows [25, Chapter 31.4].) For example, the proof of
Theorem 1.4 also shows.

Theorem 3.3. 8 Every online graph G of pathwidth k can be online coloured with
at most 3k + 1 many colours.

There has been a lot of work on colouring interval graphs online. One line of
attack is an analysis of the dumbest method of colouring possible: First Fit. The
first work here was by Witsenhausen [70], and independently Gyárfás and Lehel [39],
where they obtain upper bounds of the form c(ε)(k+ 1)1+ε, for an interval graph of
width k. Gyárfás and Lehel [39] also proved an upper bound of c(k+ 1) log(k+ 1).
The first result showing the linearity of First Fit was Kierstead’s 1988 proof [47]
that first fit will colour interval graphs of width k in at most 40(k+1) many colours.
In 1995, Kierstead and Qin [49] improved this approximation ratio to 26. Finally,
in 2008, Naranaswamy and Babu [59] gave an approximation ratio of 8. We remark

that in 1988, Chrobak and Ślusarak [18] gave a lower bound of 4.4. And in 2016
Kierstead, Smith, and Trotter [50] showed that the performance ratio of first fit on
interval graphs is at least 5. The precise best bound is not yet known. It is natural
to ask whether, like Kierstead and Trotter’s results on interval graphs, results of
this ilk can be extended to graphs of bounded pathwidth. It is not clear however
that any of the interval graph results transfer to graphs of bounded pathwidth.

8Again, this was proven for interval graphs by Keirstead and Trotter [54].

18 MATTHEW ASKES AND ROD DOWNEY

This is because the proofs of the upper bounds use properties exclusive to interval
graphs (and k-paths).

All proofs of upper bounds for first fit use a similar analysis. Since we know the
algorithm, namely first fit, what is done is to examine the effect that this algorithm
will have on an interval representation of the structure. This method can be adapted
to graphs of bounded pathwidth, as we now see, although we dont yet know how
to get a linear upper bound. To explain this method we begin with a simple upper
bound for graphs of bounded pathwidth. We first show that First Fit’s competitive
ratio for graphs of bounded pathwidth k is at most (k+ 1)2. The proof is based off
a rather crude analysis, and after this we show that a more careful analysis gives
a better bound. However this proof serves to show that the competitive ratio is
bounded for any fixed k.

Theorem 3.4. First-Fit requires at most (k+1)2 colours to colour an online graph
with pathwidth k.

Proof. Let G be a graph with pathwidth k. Suppose that G has been coloured using
First-Fit. Let c be the largest colour used by First-Fit, and v a vertex coloured c.
Fix P = {P1, P2, . . . } a path decomposition of G. For a vertex w let the thread of
w be Qw = {Pi ∈ P : w ∈ Pi}, the set of all bags from P containing w.

In stages we will construct a sequence of vertices w1, . . . , wk+1 such that all the
bags in Qwi+1 are contained in Qwi . Denote by f(n) the colour assigned to wn.

Stage 1: Let w1 = v. Hence f(1) = c.
Stage 2: The vertex w1 = v has colour c and thus is connected to c− 1 vertices

U = {u1, . . . , uc−1} where each ui is coloured i. Let a (and b) be the smallest (and
largest) such that the bag Pa (and Pb) contains v. That is, Pa and Pb are the end
points of the thread Qv. The bags Pa and Pb both contain v and have size at most
k+ 1. Thus Pa and Pb contain at most k vertices from U . Hence there are at least
c− 1− 2k many ui’s not in Pa and Pb. These vertices must be in bags between Pa
and Pb. Because these ui’s are not in Pa or Pb they cannot be in any bags outside
Pa and Pb. Let w2 be one of these middle vertices with colour at least c− 1− 2k.

In summary, if the bags Pa and Pb are ‘full’, then the remaining ui vertices are
trapped between Pa and Pb. We can then pick one with a sufficiently large colour.

Pa Pb
w1

w2

w3

Figure 1. A Diagram showing the threads (horizontal lines) for
w1, w2, w3 along with the bags Pa and Pb for stage 3

Stage n+1: As wn is coloured f(n), the vertex wn must be connected to vertices
U = {u1, . . . , uf(n)−1} where each ui has been coloured i. Let a (and b) be the
smallest (and largest) such that the bag Pa (and Pb) contains wn. By construction
the bags Pa and Pb contain the vertices w1, . . . , wn and have size at most k + 1.
Thus Pa and Pb each contain at most k + 1 − n vertices from U . The remaining
f(n)− 1− 2(k−n+ 1) many ui’s not in Pa and Pb are in bags between Pa and Pb.

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 19

That is |U \ (Pa ∪ Pb)| ≥ f(n)− 1− 2(k − n+ 1). Further these ui’s cannot be in
any bags outside Pa and Pb as they are not in Pa or Pb. Let wn+1 be one of these
vertices from U \ (Pa ∪ Pb) with colour f(n+ 1) ≥ f(n)− 1− 2(k + 1− n).

This ends the construction. We have f(1) = c and f(n+1) ≥ f(n)−1−2(k−n+
2). The solution to this recurrence relation is f(n) = −2k(n− 1) +n(n− 4) + c+ 3.

The vertex wk+1 has thread Qwk+1
. But every bag in Qwk+1

contains the vertices
w1, . . . , wk+1. Thus wk+1 cannot be adjacent to any colour ≤ f(k) and must have
colour 1. That is f(k + 1) = 1. Hence we have 1 = f(k + 1) ≥ −k2 − 2k + c.
Therefore c ≤ k2 + 2k + 1, as desired. �

Note also that the proof will also transfer back to computable graph theory:

Corollary 3.5. First-Fit requires at most (k + 1)2 colours to colour a computable
graph with pathwidth k.

Our better bound is based on a method due to W. Just in [39], which we modify
from interval graphs to graphs of bounded pathwidth. We will let χFF(G) denote
the first fit colouring number of G.

Again, for G a graph let PG be a particular path decomposition of G with
minimum width. For a vertex v in V (G) let Qv be the thread of v in PG.

For P ∈ PG and v ∈ V (G) we define the following.

• ρ(P,PG) = |{v : v ∈ G,P ∈ Qv}|, The number of vertices that contain P
in their thread. Or, the size of P .

• ρ(v,PG) = minP∈Qv
ρ(P,PG), The smallest bag in v’s thread.

• ρ(PG) = maxv∈V (G) ρ(v,PG), The largest smallest bag in every thread.
• f(k) = max{χFF(G) : pw(G) = k − 1}
• g(k) = max{χFF(G) : ρ(PG) = k}

Note that we have, pw(G) + 1 = maxP∈PG
ρ(P,PG). We also have pw(G) + 1 ≥

ρ(PG) and so g(k) ≥ f(k) follows from the definition.
We will treat a colouring of a graph G by First Fit using m colours as a partition

V (G) = I = I1 ∪ I2 ∪ · · · ∪ Im. Each Ii is an independent set and for all v ∈ Ii
and j < i there is a vertex u ∈ Ij such that u and v are adjacent. We may write
PIi as shorthand for the path decomposition that is a subset PG and contains only
the vertices in Ii.

Lemma 3.6. For every graph G, we have ρ(PG) ≥ d(pw(G) + 1)/2e

Proof. Let k = pw(G). Fix some P = {v1, . . . , vk+1} a bag in PG of size k+ 1. Let
A be the first bk/2c vertices chosen by increasing left endpoint of their threads. Let
B be the first bk/2c vertices chosen by increasing right endpoint of their threads.

The size of |A∪B| is at most 2bk/2c. The remaining vertices in P \ (A∪B) have
threads contained entirely within the threads of the vertices in A ∪ B. Thus for
each u ∈ P \ (A∪B) the thread Qv is contained in bk/2c other threads. Therefore
ρ(Pg) ≥ ρ(u,PP) ≥ bk/2c+ 1 = d(k + 1)/2e. �

Theorem 3.7.

g(2k) ≤ 2g(k) + 6k − 2

Proof. Assume for a contradiction that g(2k) ≥ 2g(k) + 6k − 1 = n. Then there
exists a graph G with ρ(PG) = 2k such that First Fit partitions G into the sets
I1, . . . , In.

20 MATTHEW ASKES AND ROD DOWNEY

Consider the set I ′ =
⋃n
i=m Ii where m = g(k) + 6k − 1. We can see that I ′ is

partitioned into n−m+ 1 = (2g(k) + 6k− 1)− (g(k) + 6k− 1) + 1 = g(k) + 1 parts
by First Fit. Therefore by the definition of g(k) there exists some vertex v ∈ I ′
such that ρ(v,PI′) ≥ k + 1.

Define A as the set of all elements j from {1, . . . ,m − 1} such that Ij contains
a vertex u such that u is in an end bag of Qv. Let B = {1, . . . ,m − 1} \ A. For
all j ∈ B let I∗j be a subset of Ij such that all vertices u ∈ I∗j have Qu ⊂ Qv.
As v is connected to a vertex from each Ij where j ≤ m− 1 the vertex v must be
connected to a vertex wl in each Il where l ∈ B. Further wl is not in the end bags
of Qv and so must have Qwl

⊂ Qv. Thus each I∗j is non-empty.
Let I∗ =

⋃
j∈B I∗j . First fit partitioned I∗ into |B| parts. The maximum bag

size is 2k and the threads of all the vertices in I∗ are subsets of Qv. Recall that
ρ(v,PI′) ≥ k+ 1. Hence ρ(I∗) ≤ 2k− ρ(v,PI′) ≤ k− 1. Thus we have |B| < g(k).
Therefore |A| = m− 1− |B| ≥ 6k − 1.

This shows that at least 3k vertices from I \ I ′ are in one end bag of Qv. We
also that ρ(v,PI′) ≥ k + 1, and hence every bag in Qv contains k + 1 vertices
from I ′. Thus one end bags of Qv contains 4k + 1 vertices. Finally by lemma 3.6
ρ(PG) ≥ 2k + 1. This contradicts the fact that ρ(PG) = 2k. �

Theorem 3.8. If G is an online or a computable graph with pathwidth K, χFF(G) ≤
3(k + 1) log2(k + 1) + 2− (k + 1).

We make the following conjecture9.

Conjecture 3.9. First Fit will colour graphs of bounded pathwidth with a linear
approximation ratio.

One question is whether we can obtain better bounds for computable graphs
than we can for online ones.

We remark that there is a dislocation between the punctual structure theory
and the type 2 online theory we have described above. One good example concerns
online categoricity. A punctual structure A is punctually categorical iff all punctual
copies A1, A2 are punctually isomorphic (meaning there is a punctual isomorphism
f : A1 → A2, with a punctual inverse). The analogous definition for the general
model of online structures is the following.

Definition 3.10. A structure G is strictly online categorical if there is an online
strict operator f which, on input α and β arbitrary representations of G outputs
an isomorphism from α onto β.

By strict, we mean that there exists a primitive recursive functional fα;β with
both uses being the identity function, such that the associated function h(i) =
fα�i;β�i (whose output is interpreted as a natural number) induces an isomorphism
from α onto β; recall the latter two are isomorphic copies of G upon the domain N.

Recall that a structure G is homogeneous if for any tuple x̄ in G and any pair
of elements y, z ∈ G, we have that y is automorphic to z over x̄.

9Whilst the paper was in proof we became aware of the paper “An improved Bound for First-

Fit on Posets without Two Long Incomparable Chains” by Vida Dujmovic, Gwenael Joret and

David Wood (SIAM J. Discrete Math, Vol. 26 (2012), 1068-1075), who have shown that first-fit
will colour graphs of pathwidth k with at most 8(k + 1) many colours. The technique for the

analysis is a static analysis of chain decompositions of posets.

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 21

Theorem 3.11 (Downey, Melnikov, Ng [23]). A structure in a finite relational
language is strictly online categorical if, and only if, it is homogeneous.

Proof. Each homogeneous structure is trivially strictly online categorical. Now
suppose G is strictly online categorical. Suppose the structure is not homogeneous,
and let x̄ be shortest (of length n) such that for some z, y we have that z is not
in the same automorphism orbit as y over x̄. Construct α and β as follows. First,
copy x̄ into both and calculate the online isomorphism f from α � n to β � n. If
we identify α � n and β � n with x̄, then f induces a permutation of β � n; by the
choice of n any permutation of x̄ can be extended to an automorphism of the whole
structure. Adjoin z to α and find a y′ which plays the role of y over β � n under
any automorphism extending the permutation β � n↔ f(α � n). Then necessarily
f(z) = f(y′), because f has already shown its computation on the first n bits.
However, by the choice of z and y′, f cannot be extended to an isomorphism no
matter how we extend the presentations further. �

Note that we used only totality of the strict functional in the proof. In the case
when the language has functional symbols the theorem no longer holds. Of course,
the notion of strictly online and of a presentation will have to be adjusted. But
regardless, strong homogeneity will no longer capture the property (whatever it
may be exactly). The following example is from [23].

Example 3.12. Consider the structure in the language of only one unary func-
tional symbol s, and which consists entirely of disjoint 2-cycles. Here a 2-cycle
is of course a component of the form {x, s(x)} where s(s(x)) = x and x 6= s(x).
According to any reasonable definition of (strong) online categoricity for functional
structures, this structure has to be (strongly) online categorical. However, it is not
homogeneous.

Problem 3.13 (Downey, Melnikov, and Ng [23]). Is it possible to find a reason-
able algebraic description of (strongly) online categorical algebraic structures in an
arbitrary finite language?

This subject is awaiting development. One of the things which is lacking is a
model theory. Finite structures have a well-developed finite model theory (See, for
example, Libkin [56] or Grädel et. al. [36]). Two of the ideas are to use finite struc-
tures to capture complexity, and another is to obtain results about the algorithmics
based purely on logical description. A quintessential result here is Courcelle’s The-
orem which concerns graphs of bounded treewidth. The concept of treewidth is
the same as pathwidth except that in the place of a path with bags at the vertices,
we have a tree. This is a measure of how “treelike” a graph is. In offline graph
theory, being treelike seems to make computational questions more tame. Recall
that the monadic second order MS2 is a fragment of second order logic for graphs
logic of graphs is a two sorted logic with vertex and edge variables, (represented by
lower case variables) and variables for sets of vertices and edges (upper case), along
with relations of the form v ∈ e, and allowing quantification over vertex and edge
variables, and quantification over sets of variables also. For example, to say that G
is 3-colourable we could write this as “there are three sets of vertices, disjoint, all
vertices lie in exactly one, and if xy is an edge then both x and y are not in the
same set of the partition.”

22 MATTHEW ASKES AND ROD DOWNEY

Theorem 3.14 (Courcelle’s Theorem [19], but see [25]). Let C be the class of
graphs of treewidth k. Any MS2 formula is decidable in linear time for graphs in
C. Moreover, given a minimization problem P which is MS2 definable, then we can
compute an optimal solution to P for members of C in polynomial time.

We remark that this result gives us a very high level classification tool for al-
gorithmic properties, and indeed some properties were shown to have polynomial
time algorithms. There have been many extensions to Courcelle’s Theorem for other
classes of structures and fragments. For example, graphs of bounded “cliquewidth”
have linear time algorithms for deciding first order formulae. (See, for example,
Downey and Thilikos [29].)

We wonder if there are similar theorems available in the online situation. This
is wide open. It is not even clear what logic would be correct.

A simple result along these lines is the following.

Theorem 3.15 (Downey and Long Qian-unpublished). Given any first order for-
mula φ(X) in the language of graphs where X only occurs positively or only oc-
curs negatively in φ(X), then the online problem corresponding to φ(X) (i.e. the
maximization problem if X occurs negatively) has an online algorithm of constant
competitive ratio on graphs of bounded degree. In fact, the greedy algorithm is suf-
ficient.

Proof. Without loss of generality, assume that X only occurs negatively in φ(X).
Then φ(X) induces an online maximization problem attempting to maximize X.
Consider the greedy algorithm where for each vertex presented, it’s greedily added
to X if possible. Suppose that a solution set of X ′ is built and Xopt is the optimal
solution set. For each x ∈ Xopt, consider φ(X ′∪{x}). We need a notion from finite
model theory ([33]). Given a first order formula ψ(X) which is positive, Gaifman’s
Locality Theorem ([33]) says that it is equivalent to a boolean combination of basic
sentences of the form,

∃x1 . . . ∃xk
((∧

1≤i<j≤k dist(xi, xj) > 2r
)
∧
(∧

1≤i≤kξ(xi)
))

Here dist(xi, xj) refers to the distance between xi and xj (that is, the length of
the shortest path from xi to xj), ξ(X) is r-local meaning that every quantifier in
it quantifies only about vertices in within a distance r of X. Since both φ(X ′)
and φ(X ′ ∪ {x}) hold and φ(X) is r-local, φ(X ′ ∪ {x}) can fail to hold only if
X ′ ∩Nr(x) 6= ∅, which is to say that x is in the r-neighbourhood of some element
in X ′. Therefore, for any node v added to X ′, at most |Nr(v)| vertices from the
optimal solution cannot be added to X ′. This shows that the greedy algorithm will
have a competitive ratio of O(max{|Nr(v)|}. But the graph has bounded degree
and hence this is a constant ratio. �

A trivial application of this metatheorem is Minimum Vertex Cover, which
asks for the smallest set of vertices X such that for all xy ∈ E(G), either x ∈ X or
y ∈ X, on graphs of bounded degree.

To speculate at this point, since the subject lies under the umbrella of com-
putable analysis, it could be possible that the correct logic here might be a suitably
decomposed analog of continuous logic. This is a logic where formulae are consid-
ered as functions and the truth values are reals between 0 and 1. Nothing has been
done in this area and we refer the reader to Chang and Kiesler [17], and Ben Yaacov

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 23

et. al. [72] for the classical versions. This would be the correct logic for numerical
analysis.

4. (Online) Adversarial Algorithmic

4.1. Adversarial. A related area of computable combinatorics concerns (offline)
problems of the following kind. Given a planar graph G we wish to colour it but
have the help of a possibly non-cooperative partner. Player I (i.e. we) colours the
first vertex and the partner (II) colours the second. Can player I get away with
only using 4 colours? The answer is no. There is a strategy for player II to block us
and use more colours. The first paper in this area was Kierstead and Trotter [51],
who showed that I had a strategy using at most 33 colours. Moreover their proof
showed could be used to show that for any finite genus graphs of that genus had
an adversarial colouring number which was finite. It is only relatively recently this
number was reduced to 17 in 2008 by Zhu [73]. It is unknown what the correct
minimum number is.

For colouring more structured graphs, there is a strategy called the activation
strategy which allows us to establish the bounds that I needs at most 4 colours for
a tree (Kierstead [53]), for a graph of treewidth k, I needs at most 3k + 2 colours
(Wu and Zhu [71]), and Bodlaender showed in 1998 that graphs of pathwidth k I
needs at most 3k + 1 many colours. It seems reasonable to suggest that there is
some relationship between the adversarial and the online versions.

As an example, we will consider how the activation strategy is used on trees.
Fix some tree T . The first step of the activation strategy is to define a linear order
L on V (T) as follows. First we pick some vertex r to be the root of our tree. r
becomes the least element in L. We then add all the children of r then all of their
children and so on. That is we order V (T) using breath first traversal. Player I
then uses the activation strategy as follows.

(1) I starts by greedily colouring the least v in L.
(2) On I’s next turn let u be the last vertex coloured by II. I starts at u activates

it and moves to w, the least uncoloured neighbour of u in L (if u has no
uncoloured neighbours then move to least uncoloured vertex in L).

(3) If w is activated or has no uncoloured neighbours then I greedily colours w.
If not then I repeats step 2 on w until I either finds an active vertex that
is activated or has no unmarked neighbours.

Fix some vertex uncolored v in V (T). Because T is a tree there is exactly one
neighbour of v that is less than v. I will never colour a bigger neighbour of v if v is
unactivated. Hence I will not colour a second bigger neighbour of v before v. The
second time a bigger neighbour of v is coloured by II v is coloured by I. Thus there
are at most two coloured bigger neighbours of v when v is coloured. Hence there
are at most three coloured neighbours of v that are coloured when v is coloured (the
two bigger vertices and the smaller vertex). Therefore by following this method T
can adversarial coloured in 4 colours.

It is clear that colouring is only one simple property that can be analysed in this
setting. Any minimization property can have an adversarial version. For example,
imagine a Dominating Set game of this type, were X is a dominating set if for
vertices v ∈ V (G), there is a vertex x ∈ D such that xv ∈ E(G). The smallest size
of a dominating set is called the dominating number. Then every graph G with
dominating number γ(G) can be adversarial dominated with a dominating set of

24 MATTHEW ASKES AND ROD DOWNEY

size 2γ(G) − 1 (Brešar, Klavžar and Rall 2010 [14]). It is also conjectured that
every forest with n vertices can be adversarial dominated with a dominating set
of size

⌈
3n
5

⌉
(Kinnersley, West, and Zamani 2013 [55]). While this conjecture is

still undecided it has been shown for certain types of trees. For example, forests
of pathwidth 1 graphs with no isolated vertices (Kinnersley, West, and Zamani
2013 [55]) and forests with no isolated vertices such that no two leaves have distance
4 (Bujtás, Csilla 2015 [15]).

4.2. Online adversarial. It is clear that both adversarial situations and online
processes can be combined. That is, we are playing an online algorithm, but each
second move the opponent gets a play. For example, in a colouring situation we’d
have an unknown graph presented online, and where the opponent will colour each
alternate vertex, say at odd stages. Now we would not have global knowledge of the
object being constructed. This is not an unreasonable model to model interactions
with the universe, which can be hostile.

There has been little work in this area and positive results seem difficult. For
example, imagine a colouring scheme where our cost is not the cardinality of the
set of colours we use, but the number of the colours we are forced to use; meaning
that is there is a palate of colours 1, . . . , then our cost is max{n | we use colour
n}. Then with this model, if we are presented with n vertices which are disjoint,
then the opponent can colour every second one a different colour and then, at step
n+ 1, we will be presented with a single vertex connected to them all. This forces
us to use colour n

2 + 2 at least to colour this vertex.

5. Random advice

We remark that a natural addition to this setting is either to consider online
algorithms on random paths in some tree of possibilities, or to consider algorithms
on online presentations with online advice at each step. Both of these could well
take advantage of the work on algorithmic randomness as in Downey and Hirschfeldt
[27], so that for e.g. Martin-Löf random paths the algorithm would work. For
example, a random graph could be obtained by considering a computable bijection
f : N× N→ N, and then 〈x, y〉 is an edge iff f(〈x, y〉) = 1 in the binary expansion
of Chaitin’s Ω. We won’t pursue this here but it all look promising, as we would
expect 0− 1-laws to be expressed.

Less well studied are algorithms with random advice, though there are some
notable ones in finite combinatorics. For example, the Solovay-Strassen algorithm
for primality. We will briefly look at one for finding paths in graphs. Here we are
considering the product of space of online presentations and some copy of Cantor
Space, so that on input Gσ for |σ| = n, when we add some new vertex v, we would
toss a coin for advice (in Cantor Space) (typically a bit in {0, 1}, or some finite set)
and the algorithm would act on 〈Gσ ∪ {vn+1}, τ ∗ 〈i〉〉 Here |τ | = n and represents
one of the possible advice sequences, up to step n.

We will illustrate this approach with an online implementation of a famous algo-
rithm for fining paths in graphs. Given a graph G with n vertices can we decide in
polynomial time whether or not G contains a path of length log n? This is known
as the LOG PATH problem. It was conjectured by Papadimitriou and Yannakakis
in [60] that LOG PATH is polynomial. This was answered in the affirmative by
Alon, Yuster, and Zwick in [5].

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 25

Alon, Yuster, and Zwick introduced a randomised method for finding paths,
cycles, and other small subgraphs called color-coding. To find a path of length
k you randomly colour the graph using k colours. You then apply a dynamic
programming approach to find a k-colourful path. That is a path of length k where
every vertex is a unique colour. Using this method they prove the following.

Theorem 5.1. Let G = (V,E) be a graph and let c : V → {1, . . . , k} a k-colouring
of G. A colourful path of length k−1 can be found in G (if one exists) in O(k2k|E|)
time.

With this in mind, take some graph G with n vertices and a randomised (log n)-
colouring of G. As log n is fixed, we have a randomised algorithm to find a path of
length log n (if one exists) in O(log n2logn|E|) = O(n log n|E|) time. Hence, LOG
PATH is polynomial.

What if we do not know the number of vertices in the graph? In effect this would
mean our graph is online. One simple method to find a path would be to re-run the
randomised offline algorithm every time a new vertex is presented. Let G = (V,E)
be an online graph. At each stage s we run the randomised algorithm on Gs with s
vertices, and look for a path of length log s. At step s+1, we’d be tossing a k-sided
die to determine the colour of the incoming vertex. This gives the online algorithm
a complexity of

n∑
s=1

s log s|Es| = O(n2 log n|E|)

The probability that a path in G is colourful is k!/kk > e−k, where k is the
number of colours used. The randomised online algorithm may run multiple times
looking for the same path of length log n, and this can be done in parallel, with dif-
ferent advice strings. Hence, the probability that the online randomised algorithm
finds a path of length log n is ≥ log n/ log nlogn. Therefore, the randomised online
algorithm has the same (or better) probability of finding a path of length log n as
the offline version.

If we want to derandomise this method, then we will need a list of k-colourings
such that for every subset A of k vertices one colouring from the list makes A
colourful. That is, we need a family of k-perfect hash functions. That is a set S of
functions from {0, . . . , n} to {1, . . . , k}, such that for each subset D ⊆ {1, . . . , k},
there is a function f ∈ S which is 1-1 on D. It turns out that the necessary size
of such a family is 2O(k) log n, for a graph with n vertices. (However, there is a
problem as n needs to be large.) Therefore, we have a derandomised algorithm find
a path of length k that runs in 2O(k) log nO(k2k|V |) time.

While we cannot have a k-perfect hashing function on a graph with infinitely
many vertices, we do not need to. Because we are applying the algorithm once at
each stage, we can use a new family of hashing functions at each stage. This adds
cost of 2O(log s) · log s = O(s log s) to each stage, and so we have a running time of,

n∑
s=1

s log(s)s log(s)|Es| = O(n3(log n)2|E|)

This last observation yields a new question, which is quite intriguing. The essence
is whether you can modify the current family to include a new element, or need to
run a new construction.

26 MATTHEW ASKES AND ROD DOWNEY

Question 1. What is the complexity of the following online problem, Incremen-
tal Hash Functions.
Input : A set S of k-perfect hash functions with domain {0, 1, . . . , n}
Parameter : k
problem : Construct a set S′ of k-prefect hash functions with domain {0, 1, . . . , n+
1}.

6. Strongly Online Algorithms and Functional Parameterizations

A new direction in the study of online algorithms takes inspiration from the
material we have met on highly computable graphs. Consider the online problem
of robot navigation in a maze. At any stage of the proceedings, the robot will
have local knowledge of the maze. That is at location x in the maze (considered
as a vertex) it will be aware of N1(x) the neighbours of x at distance 1; those it
might choose as its next move. This is entirely analogous to the situation for highly
computable graphs, since, knowing the valency of a vertex also gives us knowledge
of the edges from the vertex. The idea here is that we are adding a new parameter
to the descriptions, and this parameter is a function of the vertices in the part of
the graphs our online algorithm has processed.

A stronger possible extension would be a strongly online presentation, where
we add a function generating the neighbours of vertices in the language. Clearly
in an online presentation, we would only be able to increment this at each step.
This would be analogous to, for instance, the diffusion of something throughout a
network, where our job was some kind of navigation within the network, which we
are only slowly learning about. This idea may seem artificial to a graph theorist, but
will be quite natural to an algebraist processing, say, an infinite finitely presented
group on a laptop. Here, there are many algorithms which we know halt but have
indeterminate running times, or at least unknown. Even in the situation of finite
groups, if they are sufficiently large, algorithms often run with only local knowledge.
(See, for example, [20, 65].) However, for such online situations, we have a function
symbol in the language. At each stage we will be generating more and more of the
structure, as we need to close under such functions. For example, we are running
them for smany steps at step s. This make the situation more akin to a combination
of type 1 (which stresses functions for constructions) and type II (where the main
player seems to be relations).

In the first author’s MSc Thesis [58], we formalized this in the following defini-
tions.

Definition 6.1. Let G = limsGs denote a presentation of an online graph.

(1) A locally strongly online presentation is a sequence 〈Gs, Hs〉 where Hs =
N [Gs] is the induced subgraph of G, Gs, together with its neighbours.

(2) A strongly online presentation of G is a pair 〈Gs, Hs〉 where this time
Hs+1 = N [Gs+1 ∪Hs].

The reader should think of Gs and the blue vertices and Hs − Gs as the red
vertices. The online algorithm will have the additional red information Hs but
the algorithm only acts on the blue vertices, Gs. An example of a strongly on-
line presentation problem is navigation where, whilst we are traversing some road
network, we are gradually discovering the whole map in stages. Perhaps there is
another agent whose job is to discover the nature of the network and report back

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 27

to us. Whilst this might seem less natural, it seems worthy to study both kinds of
online algorithmic parameterizations. 10 From the model-theoretical point of view,
we can think of strongly online graphs as being ones where a function giving the
neighbours of a vertex has been added to the language, and this extended structure
has been enumerated gets enumerated by one step at each stage.

A more general approach for 1-decidable online structures would be to have the
Σ0

1 diagram decidable with primitive recursive witnesses at each step. This remains
to be explored.

In the earlier sections, we have seen the interplay between online algorithms
and computable graph theory (Kierstead [52]). In section 2, we have seen that
in the type I primitive recursive interpretation of being online, if we can decide
1-quantifier statements, then, for example, we get varying categoricity results, as
per Alaev [2], Blinov [11] and Bazhenov et. al. [9]. We do already know that
parameterizations which impose shape restraints on the graph do give algorithmic
advantages. Kierstead’s survey [52] as well as Gasarch’s [34] give ample evidence to
this where almost every result relies on parametric considerations. We have seen in
Theorem 1.4 and its online corollary, that graphs of pathwidth k can be coloured
with with 3k − 2 many colours, and this is tight (Kierstead and Trotter [54]).

In this section we will concentrate on some new results giving consequences and
limitations for (locally) strongly online graphs. All of the theorems proven in this
section are due to the first author, Askes, under the direction of Downey as part of
his MSc Thesis.

The following result shows that strongly online graphs tend to be reasonably
tame for online colouring.

Theorem 6.2. If G is a strongly online graph with chromatic number χ(G) then
G can be online coloured with 2χ(G) many colours.

Whist we give a proof of theorem 1.6 in § 6.1 we remark that it essentially follows
from an analogous theorem of Bean [10] for highly computable graphs11.

It seems that being locally strongly online fails to give enough information some
cases. For example, we have the following.

Theorem 6.3. For every online algorithm A and n ∈ N there is a locally strongly
online graph G that cannot be online coloured by A. Indeed, for forests of height
n, the approximation ratio is Ω(log n) which is no better than the one for normal
online trees.

We prove these theorems in § 6.1, where we also prove theorem 1.6 is tight. We
also show that strongly online trees are 2-colourable.

In § 6.2 we will analyse colouring online graphs of bounded pathwidth. As with
Kierstead’s theorems for online graphs we get strong lower and upper bounds for
strongly online graphs. We already know that strongly online graphs of pathwidth
k are 2k + 2-colourable as they are k + 1 offline colourable. We show:

10The reader might also think of this as adding a function to the language of the model and

allowing bounded iterations at each stage. We have not explored the metatheory, yet.
11As we see, not every “highly computable” graph result has a strongly online analog, mainly

because several algorithms on highly computable graphs have inherent delays, which are impossible
in the online setting. For example, if we know that if T is a tree, then any algorithm can wait for

local parts to be connected; something impossible in the online situation.

28 MATTHEW ASKES AND ROD DOWNEY

Theorem 6.4. Every strongly online graph with even pathwidth k is strongly online
2k + 1-colourable.

Theorem 6.5. There is a strongly online graph of pathwidth k that is not strongly
online 2k-colourable.

Theorem 6.6. There is a strongly online graph of odd pathwidth k that is not
strongly online 2k + 1colourable.

In view of the focus on how the topology (i.e. “shape”) affects the performance
of strongly online graphs, it seems reasonable to suggest that we might be able to
construct approximate path decompositions online, at least in the case of strongly
online graphs. This would also seem somewhat of a breakthrough since current al-
gorithms such as Bodlaender’s [12] and Bodlaender-Kloks’ [13] are highly recursive,
and also use MS2 definability. Unfortunately, as we see below, there is no hope of
such an algorithm, even in the case of strongly online graphs. After we introduce
a natural notion of an online path decomposition, we prove the following.

Theorem 6.7. (1) For each online algorithm A and finite number n, there is
a strongly online (finite) G of pathwidth 2 which cannot have a online path
decomposition of width n. We can construct G with at most O(n4) many
vertices.

(2) There is an (infinite) strongly online graph of pathwidth 2 which cannot
have a online path decomposition

Finitizing this result, it shows that there is no d and online algorithm A, such
that A takes a strongly online G of pathwidth 2 and produces an online path
decomposition of width d.

When colouring strongly online graphs we can assign a colour to vertex in Hs,
or we can irrevocably colour them. Because we must colour the vertices in the
online presentation order, a simple strategy is to assign colours to vertices that we
can see, but have not been presented. Henceforth, we will not make the distinction
between assigning colours and colouring vertices. The assumption is that at each
stage of a strongly online graph we will colour the vertex that must be coloured.

Likewise, when presenting/describing a strongly online graph and we do not
specify which vertex to present next, it can be assumed that we are presenting a
vertex in Vs−1. This vertex has been revealed and it’s neighbours are in the next
boundary (N(Vs−1)).

For this section, let G = limGs be an online graph where Gs = (Vs, Es). We

denote V̂s+1 = Vs+1 \ Vs, and Ês+1 = Es+1 \ Es. Similarly Ĝs is the induced

subgraph generated by V̂s.
Let G = (V,E) be a graph and U ⊆ V . We denote the subgraph of G generated

by V \ U as G\U .
Let G = (V,E) be a graph and H = (U,F) a subgraph of G, G\H is the induced

subgraph of G generated by V \ U .
An online algorithm is a computable function f : Gs → Qs, where Qs is some

online structure such as a colouring. Thus, to list all such algorithms we would
enumerate all partial computable functions {φe | e ∈ N} of the correct kind. In the
counterexamples below, such as Theorem 6.10, we will be diagonalizing against such
lists. In that particular theorem, no algorithm will be able to online 2k − 1 colour
the online structure. This method also gives asymptotic lower bounds for finite

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 29

structures, so that if if G is sufficiently large, then it will defeat algorithms 1, . . . , e.
Usually, we will have a “component” of the graph (or partial ordering) which is
devoted to diagonalizing e. Of course, we will have achieved this diagonalization if
the partial computable function does not halt. How this occurs is specific to the
particular theorem.

6.1. Colouring Strongly Online Graphs. A strategy introduced by Bean [10]
is to colour odd stages with one set of colours and even stages with another set.

Theorem 1.6 was first proved by Bean [10] in the context of highly computable
graphs. We present here a modification to the context of strongly online graphs.

Theorem 6.8. If G is a strongly online graph with chromatic number χ(G) then
G can be online coloured with 2χ(G) many colours.

Proof. Let G = limsGs be a k-colourable strongly online graph.
We define the colouring at odd and even stages. In the even stages we use colours

1, . . . , k and in the odd stages k + 1, . . . , 2k.
We colour G0 = ∅ with no colours.
For the even stage 2s+2: Suppose we have coloured G2s+1 using 2k colours. Let

v be the next vertex presented. Note that G2s+2 = N [G2s+1∪{v}]. At stage 2s+2
we can see all of G2s+2. Let Ḡ2s+2 = G2s+2\Gs. We assign every vertex in Ḡ2s+2

a colour from 1, . . . , k. This can be done using brute force as G is k-colourable and
Ḡ2s+2 is finite.

The odd stage is analogous, but we colour Ḡ2s+1 with colours from k+ 1, . . . , 2k
This gives a colouring of G as Ḡs is disconnected from Ḡs+2. �

In the context of highly computable graphs we have the following theorem.

Theorem 6.9 (Schmerl [64]). If G is a highly computable, k-colourable graph then,
G is computably (2k − 1)-colourable.

Which would lead us to expect that we can improve on the bound in theorem 1.6.
However this is not the case, theorem 1.6 is tight.

Theorem 6.10. For all k there is a strongly online k-colourable graph that cannot
be strongly (2k − 1)-online coloured.

Proof. We construct an online presentation of graph as a series of disjoint subgraphs
H which are presented themselves in an online fashion, so that G =

⋃
sHs.

Let 〈φe〉 be an enumeration of all possible partial computable online colourings
(i.e. functions N 7→ [2k− 1]). We diagonalize against φs by constructing a strongly
online graph Hs that cannot be strongly online coloured by φs. We then let G =⋃
sHs.
For component Hs, we will have constructed a strongly online graph is a sequence

Hs,1, Hs,2, Begin by letting Hs,1 be a k-clique. Let Hs,t+1 be Hs,t together
with with another k-clique and the neighbours of each k-path in Hs,t. (Thatis, we
replicate Hs,t and glue it on to Hs,t. See fig. 2. We repeat this until there are

n = 2(k − 1)

(
2k − 1

k − 1

)
+ 1

k-paths. Let this graph be Hs,q. Let Xi be the last vertices revealed in each k-path
in Hs,q. If φs is a valid colouring of Hs,t then, it must halt on Hs,j in order. Should

30 MATTHEW ASKES AND ROD DOWNEY

X1 X2 X3 X4

Figure 2. The first 4 paths for Hs,4 when k = 3

this occur, by the pigeonhole principle, φs must have coloured 2k Xi’s using the
same set of colours. Let I denote the set of indices of these sets.

Let A =
(
{a1, . . . , ak}, E

)
be a k-clique. We let Hs,q+1 be Hs,q ∪ A along with

edges
⋃
i∈I{(u, ai) : u ∈ Xi}. See fig. 3. Without loss of generality we can assume

that φs uses colours 1, . . . , k − 2 to colour Xi. Then A will be coloured using
k − 1, . . . , 2k − 1.

Ai

X1

X2

X3

Figure 3. The graph Hs,q for k = 3

We add 2k such cliques, each one connected to different Xi’s. Let A = {Ai :
i ∈ J} be the set all of these k-coloured cliques. Denote Ai = {ai,1, ai,2, . . . , ai,k}
where, for j ∈ [1, k], φs

(⋃
i∈J{ai,j}

)
is a single colour. Let B = ({b1, . . . , bk}, E)

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 31

be another k-clique. We let Hs,q+2 be Hs,q+1 ∪B along with the edges⋃
i∈J

{
(bi, a2i−1,1), . . . , (bi, a2i−1,k−1), (bi, a2i,k), . . . , (bi, a2i,2k)

}
See fig. 4.

B

A1

A2

A3 A4

A5

A6

Figure 4. The graph Hs for k = 3, with colours

This ends the construction. Each vertex in B is connected to k uniquely coloured
neighbours and is part of a k-clique, and thus cannot be 2k−1-coloured. Therefore
φs cannot strongly online colour Hs. A k-colouring of Hs can be found by colouring
B then using breadth first search and the greedy strategy. Hence each component
is k-colourable, and the components are disjoint.

Therefore, G =
⋃
sHs is a k-colourable graph that cannot be coloured by any

strategy. �

In the case of locally strongly online colouring trees, we cannot do better than
online colouring.

Theorem 6.11. For every online algorithm A and n ∈ N there is a locally strongly
online graph G that cannot be online coloured by A. Indeed, for forests of height
n, the approximation ratio is Ω(log n) which is no better than the one for normal
online trees.

Proof. Fix k ∈ N and A an online algorithm. By induction on the number of colours
l ≤ k we construct a locally strongly online forest T such that A does not give a
locally strongly online k-colouring of T . We ensure that at each stage l the vertices
that is needs the l-th colour are ones that have not been presented yet (but will
have been revealed).

For l = 0 any single vertex is a tree and cannot be coloured with 0 colours. Let
G be a pair of vertices a and b connected by an edge, and present the vertex a. b
is revealed and requires 1 colour as desired.

Generate 2k ·kk+1 many G’s. By the pigeon hole principle 2k ·kk of the b vertices
from these trees are the same colour. Let F0 the set of such vertices.

32 MATTHEW ASKES AND ROD DOWNEY

Assume that for all m ≤ l, |Fm| ≥ 2k−l · kk−l and all vertices in Fm use the
same colour, have not been presented, and are adjacent to m− 1 different coloured
neighbours. That is Fm uses the m-th colour.

Let X = x1, . . . , xn contain 2k−l−1 · kk−l many new vertices. Connected each xi
to a unique vertex from each F0, . . . , Fl by presenting one of xi’s new neighbours.
Each xi is adjacent to l colours and so must get a new colour.

1 1 1 1 1 1 1 1

2 2 2 2

3 3

4

5

F0

F1

F2

F3

F4

Figure 5. A tree that cannot be four coloured (numbers repre-
senting colours, and vertices not in a Fi omitted)

By the pigeon hole principle 2k−l−1 ·kk−l−1 many xi’s must use the same colour.
Let Fl+1 be these same coloured vertices.

As 2k−l−1 ·kk−l is less than 1/2(2k−l ·kk−l), each Fi decreases in size by no more
than half. That is each Fi has |Fi| ≥ 2k−l−1 · kk−l−1, as desired.

Note that once l = k we will generate 2k−k ·kk−k = 1 tree that requires a k+1-th
colour. Therefore we have a forest that A cannot k-colour.

Finally note that, T has O(2k ·kk) many vertices, and hence T requires Ω(log(n))
many colours to colour. �

Corollary 6.12 then follows as a simple corollary of theorem 6.3 by a diagonal-
ization against all possible algorithms and numbers of colours.

Corollary 6.12. There is an (infinite) locally strongly online forest which cannot
be online finitely coloured.

Proof. By theorem 6.3 for all k ∈ N and online algorithm A there is a forest
Tk,A that cannot be coloured by k colours. By a diagonalization of the forest
T =

⋃
k,A Tk,A we have a forest that cannot be finitely coloured.

�

It is worth pointing out that if we use definition 3.2, then the functions φe in
corollary 6.12 would all need to be primitive recursive and hence total. Then we
would then be able to construct a tree that defeats all φe. This could be done by
presenting vertices that join up two trees in the forest once they have been coloured.

However, we can do much better if we require that the strongly online graph is
strongly connected. That is, at each stage s, Ts is presented as a tree in its online
presentation.

Definition 6.13 (Strongly Connected). A strongly online graph G = limsGs with
presentation 〈Gs, Hs〉 is strongly connected if at each stage Hs is connected.

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 33

Theorem 6.14. Every strongly connected online tree is strongly 2-colourable.

Proof. Let T be a strongly connected online tree. We colour T by induction on s,
the stage.

For the base case we colour v1 1 and N(v) 2. This colours T1.

Suppose we have coloured Ts. We must colour Ts+1 Let T̂s+1 = Ts+1\Ts. Colour

T̂s+1 with what ever colour we didn’t use in T̂s.
As each vs is part of the graph we can see, it has already been assigned a colour.

And, as each T̂s is independent, we have strongly 2-coloured T . �

6.2. Graphs of Bounded Pathwidth. As we have seen, many theorems for on-
line structures seem to hold because of topological considerations/parameterizations
about the shape of the graph. Graphs of bounded pathwidth are thought of as
“path-like” and can have some nice online algorithms. Witness Kierstead’s theo-
rem ([54]) that any online graph of pathwidth k can be online 3k − 2-coloured. In
the strongly online case we can do better. Now we know that if we are given a
graph of pathwidth k as a pathwidth k presentation, that is bags of size at size
at most k + 1, then it can be k + 1-coloured. Hence we know that in the strongly
online case we can always 2k + 2 colour it. However, with a bit more work we can
achieve the following bound which is tight by theorem 6.5.

Theorem 6.15. Every strongly online graph with even pathwidth k is strongly
online 2k + 1-colourable.

Proof. Let G = limsGs be a strongly online graph with pathwidth k.
Let

Cs,t =

{
1, 3, 5, 7, . . . , 2t− 1 if s is odd

2, 4, 6, 8, . . . , 2t if s is even

At each stage s we will colour the boundary, Ĝs = (V̂s, Ês), with the set of
colours Cs,l along with a k+ 1-th colour (which we will call white for convenience),

where l is the pathwidth of Ĝs.
When colouring Ĝs we will ensure that the colour white is only used in a con-

nected component in Ĝs that has pathwidth k. All other components will use the
colours Cs,m+1, where m is the pathwidth of the connected component.

The first stage (s = 1) has pathwidth at most k and so can be coloured appro-
priately with C1,k plus white.

Suppose we have coloured Gs, and we need to colour Ĝs+1. Let H be a connected

component in Ĝs+1. Suppose that H has pathwidth m < k, then as the only
neighbours of H have colours Cs,k plus white, we can colour H with Cs+1,m+1.

Now, suppose that H has pathwidth k. We must now find a way to reuse the
colour white. Let P = {P1, P2, P3, . . . } be a path decomposition of H ∪ N(H).
There are three cases.

(1) H is adjacent to no components of width k in Ĝs.

(2) H is adjacent to at most 1 component of width k in Ĝs.

(3) H is adjacent to more than 1 component of width k in Ĝs.

Case 1: H is not adjacent to any white vertices. Thus any colouring of H using
Cs+1,k plus white, is valid.

Case 2: Let Pi be a bag in P that contains a white vertex from Ĝs. Without
loss of generality assume that i is less than the index of any bag that contains

34 MATTHEW ASKES AND ROD DOWNEY

only vertices from H. That is Pi is to the left of H. We use Algorithm 1 to find
X ⊆ V (H) such that X is 1-colourable, H\X has pathwidth k − 1, and no vertex
in X is adjacent to a white vertex in Gs.

Algorithm 1 Find the vertices of H to colour white

1: procedure FindVertices(i)
2: j ← i
3: X ← ∅
4: while Pj 6= ∅ do
5: if PJ ⊆ V (H) and Pj ∩X = ∅ then
6: Fix some x ∈ Pj \ Pj−1

7: X ← X ∪ {x}
8: end if
9: j ← j + 1

10: end while
11: return X
12: end procedure

Colour all vertices in X, and the remaining vertices in H with Cs+1,k.
Case 3: Assume for a contradiction that H is connected to 3 components, D,E,

and F from Ĝs of width K. Because each of D,E, F ,and H have pathwidth K
there are bags Pd, Pe, Pf , and Ph such that Pd ⊂ V (D), Pe ⊂ V (E),Pf ⊂ V (F),
Ph ⊂ V (H), and |Pd| = |Pe| = |Pf | = |Ph| = k + 1.

Without loss of generality assume that d < h < e < f . As there is a path from
Ph to Df every bag between Ph and Df must contain a vertex from H ∪ F . This
contradicts the fact that h < e < f . Therefore H is connected to two components
of pathwidth k.

Claim 6.15.1. Every Bag Pi ∈ P such that Pi ⊆ V (H) and |Pi| = k + 1 at most
k + 1/2 vertices are adjacent to k+1 colours from {P1, . . . , Pi−1} (or {Pi+1, Pi+2, . . . }).

Proof of claim. Fix Pi ∈ P such that Pi ⊆ V (H) and |Pi| = k+1. Let {p1, . . . , pn}
be the vertices in Pi adjacent to k + 1 colours from {P1, . . . , Pi−1}.

Let Pj be the greatest j < i such that Pj contains k + 1 colours (cannot be in
H as H has not been coloured). No bag between Pj and Pi can contain white (or
else there would be a third component of with k). Let y be the white vertex in Pj .
p1, . . . , pn are adjacent to y, further there is some bag Pl such that p1, . . . , pn, y ∈ Pl.

Note that the maximum width of a component from Ĝs between Pl and Pi is
k − n. Hence p1, . . . , pn can only be adjacent to less than k + 1− n colours not in
Pl.

In Pl−1 there are only n−1 vertices from p1, . . . , pn. Hence the maximum number
of colours from Pj that p1, . . . , pn is adjacent to is k + 1− n.

If n > k + 1/2 then the number of colours not from Pl and from Pj is

(k + 1− n) + (k + 1− n) < 2k + 2− 2(k + 1/2) = k + 1

Which contradicts the fact that p1, . . . , pn are adjacent to k + 1 colours from
{P1, . . . , Pi−1}. Therefore n is at most k + 1/2. �

Let A and B be the components of pathwidth k that H is adjacent to.

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 35

Let Pl be the leftmost and Pr the rightmost bag in P such that Pl ⊆ V (H) and
Pr ⊆ V (H). By claim 6.15.1 and the fact that k is even, Pl and Pr have more than
k + 1/2 many vertices adjacent to at most k colours from Ĝs.

12

= =

R′′

R′′

L∗

L′
L

R∗

R′
R

Pl Pr

Figure 6. The bags Pl and Pr

We define the following subsets of Pl and Pr.

• L ⊆ Pl be the subset of Pl that is not connected to k + 1 colours from
{P1, . . . , Pl−1}.
• R ⊆ Pr be the subset of Pr that is not connected to k + 1 colours from
{Pr+1, Pr+2, . . . }.
• L′ ⊆ L such that for every x ∈ L′, x /∈ Pr.
• R′ ⊆ R such that for every y ∈ R′, y /∈ Pl.
• L∗ = Pl \ L \ Pr.
• R∗ = Pr \R \ Pl.
• R′′ = R \R′ (= Pl \ L \ L∗).

Note that |L∗| = k + 1− |L| − |R′′| and |R′| = |R| − |R′′|. Hence

|L∗| ≤ k + 1− |k + 1/2| − |M | < k + 1/2− |M | ≤ |R′|

Thus |L∗| < |R′|.
Therefore any colouring of H must have one colour that is used in both L′ and

R′. Let x ∈ L′ and y ∈ R′ be some such vertices. If both x and y are not adjacent
to the colour white, then we can colour these vertices white and are done.

Suppose one of x and y is adjacent to the colour white. Then this means one of
L∗ and R∗ (respectively) has one less vertex in it. Hence L′ (or R′) is one vertex
larger. Therefore there in any colouring of H there are two colours used in both L′

and R′.

12Note that this fact that fails to be true if k is odd. We could have exactly half of the vertices
in H connected to k + 1 colours to the left and the other half connected to k + 1 colours to the

right. Thus we might not be able to colour H.

36 MATTHEW ASKES AND ROD DOWNEY

By applying induction we see that either we will be able to colour H or one of
L = Pl or R = Rr. We then use the technique from case 2 to colour H as A or B
effectively has pathwidth less than k.

It remains to show that no neighbour of H is later stages can have pathwidth k.

Claim. If F is a connected component in G \ Gs that is connected to H, then F
has pathwidth less than k.

Proof of claim. Let Q = {Q1, Q2, . . . } be a path decomposition of G. Because each
of A, B, and H have pathwidth k there must be bags Qa, Qb, and Qh such that
Qa ⊂ V (A), Qb ⊂ V (B), Qh ⊂ V (H), and |Qa| = |Qb| = |Qh| = k + 1.

Assume for a contradiction that F has pathwidth k. Then there is also a bag
Qf ⊆ V (F), where |Qf | = k + 1.

In G there are paths Qa to Qh and Qb to Qh. Qf ∩ V (H) = Qf ∩ V (A) =
Qf ∩V (B) = ∅ and so, f cannot be between a and b because the paths cannot pass
through Qf . That is a > f and b < f .
f cannot be greater than b because there is a path from Qf to Qh and Qb ∩

(V (h) ∪ V (F)) = ∅. Similarly f cannot be less than a.
This is a contradiction as Qf must exist somewhere in Q. Therefore F cannot

have pathwidth k. �

This means that we can always use k colours to colour later neighbours of H. �

The following result shows that we cannot do better than 2k + 1.

Theorem 6.16. There is a strongly online graph of pathwidth k that is not strongly
online 2k-colourable.

Proof. As in theorem 6.10 we construct the graph in stages. Let 〈φe〉 be an enu-
meration of all possible colourings (i.e. functions N 7→ [2k]). Again the graph
is constructed as disjoint components and we will diagonalize against φs by con-
structing a strongly online graph Hs with path width k that cannot be strongly
online coloured by φs. We then let G =

⋃
sHs. We return to the construction of

component Hs which is constructed in stages e.
Stage e: Recall that a strongly online graph is a sequenceHs,1, Hs,2, . . . Hs,e−1

We construct a series of k-paths, each with vertices x1, x2, x3, . . . and all the edges
of the form (xi, xj) such that i − j < k. Let {P1, P2, P3, . . . } denote the set of all
such k-paths. Let Hs,1 contain P1 with k vertices. Let Hs,i+1 contain Pi+1 with
k vertices and all Pj such that j < i with an extra k vertices. See fig. 2 for an
example when k = 3.

We repeat this until there are

n =

(
2k

k − 1

)
+ 1

k-paths. Now if it is the case that φs halts we will observe the online colouring it has
given. By the pigeonhole principle there are two paths whose last k−1 vertices have
the same colour. Denote these vertex sets A = {a1, . . . , ak} and B = {b1, . . . , bk}.

Without loss of generality assume that c(ai) = c(bi) = i. Let D be a (k + 1)-
clique with vertex set {d1, . . . , dk+1}. We let Hs,n+1 = Hs,n ∪D along the edges of
the form (di, aj) such that i ≤ j and (di, bj) such that i > j. This forms a single
k-path See fig. 7.

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 37

d1

d2 d3

a1

a2

b1

b2

Figure 7. The graph Hs,n+1 with edges coloured for clarity

Each vertex in D is connected to a vertex of each colour 1, . . . , k − 1 and thus
must be coloured from the colours k, . . . , 2k. However as D is a (k + 1)-clique
it requires k + 1 colours. Hence D cannot be coloured. Therefore Hs cannot be
coloured by φs.
Hs is a series of k-paths and so has pathwidth k.
Therefore, G =

⋃
sHs is a graph with pathwidth k that cannot be coloured by

any strategy. �

For graphs with odd pathwidth we cannot do any better than than theorem 1.6
as evidenced by theorem 6.6.

Theorem 6.17. There is a strongly online graph of odd pathwidth k that is not
strongly online 2k + 1colourable.

As we have done previously the proof of theorem 6.6 proceeds by a diagonaliza-
tion against a list of all partial computable colourings. For each such colouring we
generate two k+ 1 cliques (X1 and X2) and two k + 1/2 = l cliques (Y1 and Y2) such
that each pair uses the same colours. We then reveal another clique of size k + 1
that is connected to k + 1 colours. Half the colours coming from X1 and X2 and
the other half coming from Y1 and Y2. This new clique will not be colourable with
the remaining k colours.

Proof. As in as theorem 6.10 we construct the graph in stages. Let 〈φe〉 be an
enumeration of all possible colourings (i.e. functions N 7→ [2k]). The graph is con-
structed as disjoint components and we will diagonalize against φs by constructing a
strongly online graph Hs with path width k that cannot be strongly online coloured
by φs in 2k + 1 colours.

Note that because k is odd k + 1 = 2l for some l ∈ N.
Stage e: To construct Hs we begin by presenting

2

(
2k + 1

k + 1

)
+

(
2k + 1

l

)
+ 2

vertices each the center of a path that grows in length with every presented vertex.
Next we create

(
2k+1
k+1

)
+ 1 cliques of size k + 1 and

(
2k+1
l

)
+ 1 cliques of size l.

If it is the case that φe halts we will observe the following. First, there will be
two cliques X1 and X2 of size k + 1 which use the same colours. Second, there
are two cliques Y1 and Y2 of size l which use the same colours. Without loss of
generality let the colours used in Y1 and Y2 be 1, 2, . . . , l, and the colours used in
X1 and X2 be 1, 2, . . . , k + 1.

We join the vertices coloured 1, . . . , l in X1 (respectively X2) to the end of one
of our paths, call this vertex a1 (respectively a2). We do the same for the vertices

38 MATTHEW ASKES AND ROD DOWNEY

coloured l+ 1, . . . , k+ 1 in X1 (respectively X2), who join to the end of one of our
paths, call this vertex b1 (respectively b2).

Next join half of Y1 (respectively X2) to some path, call this c1 (respectively c2),
and the other half to some path and call it d1 (respectively d2).

c1

d1

b1

a1 b2

a2

c2
d2

X1 X2

Y1 Y2

Z

Figure 8. The graph Hs for pathwidth 3.

Next we reveal another clique, Z, of size k + 1 with vertices z1, . . . , zk+1. For
each i ≤ l join the vertex zi to every vertex in Y1 and every vertex with colour
greater than l in X1. For i > l connect zi to every vertex in Y2 and every vertex
with colour greater than l in X2 See fig. 8, for an example.

Each vertex in Z is connected to k + 1 colours (colours 1, . . . , l from Yi and
colours l + 1, . . . , k + 1 from Xi) and is part of a k + 1 sized clique. Therefore Z
cannot be coloured with k colours.

It remains to show that Hs has pathwidth k. The path decomposition of Hs

contains the following bags in order,

(1) a1 ∪N(a1) ∩X1

(2) X1

(3) b1 ∪N(b1) ∩X1

(4) (N(X1) ∩ Z) ∪ (N(Z) ∩X1)
(5) Path adjacent to c1
(6) c1 ∪N(c1) ∩ Y1

(7) Y1

(8) d1 ∪N(d1) ∪ Y1

(9) Path adjacent to d1

(10) Z
(11) Path adjacent to d2

(12) d2 ∪N(d2) ∪ Y2

(13) Y2

(14) c2 ∪N(c2) ∪ Y2

(15) Path adjacent to c2
(16) (N(X2) ∩ Z) ∪ (N(Z) ∩X2)

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 39

(17) b2 ∪N(b2) ∩X2

(18) X2

(19) a2 ∪N(a2) ∩X2

Along with the interpolation of any necessary vertices. By the construction of Hs

each of these bags will contain no more than k+1 vertices. Hence Hs has pathwidth
k.

Therefore G =
⋃
sHs is a strongly online graph with odd pathwidth k that

cannot be 2k + 1-coloured. �

6.3. Strongly Online Pathwidth. In view of the usefulness of graph width met-
rics in classical graph theory, we would hope that there should be online versions
of the same. What is the best we can do for an online graph where we are required
to construct some kind of decomposition online. We offer the following possibility.
We remark that originally we hoped that if we could construct an online path de-
composition of width 2k for a (strongly) online graph of width k, then we could use
a simple greedy algorithm to online colour it with 2k + 1 many colours. Alas this
is not the case as we soon see.

Definition 6.18 (Path Decomposition Extension). Let P and Q be path decompo-
sitions. Q is an extension of P (denoted P � Q) if there is an injection σ : P → Q
such that for all Pi ∈ P, Pi ⊆ σ(Pi). For each Pi, Pj such that Pi ∩Pj 6= ∅, if i < j,
then σ(Pi) = Ql and σ(Pj) = Qm for some l < m.

Definition 6.19 (Strongly Online Path Decomposition). Let G = limsGs be a
strongly online graph. A strongly online path decomposition is a sequence 〈Ps〉s
such that

(1) Each Ps is a path decomposition of G≺s
(2) Ps is an extension of Ps−1

(3) P = lims Ps is a path decomposition of G

That is, using the information in Gs the vertex vs must be place inside at least one
bag. Other vertices may be placed in bags (including vertices already in a bag),
but vertices cannot be removed.

Definition 6.20. The strongly online pathwidth of a graph G is the smallest k such
that for each strongly online presentation G = limsGs, G has a strongly online path
decomposition of width at most k.

Theorem 6.21. (1) For each online algorithm A and finite number n, there is
a strongly online (finite) G of pathwidth 2 which cannot have a online path
decomposition of width n. We can construct G with at most O(n4) many
vertices.

(2) There is an (infinite) strongly online graph of pathwidth 2 which cannot
have a online path decomposition

The basic idea is for each possible online algorithm A that can rearrange the
bags from stage to stage present n(2n+ 2) vertices that each form part of a single
path. Then use A to determine the order in which the bags containing each of the
n(2n + 2) vertices will be ordered after we reveal all the vertices that join them.
We join the paths (bags) across the middle bag 2n times. This forces the middle
bag to have at least n+ 1 vertices in it, as A has made the wrong choices.

40 MATTHEW ASKES AND ROD DOWNEY

Again we will be diagonalizing against partial computable functions φe and we
will do so in pairs 〈e, n〉 where φe is claiming to give an online path decomposition
of width n. For this we will again use disjoint components for the graph. These
might keep growing forever, if φe fails to respond.

Proof. Fix n ∈ N, and A an online algorithm. Note that at each stage A gives us
a path decomposition of Gs. Because we want to force a pathwidth greater than
n−1 every bag has size at most n, we will force at least 1 bag to have size n+1. By
using a pairing function we consider A as a way of extending a path decomposition
as in definition 6.18. We preform a computable construction.

We construct a strongly online graph G = limtGt.
We build G in two stages. In stage 1, we present n(2n + 1) vertices each the

center of a path that grows in length with every presented vertex. Once this is done
let P be path decomposition generated by A on the currently presented vertices,
this signals the start of stage 2.

v1 v2 v3 v4 vn(2n) vn(2n+1)

. . .

Figure 9. The initial n(2n+ 1) paths and the presented vertices
(in black)

In stage 2 there are two cases. First, if A(P) does not give us a valid decom-
position or a valid extension of P then G satisfies our requirements and we stop.
Second, A(P) is a valid decomposition. In which case, because A(P) has n(2n+ 1)
vertices divided into bags of size n there must be 2n + 1 bags each containing a
vertex not in any of the other 2n + 1 bags. Let these bags be X1, . . . , X2n+1, and
the corresponding vertices v1, . . . , v2n+1. Without loss of generality assume that
X1, . . . , X2n+1 are ordered by their appearance in A(P).

Each Xi corresponds to a path in G. We reveal 2n vertices each one joining the
end of two paths in Ge as follows. For i ≤ n, join the i-th path to the (2n+2− i)-th
and the (2n+ 1− i)-th. This forms a sort of spiral (see fig. 10).

We now stop revealing vertices in G and present all the vertices visible in the
order they were revealed. This ends the construction of G.

We need to show that A does not give a valid path decomposition of G. Fix i ≤ n.
Let u1, u2, . . . , ua be the path vi − v2n+2−i, Q be the current path decomposition

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 41

v4v3 v5v2 v6v1 v7

uj

Figure 10. The connections between vertices (paths) for n = 3

given by A and U1, U2, . . . , Ub be the bags in Q that contain a uj , in the order they
appear in Q. Note that u1 = vi and ua = v2n+2−i. Without loss of generality we
can assume that U1 = Xi and Ub = U2n+2−i (see fig. 11).

X1 X2 Xn+1 X2n X2n+1

U1 Ub−1 UbU2 Uj

.

.

Figure 11. The bags in Q and the bags corresponding to the path
vi − v2n+2−i.

Thus Xn+1 appears between U1 and Ub. Hence there must be some Uj such that
Uj = Xn+1. Therefore Xn+1 contains some uj . Then by letting i vary we can see
that Xn+1 must contain n + 1 vertices (one from each path along with the vertex
vn+1). Therefore A(P) does not give a width n− 1 path decomposition of G.

For each i the path vi−v2n+1−i forces a vertex into Xn+1 just as above. However
this may be the same vertex forced in by vi − v2n+2−i. Thus from the 2n paths
only half are guaranteed to increase the size of Xn+1.
G is union of n(2n+ 1) paths. Because at each stage each path gets another two

vertices the i-th path has 1 + 2(i− 1) vertices. Finally we add another 2n vertices
to join these paths together. Therefore the total number of vertices is

2n2+n∑
i=1

(
1 + 2(i− 1)

)
+ 2n = n2(1 + 2n)2 + 2n = O(n4)

Then by a diagonalization against all possible strategies and widths we can see
that we have a strongly online graph with no path strongly online path decompo-
sition. �

42 MATTHEW ASKES AND ROD DOWNEY

References

[1] P. E. Alaev, Structures Computable in Polynomial Time. I, Algebra and Logic 55 (2017),
no. 6, 421–435.

[2] , Categoricity for Primitive Recursive and Polynomial Boolean Algebras, Algebra and

Logic 57 (2018), no. 4, 251–274.
[3] , Structures Computable in Polynomial Time. II, Algebra and Logic 56 (2018), no. 6,

429–44.

[4] Susanne Albers, Online algorithms: a survey, Mathematical Programming 97 (2003), no. 1,
3–26.

[5] Noga Alon, Raphael Yuster, and Uri Zwick, Color-coding, J. Assoc. Comput. Mach. 42 (1995),
no. 4, 844–856.

[6] Jeremy Avigad, Inverting the furstenberg correspondence, Discrete and Continuous Dynami-

cal Systems 32 (2012), no. 10.
[7] Nikolay Bazhenov, Rod Downey, Iskander Kalimullin, and Alexander Melnikov, Foundations

of online structure theory, jun 2019, pp. 141–181.

[8] Nikolay Bazhenov, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Melnikov, and
Keng Meng Ng, Automatic and polynomial-time algebraic structures, Journal of Symbolic

Logic 84 (2019), no. 4.

[9] Nikolay Bazhenov, Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng, Online
presentations of finitely generated structures, Theoretical Computer Science 844 (2020).

[10] Dwight R Bean, Effective Coloration, The Journal of Symbolic Logic 41 (1976), no. 2, 469–

480.
[11] K. V. Blinov, Primitively Recursively Categorical Linear Orderings, Siberian Mathematical

Journal 60 (2019), no. 1, 20–26.
[12] Hans L. Bodlaender, A linear time algorithm for finding tree-decompositions of small

treewidth, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Com-

puting, STOC ’93, Association for Computing Machinery, 1993, p. 226234.
[13] Hans L. Bodlaender and Ton Kloks, Efficient and constructive algorithms for the pathwidth

and treewidth of graphs, J. Algorithms 21 (1996), no. 2, 358402.

[14] Boštjan Brešar, Sandi Klavžar, and Douglas F. Rall, Domination game and an imagination
strategy, SIAM J. Discrete Math. 24 (2010), no. 3, 979–991.

[15] Csilla Bujtás, Domination game on forests, Discrete Math. 338 (2015), no. 12, 2220–2228.

[16] Douglas Cenzer and Jeffrey B. Remmel, Complexity theoretic model theory and algebra, Hand-
book of recursive mathematics, Vol. 1, of Stud. Logic Found. Math., vol. 138, North-Holland,

Amsterdam, 1998, pp. 381–512.

[17] Chen Chung Chang and H. Jerome Keisler, Continuous Model Theory. (AM-58), Princeton
University Press, 1966.

[18] Marek Chrobak and Maciej Ślusarek, On some packing problem related to dynamic storage
allocation, RAIRO Inform. Théor. Appl. 22 (1988), no. 4, 487–499.

[19] Bruno Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite

graphs, Information and Computation 85 (1990), no. 1, 12–75.
[20] Eamonn A. O’Brien Derek F. Holt, Bettina Eick, Handbook of computational group theory,

Chapman and Hall/CRC, Boca Raton, Florida, 2005.
[21] John Doner and Wilfrid Hodges, Alfred Tarski and decidable theories, J. Symbolic Logic 53

(1988), no. 1, 20–35.

[22] Rod Downey, Computability, definability and algebraic structures, Proceedings of the 7th and
8th Asian Logic Conferences, Singapore Univ. Press, Singapore, 2003, pp. 63–102.

[23] Rod Downey, Alexander Melnikov, and Keng Meng Ng, Foundations of online structure

theory II: The operator approach, Log. Methods Comput. Sci. 17 (2021), no. 3, Paper No. 6,
35.

[24] Rodney Downey and Michael Fellows, Parameterized complexity, Springer-Verlag, 1999.

[25] , Fundamentals of parameterized complexity, Springer-Verlag, 2013.
[26] Rodney Downey, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Melnikov, and

Daniel Turetsky, Graphs are not universal for online computability, Journal of Computer and
System Sciences 112 (2020), 1–12.

[27] Rodney Downey and Denis Hirschfeldt, Algorithmic randomness and complexity, Springer-

Verlag, 2010.

ONLINE, COMPUTABLE, AND PUNCTUAL STRUCTURE THEORY 43

[28] Rodney Downey and Catherine McCartin, Online problems, pathwidth, and persistence, In-

ternational Workshop on Parameterized and Exact Computation, Lecture Notes in Computer

Science, Springer-Verlag, 2004, pp. 13–24.
[29] Rodney Downey and Dimitrios Thilikos, Confronting intractability via parameters, Computer

Science Review 5 (2011), no. 4, 279–317.

[30] Rodney G Downey and Catherine McCartin, Online promise problems with online width
metrics, Journal of Computer and System Sciences 73 (2007), no. 1, 57–72.

[31] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson,

and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston,
MA, 1992.

[32] A. Fröhlich and J. C. Shepherdson, Effective procedures in field theory, Philos. Trans. Roy.

Soc. London Ser. A 248 (1956), 407–432.
[33] Haim Gaifman, On local and non-local properties, Studies in Logic and the Foundations of

Mathematics, vol. 107, 1982, pp. 105–135.
[34] W. Gasarch, A survey of recursive combinatorics, Handbook of recursive mathematics, Vol.

2, Stud. Logic Found. Math., vol. 139, Elsevier, 1998, pp. 1041–1176.

[35] Sergei S. Goncharov, Countable Boolean algebras and decidability, Siberian School of Algebra
and Logic, Consultants Bureau, New York, 1997.

[36] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.

Vardi, Yde Venema, and Scott Weinstein, Finite model theory and its applications, Texts in
Theoretical Computer Science. An EATCS Series, Springer, Berlin, 2007.

[37] Serge Grigorieff, Every recursive linear ordering has a copy in DTIME-SPACE(n, log(n)), J.

Symbolic Logic 55 (1990), no. 1, 260–276.
[38] A. Gyárfás and J. Lehel, On-line and first fit colorings of graphs, J. Graph Theory 12 (1988),

no. 2, 217–227.

[39] , On-line and first fit colorings of graphs, J. Graph Theory 12 (1988), no. 2, 217–227.

[40] J. Hartmanis and R. E. Stearns, On the computational complexity of algorithms, Trans. Amer.

Math. Soc. 117 (1965), 285–306.
[41] Carl G Jockusch Jr and Robert I Soare, Degrees of orderings not isomorphic to recursive

linear orderings, Annals of pure and applied logic 52 (1991), no. 1-2, 39–64.

[42] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng, Algebraic structures com-
putable without delay, Theoret. Comput. Sci. 674 (2017), 73–98.

[43] , The diversity of categoricity without delay, Algebra and Logic 56 (2017), 171–177.

[44] Richard M. Karp, Reducibility among combinatorial problems, Complexity of computer com-
putations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y.,

1972) (R.E. Miller, J.W. Thatcher, and J.D. Bohlinger, eds.), The IBM Research Symposia

Series, Plenum Press, New York, 1972, pp. 85–103.
[45] Richard M Karp, On-line algorithms versus off-line algorithms: How much, Proceedings of

the IFIP 12th World Computer Congress on Algorithms, Software, Architecture - Information
Processing ’92, vol. 1, North-Holland Publishing Co., 1992, pp. 416–429.

[46] Bakhadyr Khoussainov and Anil Nerode, Automatic presentations of structures, Logic and

computational complexity (Indianapolis, IN, 1994), Lecture Notes in Comput. Sci., vol. 960,
Springer, Berlin, 1995, pp. 367–392.

[47] H. A. Kierstead, The linearity of first-fit coloring of interval graphs, SIAM J. Discrete Math.

1 (1988), no. 4, 526–530.
[48] , Recursive and on-line graph coloring, Handbook of recursive mathematics, Vol. 2,

Stud. Logic Found. Math., vol. 139, North-Holland, Amsterdam, 1998, pp. 1233–1269.
[49] H. A. Kierstead and Jun Qin, Coloring interval graphs with First-Fit, vol. 144, 1995, Com-

binatorics of ordered sets (Oberwolfach, 1991), pp. 47–57.

[50] H. A. Kierstead, David A. Smith, and W. T. Trotter, First-fit coloring on interval graphs
has performance ratio at least 5, European J. Combin. 51 (2016), 236–254. MR 3398852

[51] Hal A Kierstead and William T Trotter, Planar graph coloring with an uncooperative partner,

Journal of Graph Theory 18 (1994), no. 6, 569–584.
[52] Henry A. Kierstead, Recursive and on-line graph coloring, Handbook of recursive mathemat-

ics, Vol. 2, Stud. Logic Found. Math., vol. 139, North-Holland, Amsterdam, 1998, pp. 1233–

1269.
[53] Henry. A. Kierstead, A simple competitive graph coloring algorithm, Journal of Combinatorial

Theory, Series B 78 (2000), no. 1, 57–68.

44 MATTHEW ASKES AND ROD DOWNEY

[54] Henry A. Kierstead and William T. Trotter, Jr., An extremal problem in recursive combina-

torics, Congr. Numer. 33 (1981), 143–153.

[55] William B. Kinnersley, Douglas B. West, and Reza Zamani, Extremal problems for game
domination number, SIAM J. Discrete Math. 27 (2013), no. 4, 2090–2107.

[56] Leonid Libkin, Elements of finite model theory, Springer-Verlag, 2004.

[57] László Lovász, Michael Saks, and W. T. Trotter, An on-line graph coloring algorithm with
sublinear performance ratio, vol. 75, 1989, Graph theory and combinatorics (Cambridge,

1988), pp. 319–325.

[58] Matthew Askes, Online and Adverserial Online Games, MSc thesis, Victoria University of
Wellington, 2022.

[59] N. S. Narayanaswamy and R. Subhash Babu, A note on first-fit coloring of interval graphs,

Order 25 (2008), no. 1, 49–53.
[60] Christos H. Papadimitriou and Mihalis Yannakakis, On limited nondeterminism and the

complexity of the V-C dimension, vol. 53, 1996, Eighth Annual Structure in Complexity
Theory Conference (San Diego, CA, 1993), pp. 161–170.

[61] Jeffrey B. Remmel, Recursive Boolean algebras, Handbook of Boolean algebras, Vol. 3, North-

Holland, Amsterdam, 1989, pp. 1097–1165.
[62] Joseph G. Rosenstein, Linear orderings, Pure and Applied Mathematics, vol. 98, Academic

Press, New York-London, 1982.

[63] Marek Cygan Fedor V. Fomin Lukasz Kowalik Daniel Lokshtanov D’/aniel Marx Marcin
Pilipczuk Michal Pilipczuk Saket Saurabh, Parameterized algorithms, Springer, 2015.

[64] James H. Schmerl, Recursive colorings of graphs, Canadian J. Math. 32 (1980), no. 4, 821–

830.
[65] Charles C. Sims, Computation with finitely-presented groups, vol. 48, Cambridge University

Press, Cambridge, 1994.

[66] Daniel D. Sleator and Robert E. Tarjan, Amortized efficiency of list update and paging rules,
Comm. ACM 28 (1985), no. 2, 202–208.

[67] Alfred Tarski, Arithmetical classes and types of boolean algebras, Bulletin of the American
Mathematical Society 55 (1949).

[68] Todor Tsankov, The additive group of the rationals does not have an automatic presentation,

The Journal of Symbolic Logic 76 (2011), no. 4, 1341–1351.
[69] A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem,

Proc. London Math. Soc. (2) 42 (1936), no. 3, 230–265.

[70] H.S Witsenhausen, On woodall’s interval problem, Journal of Combinatorial Theory, Series
A 21 (1976), no. 2, 222–229.

[71] Jiaojiao Wu and Xuding Zhu, Lower bounds for the game colouring number of partial k-trees

and planar graphs, Discrete Math. 308 (2008), no. 12, 2637–2642. MR 2410475
[72] Itäı Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model

theory for metric structures, Model Theory with Applications to Algebra and Analysis, vol. 2,

Cambridge University Press, 2010, pp. 315–427.
[73] Xuding Zhu, Refined activation strategy for the marking game, J. Combin. Theory Ser. B 98

(2008), no. 1, 1–18. MR 2368019

Victoria University of Wellington, matthewaskes@gmail.com, Rod.Downey@msor.vuw.ac.nz

